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Abstract

In the online graph coloring problem, vertices from a graph G, known in advance, arrive
in an online fashion and an algorithm must immediately assign a color to each incoming
vertex v so that the revealed graph is properly colored. The exact location of v in the
graph G is not known to the algorithm, since it sees only previously colored neighbors of v.
The online chromatic number of G is the smallest number of colors such that some online
algorithm is able to properly color G for any incoming order. We prove that computing the
online chromatic number of a graph is PSPACE-complete.

1 Introduction

In the classical graph coloring problem we assign a color to each vertex of a given graph such
that the graph is properly colored, i.e., no two adjacent vertices have the same color. The
chromatic number χ of a graph G is the smallest k such that G can be colored with k distinct
colors. Deciding whether the chromatic number of a graph is at most k is well known to be
NP-complete, even in the case with three colors.

The online variant of graph coloring can be defined as follows: The vertices of G arrive one
by one, and an online algorithm must color vertices as they arrive so that the revealed graph
is properly colored at all times. When a vertex arrives, the algorithm sees edges to previously
colored vertices. The online algorithm may use additional knowledge of the whole graph G;
more precisely, a copy of G is sent to the algorithm at the start of the input. However, the exact
correspondence between the incoming vertices and the vertices of the copy of G is not known to
the algorithm. This problem is called Online Graph Coloring.

In this paper we focus on a graph parameter called online chromatic number which is anal-
ogous to the standard chromatic number of a graph.

Definition 1. The online chromatic number χO(G) of a graph G is the smallest number k such
that there exists a deterministic online algorithm which is able to color the specified graph G
using k colors for any incoming order of vertices.

The online chromatic number has been studied since 1990 [6]. One of the main open problems
in the area is the computational complexity of deciding whether χO(G) ≤ k for a specified simple
graph G, given G and k on input; see e.g. Kudahl [13].

∗Supported by project 17-09142S of GA ČR and by the GAUK project 634217. A preliminary version of this
work appeared in [3].
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Definition 2. The Online Chromatic Number problem is as follows:
Input: An undirected simple graph G and an integer k.
Goal: Decide whether χO(G) ≤ k.

In this paper, we fully resolve the computational complexity of this problem:

Theorem 1.1. The decision problem Online Chromatic Number is PSPACE-complete.

As is usual in the online computation model, we can view Online Graph Coloring as
a game between two players, which we call Painter (representing the online algorithm) and
Drawer (often called Adversary in the online algorithm literature). In each round Drawer
chooses an uncolored vertex v from G and sends it to Painter without without any information
to which vertex of G it corresponds, only revealing the edges to the previously sent vertices.
Then Painter must properly color (“paint”) v, i.e., Painter cannot use a color of a neighbor
of v. We stress that in this paper Painter is restricted to be deterministic. The game continues
with the next round until all vertices of G are colored.

Examples. Consider a path P4 on four vertices. Initially, Drawer sends two nonadjacent
vertices. If Painter assigns different colors to them, then these are the first and the third
vertex of P4, thus the second vertex must get a third color; otherwise they obtained the same
color a and they are the endpoints of P4, therefore the second and the third vertex get different
colors which are not equal to a. In both cases, there are three colors on P4 and thus χO(P4) = 3,
while χ(P4) = 2.

Note also that we may think of Drawer deciding where an incoming vertex belongs at some
time after it is colored provided that Drawer’s choice still allows for at least one isomorphism
to the original G. This is possible only for a deterministic Painter.

A particularly interesting class of graphs in terms of χO is the class of binomial trees. A
binomial tree of order k, denoted Bk, is defined inductively: B0 is a single vertex (the root)
and Bk is created by taking two disjoint copies of Bk−1, adding an edge between their roots
and choosing one of their roots as the root for the resulting tree. Thus P4 with the root on the
second vertex is B2.

It is not hard to generalize the example of P4 and show χO(Bk) = k+ 1 [6]. This shows that
the ratio between χO and χ may be arbitrarily large even for the class of trees.

History. The online problem Online Graph Coloring has been known since 1976 [1],
originally studied in the variant where the algorithm has no extra information at the start of
the input. Bean [1] showed that no online algorithm that is compared to an offline algorithm
can perform well under this metric. The notion of online chromatic number was first defined in
1990 by [6].

For the online problem, Lovász, Saks and Trotter [14] show an algorithm with a competi-
tive ratio O(n/ log∗ n), where the competitive ratio is the ratio of the number of colors used
by the online algorithm to the (standard) chromatic number. This was later improved to
O(n log log log n/ log log n) by Kierstad [11] using a deterministic algorithm. There is a better
O(n/ log n)-competitive randomized algorithm against an oblivious adversary by Halldórsson [8].
A lower bound on the competitive ratio of Ω(n/ log2 n) even for randomized algorithms against
an oblivious adversary was shown by Halldórsson and Szegedy [10].

Our variant of Online Graph Coloring, where the algorithm receives a copy of the
graph at the start, was suggested by Halldórsson [9], where it is shown that the lower bound
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Ω(n/ log2 n) also holds in this model. (Note that the previously mentioned algorithmic results
are valid for this model also.)

Kudahl [12] recently studied Online Chromatic Number as a complexity problem. The
paper shows that the problem is coNP-hard and lies in PSPACE. Later [13] he proved that if
some part of the graph is precolored, i.e., some vertices are assigned some colors prior to the
coloring game between Drawer and Painter and Drawer also reveals edges to the precolored
vertices for each incoming vertex, then deciding whether χO(G) ≤ k is PSPACE-complete. We
call this decision problem Online Chromatic Number with Precoloring. The paper [13]
conjectures that Online Chromatic Number (with no precolored part) is PSPACE-complete
too. Interestingly, it is possible to decide χO(G) ≤ 3 in polynomial time [7].

Related work. Deciding the outcome of many two-player games is PSPACE-complete; among
those are (generalizations of) Amazons, Checkers and Hex, to name a few.

The closest PSPACE-complete two-player game to our model is arguably Sequential Col-
oring Game, where two players color vertices in a fixed order and the first player to use more
than k colors loses the game. This game was defined and analyzed by Bodlaender [2].

However, in all of the games mentioned above, both players have roughly the same power.
This does not hold for Online Graph Coloring which is highly asymmetric, since Drawer
has perfect information (knows which vertices are sent and how they are colored), but Painter
does not. Painter may only guess to which part of the graph does the colored subgraph really
belong. This is the main difficulty in proving PSPACE-hardness.

An example of an asymmetric two-player game somewhat related to Online Graph Col-
oring is the Online Ramsey Game in which Builder draws edges and Painter colors each
edge either red, or blue. Builder wins if it forces a monochromatic copy of a graph H, oth-
erwise Painter wins. The condition for Builder is that at the end the revealed graph must
belong to a certain class of graphs. Deciding whether Builder wins was recently shown to be
PSPACE-complete [5], however, the proof assumes that some of the edges may be precolored.

Another recently studied asymmetric model is the Chooser-Picker Positional Game.
In it, the player Chooser selects a pair of objects, and the player Picker selects one of them for
itself, leaving the other object for the player Chooser. The winning condition is then similar
to Maker-Breaker games, such as Online Ramsey Game described above. A recent paper [4]
proves NP-hardness for this problem, but PSPACE-hardness remains open.

Proof outline. The fact that Online Chromatic Number belongs to PSPACE is not hard
to see: The online coloring is represented by a game tree which is evaluated using the Minimax
algorithm. This can be done in polynomial space, since the number of rounds in the game is
bounded by n, i.e., the number of vertices, and possible moves of each player can be enumerated
in polynomial space: Painter has at most n possible moves, because it either uses a color
already used for a vertex, or it chooses a new color, and Drawer has at most 2s moves where
s is the number of colored vertices, since it chooses which colored vertices shall be adjacent to
the incoming vertex. Drawer must ensure that sent vertices form an induced subgraph of G,
but this can be checked in polynomial space.

Inspired by [13], we prove the PSPACE-hardness of Online Chromatic Number by a
reduction from Q3DNF-SAT, i.e., the satisfiability of a fully quantified formula in the 3-
disjunctive normal form (3-DNF). An example of such a formula is

∀x1∃x2∀x3∃x4 . . . : (x1 ∧ x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ ¬x4) ∨ . . .

3



The similar problem of satisfiability of a fully quantified formula in the 3-conjunctive normal
form is well known to be PSPACE-complete. Since PSPACE is closed under complement,
Q3DNF-SAT is PSPACE-complete as well. Note that by an easy polynomial reduction, we can
assume that each 3-DNF clause contains exactly three literals.

We show the hardness in several iterative steps. First, in Section 2, we present a new,
simplified proof of the PSPACE-hardness of Online Chromatic Number with Precoloring
in which the sizes of both precolored and non-precolored parts of our construction are linear in
the size of the formula.

Then, in Section 3, we strengthen the result by reducing the size of the precolored part to
be logarithmic in the size of the formula. This is achieved by adding linearly many vertices to
our construction.

Finally, in Section 4, we show how to remove one precolored vertex and replace it by a
non-precolored part, while keeping the PSPACE-hardness proof valid. The cost for removing
one vertex is that the size of the graph is multiplied by a constant, but since we apply it only
logarithmically many times, we obtain a graph of polynomial size and with no precolored vertex.
This will complete the proof of Theorem 1.1.

In our analysis, Painter often uses the natural greedy algorithm FirstFit, which is ubiq-
uitous in the literature (see [14], [9]):

Definition 3. The online algorithm FirstFit colors an incoming vertex u using the smallest
color not present among colored vertices adjacent to u.

We remark that removing the last precolored vertex is the most difficult part of proving
PSPACE-hardness of Online Chromatic Number. While there might be an easier way how
to remove the penultimate precolored vertex (using the last precolored vertex) and similarly for
previous precolored vertices, for simplicity we use the same technique for removing all precolored
vertices as for removing the last precolored vertex. Also, our technique can be used for any graph
satisfying an assumption.

We note that if we would give Painter some advantage like parallel edges, precolored vertices
(as in [13]) or something that helps Painter distinguish different parts of the graph, the proof
of PSPACE-hardness would be much simpler. However, our theorem holds for simple graphs
without any such help.

2 Construction with a large precolored part

Our first construction will reduce the PSPACE-complete problem Q3DNF-SAT to Online
Coloring with Precoloring with a large precolored part. Given a fully quantified formula
Q in the 3-disjunctive normal form, we will create a graph G1 that will simulate this formula.
We assume that the formula contains n variables xi, (1 ≤ i ≤ n) and m clauses Ca, (1 ≤ a ≤ m),
and that variables are indexed in the same order as they are quantified.

Our main resource will be a large precolored clique Kcol on k vertices and naturally using k
colors; the number k will be specified later. Using such a precolored clique, we can restrict the
allowed colors on a given uncolored vertex v by connecting it with the appropriate vertices in
Kcol, i.e., we connect v to all vertices in Kcol which do not have a color allowed for v.

For simplicity we use the precoloring in the strong sense, i.e., Painter is able to recognize
which vertex in Kcol is which. We use this to easily recognize colors. However, it is straightfor-
ward to avoid the strong precoloring by modifying the precolored part; for example by creating
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i independent and identical copies of the i-th vertex in Kcol, each having the same color and
the same edges to other vertices in Kcol and the rest of the graph. With such a modification,
Painter would be able to recognize each color by the number of its vertices in Kcol. We also re-
mark that working with the strong precoloring is easier in the reduction, and since we eventually
obtain a graph without a precolored vertex, it does not matter which precoloring we use.

Each vertex in Kcol thus corresponds to a color. Colors used by Painter are naturally
denoted by numbers 1, 2, 3, ... k, but we shall also assign meaningful names to them.

We now construct a graph G1 that has the online chromatic number k if and only if the
quantified 3-DNF formula can be satisfied. See Figure 1 for an example of G1 and an overview
of our construction. We use the following gadgets for variables and clauses:

1. For a variable xi which is quantified universally, we will create a gadget consisting of ∀-
vertices xi,t and xi,f , connected by an edge. The vertex xi,t represents the positive literal
xi, while xi,f represents the negative literal ¬xi. Both vertices have exactly two allowed
colors: seti and unseti. If xi,t is assigned the color seti, it corresponds to setting the
variable xi to 1, and vice versa.
Note that if Drawer presents a vertex xi,t to Painter, Painter is able to recognize that
it is a vertex corresponding to the variable xi, but it is not able to recognize whether it is
the vertex xi,t or xi,f .

2. For a variable xj which is quantified existentially, we will create a gadget consisting of
three ∃-vertices xj,t (for the positive literal xj), xj,f (for the literal ¬xj) and xj,h (the
helper vertex), connected as a triangle.
Coloring of the first two variables also corresponds to setting the variable xj to true or
false, but in a different way: xj,t has allowed colors setj,t and unsetj , while xj,f has allowed
colors setj,f and unsetj . We want to avoid both xj,t and xj,f to have the color of type set,
and so the “helper” vertex xj,h can be colored only by setj,t or setj,f .
Note that the color choice for the vertices of xj means that if Painter is presented any
vertex of this variable, Painter can recognize it and decide whether to set xj to 1 (and
color accordingly) or to 0.
We call ∃-vertices and ∀-vertices together variable vertices.

3. For each clause Ca, we will add four new vertices.
(a) First, we create a vertex la,i for each literal in the clause, which is connected to one

of the vertices xi,t and xi,f corresponding to the sign of the literal. For example if
Ca = (xi ∧ ¬xj ∧ xk), then la,i is connected to xi,t, la,j is connected to xj,f and la,k
to xk,t. The allowed colors on a vertex la,i are {fa,unseti}.

(b) Finally, we add a fourth vertex da connected to the three vertices la,i, la,j , la,k. This
vertex can be colored only using the color fa or the color falsea. The color falsea
is used to signal that this particular clause is evaluated to 0. If the color fa is
used for the vertex da, this means that the clause is evaluated to 1, because fa is not
present on any of la,i, la,j , la,k, thus they have colors of type unseti and their neighbors
corresponding to literals have colors of type set.

4. The last vertex we add to the construction will be F , a final vertex. The vertex F is
connected to all the vertices da corresponding to the clauses. The allowed colors of the
vertex F are false1, false2, false3, . . . , falsem. This final vertex corresponds to the final
evaluation of the formula. If all clauses are evaluated to 0, the vertex F has no available
color left and must use a new color.

We have listed all the vertices and colors in our graph G1 and the functioning of our gadgets,
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but we will need slightly more edges. The reasoning for the edges is as follows: If Drawer
presents any vertex of the type la,i, da or F before presenting the variable vertices, or in the
case when the variable vertices are presented out of the quantifier order, we want to give an
advantage to Painter so it can finalize the coloring.

This will be achieved by allowing Painter to treat all remaining ∀-vertices as ∃-vertices,
i.e., Painter can recognize which of the two ∀-vertices xj,t, xj,f corresponds to setting xj to 1.

To be precise, we add the following edges to G1:
• Every ∃-vertex xj,t, xj,f , xj,h is connected to all previous ∀-vertices xi,t, that is to all such
xi,t for which i < j.
• Every ∀-vertex xj,t, xj,f is connected to all previous ∀-vertices xi,t such that i < j. (We

remark that these edges are not necessary, but make the following analysis simpler.)
• Every vertex of type la,i is connected to all the ∀-vertices xi′t for i′ 6= i. Note that la,i is

connected either to xi,t, or to xi,f ; we do not add a new edge to such vertices.
• Every vertex of type da is connected to all the ∀-vertices xi,t for all i.
• The vertex F is connected to all the ∀-vertices xi,t for all i.
See Figure 1 for an example of our graph G1. We call all non-precolored vertices the gadgets

for variables and clauses.

x1,t x1,f xix3,t x3,fx2,t x2,f

∀x1∃x2∀x3 : (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

l1,1 l1,2 l1,3 l2,1 l2,2 l2,3

x2,h

d1 d2

F

Figure 1: The construction for a sample formula. The thick black edges are the normal edges of
the construction, and the dashed orange edges are the additional edges that guarantee precedence
of vertices. The lists of allowed colors of each vertex are not listed in the figure.

It is easy to see that any two vertices outside Kcol have different sets of allowed colors except
∀-vertices xi,t and xi,f .

The number of colors allowed for Painter (the same as the size of Kcol) is k = 2m+2n∀+3n∃
where m is the number of clauses, n∀ the number of universally quantified variables and n∃ the
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number of existentially quantified variables.
The next two lemmas contain the analysis of our construction.

Lemma 2.1. For a given fully quantified formula in the 3-DNF form that is not satisfiable,
Drawer can force Painter to use k + 1 colors.

Proof. If anytime during the game Painter uses a color not present in the color clique Kcol,
the lemma is proven. We therefore assume this does not happen and show that the vertex F
cannot be colored with any color present in the precolored clique Kcol.

Drawer’s strategy is to first present the vertices x∗ in the the order in which the variables
are quantified in the formula. Whenever Drawer sends a ∀-vertex xi,t or xi,f , Painter is not
able to detect whether it is setting the value of xi to 1 or 0. As the formula is not satisfiable,
Drawer can therefore present these vertices in a sequence such that Painter chooses the value
of xi so that the final evaluation is false.

After the vertices of the variables, Drawer will present the vertices la,i for each clause, then
the vertex da for each clause, and finally the vertex F .

We now know that all clauses are evaluated to 0. This means that at least one of the vertices
la,i, la,j , la,k of each clause a is assigned the color fa. It follows that the vertex da of this clause
must be assigned the color falsea. This holds for all clauses, thus the vertex F has a neighbor
of the color falsea for each clause a. Hence, F cannot get any of the k colors allowed and needs
to be assigned a new color, which completes the proof.

Lemma 2.2. For a given fully quantified formula in the 3-DNF form that is satisfiable, and for
any order of sending vertices by Drawer, Painter has a strategy that uses k colors.

Proof. Painter’s goal is to use the knowledge of a satisfiable evaluation to paint the vertices
with few colors. We note the following two observations. The first follows easily from the sets
of allowed colors.

Observation 2.3. If Drawer presents a vertex, Painter is able to recognize it by the set of
edges to the clique Kcol, i.e., by the set of allowed colors, with the exception of ∀-vertices xi,t, xi,f
for a universally quantified variable xi.

Observation 2.4. If Drawer presents a vertex of type la,i, da or F before any of the ∀-vertices
xi,t, xi,f is presented for a universally quantified variable xi, Painter will be able to distinguish
the vertex xi,t from the vertex xi,f and therefore choose the assignment of xi.

Furthermore, for ∀-vertices xi,t, xi,f and for a vertex v of a variable xj with i < j, if Drawer
presents v before any of these ∀-vertices is sent, Painter is then able to distinguish the ∀-vertices
xi,t and xi,f .

The second observation is easy to see by noting that presenting v, la,i, da or F means that
it has an edge with xi,t, but not with xi,f (or, in the case of la,i, it may have an edge with xi,f ,
but not with xi,t, but this is symmetric). This means that we can distinguish xi,t from xi,f by
the presence or absence of an edge.

We continue with the proof of the lemma. We say that a variable xi is set, if at least one of
its vertices was colored or if Painter has assigned a value to it (e.g., if a vertex of a variable
xj was sent before a vertex of xi for j > i); otherwise xi is unset. Until Drawer presents a
vertex of type la,i, da, or F , Painter colors an incoming vertex v that corresponds to a variable
xi using the following strategy:
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• Let U be the set of all unset variables xj with j < i, i.e., all previous unset variables.
Painter chooses an assignment for all variables in U according to satisfiability of the
formula. Then Painter can color vertices for variables in U according to this assignment,
since it is now able to distinguish ∀-vertices of each universally quantified variable in U .
Therefore every variable in U becomes set.
• If the variable xi is not set and it is quantified universally, Painter chooses an arbitrary

allowed color for v (seti or unseti), thus xi becomes set.
• If xi is not set and it is quantified existentially, Painter knows how to set this variable

to satisfy the formula, thus Painter colors v according to the value of xi, since v can be
recognized.
• If xi is set and Painter can recognize which vertex is v, it colors v according to the setting

of xi.
• If xi is set and Painter cannot recognize v, then xi must be quantified universally and

the other vertex for xi is colored, therefore there is a single color left for v. (Note that in
this case no vertex for a variable xj with j > i arrived.)

When the vertex u of type la,i, da, or F is sent, let U be the set of all unset variables.
Painter chooses an assignment for all variables in U according to satisfiability of the formula.
Then Painter can color vertices for variables in U according to this assignment, since it is now
able to distinguish vertices of each universally quantified variable in U . Then all variables are
set and Painter decides how to color all remaining vertices in the graph using the following
rules:
• A variable vertex obtains color according to the setting of the corresponding variable.
• A vertex of type la,i gets unseti if its adjacent variable vertex xi,t or xi,f has a color of

type set; otherwise it gets fa
• A vertex of type da obtains color fa if all of its adjacent vertices of type la,i have colors of

type unset, i.e., the clause a evaluates to 1; otherwise it obtains color falsea.
• The final vertex F obtains a color falsea for a clause a that evaluates to 1. Since Painter

set variables such that the formula is satisfied, there must be such clause.
Now, Painter colors an incoming vertex v with the color assigned to it using these rules.

Hence, no matter in which order Drawer sends the vertices, the graph is colored using k colors
as desired.

3 Construction with a precolored part of logarithmic size

We now make a step to the general case without precoloring by reducing the size of the pre-
colored part so that it has only logarithmic size. Our construction is based on the one with a
large precolored part; namely, all the vertices xi,t, xi,f , xj,t, xj,f , xj,h, la,i, da, F (the gadgets for
variables and clauses) and the whole color clique Kcol will be connected the same way. Let G1

denote the gadgets for variables and clauses and Kcol.
Since Kcol now starts uncolored and Drawer may send it after the gadgets, we help Painter

by a structure for recognizing vertices in G1 or for saving colors.
We remark that there is also a simpler construction with a logarithmic number of precolored

vertices. If we just add a clique of logarithmically many precolored vertices to recognize vertices
in G1, the following proof would work and be easier. However, when we replace a precolored
vertex v by some non-precolored graph in Section 4, we will use some conditions that this simple
construction would not satisfy. Namely, we shall need that precolored vertices are not adjacent
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to G1.

3.1 Nodes

Our structure will consist of many small nodes, all of them have the same internal structure,
only their adjacencies with other vertices vary.

Each node consists of three vertices and a single edge; vertices are denoted by p1, p2, p3
and the edge leads between p2 and p3. We call the vertices p1 and p2 the lower partite
set of the node, p3 form the upper partite set. See Figure 2 for an illustration of a node.

p3

p2 p1

Figure 2: Node

Clearly, the online chromatic number of a node is two.
The intuition behind the nodes is as follows:
• If Drawer presents vertices of a node in the correct way, Painter

needs to use two colors in the lower partite set of the node.
• No color can be used in two different nodes.
• Each vertex v ∈ G1 (in the gadgets and in Kcol) has its own associated

nodeA. If the vertex p3 fromA does not arrive before v is sent, Painter
can color p3 and v with the same color, thus saving a color. Otherwise,
Painter can use the node to recognize v.
• ∀-vertices xi,t, xi,f for each universally quantified variable xi should be distinguishable only

by the same vertices as in the previous section. Therefore they are both associated with
the same two nodes.

Let N be the number of vertices in G1. We create N nodes, denoted by A1, . . . , AN , one for
each vertex in G1. For any two distinct nodes Ai and Aj (i 6= j), there is an edge between each
vertex in Ai and each vertex in Aj . Therefore, no color can be used in two nodes.

We have noted above that each node is associated with a vertex; we now make the connection
precise. Let v1, . . . , vN be the vertices in G1 (in an arbitrary order). Then we say that Ai

identifies the vertex vi. Moreover, if vi is a vertex x`,t or x`,f for a universally quantified
variable x` and vj is the other vertex, then Aj also identifies vi and Ai also identifies vj . Thus
each node identifies one or two vertices and each vertex is identified by one or two nodes.

Edges between a vertex v in the original construction G1 and a node depend on whether the
node identifies v, or not. For a vertex v ∈ G1 and for a node A, if A identifies v, we connect
only the whole lower partite set of A to v, i.e., we add two edges from v to both p1 and p2 of A.
Otherwise, we add three edges – one between v and every vertex in A.

3.2 Precolored vertices

The only precolored part P of the graph is intended for distinguishing nodes. Since there are N
nodes in total, we have p = dlog2Ne precolored vertices z1, z2, . . . zp with no edges among them.
Precolored vertices have the same color that may be used later for coloring G1 (the gadgets and
Kcol). For simplicity, we again use the precoloring in the strong sense, i.e., Painter is able to
recognize which precolored vertex is which.

We connect all vertices in the node Ai to zj if the j-th bit in the binary notation of i is 1;
otherwise zj is not adjacent to any vertex in Ai.

Clearly, the node to which an incoming vertex belongs can be recognized by its adjacency to
the precolored vertices. Note that a vertex from nodes is connected to at least one precolored
vertex and there is no edge between G1 and precolored vertices.
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So far, we have introduced all vertices and edges in our construction of the graph G2. To
summarize, our graph G2 consists of three parts:

1. The graph G1 from the previous section consisting of the color clique Kcol and of the
gadgets for variables and clauses, i.e., vertices xi,t, xi,t, xj,t, xj,f , xj,h, la,i, da, F ;

2. the nodes for recognizing vertices in G1;
3. the precolored vertices P for recognizing the nodes.
See Figure 3 for a simplified example of the graph G2.

Figure 3: A visualisation of the construction with logarithmically many precolored vertices. Not
all edges of the construction are present, e.g., dashed edges from Figure 1, most edges between
nodes and G1, and precolored vertices are connected only to p3 of a displayed node, although
they are connected either to all vertices in a node, or to none of them. The now uncolored clique
Kcol is connected the same way as it was in Section 2. Notice that x1,t and x1,f are identified
by the first node (as they are connected only to p1 and p2 of the first node), but x1,t is not
identified by the third node (as it is connected to all vertices of the third node).

We start with an observation about nodes.

Observation 3.1. If Drawer reveals all the nodes Ai before it sends any vertex from G1 (the
gadgets and Kcol), Drawer can force Painter to use two colors in the lower partite set of each
node and these colors are different for each node.

Proof. First we see that Painter is not able to distinguish incoming vertices from a node A by
their edges to vertices in other nodes, since there is a complete bipartite graph between any two
nodes.
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Thus Drawer uses the following strategy for each node A independently: Drawer first
presents the vertex p1 from A; let c be its color. Then Drawer sends a vertex q that is one of
vertices p2 and p3. Painter cannot deduce which of them is q, because both are not connected
to p1 (and both are connected to all vertices in other nodes). If Painter assigns the color c
to q, then q = p3 and Drawer sends p2 which must get another color than c. Otherwise if q
obtains another color than c, then q = p2.

Painter has 2N colors for the N nodes and k colors for G1 (with the same names as in the
previous section), thus overall Painter is allowed to use k′ = 2N + k = 2N + 2m+ 2n∀ + 3n∃
colors where m is the number of clauses, n∀ the number of universally quantified variables and
n∃ the number of existentially quantified variables. The precolored vertices have a color that
may be used later in G1.

Lemma 3.2. For a given fully quantified formula Q in the 3-DNF form that is not satisfiable,
Drawer can force Painter to use k′ + 1 colors.

Proof. If at any point of the game there are k′ + 1 colors in the graph, the lemma is proven.
Drawer’s strategy is to first present all nodes (in any order) and force to use two colors in the
lower partite set of each node. Moreover, Painter has to use different colors in distinct nodes.
Forcing such a coloring is possible by Observation 3.1.

Then Drawer sends Kcol and the situation is similar to the one with the precolored Kcol,
since none of two colors used in the lower partite set of a node is allowed for a vertex in G1, thus
Painter must use the k colors in Kcol for coloring the gadgets. Painter is able to recognize
vertices in Kcol by nodes, but nodes do not give Painter additional knowledge compared to Kcol.
In particular, Painter is not able to distinguish ∀-vertices xi,t, xi,f for a universally quantified
variable xi when one of them arrives. We conclude the proof by applying Lemma 2.1.

For a satisfiable formula nodes and precolored vertices become important. We give another
useful observation about nodes.

Observation 3.3. Suppose that Painter is using FirstFit, i.e., Painter always assigns the
smallest color not present among colored vertices adjacent to the incoming vertex. Then there
are at most two colors used on each node.

Moreover, if vertices p1 and p2 from a node A arrive before p3 from A, then p1 and p2 have
the same color.

Proof. Consider the last vertex q from a node A that is sent from A. We distinguish three cases:
• q = p1: Let the color of p2 be c and the color of p3 be d (clearly c 6= d). Since the

edges from p1 and p2 to other vertices in the construction except p3 are exactly the same,
Painter can use c for p1, but it cannot use any color forbidden for p2 when p2 was colored
with the possible exception of d. Hence p1 obtains c or d, but in both cases the node A
has two colors.
• q = p2: Let the color of p1 be c and the color of p3 be d. If c 6= d, Painter uses c for p2

for the same reason as in the previous case. Otherwise c = d and Painter must color p2
with another color, but there are two colors on A.
• q = p3: We show that p1 and p2 have the same color. Without loss of generality, p1 arrives

first and obtains a color c. When p2 arrives, it can be colored by c, but by no other color
c′ < c, since c′ would be available for p1 also when p1 was colored, because the edges from
p1 and p2 to other vertices except p3 are the same. Hence p1 and p2 have the same color
and the lemma follows.
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Painter’s strategy to win is basically the following: Color vertices in nodes greedily until a
vertex u from G1 arrives. At this time, some (but maybe not all) vertices in the gadgets can be
recognized by their nodes. Painter uses the winning strategy from Lemma 2.2 on the gadgets
for vertices that it can recognize, even if Kcol has arrived only partially. For each vertex v that
cannot be recognized, Painter is able to color (or already colored) the lower partite set of the
v’s node A with only one color, therefore it can use the same color for v and the vertex p3 ∈ A,
since they are not adjacent.

In the following proof, Painter waits for two nonadjacent vertices in G1, even although one
vertex from G1 suffices. The reason is the we shall need such a condition in Section 4 when we
remove precolored vertices.

Lemma 3.4. For a given fully quantified formula Q in the 3-DNF form that is satisfiable, and
for any order of sending vertices by Drawer, Painter has a strategy that uses k′ colors.

Proof. Let C be the set of 2N colors for nodes and let D be the set of k colors for G1 (the gadgets
and Kcol) including the color used on precolored vertices; both C and D are ordered arbitrarily
and C ∩ D = ∅.

Painter utilizes the precolored part P to decide whether an incoming vertex belongs to G1

(recall that G1 is the part of G2 not adjacent to any precolored vertex), or to a node (and to
which node). First, Painter uses the following algorithm:

Algorithm Greedy: For an incoming vertex u sent by Drawer:
1. If there are two nonadjacent vertices u1 and u2 in G1 that arrived, stop the algorithm.
2. If u is from nodes, assign u the smallest color from C not present among colored neighbors of

u.
3. Otherwise, if u is from G1, assign u the smallest color from D not present among colored

neighbors of u.

Note that the last u considered by Greedy is not yet colored and u is from G1. Observe
that only a clique is colored in G1 and this clique has at most k vertices.

Let u1 and u2 be the two nonadjacent vertices from the stopping condition of Greedy.
Observe that the nodes identifying u1 and u2 are different, since these nodes can be the same
only for both ∀-vertices of one variable, but these vertices are adjacent.

Painter continues by the following algorithm. We remark that by “Painter can recognize
u ∈ G1” we mean that Painter knows which vertex in G1 corresponds to u unless u is one
of the two vertices for a universally quantified variable xi – then Painter knows that one of
u = xi,t and u = xi,f holds.
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Algorithm Winning: Painter creates a virtual graph Gvirt with all colored vertices in G1; the
colors of such vertices are inherited from the graph G2.

Painter shall simulate its winning strategy on Gvirt using colors from D. Since only a clique is
colored in Gvirt, it renames colors so that the colored vertices have colors according to the winning
strategy on Gvirt. Painter remembers the colors of vertices in the virtual graph Gvirt.

For an incoming vertex u sent by Drawer:
1. If u is from G1:
2. If there is a vertex v in nodes that is not adjacent to u, then v is from one of at most

two nodes identifying u and Painter can recognize u. A virtual Drawer sends u to Gvirt

and let c ∈ D be the color that it obtains by the winning strategy of Painter on Gvirt by
Lemma 2.2. Color u in G2 using c and call u recognized.

3. Otherwise, assign u the smallest color from C not present among colored neighbors of u
and not used in G1.

4. If u is from a node A:
5. If a vertex v from G1 identified by A is colored by c, there is no edge between v and u,

c ∈ C and c is not present among nodes, then color u using c.
6. Otherwise, assign u the smallest color from C not present among colored neighbors of u.

If u is from G1 and Painter can recognize it by a nonadjacent vertex v from nodes (line 2),
then coloring it with the winning strategy is correct, since vertices that have a color from D in
G2 have the same color in Gvirt.

Otherwise, if Painter cannot recognize u from G1 (line 3), the vertex p3 from each node A
that serves for identifying u is not yet sent. It follows that there is at most one color used in the
lower partite set of A by Observation 3.3. In this case, u gets some color c from C that is not
used in G1. We want to show that c will be used on the vertex p3 from a node that identifies u.

To see this, observe that when the vertex p3 from a node A that identifies u arrives, the
condition on line 5 is satisfied and p3 obtains c unless the color c is already used in nodes. Thus
if the unrecognized vertex u from G1 is not a ∀-vertex, it has the same color as the vertex p3
from the single node A identifying v, since c can be used in nodes only for p3 of the node A.

Otherwise, if u is an unrecognized ∀-vertex, then u is identified by two nodes A and A′. Both
vertices p3 from A or A′ arrive after u and one of them obtains c, since the algorithm prefers to
use colors of v and possibly of the other ∀-vertex for the same variable (if its color is in C).

Recognized vertices from G1 are colored by the wining strategy on Gvirt using k colors from
D. As we have shown above, each unrecognized vertex v has the same color as a vertex p3 in
one of the nodes identifying v. There are at most 2N colors used in nodes by Observation 3.3
and all of them are from C. Thus Painter uses at most k′ = 2N + k colors.

4 Removing precoloring

In this section we show how to replace one precolored vertex by a large nonprecolored graph
whose size is a constant factor of the size of the original graph, while keeping Painter’s winning
strategy in the case of a satisfiable formula. Drawer’s winning strategy in the other case is of
course preserved as well and easier to see. We prove the following lemma which holds for all
graphs with precolored vertices satisfying an assumption.

Lemma 4.1. Let G be a graph with precolored subgraph Gp and let vp ∈ Gp be a precolored
vertex of G.

Let D be the induced subgraph with all nonprecolored vertices that are not connected to vp
and let E be the induced subgraph with all nonprecolored vertices that are connected to vp.
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Let k be an integer such that if χO(G) ≤ k, then there exists a winning strategy of Painter
where Painter colors E using FirstFit before two nonadjacent vertices from D arrive. More-
over, in this case if FirstFit assigns the same color to a vertex in D and to a vertex in E
before two nonadjacent vertices from D arrive, Painter can still color G using k colors.

Then there exists an integer k′ and a graph G′ with the following properties:
• G′ has only |V (Gp)| − 1 precolored vertices, and |V (G′)| ≤ 25|V (G)|,
• G′ can be constructed from G in polynomial time with respect to the size of G,
• it holds that χO(G′) ≤ k′ if and only if χO(G) ≤ k.

Note that we do not assume anything about D or E except that E may be colored by
Painter using FirstFit before two nonadjacent vertices from D arrive. We give a proof of
Theorem 1.1 using Lemma 4.1 in Section 4.1.

Construction of G′. Let N be the total number of vertices in D and E and let S = 8N . Our
graph G′ consists of precolored part G′p := Gp \ {vp}, graphs D and E and three huge cliques
A,B and C of size S; cliques A,B and C together form a supernode. We keep the edges inside
and between D and E and the edges between G′p and D ∪ E as they are in G.

We add a complete bipartite graph between cliques B and C, i.e., B ∪ C forms a clique of
size 2S. No vertex in A is connected to B or C. In other words, the supernode is created from a
node by replacing each vertex by a clique of size S and the only edge in the node by a complete
bipartite graph.

There are no edges between the supernode (cliques A and B ∪C) and any precolored vertex
in G′p. It remains to add edges between the supernode and D ∪ E. There is an edge between
each vertex in E and each vertex in the supernode, while every vertex in D is connected only
to the whole A and B, but not to any vertex in C. The fact that D and C are not adjacent at
all is essential in our analysis. Our construction is depicted in Figure 4.

C

B A

D E

Figure 4: An illustration of our construction of G′ where parts A,B and C form a supernode
and parts D and E form the original graph G (the remaining precolored vertices are not shown).
A thick line connecting two parts of G′ corresponds to a complete bipartite graph between them.
The edges between D and E remain unchanged from the original graph G. If there is no line
between two parts, then there is no edge between them in G′.

Proof of Lemma 4.1. Let G′ be the graph defined as above. Note that the number of vertices
in G′ is at most 25|V (G)|, G′ can be constructed from G in polynomial time and G′ has only
|V (Gp)| − 1 precolored vertices. Therefore, it remains to prove χO(G′) ≤ k′ for some k′ if and
only if χO(G) ≤ k. We set k′ to k + 2S, since at most 2S colors will be used in the supernode.

We start with the “only if” direction which is easier. Suppose that χO(G) > k and consider
G′ constructed from G. Drawer starts by sending A and then B∪C such that no color is both
in A and in B; this is possible, since cliques A and C have the same size. More precisely, if
Painter would assign a color from A to a vertex from B ∪C, Drawer decides that the vertex
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is in C; otherwise the vertex is in B (or in C if every vertex in B has been colored). This forces
Painter to use 2S different colors on A and B and no such color can be used for D and E.

Now the colored part of G′ (precolored vertices and the supernode) may be viewed as a
precolored part in G except that Painter may not be able to use the supernode in the same
way as a precolored vertex. Since this only helps Drawer, Drawer sends vertices according
to its winning strategy for G. This proves the “only if” direction of the third proposition of
Lemma 4.1.

In the rest of this section we focus on the opposite direction: assuming that χO(G) ≤ k, we
show that Painter can color G′ with k′ colors regardless of the strategy of Drawer.

In the following, when we refer to the colored part of G′, we do not take precolored vertices
into account. Painter actually does not look at precolored vertices unless it uses its winning
strategy for coloring G with k colors.

Intuition. At the beginning Painter has too little data to infer anything about the vertices.
Therefore, Painter shall wait for two nonadjacent vertices from D and for two large cliques
(larger than S/2) with a small intersection. Before such vertices arrive, it will color greedily.

Note that the greedy coloring algorithm eventually stops before everything is colored. Having
two large cliques, one mostly from A and the other mostly from B ∪ C, and two nonadjacent
vertices from D, Painter is able to recognize where an incoming vertex belongs. Therefore,
Painter can use the supernode like a precolored vertex and colors the remaining vertices from
D and E by its original winning strategy on G.

This approach may fail if a part of D is already colored by Painter’s application of the
greedy strategy. To remedy this, we prove that colors used on D so far are also used in C or E,
or will be used on C later.

The other obstacle is that Painter might not be able to distinguish between one clique
from D and vertices in A if nothing from B arrives. Nevertheless, each vertex u in such a
“hidden” clique is connected to all other colored vertices in D and to the whole colored part of
E, otherwise it would be distinguishable from vertices in A. Hence, it does not matter which
color u receives (since it is universal to colored vertices in D and E).

In summary, the sheer size of the supernode should allow the player Painter to be able to
use it as if it were precolored. Still, we need to allow for some small margin of error. This leads
us to the following definition:

Definition 4. Let N be the number of vertices of D ∪ E as in the construction of G′. For
subgraphs X,Y ⊆ G′, we say that X is practically a subgraph of Y if |V (X) \ V (Y )| ≤ N , and
X is practically disjoint with Y if |V (X) ∩ V (Y )| ≤ N .

We also say that a vertex v is practically universal to a subgraph X ⊆ G′ if it is adjacent to
all vertices in X except at most N of them. Similarly, we say a vertex v is practically independent
of a subgraph X ⊆ G′ if v has at most N neighbors in X.

At first, the player Painter uses the following algorithm for coloring incoming vertices,
which stops when it detects two useful vertices d1 and d2:
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Algorithm WaitForD: For an incoming vertex u sent by Drawer:
1. Let G′

R be the revealed part of G′ (i.e., colored vertices and u, but not precolored vertices)
2. Find a maximum clique in G′

R and denote it as K1.
3. Find a maximum clique in G′

R from those which are practically disjoint with K1 and denote
it as K2.

4. If |K2| ≥ S/2 and there are two nonadjacent vertices d1 and d2 in G′
R which are both not

practically universal to K1 or both not practically universal to K2:
5. Stop the algorithm.
6. Otherwise, color u using FirstFit.

While the algorithm may seem to use a huge amount of computation for one step, we should
realize that we are not concerned with time complexity when designing the strategy for Painter.
In fact, even a non-constructive proof of existence of a winning strategy would be enough to
imply existence of a PSPACE algorithm for finding it – we have observed already in Section 1
that Online Chromatic Number lies in PSPACE.

Let v be the incoming vertex u when WaitForD stops; note that v is not colored by the
algorithm and v can be from any part of G′.

One of the cliques K1 and K2 is practically a subgraph of B∪C and we denote this clique by
KBC . The other clique must be practically a subgraph of A and we denote it by KA. (Keep in
mind that both cliques may contain up to N vertices from D∪E.) We remark that some vertices
from C must have arrived, as A and B alone are indistinguishable in Step 4 of WaitForD. By
the same argument, the player Painter knows whether K1 = KA or K1 = KBC .

Let d1 and d2 be the nonadjacent vertices that caused the algorithm to stop. We observe
that d1, d2 ∈ D by eliminating all other possibilities:
• Neither d1 nor d2 is from E, since any vertex of E is practically universal to both cliques.
• Vertices d1 and d2 cannot both be from B ∪C, nor can both be from A, as they would be

adjacent.
• If d1 is in B ∪ C and d2 in A (or vice versa), then we have a contradiction with the fact

that d1 and d2 are not practically universal to the same clique.
• If d1 ∈ D and d2 would be from A or B (or vice versa), then d1 and d2 are adjacent.
• Finally, if d1 ∈ D and d2 ∈ C (or vice versa), then the clique to which they are not

practically universal cannot be the same for both, since d1 is universal to the whole A and
d2 to the whole B ∪ C.

Having cliques KA and KBC and vertices d1, d2 ∈ D, Painter uses the following rules to
recognize where an incoming or an already colored vertex u belongs:
• If u is practically universal to both KBC and KA, then u ∈ E.
• If u is practically universal to KBC and practically independent of KA and u is adjacent

to d1, then u ∈ B.
• If u is practically universal to KBC and practically independent of KA, but there is no

edge between d1 and u, then u ∈ C.
• If u is not practically universal to KBC , but it is practically universal to KA, then u ∈ A

or u ∈ D.
– Among such vertices, if there is a vertex not adjacent to u or u is not adjacent to a

vertex in E or u is adjacent to a vertex in B, then u ∈ D; we say that such u is surely
in D.

– Otherwise, the player Painter cannot yet recognize whether u ∈ A or u ∈ D.
The reader should take a moment to verify that indeed, the set of rules covers all possible

cases for u.
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Let Ã, B̃, C̃, D̃, Ẽ be the colored parts of G′ when WaitForD stops. We observe that in
the last case of the recognition the vertices from D̃ which are indistinguishable from A form a
clique; we denote it by KD. Note that all vertices in KD are connected to all vertices surely
from D that arrived and KD contains all vertices in D̃ that are not surely in D. We stress that
Painter does not know KD or even its size.

Intuition for the next step. To start, we give a few extremal examples of which parts of the
graph can be colored when WaitForD terminates:

1. The whole C and the whole A are colored, but only a clique from D is colored.
2. Some pairs of nonadjacent vertices in D are colored (or even the whole D) and the whole
A is colored, but only S/2 vertices from B ∪ C arrived.

3. There are again some pairs of nonadjacent colored vertices in D and now the whole C is
colored, but only S/2 vertices from A arrived.

Moreover, in all cases, some part of B and some part of E may also be colored.
Continuing with the intuition, as Painter can now recognize the parts of the construction

(with an exception of KD), we would like to use the winning strategy for Painter on G and
FirstFit on the rest. More precisely, Painter creates a virtual copy of G, adds vertices into
it and simulates the winning strategy on this virtual graph.

Our main problem is that some part of D (namely D̃) is already colored. We shall prove
that if D̃ is not a clique, Painter can ignore colors used in D̃ (but not the colors that it will
use on D), since they are already present in C or E or they may be used later in C. If D̃ is
a clique, it may be the case that C and A arrived completely and have the same colors, thus
Painter cannot ignore colors used on D̃.

Another obstacle in the simulation is KD, the hidden part of D. To overcome this, Painter
tries to detect vertices in KD and reclassify them as surely in D. Painter shall keep that all
vertices in KD are connected to all currently colored vertices in D and E, therefore it does not
matter which colors vertices in KD receive.

When Painter discovers a vertex from KD, it adds the vertex immediately to its simulation
of G. On the other hand, the size of KD increases when Drawer sends a vertex from D which
is indistinguishable from A.

After the algorithm WaitForD finishes, the player Painter applies an algorithm which
simulates its winning strategy on G and maintains disjoint sets of colors C (mainly for the
supernode) and E (for E and vertices surely in D). Recall that Painter is not able to distinguish
between A and KD, thus vertices in KD are treated in the same way as vertices in A. More
precisely, we define three color sets C, S and E as follows:

Definition 5.
• If colored vertices surely in D form a clique, let S be the set of colors that are used on

a colored vertex surely in D and that are not used in C̃. Otherwise, if there are two
nonadjacent colored vertices surely in D, let S be an empty set.
• Let C be the set of colors present currently in the supernode or in KD and among vertices

surely in D (i.e., in Ã, B̃, C̃, or D̃) except colors from S and colors present also in Ẽ.
• Let E be the set of colors assigned to vertices in Ẽ and colors in S.

We will update the color sets when we apply our algorithms and as more vertices arrive on
input; the precise updating procedure is specified throughout the algorithms. We shall keep that
C and E are disjoint. The winning algorithm for Painter is split into two parts, initialization
and coloring:
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Algorithm InitSimulation:
1. Painter initializes a virtual graph Gvirt by copying all vertices from Ẽ; the colors of such

vertices are inherited from G′.
2. Next, update the virtual graph with vertices surely in D as follows:
3. Set an arbitrary (virtual) ordering on already arrived vertices surely in D.
4. For every vertex u in the ordering with a color c in G′:
5. If c ∈ S, color u in Gvirt using c.
6. Otherwise, color u in Gvirt using a color c′ from E or a new color c′ not used in G′ according

to the winning strategy. Add c′ to E if it is not there.

When adding a colored vertex u that is surely in D to the virtual graph Gvirt, if c ∈ S,
coloring u with c in Gvirt does not harm the winning strategy by the assumptions of Lemma 4.1
— if S is nonempty, colored vertices surely in D form a clique and Painter may use any proper
coloring for them in the winning strategy. Moreover, some colors may be both in D̃ and in Ẽ,
but the winning strategy still works by the assumptions.

Otherwise, if c 6∈ S, u may obtain a different color in Gvirt than in the actual G′.

Algorithm ColorBySimulation: For an incoming vertex u sent by Drawer:
1. For each vertex w colored with c in G′ that is surely in D now, but that was indistinguishable

from vertices in A before u arrived (i.e., in KD before u arrived):
(a) Add w to the virtual graph Gvirt.
(b) As all colored vertices in Gvirt are connected to w (otherwise it would not be in KD), w

would obtain a new color if we add w to Gvirt and use the winning strategy of Painter
on Gvirt.

(c) If c is not used in C, remove c from C, add c to E and color w using c in Gvirt.
(d) Otherwise, if c is present in C, color w in Gvirt using a new color c′ not contained in
C and E and add c′ to E . (In this case, w has a different color in G′ and Gvirt, but
Painter pretends that its color is c′ for the purpose of simulation and does not use c
for vertices in D ∪ E in G′.)

2. If u is from C:
(a) If there is a color c among vertices surely in D such that c ∈ C and c is not present

among colored vertices adjacent to u, color u using the smallest such color.
(b) Otherwise, if there is a color in C not present among colored vertices adjacent to u, color

u using the smallest such color.
(c) Otherwise, choose a new color c not contained in C and E , color u with c, add c to C.

3. If u is from A or B or from KD, i.e., indistinguishable from A:
(a) If there is a color in C not present among colored vertices adjacent to u, color u using

the smallest such color.
(b) Otherwise, choose a new color c not contained in C and E , color u with c, add c to C.

4. If u is from E or surely from D:
(a) The virtual Drawer sends u to Gvirt. Simulate the winning strategy on Gvirt and color

u using a color c ∈ E or a new color c that is not in E or C; in the latter case, add c to
E .

(b) Color u in G′ using the same color c.

We remark that the first vertex u colored by the algorithm ColorBySimulation is v, the
vertex on which WaitForD stops. In a sense, if D̃ (the part of D colored by WaitForD) is
not a clique, Painter pretends that in D̃ there are colors from the simulation, not the colors
assigned by WaitForD. Otherwise, if D̃ is a clique, Painter uses colors from G′ in Gvirt which
may result in renaming the colors in the winning strategy on Gvirt.

Observe that any color used in G′ is in C or E and that these sets of colors are disjoint.
Thus the colors used for D ∪ E are different from those in the supernode except colors used in
D̃ or colors of vertices that were in KD when they arrived (which may happen also during the
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execution of ColorBySimulation).
Note that if u is from E or surely from D, coloring with c is sound; this follows from the

winning strategy on G and from the fact that colors in E are not used in the supernode (recall
that colors in S are not used in C̃).

The key part of the analysis is captured by the following claim and its proof which explains
the design of ColorBySimulation.

Claim 4.2. For any color c ∈ C it holds that c is used on a vertex in the supernode.

Proof. Any color added to C by ColorBySimulation and not removed from C in Step 1.(c) is
used in the supernode and no color used in E is in C, thus it remains to show that any color c ∈ C
used in D̃ (either on a vertex surely from D or on a vertex in KD when ColorBySimulation
starts) is present in C when the whole G′ is colored.

We assume that c is not used in Gvirt and thus also not in Ẽ, otherwise c is not in C. Colors
in D̃ and not in Gvirt (thus also not in S) are in C, thus ColorBySimulation can use c only
for a vertex in C. Let u be the first vertex in D̃ that obtains color c and let t be the time of
coloring u.

Note that if u is in KD at any time, then we are done, since u becomes surely in D at some
time (e.g., when the first vertex from B arrives) and at that time, either c is already used in C,
or ColorBySimulation uses c also in Gvirt and removes it from C. Also, if colored vertices
surely from D form a clique when ColorBySimulation starts and u is surely in D at that
time, then c is either used in C̃, or it is in S and thus not in C.

Therefore we assume that u is not in KD at any time, thus u is surely in D, and there
are two nonadjacent colored vertices surely in D when ColorBySimulation starts. This
implies |KBC | = |S|/2 or |KA| = |S|/2 when ColorBySimulation starts which means that
|C̃| ≤ |S|/2 or |Ã| ≤ |S|/2.

If |C̃| ≤ |S|/2 < |S| −N , then at least N vertices from C are colored by ColorBySimula-
tion. In this case, ColorBySimulation must assign c to a vertex in C at some point, since
it prefers colors used in D̃ before colors in A or new colors and N ≥ |D̃|.

Otherwise |C̃| > |S|/2, thus |Ã| ≤ |S|/2. If at time t there is some color in C not used in
A, let c′ be the smallest such color in the ordering of colors. We observe that WaitForD uses
the color c′ for u, since other colors allowed for coloring u are some colors used in E at time t
(which we assume that u does not get), or colors in D (which u also does not get as it is the
first vertex in D that has color c), or a new color not yet used anywhere, but any new color is
after c′ in the ordering of colors. Hence the greedy algorithm WaitForD prefers c′ and c = c′,
thus c is already used in C.

Otherwise, when Painter colors u, all colors used in C are also present in A which also
means that there are at least as many colored vertices in A as in C at time t. Let r be the
number of colored vertices in C at time t. WaitForD colors more than |S|−N−r vertices from
C after time t, at most |S|/2−r of them are colored by a color already used in A, thus after time
t WaitForD colors more than |S| −N − r− (|S|/2− r) = |S|/2−N vertices from C which do
not get a color from A. Hence WaitForD must use c for a vertex in C as |S|/2−N ≥ N ≥ |D̃|.
This concludes the proof of the claim.

There are always 2S colors used in the supernode, since otherwise there must be a color c
in A that is not in B ∪ C, but both WaitForD and ColorBySimulation prefer coloring B
using colors in A and coloring A using colors from B ∪ C. Thus |C| = 2S by Claim 4.2.
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Since all colors in E are used in the virtual graph Gvirt (this includes also colors in S) and
Painter uses the winning strategy on Gvirt, we know that |E| ≤ k. Overall, Painter uses at
most 2S + k = k′ colors and we proved χO(G′) ≤ k′ if χO(G) ≤ k. This concludes the proof of
Lemma 4.1.

4.1 Proof of the main theorem

We show how to apply Lemma 4.1 on the construction from Section 3 and prove the PSPACE-
completeness of Online Chromatic Number.

Proof of Theorem 1.1. Let φ be a formula of size n. We first construct a graph G2 with p =
O(log n) precolored vertices z1, z2, . . . zp as described in Sections 2 and 3. By Lemmas 3.4 and 3.2
we have χO(G2) ≤ k′ if and only if φ is satisfiable. Then for each precolored vertex in G2, we
apply Lemma 4.1 iteratively until we obtain a graph G3 with no precolored vertex such that
χO(G3) ≤ k′′ iff φ is satisfiable (for some k′′).

The number of vertices in G3 is polynomial in n, because G2 has linearly many vertices
and the number of vertices is multiplied by a constant with each of O(log n) applications of
Lemma 4.1. The constructions in Sections 2 and 3 and in Lemma 4.1 yield a polynomial-time
algorithm for computing G′ from φ.

It remains to check the assumption of Lemma 4.1 in each iteration i; we recall it here: If
χO(G) ≤ k, then there exists a winning strategy of Painter where Painter colors E using
FirstFit before two nonadjacent vertices from D arrive. Moreover, in this case if FirstFit
assigns the same color to a vertex in D and to a vertex in E before two nonadjacent vertices
from D arrive, Painter can still color G using k colors.

Let H0 be G2 and for each iteration i let Hi−1 be the graph before removing the i-th
precolored vertex zi and let Hi be the graph created from Hi−1 by the construction in Lemma 4.1.
Let the nonprecolored vertices of Hi−1 be partitioned into two disjoint induced subgraphs Di

and Ei such that all vertices from Ei are connected to zi and no vertex in Di is connected to
zi. We denote by Ai, Bi and Ci the cliques in the supernode in Hi. Thus Hi consists of parts
Ai, Bi, Ci, Di, and Ei (and possibly some precolored vertices which we do not take into account).

Note that Ei contains only some nodes and Di contains the whole G1 (i.e., Kcol and the
gadgets for variables and clauses) together with supernodes from previous iterations and nodes
that are not in Ei. We also remark that for i > 1 parts Ai−1, Bi−1, and Ci−1 of Hi−1 are in Di

and that there may be some nodes both in Di and in Ei−1 and also some nodes both in Ei and
in Di−1.

We start with the first iteration. The first part of the assumption holds for H0 = G2, since
the algorithm Greedy from the winning strategy from Lemma 3.4 colors the nodes by FirstFit
before two nonadjacent vertices from G1 arrive and D1 contains G1.

For the “moreover” part in the first iteration, if FirstFit assigns the same color c to a
vertex d in D1 and a vertex e in E1 before two nonadjacent vertices from D1 arrive, then e
must be from a node that identifies d and in this case Painter can just pretend that d is an
unrecognized vertex. In other words, the color c is intended for nodes and not used in G1.

For an iteration i > 1, note that in the winning strategy on Hi−1 Painter colors Hi−1 using
FirstFit before two large and practically disjoint cliques from the supernode arrive, one mostly
from Ai−1 and the other mostly from Bi−1 ∪ Ci−1. Since there are many pairs of nonadjacent
vertices between these cliques and these cliques are contained in Di, Painter can color Ei using
FirstFit before two nonadjacent vertices from Di arrive.
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For the “moreover” part, if FirstFit assigns the same color c to a vertex d in Di and a
vertex e in Ei before two nonadjacent vertices from Di arrive, then e is from nodes (as Ei

contains only nodes) and d is either from G1 as in the first iteration, or from the supernode
created in the previous iteration; in the latter case, e is in Dj and d is in Cj for j < i, since
otherwise they would be connected. (Note that d cannot be from nodes, since there is a complete
bipartite graph between every two nodes and a node is never split between E and D.) In both
cases, this does not harm the winning strategy of Painter on Hi−1, because the algorithm
ColorBySimulation assumes that FirstFit may use the same colors for more vertices in
Di−1 ∪Ei−1 or in Di−1 ∪Ci−1. This concludes that the assumption of Lemma 4.1 is satisfied in
each iteration.
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