Skip to main content
Log in

Knapsack in Graph Groups

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

It is shown that the knapsack problem, which was introduced by Myasnikov et al. for arbitrary finitely generated groups, can be solved in NP for every graph group. This result even holds if the group elements are represented in a compressed form by so called straight-line programs, which generalizes the classical NP-completeness result of the integer knapsack problem. If group elements are represented explicitly by words over the generators, then knapsack for a graph group belongs to the class LogCFL (a subclass of P) if the graph group can be built up from the trivial group using the operations of free product and direct product with \(\mathbb {Z}\). In all other cases, the knapsack problem is NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that if we ask for a solution (x 1,…,x k ) in \(\mathbb {Z}^{k}\), then knapsack can be solved in polynomial time (even for binary encoded integers) by checking whether \(\gcd (g_{1}, \ldots , g_{k})\) divides g.

  2. In the following, T C 0 always refers to its DLOGTIME-uniform version.

  3. This term comes from the fact that right-angled Artin groups are exactly the Artin groups corresponding to right-angled Coxeter groups.

  4. 4Note that since alph(p i,j ) ⊆alph(u),we must have p i,j = 1or x k = 0whenever j < k < i.

  5. 5An arithmetic circuit is a finite directed acyclic graph, where every node of indegree zero is labeled with abinary encoded integer, and every node of non-zero indegree is labeled with one of the arithmetic operations+ or ×.Nodes (resp., edges) of the arithmetic circuit are also called gates (resp., wires) and there is adistinguished gate, called the output gate. Every gate evaluates to an integer (the value of thegate) in the natural way, and the arithmetic circuits evaluates to the value of its outputgate.

References

  1. Aalbersberg, I.J., Hoogeboom, H.J.: Characterizations of the decidability of some problems for regular trace languages. Math. Syst. Theory 22, 1–19 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agol, I.: The virtual Haken conjecture. With an appendix by Agol, Daniel Groves, and Jason Manning. Doc. Math. 18, 1045–1087 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Arora, S., Barak, B.: Computational complexity — a modern approach. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  4. Babai, L., Beals, R., Cai, J., Ivanyos, G., Luks, E.M.: Multiplicative equations over commuting matrices. In: Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms SODA 1996, pp 498–507. ACM/SIAM (1996)

  5. Bertoni, A., Mauri, G., Sabadini, N.: Membership problems for regular and context free trace languages. Inf. Comput. 82, 135–150 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bestvina, M., Brady, N.: Morse theory and finiteness properties of groups. Invent. Math. 129(3), 445–470 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birget, J.-C., Ol’shanskii, A.Y., Rips, E., Sapir, M.V.: Isoperimetric functions of groups and computational complexity of the word problem. Ann. Math. Second Ser. 156(2), 467–518 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics, vol. 231. Springer, New York (2005)

  9. Charikar, M., Lehman, E., Lehman, A., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–2576 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crisp, J., Wiest, B.: Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups. Algebraic Geom. Topol. 4, 439–472 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diekert, V.: Combinatorics on traces. Lecture Notes in Computer Science, vol. 454. Springer, New York (1990)

  12. Diekert, V., Kausch, J.: Logspace computations in graph products. J. Symb. Comput. 75, 94–109 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diekert, V., Lohrey, M.: Word equations over graph products. Int. J. Algebra Comput. 18(3), 493–533 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Diekert, V., Muscholl, A.: Solvability of equations in graph groups is decidable. Int. J. Algebra Comput. 16(6), 1047–1069 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Diekert, V., Myasnikov, A.G., Weiß, A.: Conjugacy in Baumslag’s group, generic case complexity, and division in power circuiats. In: Symposium of the 11th Latin American Symposium, LATIN 2014. Lecture Notes in Computer Science, vol. 8392, pp 1–12. Springer (2014)

  16. Diekert, V., Rozenberg, G. (eds.): The Book of Traces World Scientific (1995)

  17. Elberfeld, M., Jakoby, A., Tantau, T.: Algorithmic meta theorems for circuit classes of constant and logarithmic depth. Electron. Colloq. Comput. Complexity (ECCC) 18, 128 (2011)

    MATH  Google Scholar 

  18. Frenkel, E., Nikolaev, A., Ushakov, A.: Knapsack problems in products of groups. J. Symb. Comput. 74, 96–108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Von zur Gathen, J., Sieveking, M.: A bound on solutions of linear integer equalities and inequalities. Proc. Amer. Math. Soc. 72(1), 155–158 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ghrist, R., Peterson, V.: The geometry and topology of reconfiguration. Adv. Appl. Math. 38(3), 302–323 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Greibach, S.: The hardest context-free language. SIAM J. Comput. 2(4), 304–310 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Greibach, S.A.: A new normal-form theorem for context-free phrase structure grammars. J. Assoc. Comput. Mach. 12(1), 42–52 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  23. Haase, C.: On the complexity of model checking counter automata. PhD thesis, University of Oxford St Catherine’s College (2011)

  24. Haglund, F., Wise, D.T.: Coxeter groups are virtually special. Adv. Math. 224(5), 1890–1903 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci. 65, 695–716 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hsu, T., Wise, D.T.: On linear and residual properties of graph products. Mich. Math. J. 46(2), 251–259 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ibarra, O.H., Moran, S.: Probabilistic algorithms for deciding equivalence of straight-line programs. J. Assoc. Comput. Mach. 30(1), 217–228 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits Derandomizing the XOR Lemma. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, STOC 1997, pp 220–229. ACM Press (1997)

  29. Jenner, B.: Knapsack problems for NL. Inf. Process. Lett. 54(3), 169–174 (1995)

  30. Kambites, M.: Formal languages and groups as memory. Commun. Algebra 37, 193–208 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R. E., Thatcher, J. W. (eds.) Complexity of Computer Computations, pp 85–103. Plenum Press, New York (1972)

  32. Kȯnig, D., Lohrey, M.: Evaluating matrix circuits. In: Proceedings of the 21st International Conference on Computing and Combinatorics, COCOON 2015. Lecture Notes in Computer Science, vol. 9198, pp 235–248. Springer (2015)

  33. König, D., Lohrey, M., Zetzsche, G.: Knapsack and subset sum problems in nilpotent, polycyclic, and co-context-free groups. In: Algebra and Computer Science. Contemporary Mathematics, vol. 677. AMS (2016)

  34. Kuske, D., Lohrey, M.: Logical aspects of Cayley-graphs: the monoid case. Int. J. Algebra Comput. 16(2), 307–340 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lohrey, M.: Algorithmics on SLP-compressed strings: A survey. Groups Complex. Cryptol. 4(2), 241–299 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lohrey, M.: The Compressed Word Problem for Groups. SpringerBriefs in Mathematics Springer (2014)

  37. Lohrey, M., Schleimer, S.: Efficient computation in groups via compression. In: Proceedings of Computer Science in Russia, CSR 2007. Lecture Notes in Computer Science, vol. 4649, pp 249–258. Springer (2007)

  38. Lohrey, M., Steinberg, B.: The submonoid and rational subset membership problems for graph groups. J. Algebra 320(2), 728–755 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lohrey, M., Zetzsche, G.: Knapsack in graph groups, HNN-extensions and amalgamated products. In: Proceedings of the 33rd International Symposium on Theoretical Aspects of Computer Science (STACS 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 47, pp 50:1–50:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Germany (2016)

  40. Lohrey, M., Zetzsche, G.: The complexity of knapsack in graph groups. In: Proceedings of the 34th International Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 66, pp 52:1–52:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Germany (2017)

  41. Lyndon, R.C., Schupp, P.E.: Combinatorial group theory. Springer, New York (1977)

    MATH  Google Scholar 

  42. Mihaı̆lova, K.A.: The occurrence problem for direct products of groups. Math. USSR Sbornik 70, 241–251 (1966). English translation

    MathSciNet  Google Scholar 

  43. Muscholl, A., Peled, D.: Message sequence graphs and decision problems on Mazurkiewicz traces. In: Proceedings of the 24th International Symposium on Mathematical Foundations of Computer Science, MFCS 1999. Lecture Notes in Computer Science, number 1672 , pp 81–91. Springer (1999)

  44. Myasnikov, A., Nikolaev, A., Ushakov, A.: Knapsack problems in groups. Math. Comput. 84, 987–1016 (2015)

  45. Nikolaev, A., Ushakov, A.: Subset sum problem in polycyclic groups. J. Symb. Comput. 84, 84–94 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Papadimitriou, C.H.: On the complexity of integer programming. J. Assoc. Comput. Mach. 28(4), 765–768 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pottier, L.: Minimal solutions of linear Diophantine systems: bounds and algorithms. In: Proceedings of the 4th International Conference on Rewriting Techniques and Applications, RTA 1991. Lecture Notes in Computer Science, vol. 488, pp 162–173. Springer-Verlag (1991)

  48. Sudborough, I.H.: On the tape complexity of deterministic context–free languages. J. Assoc. Comput. Mach. 25(3), 405–414 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  49. To, A.W.: Unary finite automata vs. arithmetic progressions. Inf. Process. Lett. 109(17), 1010–1014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Vollmer, H.: Introduction to circuit complexity. Springer, New York (1999)

    Book  MATH  Google Scholar 

  51. Wise, D.T.: Research announcement: the structure of groups with a quasiconvex hierarchy. Electron. Res. Announc. Math. Sci. 16, 44–55 (2009)

    MathSciNet  MATH  Google Scholar 

  52. Wolk, E.S.: A note on the “The comparability graph of a tree”. Proc. Amer. Math. Soc. 16, 17–20 (1965)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Georg Zetzsche is supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD) and by Labex Digicosme, Univ. Paris-Saclay, project VERICONISS. Markus Lohrey is supported by the DFG project LO 748/12-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Lohrey.

Additional information

This article is part of the Topical Collection on Theoretical Aspects of Computer Science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohrey, M., Zetzsche, G. Knapsack in Graph Groups. Theory Comput Syst 62, 192–246 (2018). https://doi.org/10.1007/s00224-017-9808-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-017-9808-3

Keywords

Navigation