Skip to main content
Log in

The Algebraic Theory of Parikh Automata

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

The Parikh automaton model equips a finite automaton with integer registers and imposes a semilinear constraint on the set of their final settings. Here the theories of typed monoids and of rational series are used to characterize the language classes that arise algebraically. Complexity bounds are derived, such as containment of the unambiguous Parikh automata languages in NC1. Affine Parikh automata, where each transition applies an affine transformation on the registers, are also considered. Relying on these characterizations, the landscape of relationships and closure properties of the classes at hand is completed, in particular over unary languages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The restriction that N is finite is needed to preserve the property that the monoids at hand are finitely generated. It is possible to define a sensible product of two infinite typed monoids, see [25]. We will however only need this particular case.

  2. A full trio or cone is a class of languages closed under morphisms, inverse morphisms,and intersection with the regular languages.

  3. A wreath product with an infinite typed monoid on the right results in an uncountablemonoid, an undesirable property that was circumvented in [25]. We note that Theorem 4stays true with a definition of wreath product mimicking that of [25].

  4. A language L is bounded if Lw1∗w2∗⋯w k∗ for some words w 1,w 2,…,w k .

References

  1. Abdulla, P.A., Atig, M.F., Meyer, R., Salehi, M.S.: What’s Decidable about Availability Languages. In: FSTTCS, LIPIcs, vol. 45, pp. 192–205. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2015). https://doi.org/10.4230/LIPIcs.FSTTCS.2015.192

  2. Akshay, S., Genest, B., Karelovic, B., Vyas, N.: On Regularity of Unary Probabilistic Automata. In: STACS, LIPIcs, vol. 47, pp. 8:1–8:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.STACS.2016.8

  3. Barrington, D.A.M.: Bounded-width polynomial size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38, 150–164 (1989)

    Article  MATH  Google Scholar 

  4. Barrington, D.A.M., Thérien, D.: Finite monoids and the fine structure of NC1. J. Assoc. Comput. Mach. 35, 941–952 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Behle, C., Krebs, A., Mercer, M.: Linear Circuits, Two-Variable Logic and Weakly Blocked Monoids. In: Mathematical Foundations of Computer Science, LNCS, vol. 4708, pp. 147–158. Springer, Berlin (2007)

  6. Behle, C., Krebs, A., Reifferscheid, S.: Typed Monoids - an Eilenberg-Like Theorem for Non Regular Languages. In: Algebraic Informatics, LNCS, vol. 6742, pp. 97–114. Springer, Berlin (2011)

  7. Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  8. Bu̇chi, J. R.: Weak second order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960)

    Article  MathSciNet  Google Scholar 

  9. Cadilhac, M., Finkel, A., McKenzie, P.: Affine Parikh automata. RAIRO - Theoretical Informatics and Applications 46(04), 511–545 (2012). https://doi.org/10.1051/ita/2012013

    Article  MathSciNet  MATH  Google Scholar 

  10. Cadilhac, M., Finkel, A., McKenzie, P.: Bounded Parikh automata. Int. J. Found. Comput. Sci. 23(08), 1691–1709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cadilhac, M., Finkel, A., McKenzie, P.: Unambiguous constrained automata. Int. J. Found. Comput. Sci. 24(7), 1099–1116 (2013). https://doi.org/10.1142/S0129054113400339

    Article  MathSciNet  MATH  Google Scholar 

  12. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 computation. J. Comput. Syst. Sci. 57, 200–212 (1998)

    Article  MATH  Google Scholar 

  13. Chomsky, N., Schützenberger, M.P.: The Algebraic Theory of Context-Free Languages. In: Computer Programming and Formal Systems, Studies in Logic and the Foundations of Mathematics, vol. 26, pp. 118–161. Elsevier, Amsterdam (1959). https://doi.org/10.1016/S0049-237X(09)70104-1

  14. Eilenberg, S.: Automata, Languages, and Machines, Volume B. Pure and Applied Mathematics. Academic Press, Cambridge (1976)

    Google Scholar 

  15. Enderton, H.B.: A mathematical introduction to logic. Academic Press, Cambridge (1972)

    MATH  Google Scholar 

  16. Figueira, D., Libkin, L.: Path Logics for Querying Graphs: combining Expressiveness and Efficiency. In: LICS, pp. 329–340 (2015). https://doi.org/10.1109/LICS.2015.39

  17. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proc. Am. Math. Soc. 17(5), 1043–1049 (1966). https://doi.org/10.2307/2036087

    Article  MathSciNet  MATH  Google Scholar 

  18. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas and languages. Pac. J. Math. 16(2), 285–296 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hoenicke, J., Meyer, R., Olderog, E.R.: Kleene, Rabin, and Scott are Available. In: Proceedings of the 21St International Conference on Concurrency Theory, CONCUR’10, pp. 462–477. Springer, Berlin (2010)

  20. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978). https://doi.org/10.1145/322047.322058

    Article  MathSciNet  MATH  Google Scholar 

  21. Kambites, M.: Formal languages and groups as memory. Commun. Algebra 37(1), 193–208 (2009). https://doi.org/10.1080/00927870802243580

    Article  MathSciNet  MATH  Google Scholar 

  22. Karianto, W.: Parikh automata with pushdown stack. Diploma thesis RWTH Aachen (2004)

  23. Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: International Colloquium on Automata, Languages and Programming, LNCS, vol. 2719, pp. 681–696. Springer, Berlin (2003). https://doi.org/10.1007/3-540-45061-0_54

  24. Krebs, A.: Typed Semigroups, Majority Logic, and Threshold Circuits. Ph.D. thesis, Eberhard Karls University of Tübingen (2008)

    Google Scholar 

  25. Krebs, A., Lange, K.J., Reifferscheid, S.: Characterizing TC0 in terms of infinite groups. Theory of Computing Systems 40(4), 303–325 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966). https://doi.org/10.1145/321356.321364

    Article  MATH  Google Scholar 

  27. Pin, J.E.: Mathematical foundations of automata theory (2016). https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf

  28. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Springer, New York (1978)

    Book  MATH  Google Scholar 

  29. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkäuser, Boston 1994. https://doi.org/10.1007/978-1-4612-0289-9

  30. Turakainen, P.: Some closure properties of the family of stochastic languages. Inf. Control. 18(3), 253–256 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vollmer, H.: Introduction to circuit complexity. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  32. Zare, D.: For a linear recurrence sequence (u n ) n≥ 0, can {i|u i > 0} be the set of Fibonacci numbers? MathOverflow (2015). http://mathoverflow.net/q/222379

Download references

Acknowledgements

We thank Michael Blondin and Charles Paperman for comments on early versions of this article. Part of this work was done during the Dagstuhl Seminar 15401 “Circuits, Logic and Games.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Cadilhac.

Additional information

Extended version of the paper with the same title appearing in the proceedings of the 5th Conference on Algebraic Informatics (CAI’13), LNCS vol. 8080, pp. 60–73, Springer-Verlag (2013). The main changes in contents are as follows: Section 3 contains anew Chomsky-Schützenberger-like characterization of \(\protect \mathcal {L}_{\protect \text {CA}}\); Section 4 additionally shows that \(\protect \mathcal {L}_{\protect \text {DetAPA}} = \protect \mathcal {L}_{\protect \text {UnAPA}}\); Section 5 presents an expressiveness lemma that allows, in Section 6, to show separation of \(\protect \mathcal {L}_{\protect \text {DetAPA}}\) and \(\protect \mathcal {L}_{\protect \text {APA}}\), and new nonclosure results; moreover, most proofs were rewritten for added uniformity.

The first two authors are supported by the DFG Emmy Noether program (KR 4042/2). The third author is supported by the Natural Sciences and Engineering Research Council of Canada and by the “Chaire Digiteo, ENS Cachan -École Polytechnique.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadilhac, M., Krebs, A. & McKenzie, P. The Algebraic Theory of Parikh Automata. Theory Comput Syst 62, 1241–1268 (2018). https://doi.org/10.1007/s00224-017-9817-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-017-9817-2

Keywords

Navigation