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Abstract. We present a general technique, based on a primal-dual formulation, for analyzing the
quality of self-emerging solutions in weighted congestion games. With respect to traditional combina-
torial approaches, the primal-dual schema has at least three advantages: first, it provides an analytic
tool which can always be used to prove tight upper bounds for all the cases in which we are able
to characterize exactly the polyhedron of the solutions under analysis; secondly, in each such a case
the complementary slackness conditions give us an hint on how to construct matching lower bounding
instances; thirdly, proofs become simpler and easy to check. For the sake of exposition, we first apply
our technique to the problems of bounding the prices of anarchy and stability of exact and approximate
pure Nash equilibria, as well as the approximation ratio of the solutions achieved after a one-round
walk starting from the empty strategy profile, in the case of affine latency functions and we show how
all the known upper bounds for these measures (and some of their generalizations) can be easily re-
obtained under a unified approach. Then, we use the technique to attack the more challenging setting
of polynomial latency functions. In particular, we obtain the first known upper bounds on the price
of stability of pure Nash equilibria and on the approximation ratio of the solutions achieved after a
one-round walk starting from the empty strategy profile for unweighted players in the cases of quadratic
and cubic latency functions. We believe that our technique, thanks to its versatility, may prove to be
a powerful tool also in several other applications.

Keywords: Price of anarchy and stability, Performance of one-round walks, (Approximate) Nash equilibria,
Congestion games, Primal-dual analysis.

1 Introduction

Characterizing the quality of self-emerging solutions in non-cooperative systems is one of the leading research
direction in Algorithmic Game Theory. Given a game G, a social function F measuring the quality of any
solution which can be realized in G, and the definition of a set E of certain self-emerging solutions, we are
asked to bound the ratio Q(G, E ,F) := F(K)/F(O), where K is some solution in E(G) (usually either the
worst or the best one with respect to F) and O is the solution optimizing F .

In the last ten years, there has been a flourishing of contribution in this topic and, after a first flood of
unrelated results, coming as a direct consequence of the fresh intellectual excitement caused by the affirmation
of this new research direction, a novel approach, aimed at developing a more mature understanding of which
is the big picture standing behind these problems and their solutions, is now arising.

In such a setting, Roughgarden [18] proposes the so-called “smoothness argument” as a unifying technique
for proving tight upper bounds on Q(G, E ,F) for several notions of self-emerging solutions E , when G satisfies
some general properties, K is the worst solution in E(G) and F is defined as the sum of the players’ payoffs.
He also gives a more refined interpretation of this argument and stresses also its intrinsic limitations, in a
subsequent work with Nadav [16], by means of a primal-dual characterization which shares lot of similarities
with the primal-dual framework we provide in this paper. Anyway, there is a subtle, yet substantial, difference
between the two approaches and we believe that the one we propose is more general and powerful. Both
techniques formulate the problem of bounding Q(G, E ,F) via a (primal) linear program and, then, an upper
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bound is achieved by providing a feasible solution for the related dual program. But, while in [16] the variables
defining the primal formulation are yielded by the strategic choices of the players in both K and O (as one
would expect), in our technique the variables are the parameters defining the players’ payoffs in G, while K
and O play the role of fixed constants. As it will be clarified later, such an approach, although preserving
the same degree of generality, applies to a broader class of games and allows for a simple analysis facilitating
the proof of tight results. In fact, as already pointed out in [16], the Strong Duality Theorem assures that
each primal-dual framework can always be used to derive the exact value of Q(G, E ,F) provided that, for
any solution S which can be realized in G, F(S) can be expressed though linear programming and

• the polyhedron defining E(G) can be expressed though linear programming, when K is the worst solution
in E(G) with respect to F ,

• the polyhedron defining K can be expressed though linear programming, when K is the best solution in
E(G) with respect to F .

Moreover, in all such cases, by applying the “complementary slackness conditions”, we can figure out which
pairs of solutions (K,O) yield the exact value of Q(G, E ,F), thus being able to construct quite systematically
matching lower bounding instances.

We consider three sets of solutions E , namely,

• pure Nash equilibria (PNE), that is, the set of outcomes in which no player can improve her situation
by unilaterally changing the adopted strategy;

• ǫ-approximate pure Nash equilibria (ǫ-PNE), that is, outcomes in which no player can improve her
situation of more than a factor ǫ by unilaterally changing the adopted strategy (by definition, each
0-PNE is a PNE);

• solutions achieved after a one-round walk starting from the empty strategy profile [15], that is, the set
of outcomes which arise when, starting from an initial configuration in which no player has done any
strategic choice yet, each player is asked to select, sequentially and according to a given ordering, her
best possible current strategy.

For E(G) being the set of ǫ-PNE of G, Q(G, E ,F) is called the approximate price of anarchy of G (ǫ-PoA(G))
when K is the worst solution in E(G), while it is called the approximate price of stability of G (ǫ-PoS(G))
when K is the best solution in E(G). For ǫ = 0, that is for the set of PNE of G, the terms price of anarchy
(PoA(G)) and price of stability (PoS(G)) are used. For E(G) being the set of solutions achieved after one-
round walks starting from the empty strategy profile in G, K is always defined as the worst solution in E(G)
and Q(G, E ,F) is denoted by Apx1∅(G).

Our Contribution. Our method reveals to be particularly powerful when applied to the class of weighted
congestion games. In these games there are n players competing for a set of resources. Each player has an
associated weight denoting how much the player congestions a resource when using it, while each resource
has an associated latency function modeling the cost incurred by each player when using it. The latency
function of each resource only depends on the total weight of the players using it (the overall congestion of
the resource) and the cost experienced by each player in a given strategy profile is then defined as the sum of
the costs incurred by the player on each of the used resources. These games have a particular appeal since,
from one hand, they are general enough to model a variety of situations arising in real life applications and,
from the other one, they are structured enough to allow a systematic theoretical study. For example, for
the case in which all players have the same weight (the so-called unweighted players), Rosenthal [19] proved
through a potential function argument that PNE are always guaranteed to exist, while general weighted
congestion games are guaranteed to possess PNE if and only if the latency functions are either affine or
exponential [11,12,13,17].

In order to illustrate the versatility and usefulness of our technique, we first consider the well-known and
studied case in which the latency functions are affine and F is the sum of the players’ payoffs and show how
all the known results (as well as some of their generalizations) can be easily reobtained under a unifying
approach. They are depicted in Figure 1. Note that, since all the upper bounds for ǫ-PoA and ǫ-PoS are
expressed as a function of ǫ, results concerning PNE can be derived by setting ǫ = 0. For ǫ-PoA and ǫ-PoS in
the unweighted case and for Apx1∅, we reobtain known upper bounds with significatively shorter and simpler
proofs (where, by simple, we mean that only basic notions of calculus are needed in the arguments), while for



the generalizations of the ǫ-PoA and the ǫ-PoS in the weighted case, we give the first upper bounds known
in the literature.

Measure Unweighted Weighted Conditions

ǫ-PoA (1+ǫ)(z2+3z+1)
2z−ǫ

[9] ψ2 ǫ ≥ 0

ǫ-PoS 1+
√

3

ǫ+
√
3

[9] 2
1+ǫ

ǫ ∈ [0; 1]

Apx1
∅ 2 +

√
5 [10] 4 + 2

√
3 [10] −

Fig. 1. Upper bounds on the quality of some non-cooperative solutions in weighted and unweighted linear

congestion games. Here, ψ = 1+ǫ+
√
ǫ2+6ǫ+5
2 and z = ⌊ψ⌋.

After having introduced the technique, we show how it can be used to attack the more challenging case
of polynomial latency functions. In such a case, the PoA and ǫ-PoA was already studied and characterized
in [1] and [9], respectively, and both papers pose the achievement of upper bounds on the PoS and ǫ-PoS
as a major open problem in the area. For unweighted players and quadratic and cubic latency functions, we
easily achieve the upper bounds on PoS and Apx1∅ reported in Figure 2. Extensions to ǫ-PoS and weighted
players are left to future work.

Measure Quadratic Latencies Cubic Latencies

PoS 2.362 3.321

PoA 115
12

≈ 9.583 [1] 1163
28

≈ 41.535 [1]

Apx1
∅ 37.5888 17929

34
≈ 527.323

Fig. 2. Upper bounds on the quality of some non-cooperative solutions in unweighted congestion games with
quadratic and cubic latency functions.

What we would like to stress here is that, more than the novelty of the results achieved in this paper, what
makes our method significative is its capability of being easily adapted to a variety of particular situations
and we are more than sure of the fact that it will prove to be a powerful tool to be exploited in the analysis
of the efficiency achieved by different classes of self-emerging solutions in other contexts as well. To this aim,
in the Appendix, we show how the method applies also to other social functions, such as the maximum of
the players’ payoffs (Subsection 6.4), and to other subclasses of congestion games such as resource allocation
games with fair cost sharing (Subsection 6.5). Note that, in the latter case, as well as in the case of polynomial
latency functions, the primal-dual technique proposed in [16] cannot be used, since the players’ costs are not
linear in the variables of the problem.

Related Works. The study of the quality of self-emerging solutions in non-cooperative systems initiated
with the seminal papers of Koutsoupias and Papadimitriou [14] and Anshelevich et al. [2] which introduced,
respectively, the notions of price of anarchy and price of stability.

Lot of results have been achieved since then and we recall here only the ones which are closely related to
our scenario of application, that is, weighted congestion games with polynomial latency functions.

For affine latency functions and F defined as the sum of the players’ payoffs, Christodoulou and Kout-
soupias [7] show that the PoA is exactly 5/2 for unweighted players, while Awerbuch et al. [3] show that
it rises to exactly (3 +

√
5)/2 in the weighted case. These bounds keep holding also when considering the

price of anarchy of generalizations of PNE such as mixed Nash equilibria and correlated equilibria, as shown
by Christodoulou and Koutsoupias in [8]. Similarly, for polynomial latency functions with maximum de-
gree equal to d, Aland et al. [1] prove that the price of anarchy of all these equilibria is exactly Φd+1

d in

the weighted case and exactly (k+1)2d+1−kd+1(k+2)d

(k+1)d+1−(k+2)d+(k+1)d−kd+1 in the unweighted case, where Φd is the unique



non-negative real solution to (x + 1)d = xd+1 and k = ⌊Φd⌋. These interdependencies have been analyzed
by Roughgarden [18] who proves that unweighted congestion games with latency functions constrained in a
given set belong to the class of games for which a so-called “smoothness argument” applies and that such
a smoothness argument directly implies the fact that the prices of anarchy of PNE, mixed Nash equilibria,
correlated equilibria and coarse correlated equilibria are always the same when F is the sum of the players’
payoffs. Such a result has been extended also to the weighted case by Bhawalkar et al. in [4].

For the alternative model in which F is defined as the maximum of the players’ payoffs, Christodoulou
and Koutsoupias [7] show a PoA of Θ(

√
n) in the case of affine latency functions.

For the PoS, only the case of unweighted players, affine latency functions and F defined as the sum of the
players’ payoffs, has been considered so far. The upper and lower bounds achieved by Caragiannis et al. [6]
and by Christodoulou and Koutsoupias [8], respectively, set the PoS to exactly 1+ 1/

√
3. Clearly, being the

PoS a best-case measure and being the set of PNE properly contained in the set of all the other equilibrium
concepts, again we have a unique bound for PNE and all of its generalizations.

As to ǫ-PNE, in the case of unweighted players, polynomial latency functions and F defined as the sum of

the players’ payoffs, Christodoulou et al. [9] show that the ǫ-PoA is exactly (1+ǫ)((z+1)2d+1−zd+1(z+2)d)
(z+1)d+1−zd+1−(1+ǫ)((z+2)d−(z+1)d)

,

where z is the maximum integer satisfying zd+1

(z+1)d
< 1 + ǫ, and that, for affine latency functions, the ǫ-PoS

is at least 2(3+ǫ+θǫ2+3ǫ3+2ǫ4+θ+θǫ)
6+2ǫ+5θǫ+6ǫ3+4ǫ4−θǫ3+2θǫ2 , where θ =

√
3ǫ3 + 3 + ǫ+ 2ǫ4, and at most (1 +

√
3)/(ǫ+

√
3).

Finally, for affine latency functions and F defined as the sum of the players’ payoffs, Apx1∅ has been

shown to be exactly 2+
√
5 in the unweighted case as a consequence of the upper and lower bounds provided,

respectively, by Christodoulou et al. [10] and by Bilò et al. [5], while, for weighted players, Caragiannis et
al. [6] give a lower bound of 3 + 2

√
2 and Christodoulou et al. [10] give an upper bound of 4 + 2

√
3. For F

being the maximum of the players’ payoffs, Bilò et al. [5] show that Apx1∅ is Θ(
4
√
n3) in the unweighted case

and affine latency functions.

Paper Organization. In next section, we give all the necessary definitions and notation, while in Section
3 we briefly outline the primal-dual method. Then, in Section 4 we illustrate how it applies to affine latency
functions and, finally, in Section 5 we use it to address the case of quadratic and cubic latency functions.
Additional material can be found in the Appendix.

2 Definitions

For a given integer n > 0, we denote as [n] the set {1, . . . , n}.
A weighted congestion game G =

(
[n], E, (Σi)i∈[n], (ℓe)e∈E , (wi)i∈[n]

)
is a non-cooperative strategic game

in which there is a set E of m resources to be shared among the players in [n]. Each player i has an
associated weight wi ∈ R≥0 and the special case in which wi = 1 for any i ∈ [n] is called the unweighted

case. The strategy set Σi, for any player i ∈ [n], is a subset of resources, i.e., Σi ⊆ 2E . The set Σ = ×i∈[n]Σi

is called the set of strategy profiles (or solutions) which can be realized in G. Given a strategy profile
S = (s1, s2, . . . , sn) ∈ Σ and a resource e ∈ E, the sum of the weights of all the players using e in S,
called the congestion of e in S, is denoted by Le(S) =

∑
i∈[n]:e∈si

wi. A latency function ℓe : R≥0 7→ R≥0

associates each resource e ∈ E with a latency depending on the congestion of e in S. The cost of player i
in the strategy profile S is given by ci(S) =

∑
e∈si

ℓe(Le(S)). This work is concerned only with polynomial

latency functions of maximum degree d, i.e., the case in which ℓe(x) =
∑d

i=0 αe,ix
d with αe,i ∈ R≥0, for any

e ∈ E and 0 ≤ i ≤ d.
Given a strategy profile S ∈ Σ and a strategy t ∈ Σi for player i, we denote with (S−i ⋄ t) =

(s1, . . . , si−1, t, si+1, . . . , sn) the strategy profile obtained from S when player i changes unilaterally her
strategy from si to t. We say that S′ = (S−i ⋄ t) is an improving deviation for player i in S if ci(S

′) < ci(S).
Given an ǫ ≥ 0, a strategy profile S is an ǫ-approximate pure Nash equilibrium (ǫ-PNE) if, for any i ∈ [n]
and for any t ∈ Σi, it holds ci(S) ≤ (1 + ǫ)ci(S−i ⋄ t). For ǫ = 0, the set of ǫ-approximate pure Nash
equilibria collapses to that of pure Nash equilibria (PNE), that is, the set of strategy profiles in which no
player possesses an improving deviation.

Consider the social function Sum : Σ 7→ R≥0 defined as the sum of the players’ costs, that is, Sum(S) =∑
i∈[n] ci(S) and let S∗ be the strategy profile minimizing it. Given an ǫ ≥ 0 and a weighted congestion



game G, let E(G) be the set of ǫ-approximate Nash equilibria of G. The ǫ-approximate price of anarchy of G
is defined as ǫ-PoA(G) = maxS∈E(G)

{
Sum(S)
Sum(S∗)

}
, while the ǫ-approximate price of stability of G is defined as

ǫ-PoS(G) = minS∈E(G)
{

Sum(S)
Sum(S∗)

}
.

Given a strategy profile S and a player i ∈ [n], a strategy profile t∗ ∈ Σi is a best-response for player
i in S if it holds ci(S−i ⋄ t∗) ≤ ci(S−i ⋄ t) for any t ∈ Σi. Let S

∅ be the empty strategy profile, i.e., the
profile in which no player has performed any strategic choice yet. A one-round walk starting from the empty
strategy profile is an (n+ 1)-tuple of strategy profiles W = (SW

0 , SW
1 , . . . , SW

n ) such that SW
0 = S∅ and, for

any i ∈ [n], SW
i = (SW

i−1 ⋄ t∗), where t∗ is a best-response for player i in SW
i−1. The profile SW

n is called the
solution achieved after the one-round walk W . Clearly, depending on how the players are ordered from 1 to
n and on which best-response is selected at step i when more than one best-response is available to player i
in SW

i−1, different one-round walks can be generated. Let W(G) denote the set of all possible one-round walks
which can be generated in game G. The approximation ratio of the solutions achieved after a one-round walk

starting from the empty strategy profile in G is defined as Apx1∅(G) = maxW∈W(G)
{

Sum(SW
n )

Sum(S∗)

}
.

3 The Primal-Dual Technique

Fix a weighted congestion game G, a social function F and a class of self-emerging solutions E . Let O =
(sO1 , . . . , s

O
n ) be the strategy profile optimizing F and K = (sK1 , . . . , s

K
n ) ∈ E(G) be the worst-case solution

in E(G) with respect to F . For any e ∈ E, we set, for the sake of brevity, Oe = Le(O) and Ke = Le(K).
Since O and K are fixed, we can maximize the inefficiency yielded by the pair (K,O) by suitably choosing

the coefficients αe,i, for each e ∈ E and 0 ≤ i ≤ d, so that F(K) is maximized, F(O) is normalized to one
and K meets all the constraints defining the set E(G). For the sets E and social functions F considered in
this paper, this task can be easily achieved by creating a suitable linear program LP (K,O).

By providing a feasible solution for the dual program DLP (K,O), we can obtain an upper bound on
the optimal solution of LP (K,O). Our task is to uncover, among all possibilities, the pair (K∗, O∗) yielding
the highest possible optimal solution for LP (K,O). To this aim, the study of the dual formulation plays a
crucial role: if we are able to detect the nature of the “worst-case” dual constraints, then we can easily figure
out the form of the pair (K∗, O∗) maximizing the inefficiency of the class of solutions E . Clearly, by the
complementary slackness conditions, if we find the optimal dual solution, then we can quite systematically
construct the matching primal instance by choosing a suitable set of players and resources so as to implement
all the tight dual constraints. This task is much more complicated to be achieved in the weighted case,
because, once established the values of the congestions K∗

e and O∗
e for any e ∈ E, there are still infinite

many ways to split them among the players using resource e in both K and O. For such a reason, discovering
matching lower bounding instances for the weighted case reveals to be much harder than for the unweighted
one.

4 Application to Affine Latency Functions

In order to easily illustrate our primal-dual technique, in this section we consider the well-known and studied
case of affine latency functions and social function Sum and show how the results for ǫ-PoA, ǫ-PoS and Apx1∅
already known in the literature can be reobtained in a unified manner for both weighted and unweighted
players.

In order to reduce the number of variables we need to consider in our linear programs, we make use of
the following simplificative arguments.

We say that the game G′ = ([n], E′, Σ′, ℓ′, w) is equivalent to the game G = ([n], E,Σ, ℓ, w) if there exists
a one-to-one mapping ϕi : Σi 7→ Σ′

i for any i ∈ [n] such that for any strategy profile S = (s1, . . . , sn) ∈ Σ,
it holds ci(S) = ci(ϕ1(s1), . . . , ϕn(sn)) for any i ∈ [n].

Lemma 1. For each weighted congestion game with affine latency functions G = ([n], E,Σ, ℓ, w) there always
exists an equivalent weighted congestion game with affine latency functions G′ = ([n], E′, Σ′, ℓ′, w) such that

ℓ′e(x) = αe,1x := αex for any e ∈ E′.



Because of this lemma, throughout this section, we are allowed to restrict our attention only to games
with latency functions of the form ℓe(x) = αex, for any e ∈ E. In such a setting, we can rewrite the social
value of a strategy profile as Sum(S) =

∑
e∈E(αeLe(S)

2).

4.1 Bounding the Approximate Price of Anarchy

By definition, we have that K is an ǫ-PNE if, for any i ∈ [n], it holds

ci(K) =
∑

e∈sK
i

(αeKe) ≤ (1 + ǫ)ci(K−i ⋄ sOi ) ≤ (1 + ǫ)
∑

e∈sO
i

(αe(Ke + wi)).

Thus, the primal formulation LP (K,O) assumes the following form.

maximize
∑

e∈E

(
αeK

2
e

)

subject to∑

e∈sK
i

(αeKe)− (1 + ǫ)
∑

e∈sO
i

(αe(Ke + wi)) ≤ 0, ∀i ∈ [n]

∑

e∈E

(
αeO

2
e

)
= 1,

αe ≥ 0, ∀e ∈ E

The dual program DLP (K,O) is

minimize γ
subject to∑

i:e∈sK
i

(yiKe)− (1 + ǫ)
∑

i:e∈sO
i

(yi(Ke + wi)) + γO2
e ≥ K2

e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]

Let ψ = 1+ǫ+
√
ǫ2+6ǫ+5
2 and z = ⌊ψ⌋. For unweighted players we reobtain the upper bound proved in [9] with

a much simpler and shorter proof.

Theorem 1. For any ǫ ≥ 0 and G with unweighted players, it holds ǫ-PoA(G) ≤ (1+ǫ)(z2+3z+1)
2z−ǫ

.

Proof. In such a case, since wi = 1 for each i ∈ [n], by choosing yi = 2z+1
2z−ǫ

for any i ∈ [n] and γ =
(1+ǫ)(z2+3z+1)

2z−ǫ
, the dual inequalities become of the form

2z + 1

2z − ǫ

(
K2

e − (1 + ǫ)(Ke + 1)Oe

)
+

(1 + ǫ)(z2 + 3z + 1)

2z − ǫ
O2

e ≥ K2
e

which is equivalent to
K2

e − (2z + 1)(KeOe +Oe) + (z2 + 3z + 1)O2
e ≥ 0. (1)

Easy calculations show that this is always verified for any pair of non-negative integers (Ke, Oe). Note that
the definition of z guarantees that 2z − ǫ ≥ 0, so that the proposed dual solution is a feasible one. ⊓⊔

When ǫ = 0, we reobtain the well-known price of anarchy of 5/2 which holds for PNE. We illustrate
how the dual formulation can be also used to discover a matching lower bounding instance. From the
analysis of the dual constraints (1), it is easy to see that they get tight only for pairs (Ke, Oe) of the form
(1, 1) and (2, 1). Thus, if the 5/2 upper bound is tight, the complementary slackness conditions assure us
that in the matching lower bounding instance only resources implementing the pairs (1, 1) and (2, 1) are
needed. This can be easily achieved through a game using 3 players and 3 resources and defined as follows:
Σ1 = {{e1, e2}, {e3}}, Σ2 = {{e1}, {e2, e3}}, Σ3 = {{e2}, {e3}} and α1 = 5, α2 = 2, α3 = 3. For such an
instance, we haveK = ({e1, e2}, {e2, e3}, {e3}), O = ({e3}, {e1}, {e2}) with a price of anarchy of 5/2. Clearly,
this instance can be extended to any number of players n > 3 by adding a fourth resource e4 with α4 = 0



and setting Σi = {e4} for any i ∈ [n] with i ≥ 4. Note that these are minimal lower bounding instances (the
previous known lower bounding instances presented in [7] used 2n resources for any n ≥ 3).

More generally, for ǫ-PNE, the dual constraints (1) get tight only for pairs of the form (z, 1) and (z+1, 1).
Thus, in order to obtain a matching lower bounding instance, we only need to implement this family of dual
constraints, that is, we need an instance with at least z + 2 players and a set of resources such that Oe = 1
and Ke ∈ {z, z + 1} for any e ∈ E. In fact, the matching lower bounding instances given in [9] use z + 2
players and 2z + 4 resources, half of which has Ke = z and the other half has Ke = z + 1. It is easy to see
that these instances are not minimal. In fact, they produce a dual program with z + 3 variables and 2z + 4
constraints, where only z + 3 constraints are sufficient to exactly characterize the optimal dual solution.
Unfortunately, this set of constraints changes as a function of ǫ and so it is not easy to achieve a general
scheme of minimal lower bounding instances.

For the weighted case, we can prove the following upper bound.

Theorem 2. For any ǫ ≥ 0 and G with weighted players, it holds ǫ-PoA(G) ≤ ψ2.

Proof. In such a case, by choosing yi = 1 +
√
1+ǫ√
5+ǫ

for any i ∈ [n] and γ = ψ2, the dual inequalities become

of the form (
1 +

√
1 + ǫ√
5 + ǫ

)(
K2

e − (1 + ǫ) (KeOe +Oe)
)
+ ψ2O2

e ≥ K2
e

which is equivalent to

√
1 + ǫ√
5 + ǫ

K2
e −

(
1 +

√
1 + ǫ√
5 + ǫ

)
(1 + ǫ)(KeOe +Oe) + ψ2O2

e ≥ 0. (2)

Easy calculations show that this is always verified for any pair of non-negative reals (Ke, Oe). ⊓⊔

Note that, when ψ = z, it holds ψ2 = (1+ǫ)(z2+3z+1)
2z−ǫ

. Hence, the ǫ-PoA in the weighted and unweighted

cases coincide for all ǫ ≥ 0 such that 1+ǫ+
√
ǫ2+6ǫ+5
2 is a natural number. The dual constraints (2) get tight

only for pairs (Ke, Oe) such that Ke = ψOe.
For PNE, by setting ǫ = 0 we reobtain the well-known bound (3 +

√
5)/2. We can show that this is

tight by considering an instance having 3 players and 3 resources with w1 = 1, w2 = w3 = (1 +
√
5)/2,

Σ1 = {{e1}, {e2, e3}}, Σ2 = {{e2}, {e1, e3}}, Σ3 = {{e3}, {e2}}, α1 = 2, α2 =
√
5− 1 and α3 = 3 −

√
5. We

have K = ({e2, e3}, {e1, e3}, {e2}), O = ({e1}, {e2}, {e3}) and the price of anarchy is equal to (3 +
√
5)/2.

Again, we have identified a minimal lower bounding instance which is slightly simpler than the previous one
given in [3] which used 4 players and 3 resources.

For general ǫ-PNE, we are able to provide tight lower bounds only for a subset, although having infinite
cardinality, of values of ǫ. Let t and y be two positive integers such that 1 ≤ y ≤ t + 1. We set ǫ(t, y) =
(t−1)

√
t2+4y+2y+t2−t−2√
t2+4y+t+2

, which is always non-negative since y ≥ 1 and yields ψ =
t+
√

t2+4y

2 > t. We create

an instance with t+2 players and 2(t+1) resources, where wi = 1 for any i ∈ [t+1] and wt+2 = ψ− t. The
first t+ 1 resources (ej)j∈[t+1] have latency ℓ(x) = x, while the last t+ 1 resources (e′j)j∈[t+1] have latency
ℓ(x) = x/y. The set of strategies for each player i ∈ [t+ 1] is Σi = {{ei},

⋃
j∈[t]{ei+j} ∪

⋃
j∈[y]{e′i+j}}, with

the sum of the indexes taken circularly, while Σt+2 = {⋃j∈[t+1]{e′j},
⋃

j∈[t+1]{ej}}. The first strategy of each

player is the optimal one, while the second strategy is the one played at the ǫ(t, y)-PNE. Note that for any e
we have Ke = ψOe, thus implying an ǫ-PoA equal to ψ2. It is not difficult to show that K is an ǫ(t, y)-PNE

by exploiting the equality 2ψ = t+
√
t2 + 4y.

Deriving a tight lower bound for any possible value of ǫ remains an interesting open problem.

4.2 Bounding the Approximate Price of Stability

Recall that, since the ǫ-PoS is a best-case measure, the primal-dual approach guarantees a tight analysis only
if we are able to exactly characterize the polyhedron defining the set of the best ǫ-PNE. It is not known how to
do this at the moment, thus all the approaches used so far in the literature approximate the best ǫ-PNE with
an ǫ-PNE minimizing a certain potential function. In [9], it is shown that, for unweighted players, any strategy



profile S which is a local minimum of the function Φǫ(S) =
∑

e∈E

(
αe

(
Le(S)

2 + 1−ǫ
1+ǫ

Le(S)
)
+ 2βe

1+ǫ
Le(S)

)
,

called ǫ-approximate potential, is an ǫ-PNE. Thus, it is possible to get an upper bound on the ǫ-PoS by
measuring the ǫ-PoA of the global minimum of Φǫ.

We now illustrate our approach which yields the same 1+
√
3

ǫ+
√
3
upper bound achieved in [9]. First of all, we

can use the inequality Φǫ(K) ≤ Φǫ(O) which results in the constraint

∑

e∈E

(
αe

(
K2

e +
1− ǫ

1 + ǫ
Ke −O2

e −
1− ǫ

1 + ǫ
Oe

))
≤ 0.

Then, since we assume that K is the global minimum of Φǫ, we also have
∑

i∈[n]

(
Φǫ(K)− Φǫ(K−i ⋄ sOi )

)
≤ 0

which results in the constraint

∑

e∈E

(
αe

(
K2

e − ǫ

1 + ǫ
Ke −KeOe −

1

1 + ǫ
Oe

))
≤ 0.

Thanks to this, the dual formulation becomes the following one.

minimize γ
subject to

K2
e (x+ y) + Ke

1+ǫ
(y(1− ǫ)− zǫ)

−
(
yO2

e + zKeOe +
Oe

1+ǫ
(y(1 − ǫ) + z)

)
+ γO2

e ≥ K2
e , ∀e ∈ E

y, z ≥ 0

Thus, for unweighted players, we obtain the following result for any ǫ ∈ [0; 1] (this is the only interesting
case, since [9] shows that, for any ǫ ≥ 1, ǫ-PoS(G) = 1 for any G).

Theorem 3. For any ǫ ∈ [0; 1] and G with unweighted players, it holds ǫ-PoS(G) ≤ 1+
√
3

ǫ+
√
3
.

Proof. By choosing y = 2ǫ+
√
3(1+ǫ)

2(ǫ+
√
3)

, z = 1−ǫ

ǫ+
√
3
and γ = 1+

√
3

ǫ+
√
3
, the dual inequalities become

(ǫ − 1)((
√
3− 2)K2

e + (2Oe −
√
3)Ke + (2 +

√
3)(Oe −O2

e)) ≥ 0.

Easy calculations show that this is always verified for any pair of non-negative integers (Ke, Oe). ⊓⊔
Here, the only tight dual constraints are those of the form (0, 1) and (1, 1) which are clearly insufficient

to achieve an ǫ-PoS greater than 1, since Ke ≤ Oe for any e ∈ E. What is going on here? The answer is
that the lower bound on the ǫ-PoS can be achieved only asymptotically, that is, when n tends to infinity.
Thus, we must also check what happens when both Ke and Oe goes to infinity and their ratio remains
constant. We obtain that the dual constraints are asymptotically tight for pairs of the form (Ke, Oe) such
that Ke = (2+

√
3)Oe and Oe goes to infinity. The lower bounding instances proposed in [9] have n1 resources

of type (0, 1), n1(n1−1) resources of type (1, 1) and one resource of type
(
n1,

√
2ǫ4+3ǫ3+ǫ+3+2ǫ2+2ǫ−1√
2ǫ4+3ǫ3+ǫ+3+ǫ2+ǫ+1

n1

)
and

n1 going to infinity. Thus, such lower bounding instances possess all the combinatorics needed to implement
the worst-case dual constraints, but still there is a remarkable gap between upper and lower bounds. Hence,
the intuition should suggest us that that the upper bound is not tight and additional constraints should be
used in the primal formulation so as to better characterize the polyhedron defining the best ǫ-PNE. Note
that the inequalities stating the K is an ǫ-PNE is of no use here since they are dominated by the inequality∑

i∈[n]

(
Φǫ(K)− Φǫ(K−i ⋄ sOi )

)
≤ 0.

In order to deal with the weighted case, it is possible to rephrase the approach of [9] to turn the potential
given in [11] for weighted linear congestion games into an ǫ-potential function for this class of games so as
to use the same approach as in the unweighted case. Anyway, no particularly significative upper bounds can
be achieved in this case as shown in the following theorem (details can be found in subsection 6.2 of the
Appendix).

Theorem 4. For any ǫ ∈ [0; 1] and G with weighted players, it holds ǫ-PoS(G) ≤ 2
1+ǫ

.

In this case, no specific lower bounds are known.



4.3 Bounding the Approximation Ratio of One-Round Walks

For a one-round walk W , we set K = SW
n . Define Ke(i) as the sum of the weights of the players using

resource e in K before player i performs her choice. LP (K,O) in this case has the following form.

maximize
∑

e∈E

(
αeK

2
e

)

subject to∑

e∈sK
i

(αe(Ke(i) + wi))−
∑

e∈sO
i

(αe(Ke(i) + wi)) ≤ 0, ∀i ∈ [n]

∑

e∈E

(
αeO

2
e

)
= 1

αe ≥ 0, ∀e ∈ E

DLP (K,O) is as follows.

minimize γ
subject to∑

i:e∈sK
i

(yi(Ke(i) + wi))−
∑

i:e∈sO
i

(yi(Ke(i) + wi)) + γO2
e ≥ K2

e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]

For both unweighted and weighted players we easily reobtain the upper bounds on Apx1∅ given in [10].

Theorem 5. For any G with unweighted players, it holds Apx1∅(G) ≤ 2 +
√
5.

Proof. Observe that the worst-case dual constraints occur when each player i using resource e in O enters
the game after all players using e in K have entered the game yet. In such a case, by choosing yi = 1 +

√
5

for any i ∈ [n] and γ = 2 +
√
5, the worst-case dual inequalities become

(
1 +

√
5
)(Ke(Ke + 1)

2
− (Ke + 1)Oe

)
+
(
2 +

√
5
)
O2

e ≥ K2
e

which is equivalent to
(√

5− 1

2

)
K2

e +

(
1 +

√
5

2

)
Ke − (1 +

√
5)KeOe − (1 +

√
5)Oe + (2 +

√
5)O2

e ≥ 0.

Easy calculations show that this is always verified for any pair of non-negative integers (Ke, Oe). ⊓⊔
The dual constraints get tight for pairs of the form (1, 1), while the asymptotical dual constraints get

tight for pairs of the form (3+
√
5

2 Oe, Oe). These pairs exactly characterize the structure of the lower bounding
instance derived in [5].

For weighted players, a slightly more involved analysis is needed.

Theorem 6. For any G with weighted players, it holds Apx1∅(G) ≤ 4 + 2
√
3.

Proof. Again, observe that the worst-case dual constraints occur when each player i using resource e in
O enters the game after all players using e in K have entered the game yet. In such a case, by choosing

yi =
(
2 + 2√

3

)
wi for any i ∈ [n] and γ = 4 + 2

√
3, the worst-case dual inequalities become

(
2 +

2√
3

)


∑

i≤j:e∈sK
i
∩sK

j

(wiwj)−
∑

i:e∈sO
i

(wi(Ke + wi))


+

(
4 + 2

√
3
)
O2

e ≥ K2
e

which is true if it holds
1√
3
K2

e −
(
2 +

2√
3

)
KeOe +

(
2 +

4√
3

)
O2

e ≥ 0.

Easy calculations show that this is always verified for any pair of non-negative reals (Ke, Oe). ⊓⊔



Note that this is the only case among the ones considered so far for which the dual variables are not
player independent. The worst case dual constraints occur when all players using resource e in the walk have
weight 1, while only one player uses e in the optimal solution. Moreover, the asymptotical dual constraints
get tight for pairs of the form ((1+

√
3)Oe, Oe). In this case, the best known lower bound, equal to 3+ 2

√
2,

has been given in [6].

5 Quadratic and Cubic Latency Functions

In this section, we show how to use the primal-dual method to bound PoS and Apx1∅ in the case of polynomial
latency functions of maximum degree d and unweighted players. We only consider the case d ≤ 3, that is,
quadratic and cubic latency functions. It is not difficult to extend the approach to any particular value of
d, but it is quite hard to obtain a general result as a function of d because we do not have simple closed
formulas expressing some of the summations we need in our analysis for any value of d. We also leave the
extension to ǫ-PNE and weighted players for future works. We restrict to the cases in which the latency
functions are of the form ℓe(x) = αex

d, since it is possible to show that this can be supposed without loss of
generality.

5.1 Bounding the Price of Stability

For d = 2, the potential function is Φ(S) = 1
6

∑
e∈E Le(S)(Le(S) + 1)(2Le(S) + 1). Thus, the constraint

Φ(K) ≤ Φ(O) becomes
∑

e∈E (Ke(Ke + 1)(2Ke + 1)−Oe(Oe + 1)(2Oe + 1)) ≤ 0. Similarly, the constraint∑
i∈[n]

(
Φ(K)− Φ(K−i ⋄ sOi )

)
≤ 0 becomes

∑
e∈E

(
K3

e −Oe(Ke + 1)2
)
≤ 0. Hence, DLP (K,O) is defined

as follows.

minimize γ
subject to

(y(Ke(Ke + 1)(2Ke + 1)−Oe(Oe + 1)(2Oe + 1)))
+
(
z(K3

e −Oe(Ke + 1)2)
)
+ γO3

e ≥ K3
e , ∀e ∈ E

y, z ≥ 0

Theorem 7. For any G with quadratic latency functions and unweighted players, it holds PoS(G) ≤ 2.362.

Proof. The claim follows by setting y = 0.318, z = 0.453 and γ = 2.362. ⊓⊔

For d = 3, the potential function is Φ(S) = 1
4

∑
e∈E (Le(S)(Le(S) + 1))2. Thus, the con-

straint Φ(K) ≤ Φ(O) becomes
∑

e∈E

(
(Ke(Ke + 1))2 − (Oe(Oe + 1))2

)
≤ 0. Similarly, the constraint

∑
i∈[n]

(
Φ(K)− Φ(K−i ⋄ sOi )

)
≤ 0 becomes

∑
e∈E

(
K4

e −Oe(Ke + 1)3
)
≤ 0.

Hence, DLP (K,O) is defined as follows.

minimize γ
subject to(

y(K2
e (Ke + 1)2 −O2

e(Oe + 1)2)
)
+
(
z(K4

e −Oe(Ke + 1)3)
)
+ γO4

e ≥ K4
e , ∀e ∈ E

y, z ≥ 0

Theorem 8. For any G with cubic latency functions and unweighted players, it holds PoS(G) ≤ 3.322.

Proof. The claim follows by setting y = 0.747, z = 0.331 and γ = 3.322. ⊓⊔

It is not difficult to extend the instances given in [9] so as to obtain lower bounds of 2.1859 and 2.7558,
respectively (see Subsection 6.3 in the Appendix).



5.2 Bounding the Approximation Ratio of One-Round Walks

For d = 2, DLP (K,O) is defined as follows.

minimize γ
subject to∑

i:e∈sKi

(
yi(Ke(i) + 1)2

)
−
∑

i:e∈sOi

(
yi(Ke(i) + 1)2

)
+ γO3

e ≥ K3
e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]

Theorem 9. For any G with quadratic latency functions and unweighted players, it holds Apx1∅(G) ≤
37.5888.

Proof. As usual, the worst-case dual constraints occur when each player i using resource e in O enters the
game after all players using e in K have entered the game yet. The claim follows by choosing yi = 5.2944
for any i ∈ [n] and γ = 37.5888. ⊓⊔

For d = 3, DLP (K,O) is defined as follows.

minimize γ
subject to∑

i:e∈sK
i

(
yi(Ke(i) + 1)3

)
−
∑

i:e∈sO
i

(
yi(Ke(i) + 1)3

)
+ γO4

e ≥ K4
e , ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]

Theorem 10. For any G with cubic latency functions and unweighted players, it holds Apx1∅(G) ≤ 17929
34 ≈

527.323.

Proof. As usual, the worst-case dual constraints occur when each player i using resource e in O enters the
game after all players using e in K have entered the game yet. The claim follows by choosing yi =

369
34 for

any i ∈ [n] and γ = 17929
34 . ⊓⊔
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6 Appendix

6.1 Proof of Lemma 1

Proof. Consider the weighted congestion game G = ([n], E,Σ, ℓ, w) with latency functions ℓe(x) = αex+ βe
for any e ∈ E. For each ẽ ∈ E such that βẽ > 0, let Nẽ be the set of players who can choose ẽ, that is,
Nẽ = {i ∈ [n] : ∃s ∈ Σi : ẽ ∈ s}. The set of resources E′ is obtained by replicating all the resources in E
and adding a new resource eiẽ for any ẽ ∈ E and any i ∈ Nẽ, that is, E

′ = E ∪⋃ẽ∈E,i∈Nẽ
{eiẽ}. The latency

functions are defined as ℓ′e(x) = αex for any e ∈ E′ ∩ E and ℓ′
ei
ẽ

(x) = βẽ

wi
x for any ẽ ∈ E and any i ∈ Nẽ.

Finally, for any i ∈ [n], the mapping ϕi is defined as follows: ϕi(s) = s ∪⋃ẽ∈s{eiẽ}. It is not difficult to see
that for any S = (s1, . . . , sn) ∈ Σ and for any i ∈ [n], it holds ci(S) = ci(ϕ1(s1), . . . , ϕn(sn)). ⊓⊔

6.2 Proof of Theorem 4

We define the following ǫ-potential function.

Φǫ(S) =
1

2

∑

e∈E

(
αeLe(S)

2
)
+

1

2

1− ǫ

1 + ǫ

∑

e∈E

∑

i:e∈si

(
αew

2
i

)
.

Lemma 2. Any profile which is a local minimum of Φǫ is an ǫ-PNE.

Proof. Consider a profile S = (s1, . . . , sn). We want to compute the change in the ǫ-potential function when
player i changes her strategy from si to t. The resulting profile (S−i ⋄ t) has

Le(S−i ⋄ t) =





Le(S)− wi, e ∈ si \ t,
Le(S) + wi, e ∈ t \ si,
Le(S), otherwise.

From this we can compute the difference

Φǫ(S−i ⋄ t)− Φǫ(S) =
∑

e∈t\si

(
αe

(
wiLe(S) +

w2
i

1 + ǫ

))
−
∑

e∈si\t

(
αe

(
wiLe(S)−

ǫw2
i

1 + ǫ

))
.

We can rewrite this as
Φǫ(S−i ⋄ t)− Φǫ(S) =

∑

e∈t

(
αe

(
wiLe(S) +

w2
i

1 + ǫ

))
−
∑

e∈t∩si

(
αew

2
i

)
−
∑

e∈si

(
αe

(
wiLe(S)−

ǫw2
i

1 + ǫ

))
.

Suppose now that S is a local minimum of Φǫ which implies Φǫ(S) ≤ Φǫ(S−i ⋄ t) for any i ∈ [n] and t ∈ Σi.
The cost of player i before the change is ci(S) =

∑
e∈si

(αeLe(S)) and after the change is ci(S−i ⋄ t) =∑
e∈t (αeLe(S−i ⋄ t)). We show that S is an ǫ-PNE, that is, ci(S) ≤ (1 + ǫ)ci(S−i ⋄ t).
By exploiting the two different parts defining the ǫ potential we obtain

ci(S) =
∑

e∈si

(αeLe(S)) ≤
∑

e∈si

(
αe(1 + ǫ)

(
Le(S)−

ǫwi

1 + ǫ

))

which holds because Le(S) ≥ wi when e ∈ si, and

ci(S−i ⋄ t) =
∑

e∈t

(αe(Le(S−i ⋄ t) + wi))−
∑

e∈t∩si

(αewi)

≥
∑

e∈t

(
αe

(
Le(S) +

wi

1 + ǫ

))
−
∑

e∈t∩si

(αewi)

which holds for any ǫ ≥ 0.
It follows immediately that ci(S) ≤ (1 + ǫ)ci(S−i ⋄ t), thus S is an ǫ-PNE. ⊓⊔



Using the constraint Φǫ(K)− Φǫ(O) ≤ 0 in our formulation, we can easily prove Theorem 4.

Proof. In such a case, by choosing yi = 0 for any i ∈ [n], z = 1 and yn+1 = 2
1+ǫ

, the dual inequalities become

1− ǫ

1 + ǫ
Ke ≥ 0

which is always verified for any pair of non-negative reals (Ke, Oe). ⊓⊔

6.3 Lower Bounds on the PoS of Quadratic and Cubic Latency Functions

Theorem 11. For any δ > 0, there exist an unweighted congestion game with quadratic latency functions

G1 and an unweighted congestion game with cubic latency functions G2 such that PoS(G1) ≥ 2.1859− δ and

PoS(G2) ≥ 2.7558− δ.

Proof. Consider an instance with n = n1 + n2 players divided into two sets P1 and P2 with |P1| = n1 and
|P2| = n2. Each player i ∈ P1 has two strategies sKi and sOi , while all players in P2 have the same strategy s.

There are three types of resources:

• n1 resources ri, i ∈ [n1], each with latency function ℓri(x) = rxd. Resource ri belongs only to sOi ;

• n1(n1 − 1) resources r′i,j , i, j ∈ [n1] with i 6= j, each with latency function ℓr′
ij
(x) = r′xd. Resource r′ij

belongs only to sKi and to sOj ;

• one resource r′′ with latency function ℓr′′(x) = xd. Resource r′′ belongs to sKi for each i ∈ [n1] and to s;

The cost of each player i ∈ P1 adopting strategy sKi when there are exactly k players in P1 adopting
the strategy played in K (and thus there are n1 − k players in P1 adopting the strategy played in O) is
costK(k) = (4n1−3k−1)r′+(n2+k)

2 when d = 2 and it is costK(k) = (8n1−7k−1)r′+(n2+k)
3 when d = 3.

Similarly, the cost of each player i ∈ P1 adopting strategy sOi when there are exactly k players in P1 adopting
the strategy played in K is costO(k) = r+(n1+3k−1)r′ when d = 2 and it is costO(k) = r+(n1+7k−1)r′

when d = 3.

We now want to select the parameters r and r′ so that K is the unique PNE of the game. This is true
if, for any k ∈ [n1], it holds costO(k − 1) > costK(k). Such a condition is always verified for the following
values of r and r′:

• r =
2n2

2+(n1+1)(n1+2n2)
2 + γ and r′ = n1+2n2

6 , when d = 2,

• r =
2n3

2+(n1+1)(n2
1+3n1n2+3n2

2)
2 + γ and r′ = n2

1+3n1n2+3n2
2

14 , when d = 3,

where γ is an arbitrarily small positive value.

Next step is to select n1 and n2 so as to maximize the ratio Sum(K)
Sum(O) = r′n1(n1−1)+(n1+n2)

d+1

rn1+r′n1(n1−1)+n
d+1

2

for d = 2, 3.

By choosing n1 = 1.5595n2 when d = 2 and n1 = 1.0988n2 when d = 3 and letting n2 go to infinity, we
obtain the claim. ⊓⊔

6.4 Bounding the Price of Anarchy for Social Function Max

In this section we show how the primal-dual technique can be adapted also to the case in which the social
function is the maximum of the players’ payoffs. For the sake of brevity, we consider only the problem of
bounding the PoA in linear congestion games with unweighted players. In order to deal with the maximum
social function, we assume, without loss of generality, that player n is the one paying the highest cost in K
and impose that, in O no player pays more than one.

Thus, LP (K,O) has the following form.



maximize k
subject to∑

e∈sK
i

(αeKe)−
∑

e∈sO
i

(αe(Ke + 1)) ≤ 0, ∀i ∈ [n]

∑

e∈sK
i

(αeKe) ≤ k, ∀i ∈ [n− 1]

∑

e∈sKn

(αeKe) = k

∑

e∈sO
i

(αeOe) ≤ 1, ∀i ∈ [n]

αe ≥ 0, ∀e ∈ E

DLP (K,O) is as follows.

minimize
∑

i∈[n]

zi

subject to∑

i:e∈sK
i

(Ke(xi + yi))−
∑

i:e∈sO
i

(xi(Ke + 1)− ziOe) ≥ 0, ∀e ∈ E

∑

i∈[n]

yi ≥ −1

xi ≥ 0, ∀i ∈ [n]
yi ≥ 0, ∀i ∈ [n− 1]
zi ≥ 0, ∀i ∈ [n]

We easily reobtain the upper bound on the PoA proven in [7].

Theorem 12. PoA(G) = O(
√
n) for any G with unweighted players.

Proof. By choosing xi =
1√
n
, yi = 0 and zi =

2√
n
for each i ∈ [n − 1] and xn = 1, yn = −1 and zn = 2

√
n,

the dual inequalities may assume different forms depending of which of the following four situation occurs.

• e /∈ sKn ∧ e /∈ sOn . In this case, we have K2
e −KeOe − Oe + 2O2

e ≥ 0. Easy calculations show that this is
always verified for any pair of non-negative integers (Ke, Oe).

• e /∈ sKn ∧ e ∈ sOn . In this case, we have K2
e −Ke(

√
n+Oe− 1)+2nOe−

√
n+(Oe− 1)(2Oe− 1) ≥ 0. Easy

calculations show that this is always verified for any pair of non-negative integers (Ke, Oe) with Oe ≥ 1.
• e ∈ sKn ∧ e /∈ sOn . In this case, we have K2

e −Ke(Oe + 1) − Oe + 2O2
e ≥ 0. Easy calculations show that

this is always verified for any pair of non-negative integers (Ke, Oe) with Ke ≥ 1.
• e ∈ sKn ∧ e ∈ sOn . In this case, we have K2

e −Ke(
√
n+ Oe) + 2nOe −

√
n+ (Oe − 1)(2Oe − 1) ≥ 0. Easy

calculations show that this is always verified for any pair of non-negative integers (Ke, Oe) with Ke ≥ 1
and Oe ≥ 1.

The claim follows since
∑n

i=1 yi = −1 and
∑n

i=1 zi ≤ 4
√
n. ⊓⊔

6.5 Resource Allocation Games with Fair Cost Sharing

In this section we show how the primal-dual technique can be adapted also to the study of the efficiency of
PNE in resource allocation games with fair cost sharing. We briefly recall that in these games players choose
subsets of resources. Each resource e ∈ E has an associated cost ce and the cost of each resource is equally
shared among all players using it in a given strategy profile. For a strategy profile S, let pe(S) ∈ {0; 1} be
a boolean variable such that pe(S) = 1 if there exists at least a player using resource e in S and pe(S) = 0
otherwise.

For the PoS of these games, LP (K,O) has the following form.



maximize
∑

e∈E

(cepe(K))

subject to
∑

e∈sKi

(
ce

ne(K)

)
−
∑

e∈sOi

(
ce

ne(K) + 1

)
≤ 0, ∀i ∈ [n]

∑

e∈E

(ce(HKe
−HOe

)) ≤ 0

∑

e∈E

(cepe(O)) = 1,

ce ≥ 0, ∀e ∈ E

DLP (K,O) is as follows.

minimize γ
subject to

∑

i:e∈sK
i

(
yi

ne(K)
+ zHKe

)

−
∑

i:e∈sO
i

(
yi

ne(K) + 1
+ zHOe

)
+ γpe(O) ≥ pe(K), ∀e ∈ E

yi ≥ 0, ∀i ∈ [n]
z ≥ 0

Theorem 13. For any resource selection game with fair cost sharing G, PoS(G) ≤ Hn.

Proof. Set yi = 0 for any i ∈ [n], z = 1 and γ = Hn. The claim easily follows from the fact that, for any
e ∈ E, HKe

≥ pe(K) and Hnpe(O) ≥ HOe
. ⊓⊔

Clearly, obtaining such a result is quite straightforward. We illustrate this further application of the
primal-dual technique with the main purpose of showing that it can be fruitfully used also to contexts other
than weighted congestion games.
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