Skip to main content
Log in

Polynomial Kernels for Vertex Cover Parameterized by Small Degree Modulators

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Vertex Cover is one of the most well studied problems in the realm of parameterized algorithms. It admits a kernel with \(\phantom {\dot {i}\!}\mathcal {O}(\ell ^{2})\) edges and \(\phantom {\dot {i}\!}2\ell \) vertices where \(\phantom {\dot {i}\!}\ell \) denotes the size of the vertex cover we are seeking for. A natural question is whether Vertex Cover is fixed-parameter tractable or admits a polynomial kernel with respect to a parameter k, that is, provably smaller than the size of the vertex cover. Jansen and Bodlaender [STACS 2011, TOCS 2013] raised this question and gave a kernel for Vertex Cover of size \(\phantom {\dot {i}\!}\mathcal {O}(f^{3})\), where f is the size of a feedback vertex set of the input graph. We continue this line of work and study Vertex Cover with respect to a parameter that is always smaller than the solution size and incomparable to the size of the feedback vertex set of the input graph. Our parameter is the number of vertices whose removal results in a graph of maximum degree two. While vertex cover with this parameterization can easily be shown to be fixed-parameter tractable (FPT), we show that it has a polynomial kernel. The input to our problem consists of an undirected graph G, \(\phantom {\dot {i}\!}S \subseteq V(G)\) such that \(\phantom {\dot {i}\!}|S| = k\) and \(\phantom {\dot {i}\!}G[V(G)\setminus S]\) has maximum degree at most two and a positive integer \(\phantom {\dot {i}\!}\ell \). Given \(\phantom {\dot {i}\!}(G,S,\ell )\), in polynomial time we output an instance \(\phantom {\dot {i}\!}(G^{\prime },S^{\prime },\ell ^{\prime })\) such that \(\phantom {\dot {i}\!}|V(G^{\prime })|\) is \(\phantom {\dot {i}\!}\mathcal {O}(k^{5})\), \(\phantom {\dot {i}\!}|E(G^{\prime })|\) is \(\phantom {\dot {i}\!}\mathcal {O}(k^{6})\) and G has a vertex cover of size at most \(\phantom {\dot {i}\!}\ell \) if and only if \(\phantom {\dot {i}\!}G^{\prime }\) has a vertex cover of size at most \(\phantom {\dot {i}\!}\ell ^{\prime }\). When \(\phantom {\dot {i}\!}G[V(G)\setminus S]\) has maximum degree at most one, we improve the known kernel bound from \(\phantom {\dot {i}\!}\mathcal {O}(k^{3})\) vertices to \(\phantom {\dot {i}\!}\mathcal {O}(k^{2})\) vertices (and \(\phantom {\dot {i}\!}\mathcal {O}(k^{3})\) edges). More generally, given \(\phantom {\dot {i}\!}(G, S, \ell )\) where every connected component of \(\phantom {\dot {i}\!}G \setminus S\) is a clique of at most d vertices (for constant d), in polynomial time, we output an equivalent instance \(\phantom {\dot {i}\!}(G^{\prime }, S^{\prime }, \ell ^{\prime })\) for the same problem where \(\phantom {\dot {i}\!}|V(G^{\prime })|\) is \(\phantom {\dot {i}\!}\mathcal {O}(k^{d})\). We also show that for this problem, when \(\phantom {\dot {i}\!}d \geq 3\), a kernel with \(\phantom {\dot {i}\!}\mathcal {O}(k^{d-\varepsilon })\) bits cannot exist for any \(\phantom {\dot {i}\!}\varepsilon >0\) unless \(\phantom {\dot {i}\!}\textsf {NP} \subseteq \textsf {coNP}/\textsf {poly}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci. 76(7), 524–531 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L., Bart, M.P.: Jansen, and Stefan Kratsch. Kernelization Lower Bounds by Cross-Composition. SIAM J. Discret. Math. 28(1), 277–305 (2014)

    Article  MATH  Google Scholar 

  3. Bougeret, M., Sau, I.: How much does a treedepth modulator help to obtain polynomial kernels beyond sparse graphs? Proceedings of IPEC 2017, arXiv:1609.08095 (2017)

  4. Cai, L.: Parameterized complexity of vertex colouring. Discret. Appl. Math. 127(3), 415–429 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Kanj, I.A., Ge, X.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40-42), 3736–3756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crowston, R., Fellows, M.R., Gutin, G., Jones, M., Kim, E.J., Rosamond, F., Ruzsa, I.Z.: Stéphan Thomassé, and Anders Yeo. Satisfying more than half of a system of linear equations over GF(2): A multivariate approach. J. Comput. Syst. Sci. 80(4), 687–696 (2014)

    Article  MATH  Google Scholar 

  7. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized algorithms. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  8. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On the hardness of losing width. Theory Comput. Syst. 54(1), 73–82 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dell, H., van Melkebeek, D.: Satisfiability Allows No Nontrivial Sparsification unless the Polynomial-Time Hierarchy Collapses. J. ACM 61(4), 23:1–23:27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diestel, R.: Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, Berlin (2012)

    Google Scholar 

  11. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity Texts in Computer Science. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  12. Etscheid, M., Mnich, M.: Linear Kernels and Linear-Time Algorithms for Finding Large Cuts. Algorithmica (2017)

  13. Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. Eur. J. Comb. 34(3), 541–566 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saket, S.: The complexity ecology of parameters: an illustration using bounded max leaf number. Theory Comput. Syst. 45(4), 822–848 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fomin, F.V., Lokshtanov, D., Misra, N., Philip, G., Saket, S.: Hitting forbidden minors: approximation and kernelization. SIAM J. Discret. Math. 30(1), 383–410 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fomin, F.V., Strømme, T.J.F.: Vertex Cover Structural Parameterization Revisited. CoRR, arXiv:1508.00395 (2016)

  17. Fomin, Fedor V., Strømme, T. J. F.: Vertex Cover Structural Parameterization Revisited. In: Graph-Theoretic Concepts in Computer Science - 42nd International Workshop, WG 2016, Istanbul, Revised Selected Papers, pp. 171–182 (2016)

  18. Grötschel, M., Nemhauser, G.L.: A polynomial algorithm for the max-cut problem on graphs without long odd cycles. Math. Programm. 29(1), 28–40 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gutin, G., Kim, E.J., Szeider, S., Anders, Y.: A probabilistic approach to problems parameterized above or below tight bounds. J. Comput. Syst. Sci. 77(2), 422–429 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gutin, G., Yeo, A.: Constraint Satisfaction Problems Parameterized above or below Tight Bounds: A Survey. In: The Multivariate Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, volume 7370 of Lecture Notes in Computer Science, pp. 257–286. Springer (2012)

  21. Hols, E.C., Kratsch, S.: Smaller parameters for vertex cover kernelization. Proceedings of IPEC 2017, arXiv:1711.04604 (2017)

  22. Hsu, W.L., Ikura, Y., Nemhauser, G.L.: A polynomial algorithm for maximum weighted vertex packings on graphs without long odd cycles. Math. Programm. 20 (2), 225–232 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited - upper and lower bounds for a refined parameter. Theory Comput. Syst. 53(2), 263–299 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jansen, B.M.P., Pieterse, A.: Sparsification upper and lower bounds for graph problems and not-all-equal SAT. Algorithmica 79(1), 3–28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kim, E.J., Williams, R.: Improved parameterized algorithms for above average constraint satisfaction. In: Parameterized and Exact Computation - 6th International Symposium, IPEC 2011, Saarbru̇cken, Revised Selected Papers, pp. 118–131 (2011)

  26. Kratsch, Stefan: A Randomized Polynomial Kernelization for Vertex Cover with a Smaller Parameter. In: 24th Annual European Symposium on Algorithms, ESA 2016, Aarhus, Denmark, pp, 59:1–59:17 (2016)

  27. Kratsch, S., Wahlstrȯm, M.: Representative Sets and Irrelevant Vertices: New Tools for Kernelization. In: 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, pp. 450–459 (2012)

  28. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithm. 11(2), 15:1–15:31 (2014)

    Article  MathSciNet  Google Scholar 

  29. Majumdar, D., Raman, V., Saurabh, S.: Kernels for Structural Parameterization of Vertex Cover: case of small degree modulators. In: 10th International Symposium on Parameterized and Exact Computation (IPEC), volume LIPICS: Leibniz International Proceedings in Informatics (43), pp. 331–342 (2015)

  30. Nemhauser, G.L., Trotter, Jr., L.E.: Vertex Packings: Structural properties and Algorithms. Math. Program. 8(1), 232–248 (1975)

  31. Panolan, F., Rai, A.: On the Kernelization Complexity of Problems on Graphs without Long Odd Cycles. In: COCOON 2012, volume 7434 of LNCS, pp. 445–457. Springer (2012)

  32. Prieto, E.: Systematic Kernelization in FPT Algorithm Design. PhD thesis, The University of Newcastle, Australia (2005)

    Google Scholar 

  33. Sipser, M.: Introduction to the Theory of Computation PWS. Publishing Company (1997)

  34. Strømme, T.J. F.: Kernelization of Vertex Cover by Structural Parameters. Master’s thesis, University of Bergen, Norway (2015)

    Google Scholar 

  35. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Trans. Algorithm. 6(2) (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diptapriyo Majumdar.

Additional information

A preliminary version of this paper [29] appeared in the proceedings of the 10th International Symposium on Parameterized and Exact Computation (IPEC 2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, D., Raman, V. & Saurabh, S. Polynomial Kernels for Vertex Cover Parameterized by Small Degree Modulators. Theory Comput Syst 62, 1910–1951 (2018). https://doi.org/10.1007/s00224-018-9858-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-018-9858-1

Keywords

Navigation