
manuscript No.
(will be inserted by the editor)

Cache Me If You Can: Capacitated Selfish Replication
Games in Networks

Ragavendran Gopalakrishnan · Dimitrios
Kanoulas* · Naga Naresh Karuturi · C. Pandu
Rangan · Rajmohan Rajaraman · Ravi
Sundaram

Received: date / Accepted: date

Abstract In Peer-to-Peer (P2P) network systems, content (object) delivery between
nodes is often required. One way to study such a distributed system is by defining
games, which involve selfish nodes that make strategic choices on replicating content
in their local limited memory (cache) or accessing content from other nodes for a
cost. These Selfish Replication games have been introduced in [8] for nodes that do
not have any capacity limits, leaving the capacitated problem, i.e. Capacitated Selfish
Replication (CSR) games, open.

In this work, we first form the model of the CSR games, for which we perform
a Nash equilibria analysis. In particular, we focus on hierarchical networks, given
their extensive use to model communication costs of content delivery in P2P sys-
tems. We present an exact polynomial-time algorithm for any hierarchical network,
under two constraints on the utility functions: 1) “Nearer is better”, i.e. the closest the
content is to the node the less its access cost is, and 2) “Independence of irrelevant
alternatives”, i.e. aggregation of individual node preferences. This generalization rep-
resents a vast class of utilities and more interestingly allows each of the nodes to have
simultaneously completely different functional forms of utility functions. In this gen-
eral framework, we present CSR games results on arbitrary networks and outline the
boundary between intractability and effective computability in terms of the network
structure, object preferences, and the total number of objects. Moreover, we prove
that the problem of equilibria existence becomes NP-hard for general CSR games.
By adding some constraints in the number of objects and their preferences, we show

Gopalakrishnan and Karuturi were partially supported by a generous gift from Northeastern University
alumnus Madhav Anand. This work was also partially supported by NSF grants CCF-0635119 and CNS-
0915985. A preliminary version of this work appeared in LATIN 2012 [29].

*Dimitrios Kanoulas (corresponding author)
Istituto Italiano di Tecnologia,
Via Morego, 30,
Genoa, 16163, Italy
Tel.: +1-617-971-8157
E-mail: Dimitrios.Kanoulas@iit.it

ar
X

iv
:1

00
7.

26
94

v4
  [

cs
.G

T
] 

 2
1 

Ju
n 

20
19



2 Ragavendran Gopalakrishnan et al.

that the equilibrium can be found in polynomial time. Finally, we introduce the frac-
tional version of CSR games (F-CSR) to represent content distribution. We prove
that equilibrium exists for every F-CSR game, but it is PPAD-complete.

1 Introduction

Consider a P2P network for sharing movies (objects) among multiple users (nodes).
Due to limited disk space, the movies can be stored either locally or obtained from
other users in some cost. The storing decisions affect everyone that uses this service.
A natural question is to predict the movie collection stability in your friends network
(i.e. equilibrium) and your satisfaction from them (i.e. access cost), when users act
selfishly. Similarly, in the new wireless 4G services, users will not only consume
different apps, but will also provide apps to their network through personal commu-
nications and computing devices. In such a network, the question is whether storing
apps will lead to a situation of endless churn or could there be an equilibrium?

Content delivery and caching in P2P networks can be studied in a game-theoretic
framework. In this work, we study Capacitated Selfish Replication (CSR) games as
an abstraction of the above network scenarios. In CSR games the strategic agents, or
players, are nodes in a network that act selfishly. The nodes have some object pref-
erences and bounded storage space, i.e. caches, to store a limited number of content
copies. Each node in cooperation with other nodes can serve access requests for the
objects that are stored in its cache. However, the set of objects which a node chooses
to store in its cache is from one side solely based on its own utility function (notice
that this does not prevent the players to use the same utility function for the whole
network) and from the other side based on where objects of interest have been stored
in the network. Thus, each node in the model, has two potential actions for an object.
Either store a replica of the object in its limited cache, or access with some cost the
object replica from a remote node.

Chun et al. [8] first introduced such a game-theoretic framework to analyse pure
Nash equilibria in networks without cache capacities, but with some storage cost.
They left the capacitated version of the problem open. The main interest of the CSR
games in more recent works is on hierarchical networks that have been extensively
used to model communication content delivery costs in P2P networks [25]. Ultramet-
ric models for content delivery networks [38] and cooperative caching in hierarchical
networks [48, 68, 41, 42] are just some examples. The best results on CSR games
for hierarchical networks [46, 57] are about the existence of a Nash equilibrium for a
generalized one-level hierarchical network, using the sum utility function for which
each node is based on a weighted sum of the cost of accessing the objects.

1.1 Our results

In this paper, we first introduce the basic model of the Capacitated Selfish Replica-
tion (CSR) games in Section 2. This includes the definition of the nodes (players)
and objects, the formulation of the cost functions for a node accessing objects in the
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network, the object replication strategies among nodes, as well as the basic formu-
lation of the network. The main focus is on the study of Nash equilibria existence
and computability for a set of CSR games variants. In particular, we introduce a
polynomial-time Nash equilibrium method for hierarchical networks, given their ex-
tensive use to model communication costs of content delivery in P2P systems. We
address the following three problems, including their computational complexity:

– Does pure Nash equilibrium exist in a CSR game, for hierarchical networks?
– Does pure Nash equilibrium exist in a CSR game, for general undirected net-

works, setting specific restrictions on the number of objects and the utility/cost
functions?

– Does pure Nash equilibrium exist, when the objects can be split in fractions, i.e.
F-CSRgames?

Note that in all the games, we assume that all the pieces of content, i.e. objects, have
the same size, as considered in prior works [8, 46, 57, 2]. Otherwise, the problem
becomes NP-hard even for computing the best response of a player (node) as a gen-
eralization of the well-known knapsack problem.

In Section 3 we present our main algorithm, which extends and resolves the open
problem that was defined in [45, 47, 57]. In particular, it has been proved [46, 57]
that CSR games for hierarchical networks have a Nash equilibrium in the case of a
generalized 1-level hierarchy, when the utility function is a function of the costs sum
of accessing replicated objects in the network. We introduce an exact polynomial-
time algorithm for Nash Equilibrium computation in any hierarchical network. We
use a novel technique which we name “fictional players1” method. We show that us-
ing this method we can extend to a general framework of natural preference orders
that are entirely arbitrary, but follow two natural constraints: “Nearer is better”, i.e.
the closest the content is to the node the less its access cost is and “Independence of
irrelevant alternatives”, i.e. the aggregation of individual node preferences. This gen-
eralization represents a vast class of utility functions and more interestingly allows
each of the nodes to have simultaneously completely different functional forms of
utility functions. The method introduces and iteratively eliminates fictional players
in a controlled fashion, maintaining a Nash equilibrium at each step. In the end, the
desired equilibrium for the entire network is realized without any fictional players left
in the network. Even though the analysis is specified in the context of the sum utility
function to elucidate the technique of fictional players, we then abstract the central
requirements for our proof technique. In particular, we develop a general framework
of CSRgames with ordinal preferences, for which a larger class of utility functions
could be used as extension to the above result.

In Section 4, we present the general CSR games framework in terms of the utility
preference relations and node preference orders. In particular, we consider the utility
that is not just each node’s specific numeric assignment for each objects placement,
but a preference order each node has on object placements that satisfies two natural
constraints: Monotonicity (or “Nearer is better”) and Consistency (or “Independence
of irrelevant alternatives”). In this way the method is extended to a vast class of util-

1 not to be confused with “fictitious play” [24] which involves learning
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Object preferences and count Undirected networks Directed networks
Binary, two objects Yes, in P (5.3) No, in P (6.2)
Binary, three or more objects Yes, in PLS (5.2) No, NP-complete (6.1)
General, two objects Yes, in P (5.3) No, NP-complete (6.1)
General, three or more objects No, NP-complete (6.1) No, NP-complete (6.1)

Hierarchical: Yes, in P (5.1)

Table 1 Equilibria existence and computability in CSR games. Each cell (other than in the first
row/column) first indicates whether equilibria always exist for a particular CSR games sub-class. If so,
the cell next indicates the complexity of determining an equilibrium; otherwise, it indicates the complexity
of determining whether equilibria exist. The relevant subsection appears in parentheses.

ity functions, while nodes may simultaneously have utility functions of completely
different functional forms.

After extending our hierarchical networks results to the broader class of utilities,
in Sections 5 and 6 we study general CSR games that have various network structures
(directed or undirected), forms of object preferences (binary or general). Intractability
and effective computability of equilibria is delineated in terms of the network struc-
ture, object preferences, and the total number of objects. The results are summarized
in Table 1. Most notable are the following results:

– equilibria existence for general undirected networks with two objects, using the
technique of fictional players

– equilibria existence for general undirected networks when object preferences are
binary

– the problem of equilibria existence becomes NP-hard for general CSR games
– equivalence of finding equilibria in polynomial time for CSR games in strongly

connected networks with two objects and binary object preferences, via a reduc-
tion to the well-studied even-cycle problem [61].

Finally in Section 7, we introduce the fractional version of CSR games (F-CSR)
to represent content distribution using erasure codes. In this framework, each node
is allowed to store fractions of objects and can satisfy an object access request by
retrieving any set of object fractions as long as these fractions sum to at least one.
We present a natural implementation of this framework via erasure codes (e.g. using
the Digital Fountain approach [5, 66]). We prove that F-CSR games always have
equilibria and finding it is in PPAD. However, we also show finding equilibria is
PPAD-hard even for a sum-of-distances utility function.

1.2 Related work

Peer-to-Peer (P2P) networks have been used to model systems for sharing content
and resources among the individual peers (such as the file systems [44, 9, 63, 64],
web caches [10, 22], or P2P caches [33]). Even though P2P networks have been
extensively studied from a theoretical point of view, there are several open problems
when rational peers have diverse and selfish interests [23].

One of the most interesting problems is caching, i.e. holding copies of content
in clients and servers. Several research studies have considered data storing [30, 7],
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self-stabilization [40], dynamic replication [60, 13, 67], and exchanging of content
copies in a centralized manner [49, 35, 58, 36]. Research on capacitated caching
has been also considerable as an optimization problem and various centralized and
distributed algorithms have been presented for different networks in [48, 71, 41, 4,
2]. For instance, centralized optimization for the facility location problem has been
studied in [62], including several approximations [34, 52, 50]. These frameworks
usually ignore the fact that peers may make free choices that minimizes their content
access cost, by not following usual instrumentation.

The caching problem that we study is in the intersection of game theory and
computer science, that has been extensively studied the last decade [53, 69]. In [56]
Papadimitriou laid the groundwork for algorithmic game theory by introducing syn-
tactically defined sub-classes of FNP with complete problems, PPAD being a notable
such subclass. Non-cooperative facility location games have attracted some small at-
tention over the last decades. For instance, in [70], the problem of Nash equilibrium
for games that allowed players build nodes in remote locations, whereas in our case
nodes hold fixed spaces for storing objects/content. In [27], content distribution was
studied, providing bounds on the approximated Nash equilibrium with respect to the
price of anarchy and the convergence speed. The difference in the game design lies in
the fact that each node had cost limits for storing objects without considering network
latencies. The uncapacitated case of selfish caching games was introduced in [8], in
which nodes could store more pieces of content by paying for the additional storage.

We focus on the capacitated version which was left open by [8], believing that
limits on cache-capacity model an important real-world restriction. Special cases of
the integral CSR games version have been studied. In [46], Nash equilibria were
shown to exist in cases that nodes are equidistant from one another and a special
centralized server holds all objects. In [57] the model is slightly extended to the case
where special servers for different objects are at different distances. Our results gen-
eralize and completely subsume all these prior cases of CSR games. Market sharing
games [28] also consider caches with capacity, but differ to cc games since they are
special cases of congestion games. In this work we focus primarily on equilibria and
our general framework of CSRgames with ordinal preferences aligns more with the
theory of social choice [3]; in this sense, we deviate from prior work [21, 12] that is
focused on the price of anarchy [43].

Our work on CSR games in [29] has initiated various research lines and has been
extended recently in different directions. For instance, in [31, 32] the selfish repli-
cation problem is studied for the case that nodes seek object placements with cache
cooperation, and includes an experimental analysis. Etesami et al. have extended our
model in a series of papers [18]. In [14] the Nash equilibrium algorithm for two re-
sources is shown to converge faster and it is extended to arbitrary cache sizes for
a polynomial time computation. This is extended in [19, 15, 16], where a quasi-
polynomial algorithm is introduced to drive allocations whose total cost is within
a constant factor of that in any pure-strategy Nash equilibrium, in games formed by
undirected networks. The price of anarchy for CSR games with binary preferences
over general undirected networks has been studied in [17, 20], showing an upper
bound of 3. In [55], the caching problem is studied for operator-specific, non-linear,
cost functions in games that form arbitrary peering graph topologies, while in [1]
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CSR games are studied for general undirected networks for which a randomized al-
gorithm is introduced using a random tree search method to search for pure-strategy
Nash equilibrium.

In related work, through a major breakthrough [11, 6] it has been proven that 2-
player Nash Equilibrium is PPAD-complete. The PPAD-complete term is coming to
occupy a role in algorithmic game theory analogous to NP-completeness in combi-
natorial optimization [26], and thus we study the fractional version of the problem,
where nodes can store parts of objects, while accessing the remaining part from other
nodes. In this setup we prove PPAD-completeness.

2 A basic model for CSR games

We consider a set V of nodes (labeled 1 through n = |V |) to form a network in which
they share a collection O of unit-size objects. We let dij denote i’s cost for accessing
an object at j, for i, j ∈ V ; we refer to d as the access cost function. j is node’s i
nearest node in a set S of nodes, if j ∈ S and dij ≤ dik for all k ∈ S. Moreover, a
given network is undirected if d is symmetric, i.e. if dij = dji for all i, j ∈ V . An
undirected network is hierarchical if the access cost function forms an ultrametric,
i.e. if dik ≤ max{dij , djk} for all i, j, k ∈ V .

The cache of each node i is able to store a certain number of objects. Node’s i
placement is simply the set of objects stored at i. The strategy set of a given node
is the set of all feasible placements at the node. A global placement is any tuple
(Pi : i ∈ V ), where Pi ⊆ O represents a feasible placement at node i. We are going
to use P−i to denote the collection (Pj : j ∈ V \ {i}), for convenience. We will also
often use P = (Pi, P−i) to refer to a global placement. Moreover, we also assume
that V includes a server node that has the capacity to store all the objects. In this
way it is ensured that at least one copy of every object is present in the system; this
assumption is without loss of generality given that the access cost of every node to
the server can be set an arbitrarily large number.

CSR Games. Each node in our game-theoretic model, attaches a utility to each global
placement. We assume that each node i has a weight ri(α) for each object α repre-
senting the rate at which i accesses α. We define the sum utility function Us(i) as
follows: Us(i)(P ) = −

∑
α∈O ri(α) · diσi(P,α), where σi(P, α) is i’s nearest node

holding α in P . A CSR game is a tuple (V,O, d, {ri}). This work focuses on pure
Nash equilibria (henceforth, simply equilibria) of the CSR games. Such a CSR game
equilibrium instance is a global placement P such that for each i ∈ V there is no
placement Qi such that Us(i)(P ) < Us(i)(Q).

Unit cache capacity. In this work, we assume that all objects are of identical size.
Under this assumption, we now argue that it is sufficient to consider the case where
each node’s cache holds exactly one object. Consider a set V of nodes in which the
cache of node i can store ci objects. Let V ′ denote a new set of nodes which contains,
for each node i in V , new nodes i1, i2, . . . , ici , i.e., one new node for each unit of the
cache capacity of i. We extend the access cost function as follows: dj`ik = dji for all
1 ≤ ` ≤ cj , 1 ≤ k ≤ ci and di`ik = 0 for all 1 ≤ ` < k ≤ ci, for each node i ∈ V .
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We consider an obvious onto mapping f from placements in V ′ to those in V .
Given placement P ′ for V ′, we set f(P ′) = P where Pi = ∪1≤k≤ciP

′
ik

. This map-
ping ensures that Us(i)(P ′) = Us(i)(P ), giving us the desired reduction. Thus, in
the remainder of the paper, we assume that every node in the network stores at most
one object in its cache.

3 Hierarchical networks

In this section, we present a polynomial-time equilibria construction for CSR games
on hierarchical networks. We can represent any hierarchical network by a tree T in
such a way that the node set V is the set of its leaves. Every internal node v has a
label `(v) such that:

1. if v is an ancestor2 of w in T , then `(v) ≥ `(w)
2. for any i, j ∈ V , dij is given by `(lca(i, j)), where lca(i, j) is the least common

ancestor of nodes i and j [38, 41].

Fig. 1 illustrates a simple example for a hierarchical network tree with two inter-
nal nodes and three leaf nodes, with the corresponding label relationships, the least
common ancestors, and the access costs.

v

w

i j k

Internal Nodes (blue circles)
Example:  v is an ancestor of w

Players (red circles): i, j, k

Least Common Ancestor:
- lca (i,j)  is w
- lca (i,k) is v
- lca (j,k) is v

Red Squares are the object
storage space for each player

label relationship with respect
to the least common ancestors

access cost functions with respect
to the label relationships

A Hierarchical Network

Fig. 1 A simple example of a hierarchical network tree with two internal nodes (`(v) and `(w)) and
three leaf nodes (i, j, and k). The label relationships, the least common ancestors, and the access costs are
described.

Fictional players. The proposed algorithm requires the introduction of the fictional
player notion. A fictional α-player for an object α will be a new node which stores α
in any equilibrium. In particular, for any fictional α-player `, r`(α) is 1 and r`(β) is
0 for any β 6= α. In a particular hierarchy each fictional player is introduced as a leaf;
our method determines the exact locations in the hierarchy. The access cost function
for each fictional player is naturally extended using the hierarchy and the labels of
the internal nodes. We let “node” denote both the elements of V and fictional players.

2 We let each node be both descendant and ancestor of itself.
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A preference relation. The object weights for each node i in a hierarchical network
induce a natural preorderwi among elements of O×Ai, whereAi is the set of proper
ancestors of i in T . In particular, we define (α, v) Ai (β,w) whenever ri(α) · `(v) >
ri(β) ·`(w). In words, in hierarchical networks there is a total preorder in the objects-
nodes preferences, which is used during the algorithm to define a potential function,
when nodes are playing their best responses. For instance, (α, v) Ai (β,w) means
that if i needs to place either α or β in its cache, and the least common ancestor of
i and the most i-preferred node in V \ {i} holding α (resp., β) is v (resp., w), then
i prefers to store α over β. Fig. 2 illustrates an example of node i that will prefer to
store object α that is stored further than object β and with a higher cost, due to the
total preorder.

v

w

i j k

A Hierarchical Network

αβα

Fig. 2 A simple example of a hierarchical network tree with two internal nodes (`(v) and `(w)) and three
leaf nodes (i, j, and k). The preference relation of node i is presented.

To express any player’s best response in terms of these preference relations,
we define µi(P ) = (α, v), where Pi = {α} and v is lca(i, σi(P−i, α)), where
σi(P−i, α) denotes i’s nearest node in the set of nodes holding α in P−i. For instance,
in Fig. 2 σi(P−i, α) is node k (the nearest node holding α), while Pi = {α} (node i
is holding α) and the thus, these two information can be denoted as µi(P ) = (α, v),
where v is the least common ancestor between nodes i and k.

Given, the aforementioned definitions, we can now express the best response of a
player in terms of the preference relations in the following Lemma. This is needed in
Lemma 2 to prove the existence of an equilibrium at each step of the algorithm.

Lemma 1 A best response Pi of a node i for a placement P−i of V \ {i} is {α}
where α maximizes (γ, lca(i, σi(P−i, γ))), over all objects γ, according to wi.

Proof For a given placement P with Pi = {α}, Us(i)(P ) equals

−
∑
γ 6=α

ri(γ)`(lca(i, σi(P−i, γ))),
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which can be rewritten as

−(
∑
γ∈O

ri(γ)`(lca(i, σi(P−i, γ)))) + ri(α) · `(lca(i, σi(P−i, α))).

Thus, {α} is a best response to P−i if and only if α maximizes ri(γ) · `(lca(i, σi(
P−i, γ)) over all objects γ, while the desired claim follows from the definition of wi.

The algorithm. In the beginning of the algorithm we introduce a set of fictional
players, maintaining in the same time the invariant that the current global placement
in this hierarchy is an equilibrium. We then proceed by removing existing or adding
new fictional players, tweaking in a particular way their set and locations, in such a
way that at each step we guarantee an equilibrium. The algorithm terminates when
all the fictional players are removed in the desired equilibrium state. Let Wt and P t

denote the set of fictional players and equilibrium, respectively, at the start of step t
of the algorithm.

Initialization. We create an initial set W0 by adding a fictional α-player as a leaf
child of v, for each object α and internal node v ∈ T . In the initial equilibrium P 0

for each fictional α-player i we have P 0
i = {α}, i.e. each node i ∈ V plays its

best response. By definition, it is clear that each fictional player is in equilibrium.
Moreover, for every α, every i ∈ V has a sibling fictional α-player. Thus, the best
response of every i ∈ V does not depend on the placement of nodes in V \{i}, which
implies that P 0 is an equilibrium.

Algorithm’s t step. For the node set V ∪Wt (the original nodes and the fictional
ones) we fix an equilibrium P t. If Wt is empty, i.e., no fictional player remained,
we are done. Otherwise, we select a fictional node j in Wt. Let P tj = {α} and
µj(P

t) = (α, v), i.e. the fictional player j holds object {α} and the closest node
that holds object {α} is through the internal node v. We let S be the set of all nodes
i ∈ V such that (α, v) Ai µi(P t), i.e. the closest node that holds object {α} (except
itself) is through the internal node v. We consider two cases for computing a new
set of fictional players Wt+1 and a new global placement P t+1 such that P t+1 is an
equilibrium for V ∪Wt+1:

S is empty (there is a node holding the object closer than through the internal
node v and thus the fictional node j is not affecting the strategy). We remove the j
fictional player from Wt and the hierarchy. For the remaining nodes the placement
remains as is. In this way Wt+1 = Wt − {j} (the fictional player is removed) and
P t+1 is the same as P t (since the fictional player j was not affecting any other node’s
best response strategy), but P t+1

j is no longer defined, since j is removed.
S is nonempty (some nodes are accessing object α from the fictional player i). We

select a node i ∈ S such that lca(i, j) is lowest among all nodes in S (in this way no
other node is affected from the change in the strategy of i) and we let P ti = {β}. We
set P t+1

i = {α}, remove the fictional α-player j from Wt, and add a new fictional
β-player ` as a leaf sibling of i ∈ T (in this way the player will be in equilibrium by
accessing β from the new fictional player). In this way P t+1

` = {β}, while for every
other node j we set P t+1

j = P tj . Finally, we set Wt+1 = (Wt ∪{`}) \ {j}, removing
from the node set the removed fictional player and adding the new one.
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An example of the steps is illustrated in Fig. 3. Next, in Lemma 2 we prove why
at every step t, as described above, we have an equilibrium.

v

w

i

The Hierarchical Network: P0

αβ

j

α β α β

The Hierarchical Network: Pt

α

u

x

yj

α β
j

α β

j

α β

v

w

i

αβ

u

x

y

j

α

S = {i}

The Hierarchical Network: Pt

v

w

i

αβ

u

x

y

l

Fig. 3 Illustrating the algorithm for a simple hierarchical network.

v

u

x

y

β αi j

Fig. 4 Illustrating the analysis for hierarchical networks; referred to in the proof of Lemma 2. The square
is a node i in V holding object β, and the hexagon is a fictional α-player.

Lemma 2 Consider step t of the algorithm. If P t is an equilibrium for V ∪Wt, then
the following statements hold.

1. For every node k in V ∪Wt+1, P t+1
k is a best response to P t+1

−k .
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2. For every node k in V ∪Wt+1, µk(P t+1) wk µk(P t).
3. We have |Wt+1| ≤ |Wt|. Furthermore, either |Wt+1| < |Wt| or there exists a

node i in V such that µi(P t+1) Ai µi(P t).

Proof Let α, v, S, i, and j be defined as described above in step t. We first prove the
first two lemma’s statements. We let k be any node in V ∪Wt+1. First, we consider
the case that lca(k, j) is an ancestor of v. In this case k is not in the subtree rooted
at the child u of v that contains j. For any object γ, σk(P t+1

−k , γ) = σk(P t−k, γ) and
P t+1
k = P tk. Statement 2 for k is implied thus from the fact that µk(P t+1) = µk(P t).

Since P t is in equilibrium, statement 1 also holds for k. We then consider the case
that lca(k, j) is a proper descendant of v. in this case k is in the subtree rooted at the
child u of v that contains j. There are two cases.

In the case that S is empty, the fictional α-player j is removed. In this way j is
not in Wt+1. Moreover, there is no copy of α in the subtree rooted at u. Given that no
other object except α is created or removed, σk(P t+1

−k , γ) = σk(P t−k, γ) for γ 6= α.
The second statement is established for k by the fact that lca(k, σk(P t+1

−k , α)) = v
and µk(P t+1) = µk(Pt). Since S is empty, µk(P t) wk (α, v). The first statement
for k follows from Lemma 1 and the fact that P tk is in equilibrium such that P t+1

k is
a best response against P t+1

−k .
In the second case that S is not empty, we let i be a node in S such that lca(i, j)

is lowest among all nodes in S, as defined above, x denote lca(i, j), and P ti be equal
to {β}, where β 6= α. From the algorithm it is true that P t+1

k = {α}. We let k 6= i
be a node in the subtree rooted at u. For any γ 6= α, σk(P t+1

−k , γ) = σk(P t+1
−k , γ).

The second statement is established for k by the fact that since P t+1
k = P tk 6= {α},

we have µk(P t+1) = µk(P t). Similarly for node i, we have µi(P t+1) = (α, v) Ai
µi(P

t).
To establish the first statement or any node k in the subtree rooted at uwe consider

two cases. Let y be the child of x that is an ancestor of j (see Figure 4). In the first
case, we let k be in the subtree rooted at y. Then, by our choice of i, it is true that

µk(P t+1) wk (α, v) wk (α, x) = (α, σk(P t+1
−k , α)),

which, by Lemma 1, implies that the first statement holds for k. In the second case,
we let k be in the subtree rooted at u, but not in the subtree rooted at y. Again,
σk(P t+1

−k , γ) = σk(P t−k, γ) for γ 6= α. And for α it is true that

(α, lca(k, σk(P t+1
−k , α))) = (α, lca(k, i)) wk (α, x) wk µk(P t) = µk(P t+1),

which establishes the first statement for k using Lemma 1.
To establish the third statement we use the fact that |Wt+1| ≤ |Wt|, which is

immediate from the definition of the algorithm’s t step. When S is empty, |Wt+1| <
|Wt| since a fictional player is deleted. When S is nonempty, we have proved above
that µi(P t+1) Ai µi(P t). This concludes the proof of the third statement and of the
whole lemma.

Theorem 1 For hierarchical node preferences, an equilibrium can be found in poly-
nomial time.
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Proof From Lemma 2 and the definition of the algorithm it is straightforward that it
returns a valid equilibrium at the termination. We should prove now that the termi-
nation is achieved in polynomial time. We consider the potential function given by
the sum of |Wt| and the sum of the µi(P t) position in the preorder wi over all i.
We notice that |W0| is at most nm, where m is the number of objects and n is |V |
which is at least the number of internal nodes. Moreover, the initial potential is at
most nm+n2m since |O×I| is at most nm. From Lemma 2, the potential decreases
by at least one in each step and thus the number of steps is at most nm+ n2m.

We need to also prove that each step can be implemented in polynomial time. In
the initialization we add O(nm) fictional players and compute the best response for
each node i ∈ V . For the later process, we compare at most m placements for each
k ∈ V , i.e. one for each object. During each subsequent step we select a fictional
player j, we determine whether the set S is nonempty, and if so we compute node i
and the updated placement. From this process we only need to explain the computa-
tion of S and i, where S is the set of all k nodes which are not in equilibrium when
a fictional player j is deleted. S is computed as follows: for each node k ∈ V , we
replace the current object in its cache by α and add k to S. According to the utility,
this yields to a more preferable placement. Thus, S can be computed in time polyno-
mial in n. To complete the proof of the theorem, we let node i simply be a node in S
such that lca(i, j) is lowest among all nodes in S. This can also be computed in time
polynomial in n.

4 A general framework for CSR games with ordinal preferences

In this section, we present a new framework on CSR games with ordinal preferences,
to generalize the results that were presented in Section 3 to a broad class of utility
functions, and to also enable the study of the existence and complexity of equilibria
in more general settings.

Node preference relations. Among all the nodes in V , we assume that each node
i ∈ V has a total preorder ≥i3 and ≥i further satisfies i ≥i j for all i, j ∈ V . A
node i prefers j over k if j ≥i k, while a node j is the most i-preferred in a set S
of nodes if j ∈ S and j ≥i k for all k ∈ S. We let j =i k denote that j ≥i k and
k ≥i j, while when it is not the case that k ≥i j, we denote it by j >i k. Notice that
>i is a strict weak order4 and for any i, j, k ∈ V exactly one of the following three
relations hold: 1) j >i k, 2) k >i j, and 3) k =i j. We also extend the σi(P, α) and
σi(P−i, α) notations such that they denote a most i-preferred node holding α in P
and P−i respectively, breaking ties arbitrarily.

The access cost function d introduced in Section 2 induces a natural node pref-
erence relation: j >i k if dij < dik, and j =i k if dij = dik. In fact, as we show

3 We define a total preorder as a binary relation that satisfies reflexivity, transitivity, and totality. By
totality we mean that for any i, j, k, either j ≥i k or k ≥i j.

4 A strict weak order is a strict partial order >, i.e. a transitive relation that is irreflexive, in which the
“neither a > b nor b > a” relation is transitive. Strict weak orders and total preorders are widely used in
the field of microeconomics.



Cache Me If You Can: Capacitated Selfish Replication Games in Networks 13

in Lemma 3, undirected networks (i.e., when the access cost function is symmet-
ric) are equivalent to acyclic node preference collections. Formally, the collection
{≥i: i ∈ V } is an acyclic node preference collection if there does not exist a sequence
of nodes i0, i1, . . . , ik−1 for an integer k ≥ 3 such that i(j−1) mod k >ij i(j+1) mod k

for all 0 ≤ j < k.

Lemma 3 Any undirected network yields an acyclic node preference collection. For
any acyclic node preference collection, we can compute, in polynomial time, symmet-
ric cost functions that are consistent with the node preferences.

Proof Let d denote a symmetric access cost function over the set V of nodes. For a
given node i ∈ V , we have j ≥i k iff dij ≤ dik. We now argue that the collection
{≥i: i ∈ V } is acyclic. Suppose, for the sake of contradiction, that there exists a
sequence of nodes i0, i1, . . . , ik−1 for an integer k ≥ 3 such that i(j−1) mod k >ij
i(j+1) mod k for all 0 ≤ j < k. It then follows that:

diji(j−1) mod k
< diji(j+1) mod k

for 0 ≤ j < k.

Since d is symmetric, we obtain

diji(j−1) mod k
< di(j+1) mod kij for 0 ≤ j < k,

which is a contradiction, since di0i(k−1)
< di1i0 < · · · < di(k−1)i0 = di0i(k−1)

.
Given an acyclic collection of node preferences, we compute an associated access

cost function d in polynomial time as follows. We construct a directed graph G over
the set U of all unordered pairs (i, j) : i, j ∈ V , i 6= j. There is a directed edge
from node (i, j) to (i, k) if and only if k ≥i j. Since the collection {≥i: i ∈ V } is
acyclic, G is a dag. We compute the topological ordering π : U → Z; thus, we have
π((i, j)) < π((k, `)) whenever there is a directed path from (i, j) to (k, `). Setting
dij to be π((i, j)) gives us the desired undirected network.

Utility preference relations. Each node in our game-theoretic model attaches a util-
ity to each global placement. In our general definition a large class of utility functions
it is considered simultaneously. Instead of defining a numerical utility function, we
let the utility at each node i be a total preorder �i among the set of all global place-
ments. The �i and =i notations over global placements are defined analogously. We
require that �i, for each i ∈ V , satisfies the following two basic conditions:

– Monotonicity: If for any two global placements P and Q, for each object α, and
each node q with α ∈ Qq , there exists a node p with α ∈ Pp and p ≥i q, then
P �i Q.

– Consistency: Let two global placements (Pi, P−i) and (Qi, Q−i) such that for
each object α ∈ Pi ∪ Qi, if p (resp. q) is a most i-preferred node in V \ {i}
holding α, i.e. α ∈ Pp (resp. α ∈ Qq), then p =i q. If (Pi, P−i) �i (Qi, P−i),
then (Pi, Q−i) �i (Qi, Q−i).

In words, the monotonicity condition says that for any node, if all the objects in
a placement are placed at nodes that are at least as preferred as in another placement,
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then the node prefers the former placement at least as much as the latter. The consis-
tency condition says that the preference for a node to store one set of objects instead
of another is entirely a function of the set of most preferred other nodes that together
hold these objects. For instance, if a node i with unit capacity prefers to store α over
β in a scenario where the most i-preferred node (other than i) storing α (resp. β) is j
(resp. k), then i prefers to store α at least as much as β in any other situation where
the most i-preferred node (other than i) storing α (resp. β) is j (resp. k).

Generality of the conditions. We note that many standard utility functions defined
for replica placement problems [8, 47, 57], including the sum and max functions,
satisfy the monotonicity and consistency conditions. Indeed, any utility function that
is an Lp norm, for any p, over the costs for the individual objects, also satisfies the
conditions. Furthermore, since the monotonicity and consistency conditions apply to
the individual utility functions, our model allows the different nodes to adopt different
types of utilities, as long as each separately satisfies the two conditions.

Binary object preferences. One of the utility preference relations classes we study
is based on binary object preferences. Assume that each node i is equally interested
in an objects set Si and it does not have any interest in the other objects. Then, τi(P )
will denote the |Si|-length sequence of the σi(P, α), such that α ∈ Si and it is in
non-increasing order based on the≥i relation. In this setup the consistency condition
can be further strengthened to the binary consistency term: for any placements P =
(Pi, P−i) and Q = (Qi, Q−i) with P−i = Q−i, we let P �i Q if and only if
for 1 ≤ k ≤ |Si|, the kth component of τi(P ) is at least as i-preferred as the kth

component of τi(Q).

CSR Games. We let a CSR game be a tuple (V,O, {≥i}, {�i}) in the general ax-
iomatic framework. A pure Nash equilibrium in a CSR game instance is a global
placement P such that there is no placement Qi for which (Qi, P−i) �i (Pi, P−i),
for each i ∈ V .

To further analyse the complexity results, a definition of a game instance spec-
ification is required. We first specify the set V , the node cache capacities, and an
enumerated list of object names O. For each node i ∈ V , we specify i’s preference
relation ≥i succinctly by a set of at most

(
n
2

)
bits. However, the utility preference

relation �i is over a potentially exponential number of placements in terms of n, m,
and cache sizes. We further assume that the utility preference relations are specified
by an efficient algorithm, which we denote as utility preference oracle, that takes as
input a node i, and two global placements P andQ, and returns whether P �i Q. For
the sum, max, and Lp-norm utilities, the utility preference oracle simply computes
the relevant utility function. For binary object preferences, the binary consistency
condition yields an oracle which is polynomial in the number of nodes, objects, and
cache sizes.

Unit cache capacity. We now argue that the unit cache capacity assumption of Sec-
tion 2 continues to hold without loss of generality. Consider a set V of nodes in which
the cache of node i can store ci objects. Let V ′ denote a new set of nodes which con-
tains, for each node i in V , new nodes i1, i2, . . . , ici , i.e., one new node for each unit
of the cache capacity of i. We set the node preferences as follows: for all i, i′, j ∈ V ,
1 ≤ f, ` ≤ cj , 1 ≤ k, k′ ≤ ci, we have ik ≥j` i′k′ whenever i ≥j i′, and jf =ik j`.
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We consider an obvious onto mapping f from placements in V ′ to those in V .
Given placement P ′ for V ′, we set f(P ′) = P where Pi = ∪1≤k≤ciP

′
ik

. This map-
ping naturally defines the utility preference relations for the node set V ′. In particular,
for any i ∈ V and 1 ≤ k ≤ ci, P ′ �ik Q′ whenever f(P ′) �i f(Q′). We also note
that f is computable in time polynomial in the number of nodes and the sum of the
cache capacities. It is easy to verify that the utility preference relation �ik for all
ik ∈ V ′ satisfies the monotonicity and consistency conditions. Furthermore, P ′ is an
equilibrium for V ′ if and only if f(P ′) is an equilibrium for V ; this together with the
onto property of the mapping f gives us the desired reduction.

5 Existence of equilibria in the general framework

In this section, we establish the existence of equilibria for several CSR games under
the general framework of CSR games with ordinal preferences that we introduced in
Section 4. First, we extend the sum utility function results on hierarchical networks to
the general framework (Section 5.1). Next, we show that CSR games on undirected
networks and binary object preferences are potential games (Section 5.2). Finally,
when there are only two objects in the system, we use the technique of fictional play-
ers to give a polynomial-time construction of equilibria for CSR games on undirected
networks (Section 5.3).

5.1 Hierarchical networks

We fist show that the polynomial time algorithm which was introduced in Section 3
holds also for the general framework of CSR games with ordinal preferences. A hi-
erarchical network, as defined in the general framework, is a tree T whose leaves
set is the node set V and the node preference relation ≥i is j ≥i k if lca(i, j) is a
descendant of lca(i, k). This hierarchical network structure and each node’s i pair-
preference relations wi, determine completely the analysis of the algorithm intro-
duced in Section 3. The latter were defined for the sum utility function. Extending
our analysis to the general framework, requires a new preference relation derivation
and the establishment of Lemma’s 1 analogue, which we present next for arbitrary
utility preference relations that satisfy the monotonicity and consistency properties.

Pair preference relations. For any utility preference relation �i that satisfies the
monotonicity and consistency conditions, we define a strict weak order Ai on O×Ai,
where Ai is the set of i’s proper ancestors in T .

1. We let (α, v) Ai (α,w) hold whenever v is a proper ancestor ofw, for each object
α, node i, and proper i’s ancestors v and w.

2. Considering distinct objects α, β and nodes i, j, k with j, k 6= i, we let P be the
set of global placements P , such that j (resp. k) is a most i-preferred node in V \
{i} holding α (resp. β) in P−i. If there exist global placements P = ({α}, P−i)
and Q = ({β}, P−i) in P with P �i Q, then (α, lca(i, j)) Ai (β, lca(i, k)).
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In words, item 1 says that i’s preference for keeping α in its cache increases as the
most i-preferred node holding α becomes less preferred (or “moves farther away”).
In item 2, (α, v) Ai (β,w) means that if i needs to place either α or β in its cache,
and the least common ancestor of i and the most i-preferred node in V \ {i} holding
α (resp., β) is v (resp., w), then i prefers to store α over β. The strict weak order
Ai induces a total preorder wi as follows: (α, v) wi (β,w) if it is not the case that
(β, v) Ai (α,w). We similarly define =i: (α, v) =i (β,w) if (α, v) wi (β,w) and
(β, v) =i (α,w).

Lemma 4 For each i, Ai as given above, is a well-defined strict weak order.

Proof We need to ensure the well-definedness of part 2 of the definition of pair pref-
erence relations. That is, we need to show that for any placements P−i and Q−i such
that a most i-preferred node in P−i holding α (resp., β) is also a most i-preferred
node in Q−i, it is impossible that ({α}, P−i) �i ({β}, P−i) and ({β}, Q−i) �i
({α}, Q−i) both hold. This directly follows from the consistency condition for utility
preference relations.

The reflexivity and transitivity of wi are immediate from the definitions and the
reflexivity and transitivity of �i. Finally, to ensure the well-definedness of the strict
preorder Ai, we also have to show that there is no collection of pairs (αj , vj), 0 ≤
j < ` for some integer ` > 1, such that (αj , vj) Ai (αj+1 mod `, vj+1 mod `) for
0 ≤ j < `. To see this, it is sufficient to note that if (α, v) Ai (α′, v′) then for all
placements P and P ′ such that P−i = P ′−i and the least common ancestor of i and
the most i-preferred node in V \ {i} that holds α (resp. α′) is v (resp. v′) we have
P �i P ′. So any cycle in the strict preorder Ai implies a cycle in �i, yielding a
contradiction.

Analogous to Lemma 1, we can express the best response of any player in hi-
erarchical networks as follows. For any global placement P = ({α}, P−i), assume
that j (resp. k) is a most i-preferred node holding object α (resp. β) in P−i, and
({β}, P−i) �i ({α}, P−i), i.e., for node i, storing β is a better response to P−i than
storing α. Then the following Lemma holds.

Lemma 5 For any global placementP = ({α}, P−i), (β, lca(i, k)) Ai (α, lca(i, j)).
Furthermore, {α} is a best response toP−i, whereαmaximizes (γ, lca(i, σi(P−i, γ))),
over all objects γ, according to wi.

Proof The first statement of the lemma directly follows from item 2 of the defini-
tion of pair preference relations. We establish the second statement by contradiction.
Suppose that for node i, {β} is a better response to P−i than {α}. Then, we have
({β}, P−i) �i ({α}, P−i), which, by item 2 of the definition of pair preference rela-
tions, implies that (β, lca(i, σi(P−i, β))) Ai (α, lca(i, σi(P−i, α))), a contradiction
to the choice of α.

The remainder of the analysis for hierarchical networks (Lemma 2 and Theo-
rem 1) follows as before, invoking Lemma 5 instead of Lemma 1.
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5.2 Undirected networks with binary object preferences

Let d be a symmetric cost function for an undirected network over the node set V .
From the binary object preferences definition for each node i we are given an object
set Si in which i is equally interested. We prove the existence of equilibria via a
potential function argument. Given a placement P , we let Φi(P ) = dij , where j is the
most i-preferred node in V −{i} holding the object in Pi. We introduce the potential
function Φ: Φ(P ) = (Φ0, Φi1(P ), Φi2(P ), . . . , Φin(P )), where Φ0 is the number of
nodes i such that Pi ⊆ Si, and Φij (P ) ≤ Φij+1(P ), ∀j, where V = {i1, i2, . . . , in}.
We prove that Φ is an increasing potential function, i.e. after any better response step,
Φ increases in lexicographical order.

Let P = (Pi, P−i) be an arbitrary global placement. Assume that Pi = {α} and
j is the most i-preferred node in P−i holding α. Consider any better response step,
from placement P to Q = (Qi, P−i), where Qi = {β}. Clearly β ∈ Si. We consider
two cases. First, suppose α /∈ Si and β ∈ Si. Then, Φ0 increases, and so does the
potential. The second case is where α, β ∈ Si. Let k be the most i-preferred node
in P−i holding β. In this case, Φ0 does not change. However, since this is a better
response step of i, j >i k, implying that dik > dij and hence Φi(Q) > Φi(P ).
Consider any other node j. If j holds any object γ other than β, since no new copy of
γ has been added, Φj(Q) ≥ Φj(P ). It remains to consider the case where j holds β.
If S is the set of nodes in V \ {j} holding β in P−j , then S ∪ {i} is the set of nodes
in V \ {j} holding β. Thus, Φj(Q) = min{Φj(P ), dji} ≥ min{Φj(P ), Φi(Q)}.
This also means that Φj(P ) appears later in the sorted order than Φi(P ) and Φj(Q)
appears no earlier in the sorted order than Φi(Q). Hence, Φ(Q) is lexicographically
greater than Φ(P ). This establishes that for undirected networks with binary object
preferences, the resulting CSR game is a potential game, and hence also in PLS [37].

5.3 Undirected networks with two objects

In the case of an undirected network with two objects we provide a polynomial-time
algorithm to compute an equilibrium. We use the fictional player technique that was
introduced in Section 5.1. In the beginning a set of fictional players are introduced to
serve the two objects in the network at zero cost from each node. In each subsequent
step, the fictional players are progressively moved “further” away, in a way that at
each instance the equilibrium is ensured. The whole set of fictional players are com-
pletely removed when they are at the least preferred cost from all the nodes, yielding
finally to an equilibrium for the original network.

Suppose we are given a undirected network with access cost function d. Also let
D be the set {0, `1, `2, . . . , `r} of all access costs between nodes in the system in
increasing order; that is, `1 = mini,j dij and `r = maxi,j dij and `i < `i+1 for all
1 ≤ i < r.

Fictional player. For an object α, a fictional α-player is a new node that will store α
in every equilibrium; an fictional α-player prefers storing α over any other object. We
denote by srvα(`) the fictional α-player which is at access cost ` from every node in
V .
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The algorithm.
Initialization. Assuming that there are two objects α and β in the system, we initially
set up a fictional α-player srvα(0) and β-player srvβ(0) at access cost 0 from each
node in V , which does not affect the actual distance between nodes. We let nodes
replicate their most preferred object and access the other without any access cost
from the corresponding fictional player. This placement is obviously an equilibrium.
Step t of algorithm. Fix an equilibriumP for the node set V ∪{srvα(`t)}∪{srvβ(`t)}.
We describe one step of the algorithm which computes a new set of fictional play-
ers srvα(`t+1) and srvβ(`t+1) and a new placement P ′ such that P ′ is an equilib-
rium for the node set V ∪ {srvα(`t+1)} ∪ {srvβ(`t+1)}. We first remove the α-
player srvα(`t) from the system and instead we add srvα(`t+1). If there do not exist
nodes that want to deviate we are done. Otherwise, assume that there exists a node i
that wants to deviate from its strategy. Since the most i-preferred node holding β in
V ∪ {srvα(`t)} ∪ {srvβ(`t)} remains the same in V ∪ srvα(`t+1) ∪ srvβ(`t), i is
not holding object α. Thus the only nodes that may want to deviate are those that are
holding object β. We argue that if we let i to deviate from β ∈ Pi to α ∈ P ′i , there is
no node j ∈ V \ {i} that gets affected by i’s deviation. Consider the following two
cases:

– If a node j has access cost at most `t from i, then β ∈ Pj . Otherwise, if α ∈ Pj ,
srvα(`t) would not be the most i-preferred node holding α and thus i would
not be affected by any change of α-players. Thus there does not exist any node
j ∈ V \ {i} with access cost at most `t from i, such that α ∈ Pj , and as we
showed above α ∈ P ′j .

– If a node j has access cost at least `t+1 from i, then Pj = P ′j . Because of the
α-player srvα(`t+1) and the β-player srvβ(`t), i would never be the j-most pre-
ferred node in P ′.

We then remove the β-player srvβ(`t) from the system and instead we add srvβ(`t+1).
Using a similar argument as above, we obtain a new equilibrium at the end of this
step.

Theorem 2 For undirected networks with two objects, an equilibrium can be found
in polynomial time.

Proof An initial placement P , where we have the set of fictional players srvα(0)
and srvβ(0) in the system, is obviously an equilibrium. It is immediate from our
argument above that at termination the algorithm returns a valid equilibrium.

The size of the set D is at most
(
n
2

)
which is at most n2. In each step t at most n

nodes may want to deviate from their strategy, since we showed above that if a node
deviates once in a step, it will not deviate again during the same step. Thus, the total
number of deviations in the algorithm is at most n3.

6 Non-Existence of equilibria in CSR games and the associated decision
problem

In this section, we show that the classes of games studied in Section 5 are essen-
tially the only games where equilibria are guaranteed to exist. We identify the most
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basic CSR games where equilibria may not exist, and study the complexity of the
associated decision problem.

6.1 NP-Completeness

We first show that it is NP-hard to determine whether a given CSR game has an
equilibrium even when the utility preference relations are based on the sum utility
function and either the number of objects is small or the object preferences are binary.
Some simple network examples appear in Fig. 5 (middle and right)–the networks are
described in details after Theorem 3–showing that there does not exist an equilibrium
in these configurations (proved in the second part of Theorem 4 and 5). The NP-
hardness proof is by a polynomial-time reduction from 3SAT [26]. Each reduction is
built on top of a gadget which has an equilibrium if and only if a specified node holds
a certain object. Several copies of these gadgets are then put together to capture the
given 3SAT formula.

Theorem 3 The problem of determining whether a CSR instance has an equilibrium
is in NP even if one of these three restrictions hold: (a) the number of objects is two;
(b) the object preferences are binary and number of objects is three; (c) the network
is undirected and the number of objects is three.

The membership in NP is immediate, since one can determine in polynomial
time whether a given global placement is an equilibrium. The remainder of the proof
focuses on the hardness reduction from 3SAT.

Given a 3SAT formula φ with n variables x1, x2, . . ., xn and k clauses c1, c2,
. . ., ck, we construct a CSR instance as follows. For each variable xi in φ, we intro-
duce two variable nodes Xi and X̄i. We set dXiX̄i

and the symmetric dX̄iXi
to be

0.5, where d is the underlying access cost function. For each clause cj we introduce
a clause node Cj . Assuming that `j,r for r ∈ {1, 2, 3}, are the three literals of the
cj clause in formula φ, we set dCjLj,r and dLj,rCj to be 1, where Lj,r is the corre-
sponding variable node. We also introduce a gadget G illustrated in Figure 5 (middle
and right), consisting of nodes S, A, B, and C. We set the access cost dSCi

and the
symmetric dCiS , for all 1 ≤ i ≤ k between node S and all clause nodes to be 2. The
general construction is illustrated in Figure 5 (left).
Directed networks with two objects. We set the access costs dAS = dAB = dBC =
dCA = 1, and the server node, which stores a fixed copy of two objects α and β, at
access cost dsrv = 10 from all nodes in V . We also set the weights of the variable
nodes rxi

(α) = rx̄i
(α) = rxi

(β) = rx̄i
(β) = 1, the weights of the clause nodes

rCi
(α) = 0.85 and rCi

(β) = 1, for all 1 ≤ i ≤ k. Finally, we set the weights of the
nodes in the G gadget rS(α) = 0.85, rS(β) = rA(β) = rB(α) = rB(β) = rC(α) =
rC(β) = 1 and rA(α) = 0.7. We refer to this CSR instance as I1.
Undirected networks with three objects. We set the access costs dAS = dBS = 3,
dAB = 3.1, dBC = 3.05, and dCA = 2; while symmetry holds. The server node,
which stores a fixed copy of three objects α, β, and γ, is at access cost dsrv = 5 from
all nodes in V . We set the weights of the clause nodes rxi

(α) = rx̄i
(α) = rxi

(β) =
rx̄i(β) = 1, the weights of the clause nodes rCi(α) = 0.85 and rCi(β) = 1, for all
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Fig. 5 Left: instance of the construction for the undirected case proof of NP-Hardness, where φ = (x1 ∨
x̄3 ∨ x4) ∧ . . . ∧ (xn−3 ∨ xn−1 ∨ x̄n). Middle and right: gadget G for the directed and the undirected
case

1 ≤ i ≤ k. Finally, we set the weight of the nodes in the G gadget rS(α) = 0.85,
rS(β) = rA(α) = rB(β) = rC(β) = 1, rA(γ) = 2, rB(γ) = 0.9837, and rC(γ) =
1.6. All the remaining weights are set to 0. We refer to this CSR instance as I2.

Lemma 6 A variable node Xi holds object α (resp., β) if and only if node X̄i holds
object β (resp., α).

Proof The proof is immediate, since X̄i (resp.,Xi) isXi’s (resp., X̄i’s) nearest node,
and both Xi and X̄i are interested equally in α and β.

Lemma 7 Clause node Ci holds object α if and only if its variable nodes Li,j , for
j ∈ {1, 2, 3} hold object β.

Proof First, assume that Li,j , for j ∈ {1, 2, 3} hold β. These nodes are Ci’s nearest
nodes holding β. By Lemma 6 we know that nodes L̄i,j , for j ∈ {1, 2, 3} hold α, and
they are Ci’s nearest nodes holding α. Node’s Ci cost for holding α and accessing β
from Li,j , for j ∈ {1, 2, 3}, is rCi(β)dCiLi,j = 1; while the cost for holding β and
accessing α from L̄i,j , for j ∈ {1, 2, 3}, is rCi

(α)dCiL̄ij
= 1.275. Obviously, node

Ci prefers to replicate α.
Now assume that at least one of the nodes L̄i,j , for j ∈ {1, 2, 3} holds α. These

nodes are Ci’s nearest nodes holding α. Also, by Lemma 6, Ci’s nearest nodes hold-
ing β are all the remaining nodes from the set Li,j , L̄i,j , for j ∈ {1, 2, 3}, that don’t
hold α. Node’s Ci cost for holding β and accessing α from Li,j , for j ∈ {1, 2, 3}, is
rCi

(α)dCiLi,j
= 0.85; while the cost for holding α and accessing β from node L̄i,j

(resp., Li,j), is rCi
(β)dCiL̄i,j

= 1.5 (resp., rCi
(β)dCiLi,j

= 1). Obviously, in any
case node Ci prefers to replicate β.

Lemma 8 Node S holds object α if and only if all clause nodes C1, . . . , Ck hold
object β.

Proof First, assume thatC1, . . . , Ck are holding β. These nodes are S’s nearest nodes
holding β. Also by Lemma 7, S’s nearest node holding α is at least one of Li,j nodes,
where i ∈ [1, k], j ∈ {1, 2, 3}. The cost for S holding α and accessing β from a node
Ci, i ∈ [1, k], is rS(β)dSCi

= 2; while the cost for holding β and accessing α from
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Li,j , where i ∈ [1, k], j ∈ {1, 2, 3}, is rS(α)dSLi,j = 2.55. Obviously, node S
prefers to replicate α.

Now assume that at least one of C1, . . . , Ck holds α. These nodes are S’s nearest
node holding α. Also S’s nearest node holding β, due to Lemma 7 is one of Li,j ,
where i ∈ [1, k], j ∈ {1, 2, 3}. The cost for holding β and accessing α from a node
Ci, is rS(α)dSCi

= 1.7; while the cost for holding α and accessing β from a node
Lij , where j ∈ {1, 2, 3}, is rS(β)dSLi,j = 3. Obviously, in any case node S prefers
to replicate β.

Theorem 4 The CSR instance I1 has an equilibrium if and only if node S holds
object α.

Proof First, assume that S is holding α. By Lemma 8 nodes C1, . . . , Ck hold ob-
ject β, and by Lemma 7 at least one of nodes Li,j , for j ∈ {1, 2, 3} for each node
Ci, i ∈ [1, k], holds object α, and the corresponding L̄i,j is holding object β. We
claim that the placement where A holds β, B holds β, and C holds α, is a pure Nash
equilibrium. We prove this by showing that none of these nodes wants to deviate from
their strategy.

Node A does not want to deviate since its cost for holding object β and accessing
α from A’s nearest node S, is rA(α)dAS = 0.7; while the cost for holding object
α and accessing β from A’s nearest node B, is rA(α)dAB = 1. Node B does not
want to deviate since its cost for holding object β and accessing α from B’s near-
est node C, is rB(α)dBC = 1; while the cost for holding object α and accessing
β from B’s nearest node A, is rB(β)dBA = 2. Node C does not want to devi-
ate since its cost for holding object α and accessing β from C’s nearest node A, is
rC(β)dCA = 1; while the cost for holding object β and accessing α from C’s near-
est node S, is rC(α)dCS = 2. Also note that none of S,C1, . . . , Ck, Lij , L̄ij for
i ∈ [1, k], j ∈ {1, 2, 3} is getting affected of the objects been held by the gadget
nodes.

Now assume that node S holds object β. We are going to prove that for every
possible placement over nodes A, B, and C, at least one node wants to deviate from
its strategy. Consider the following cases:

– Nodes A, B, and C hold object α: Node B (resp., C) wants to deviate, since the
cost for holding object α and accessing β from B’s (resp., C’s) nearest node S,
is rB(β)dBS = 3 (resp., rC(β)dCS = 2); while the cost for holding object β and
accessing α from B’s nearest node A, is rB(β)dBA = 2 (resp., rC(β)dCA = 1).

– Two nodes hold object α and the third holds β: In the case where A and B hold
α, A wants to deviate since the cost while holding α and accessing β from A’s
nearest node S is rA(β)dAS = 1; while the cost for holding β and accessing α
from A’s nearest node B is rA(α)dAB = 0.7. In the case where A and C hold α,
then C wants to deviate since the cost while holding α and accessing β from C’s
nearest node B is rC(β)dCB = 2; while the cost for holding β and accessing α
from C’s nearest nodeA is rC(α)dCA = 1. In the case whereB and C hold α,B
wants to deviate since the cost while holding α and accessing β from B’s nearest
node A is rB(β)dBA = 2; while the cost for holding β and accessing α from B’s
nearest node C is rB(α)dBC = 1.
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– One node holds α: If A (resp., B, or C) holds α, B (resp., C, A) wants to de-
viate since the cost while holding β and accessing α from B’s (resp., C’s, or
A’s) nearest node A (resp., B, or C) is rB(α)dBA = 2 (resp., rC(α)dCB = 2,
or rA(α)dAC = 1.4); while the cost for holding α and accessing β from B’s
(resp., C’s, or A’s) nearest node C (resp., A, or B), is rB(β)dBC = 1 (resp.,
rC(β)dCA = 1, or rA(β)dAB = 1).

– Nodes A, B, and C hold β: All of them want to deviate. Node A wants to deviate
since the cost while holding β and accessing α from A’s nearest node Ci, for
some i ∈ [1, k], is rA(β)dACi

= 3; while the cost for holding β and accessing
α from A’s nearest node S is rA(α)dAS = 0.7. Similar proof holds for nodes B
and C.

Obviously the system does not have a pure Nash equilibrium, which completes the
proof.

Theorem 5 The CSR instance I2 has an equilibrium if and only if node S holds
object α.

Proof First, assume that S is holding α. By Lemma 8 nodes C1, . . . , Ck hold object
β, and by Lemma 7 at least one of nodes Li,j , for j ∈ {1, 2, 3} for each node Ci, i ∈
[1, k], holds object α, and the corresponding L̄i,j is holding object β. We claim that
the placement where A holds γ, node B holds β, and C holds γ is a pure Nash
equilibrium. We prove this by showing that none of these nodes wants to deviate
from their strategy. Node A doesn’t want to deviate since the cost for holding object
γ and accessing object α from node S is rA(α)dAS = 3; while the cost for holding
α and accessing γ from node C increases to rA(γ)dAC = 4. Node B doesn’t want
to deviate since the cost for holding object β and accessing object γ from node C is
rB(γ)dBC = 3.000285; while the cost for holding object β and accessing γ from the
server increases to rB(γ)dsrv = 5. Node C doesn’t want to deviate since the cost for
holding object γ and accessing β from node B is rC(β)dCB = 3.05; while the cost
for holding object β and accessing γ from node A increases to rC(β)dCA = 3.2.

Now assume that node S holds object β. We are going to prove that for every
possible placement over nodes A, B, and C, at least one node wants to deviate from
its strategy. Consider the following cases:

– Node A holds α, node B holds γ, and node C holds β: Node A wants to deviate
since the cost while it is holding object α and accessing object γ from node B is
(rA(γ)dAB = 6.2); while the cost for holding object γ and accessing α from the
server decreases to rA(α)dsrv = 5.

– Node A holds γ, node B holds γ, and node C holds β: Node B wants to deviate
since the cost while it is holding object γ and accessing object β from node C is
(rB(β)dBC = 3.05); while the cost for holding object β and accessing γ from
node A decreases to rB(γ)dBA = 3.04947.

– Node A holds γ, node B holds β, and node C holds β: Node C wants to deviate
since the cost while it is holding object β and accessing object γ from node A
is (rC(γ)dCA = 3.2); while the cost for holding object γ and accessing β from
node B decreases to rC(β)dCB = 3.05.
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– Node A holds γ, node B holds β, and node C holds γ: Node A wants to deviate
since the cost while it is holding object γ and accessing object α from the server
is (rA(α)dsrv = 5); while the cost for holding object α and accessing γ from
node C decreases to rA(γ)dAC = 4.

– Node A holds α, node B holds β, and node C holds γ: Node B wants to deviate
since the cost while it is holding object β and accessing object γ from node C
is (rB(γ)dBC = 3.000285); while the cost for holding object γ and accessing β
from node S decreases to rB(β)dBS = 3.

– Node A holds α, node B holds γ, and node C holds γ: Node C wants to deviate
since the cost while it is holding object γ and accessing object β from the server
is (rC(β)dsrv = 5); while the cost for holding object β and accessing γ from B
decreases to rC(γ)dBC = 4.88.

– Node A holds α, node B holds β, and node C holds β: Node C wants to deviate
since the cost while it is holding object β and accessing object γ from the server
is (rC(γ)dsrv = 4.9185); while the cost for holding object γ and accessing β
from node B decreases to rB(β)dCB = 3.05.

– Node A holds γ, node B holds γ, and node C holds γ: Node A wants to deviate
since the cost while it is holding object γ and accessing object α from the server
is (rA(α)dsrv = 5); while the cost for holding object α and accessing γ from C
decreases to rA(γ)dAC = 4.

The remaining placements where A holds α, B holds α, and C holds α, obviously
are not stable since none of the nodes are interested in these objects. Since there does
not exist a stable placement, an equilibrium does not exist.

Binary object preferences over three objects.. For the binary object preferences,
we introduce two extra nodes K and L. We set dCiK , for i ∈ [1, k], between clause
nodes and K to be 1.4, dSL to be 2.1, and dAS , dAB , dBC , dCA to be 1. The server
node, which is at access cost dsrv = 10 from all nodes in V , stores a fixed copy of
three objects α, β, and γ. Each node i has a set Si of objects in which it is equally
interested. For nodes Xi, X̄i, for i ∈ [1, n], we set SXi = {α, β} and SX̄i

= {α, β}.
For nodes Ci, for i ∈ [1, k], we set SCi

= {α, γ}. For node K we set SK = {γ};
while for node L we set SL = {β}. For node S we set SS = {α, β}. For nodes
A, B, and C we set SA, SB , and SC correspondingly to be the set {α, γ}. As we
mentioned in the binary object preference definition for our utility function Us(i),
equally interested means weight 1 for all objects in Si, and 0 for the remaining. We
refer to this instance as I3.

Lemma 6 holds as it is for the binary object preferences directed case.

Lemma 9 Clause node Ci holds object α if and only if its variable nodes Li,j , for
j ∈ {1, 2, 3} hold object β.

Proof First, assume that Li,j , for j ∈ {1, 2, 3} hold β. By Lemma 6 we know that
nodes L̄i,j , for j ∈ {1, 2, 3} hold α, and they are Ci’s nearest nodes holding α; while
Ci’s nearest node holding γ is node K. Node’s Ci cost for holding α and accessing
γ from K is dCiK = 1.4; while the cost for holding γ and accessing α from L̄i,j , for
j ∈ {1, 2, 3}, is dCiL̄ij

= 1.5. Obviously, node Ci prefers to replicate α.
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Now assume that at least one of the nodes L̄i,j , for j ∈ {1, 2, 3} holds α. These
nodes are Ci’s nearest nodes holding α; while again Ci’s nearest node holding γ is
node K. Node’s Ci cost for holding γ and accessing α from Li,j , for j ∈ {1, 2, 3},
is dCiLi,j

= 1; while the cost for holding α and accessing γ from node K is dCiK =
1.4. Obviously, node Ci prefers to replicate γ.

Lemma 10 Node S holds object α if and only if all clause nodes C1, . . . , Ck hold
object γ.

Proof First, assume that C1, . . . , Ck are holding γ. By Lemma 9, S’s nearest node
holding α is at least one of Li,j nodes, where i ∈ [1, k], j ∈ {1, 2, 3}; while S’s
nearest nodes holding β is node L. The cost for S holding α and accessing β from
node L, is dSL = 2.1; while the cost for holding β and accessing α from Li,j , where
i ∈ [1, k], j ∈ {1, 2, 3}, is dSLi,j

= 3. Obviously, node S prefers to replicate α.
Now assume that at least one of C1, . . . , Ck holds α. These nodes are S’s nearest

node holding α; while again S’s nearest node holding β is L. The cost for holding
β and accessing α from a node Ci, is dSCi

= 2; while the cost for holding α and
accessing β from a node L is dSL = 2.1. Obviously, node S prefers to replicate β.

Theorem 6 There exists an equilibrium for the CSR instance I3 if and only if node
S holds object α.

Proof First, assume that S is holding α. By Lemma 10 nodes C1, . . . , Ck hold ob-
ject γ, and by Lemma 9 at least one of nodes Li,j , for j ∈ {1, 2, 3} for each node
Ci, i ∈ [1, k], holds object α, and the corresponding L̄i,j is holding object β. We
claim that the placement where A holds γ, B holds γ, and C holds α, is a pure Nash
equilibrium. We prove this by showing that none of these nodes wants to deviate from
their strategy.

Node A does not want to deviate since its cost for holding object γ and accessing
α from A’s nearest node S, is dAS = 1; while the cost for holding object α and
accessing γ from A’s nearest node B, is still dAB = 1. Node B does not want to de-
viate since its cost for holding object γ and accessing α from B’s nearest node C, is
dBC = 1; while the cost for holding object α and accessing γ from B’s nearest node
A, is still dBA = 1. Node C does not want to deviate since its cost for holding object
α and accessing γ from C’s nearest node A, is dCA = 1; while the cost for holding
object γ and accessing α from C’s nearest node S, is still dCS = 1. Also note that
none of S,C1, . . . , Ck, Lij , L̄ij for i ∈ [1, k], j ∈ {1, 2, 3} is getting affected of the
objects been holded by the gadget nodes.

Now assume that node S holds object β. We are going to prove that for every
possible placement over nodes A, B, and C, at least one node wants to deviate from
its strategy. Consider the following cases:

– Nodes A, B, and C hold object α: Node B (resp., C) wants to deviate, since the
cost for holding object α and accessing γ from B’s (resp., C’s) nearest node Ci,
for some i ∈ [1, k] or from node K, is dBCi

= 5 or dBK = 6.4 (resp., dCCi
= 4

or dCK = 5.4); while the cost for holding object γ and accessing α from B’s
nearest node A, is dBA = 2 (resp., dCA = 1).
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– Two nodes hold object α and the third holds γ: In the case where A and B hold
α, A wants to deviate since the cost while holding α and accessing γ from A’s
nearest node C is dAC = 2; while the cost for holding γ and accessing α from
A’s nearest node B is dAB = 1. The other cases are symmetric.

– One node holds α: IfA holds α,B wants to deviate since the cost while holding γ
and accessing α from B’s nearest node A is dBA = 2; while the cost for holding
α and accessing γ from B’s nearest node C, is dBC = 1. The other cases are
symmetric.

– Nodes A, B, and C hold γ: All of them want to deviate. Node A wants to deviate
since the cost while holding γ and accessing α from A’s nearest node Ci, for
some i ∈ [1, k], is dACi

= 3; while the cost for holding α and accessing γ from
A’s nearest node B is dAB = 1. The other cases are symmetric.

Obviously the system does not have a pure Nash equilibrium, which completes the
proof.

We now show that φ is satisfiable if and only if the above CSR games (both
undirected and directed cases) (resp., for the binary object preferences, directed case)
has a pure Nash equilibrium. Suppose that φ is satisfiable and consider a satisfying
assignment for φ. If the assignment of a variable xi is True, then we replicate object
α in cache of variable node Xi; otherwise, we replicate object β. By Lemma 6 we
know that a variable node Xi holds object α (resp., β) if and only if node X̄i holds
object β (resp., α). In this way we keep the consistency between truth assignment
of a variable and its negation. By Lemma 7 (resp., Lemma 9) we know that a clause
node Ci, will replicate object β (resp., γ) if and only if at least one of its variable
nodes, holds object α. From above, any clause node Ci will hold object β (resp., γ)
only if at least one of clause ci literals is True. By Lemma 8 (resp., Lemma 10), we
know that node S, will replicate object α if and only if all clause nodes C1, . . . , Ck
are holding object β (resp., γ). Thus, node S replicates object α only if all clauses
c1, . . . , ck are True. By Theorems 4 and 5 (resp., 6), we know that there exists a pure
Nash Equilibrium if and only if object β is stored to node S; thus, there exists a pure
Nash Equilibrium if and only if all clauses are True. This gives our proof.

6.2 Binary preferences over two objects

Consider the problem 2BIN: does a given CSR instance with two objects and binary
preferences possess an equilibrium? We prove that 2BIN is polynomial-time equiva-
lent to the notorious EVEN-CYCLE problem [72]: does a given digraph contain an
even cycle? Despite intensive efforts, the complexity of the problem EVEN-CYCLE
was open until [51, 61] provided a tour de force polynomial-time algorithm. Our re-
sult thus also places 2BIN in P.

Theorem 7 EVEN-CYCLE is polynomial-time equivalent to 2BIN.

We prove the polynomial-time equivalence of 2BIN and EVEN-CYCLE by a
series of reductions. We first show the equivalence between 2BIN and 2DIR-BIN,
which is the sub-class of 2BIN instances in which the node preferences are specified
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by an unweighted directed graph (henceforth digraph); in a 2DIR-BIN instance, we
are given a digraph, and the preference of a node for the other nodes increases with
decreasing distance in the graph.

Lemma 11 2BIN is polynomial-time equivalent to 2DIR-BIN.

Proof Given a 2BIN instance I with node set V , two objects, node preference re-
lations {≥i: i ∈ V }, and interest sets {Si : i ∈ V }, we construct a 2DIR-BIN
instance I ′ with the same node set, objects, and interest sets, but with the node pref-
erence relations specified by an unweighted digraph G. Our construction will ensure
that any equilibrium in I is an equilibrium in I ′ and vice-versa. For distinct nodes
i and j, we have an edge from i to j if and only if j is a most i-preferred node in
V \ {i}. We now argue that I has an equilibrium if and only if I ′ has an equilibrium.
A placement for I is an equilibrium if and only if the following holds for each node
i: (a) if |Si| = 1, then i holds the lone object in Si; (b) if |Si| = 2, then the object
not held by i is at an i-most preferred node. Similarly, any equilibrium placement for
I ′ satisfies the following condition for each i: (a) if |Si| = 1, then i holds the lone
object in Si; (b) if |Si| = 2, then the object not held by i is at a neighbor of i. By our
construction of the instances, equilibria of I are equilibria of I ′ and vice-versa.

We next define EXACT-2DIR-BIN, which is the subclass of 2DIR-BIN games
where each node is interested in both objects; thus, an EXACT-2DIR-BIN instance
is completely specified by a digraphG. We say that a node i is stable in a given place-
ment P if Pi is a best response to P−i. We say that an EXACT-2DIR-BIN instance
G is stable (resp., 1-critical) if there exists a placement in which all nodes (resp., all
nodes except at most one) are stable. Since each node has unit cache capacity, each
placement is a 2-coloring of the nodes: think of a node as colored by the object it
holds in its cache. Given a placement, an arc is said to be bichromatic if its head and
tail have different colors. Note that for any EXACT-2DIR-BIN instance, a node is
stable in a placement iff it has a bichromatic outgoing arc.

Lemma 12 2DIR-BIN and EXACT-2DIR-BIN are polynomial-time equivalent
on general digraphs.

Proof Since EXACT-2DIR-BIN games are a special subclass of 2DIR-BIN games,
we only need to show that 2DIR-BIN games reduce to EXACT-2DIR-BIN games.
Given an instance of a 2DIR-BIN game, we need to handle the nodes that are inter-
ested in at most one object. First, note that we can remove the outgoing arcs from all
such nodes. Let V0 consist of the nodes with no objects of interest. For each node u
in V0 we add a new node u0 to V0 along with arcs (u, u0) and (u0, u). Let red and
blue denote the two objects. Let Vr and Vb denote the set of nodes interested in red
and blue, respectively. Without loss of generality, let |Vr| ≥ |Vb|. Add |Vr| − |Vb| ad-
ditional nodes to the set Vb (so that |Vr| = |Vb|) and connect all the nodes in Vr

⋃
Vb

with a directed cycle that alternates strictly between Vr nodes and Vb nodes. The rest
of the network is kept the same and all the nodes are set to have interest in both ob-
jects. Now, if the original instance is stable then we can stabilize the new instance by
having each node in Vr (resp., Vb) cache the red (resp., blue) object, the nodes in V0
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cache any object (so long as an original node u and its associated node u0 store com-
plementary objects) and the other nodes cache the same object as in the placement
that made the original instance stable. And in the other direction, if the transformed
instance is stable then in an equilibrium placement, the nodes in Vr must each store
an object of one color while each node in Vb stores the object of the other color. By
renaming the colors, if necessary, we get a stable coloring (placement) for the original
instance.

For completeness, we next present some standard graph-theoretic terminology
that we will use in our proof. A digraph is said to be weakly connected if it is possible
to get from a node to any other by following arcs without paying heed to the direction
of the arcs. A digraph is said to be strongly connected if it is possible to get from a
node to any other by a directed path. We will use the following well-known structure
result about digraphs: a general digraph that is weakly connected is a directed acyclic
graph on the unique set of maximal strongly connected (node-disjoint) components.
We will also use the following strengthening of the folklore ear-decomposition of
strongly connected digraphs [65]:

Lemma 13 An ear-decomposition can be obtained starting with any cycle of a strongly
connected digraph.

Proof The proof is by contradiction. Suppose not, then consider a subgraph with
a maximal ear-decomposition obtainable from the cycle in question. If it is not the
entire digraph then consider any arc leaving the subgraph. Note that the digraph is
strongly connected and hence such an arc must exist. Further, note that every arc in
a digraph is contained in a cycle since there is a directed path from the head of the
arc to the tail. Starting from the arc follow this cycle until it intersects the subgraph
again, as it must because it ends at the tail which lies in the subgraph. This forms an
ear that contradicts the maximality of the decomposition.

Lemma 14 EVEN-CYCLE on strongly connected digraphs and EVEN-CYCLE
on general digraphs are polynomial-time equivalent.

Proof Since strongly connected digraphs are a special subclass of general digraphs it
suffices to show that EVEN-CYCLE on general digraphs can be reduced to EVEN-
CYCLE on strongly connected digraphs. Remember that a general digraph has a
unique set of maximal strongly connected components that are disjoint and com-
putable in polynomial-time. Further any cycle, including even cycles, must lie en-
tirely within a strongly connected component. Thus a digraph possesses an even cy-
cle iff one of its strongly connected components does. Hence it follows that EVEN-
CYCLE on general digraphs reduces to EVEN-CYCLE on strongly connected di-
graphs.

Lemma 15 EVEN-CYCLE and EXACT-2DIR-BIN games are polynomial-time
equivalent on strongly connected digraphs.

Proof To show the polynomial-time equivalence, we show that a strongly connected
digraph is stable iff it has an even cycle. One direction is easy. If the digraph is sta-
ble then consider the placement in which every node is stable. So every node has
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a bichromatic outgoing arc; by starting at any node and following outgoing bichro-
matic edges we will eventually loop back on ourselves. The loop so obtained is the
required even cycle; it is even because it is composed of bichromatic arcs. In the other
direction, if there is an even cycle then we take the ear-decomposition starting with
that cycle (Lemma 13), stabilize that cycle (by making each arc bichromatic since it
is of even cardinality) and then stabilize each node in each ear by working backwards
along the ear.

Lemma 16 Any EXACT-2DIR-BIN game on a strongly connected digraph is 1-
critical.

Proof Consider an ear-decomposition of the strongly connected digraph starting with
a cycle. Observe that all but at most one node of the cycle can be stabilized by arbi-
trarily assigning one color to a node, and then assigning alternate colors to the nodes
as we progress along the cycle. Every node in the cycle, other than possibly the initial
node, is stable. The rest of the digraph can be stabilized ear by ear, stabilizing each
ear by working backwards from the point of attachment. Hence, all but one node of
the digraph can be stabilized.

Lemma 17 EXACT-2DIR-BIN on general digraphs is polynomial-time equivalent
to EXACT-2DIR-BIN on strongly connected digraphs.

Proof Since strongly connected digraphs are a subclass of general digraphs we need
only show that the problem EXACT-2DIR-BIN on general digraphs reduces to
EXACT-2DIR-BIN on strongly connected digraphs. A general digraph is stable
iff all of its weakly connected components are. A weakly connected component is a
directed acyclic graph (dag) on the strongly connected components. It is clear that
a weakly connected component cannot be stabilized if any one of the strongly con-
nected components that is a minimal element of the directed acyclic graph cannot
be stabilized. Interestingly, the converse is also true. If all of the strongly connected
components that are minimal elements of the dag can be stabilized then the entire
weakly connected component can be stabilized because each of the other strongly
connected components has at least one outgoing arc which is used to stabilize its tail
while the rest of the strongly connected component can be stabilized because strongly
connected components are 1-critical by Lemma 16. We can determine such a stable
placement by processing the strongly connected components in topologically sorted
order (according to the dag) starting from the minimal elements. Thus a digraph is
stable iff every strongly connected component that is a minimal element is stable.
Hence, EXACT-2DIR-BIN on general digraphs is reducible in polynomial-time to
strongly connected digraphs.

7 Fractional replication games

We introduce a new class of capacitated replication games where nodes can store
fractions of objects, as opposed to whole objects, and satisfy an object access request
by retrieving enough fractions that make up the whole object. Rather than associate
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different identities with different fractions of a given object, we view each portion of
an object as being fungible, thus allowing any set of fractions of an object, adding up
to at least one, to constitute the whole object. Such fractional replication scenarios
naturally arise when objects are encoded and distributed within a network to permit
both efficient and reliable access.

Several implementations of fractional replication, in fact, already exist. For in-
stance, fountain codes [5, 66] and the information dispersal algorithm [59] present
two ways of encoding an object as a number of smaller pieces – of size, say 1/m
fraction of the full object size, where m is an integer – such that the full object may
be reconstructed from any m of the pieces. A natural formalization is to view each
object as a polynomial of high degree, and consider each piece of the object as the
evaluation of the polynomial on a random point in a suitable large field. Then, ac-
cessing an object is equivalent (with very high probability) to accessing a sufficient
number of pieces of the object.

We now present fractional capacitated selfish replication (F-CSR) games, which
are an adaptation of the game-theoretic framework developed in Section 4 to frac-
tional replication. We have a set V of nodes sharing a set O of objects. In an F-CSR
game, the strategies are fractional placements; a fractional placement P̃ is a |V |-tuple
{P̃i : i ∈ V } where P̃i : O→ < under the constraint that sum of P̃i(α), over all α in
O, is at most the cache size of i.

We begin by presenting F-CSR games in the special case of sum utilities, where
the generalization from the integral to the fractional setting is most natural. For sum
utilities, recall that we are given a cost function d and node-object weights ri(α),
i ∈ V , α ∈ O. Given a fractional global placement P̃ , we define the cost incurred
by i for accessing object α as the minimum value of xjdij under the constraints that∑
j xj = 1 and xj ≤ P̃j(α) for all j. Then, the total cost incurred by i is the sum,

over all objects α, of ri(α) times the cost incurred by i for accessing α. For a given
fractional global placement P̃ , the utility of i is the negative of the total cost incurred
by i under P̃ .

We now consider F-CSR games under the more general setting of utility pref-
erence relations. As before, each node i has a node preference relation ≥i and a
preference relation �i among global (integral) placements. Recall that the node and
placement preference relations of each node i induce a preorder wi among the ele-
ments of O× (V \ {i}) (see Section 4). For F-CSR games, we require the existence
of a total preorder wi, for all i. We now specify the best response function for each
player for a given fractional global placement P̃ . For each node i and object α, we
determine the assignment µi,P̃ ,α : V \ {i} → < that is lexicographically minimal

under the node preference relation ≥i subject to the condition that µi,P̃ ,α ≤ P̃k(α)

for each k and
∑
k µi,P̃ ,α(k) = 1. We next compute bi,P̃ : O × (V \ {i}) → < to

be the lexicographically maximal assignment under wi subject to the condition that
bi,P̃ (α, k) ≤ µi,P̃ ,α(k) for all k and

∑
α,k bi,P̃ (α, k) is at most the size of i’s cache.

The best response of a player i is then to store
∑
k bi,P̃ (α, k) of α in their cache. This

completes the definition of F-CSR games.
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Using standard fixed-point machinery, we show that every F-CSR game has
an equilibrium. We also show that finding equilibria in F-CSR games is PPAD-
complete.

Theorem 8 Every F-CSR instance has a pure Nash equilibrium. Finding an equi-
librium in an F-CSR game is PPAD-complete.

We prove Theorem 8 by establishing separately the existence of equilibria, mem-
bership in PPAD, and the PPAD-hardness of finding equilibria.

7.1 Existence of equilibria

Theorem 9 Every F-CSR instance has a pure Nash equilibrium.

Proof By [54] (Proposition 20.3, based on Kakutanis fixed-point theorem), a game
has a pure Nash equilibrium if the strategy space of each player is a compact, non-
empty, convex space, and the payoff function of each player is continuous on the
strategy space of all players and quasi-concave in the strategy space of the player.
In an F-CSR instance, the strategy space of each player i is simply the set of all its
fractional placements: that is, the set of functions f : O→ [0, 1] subject to condition
that

∑
α∈O f(α) ≤ ci, where ci is the cache size of the node (player). The strategy

set thus is clearly convex, non-empty, and compact. Furthermore, as defined above,
the payoff for any player i under fractional placement P̃ is simply the solution to the
following linear program:

max−
∑
α∈O

ri(α)(
∑
j∈V

xij(α)dij)

∑
j∈V

xij(α) = 1 for all i ∈ V, α ∈ O

xij(α) ≤ P̃j(α) for all i, j ∈ V, α ∈ O
xij(α) ≥ 0 for all i, j ∈ V, α ∈ O

It is easy to see that the payoff function is both continuous in the placements of all
players, and quasi-concave in the strategy space of player i, thus completing the proof
of the theorem.

7.2 Membership in PPAD

Theorem 10 Finding an equilibrium in an F-CSR game is in PPAD.

Proof Our proof is by a reduction from FSPP (Fractional Stable Paths Problem),
which is defined as follows [39]. Let G be a graph with a distinguished destination
node d. Each node v 6= d has a list π(v) of simple paths from v to d and a preference
relation ≥v among the paths in π(v). For a path S, we also define π(v, S) to be the
set of paths in π(v) that have S as a suffix. A proper suffix S of P is a suffix of P such
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that S 6= P and S 6= ∅. A feasible fractional paths solution is a setw = {wv : v 6= d}
of assignments wv : π(v) → [0, 1] satisfying: (1) Unity condition: for each node v,∑
P∈π(v) wv(P ) ≤ 1, and (2) Tree condition: for each node v, and each path S with

start node u,
∑
P∈π(v,S) wv(P ) ≤ wu(S).

In other words, a feasible solution is one in which each node chooses at most 1
unit of flow to d such that no suffix is filled by more than the amount of flow placed
on that suffix by its starting node. A feasible solution w is stable if for any node v
and path Q starting at v, one of the following holds: (S1)

∑
P∈π(v) wv(P ) = 1, and

for each P in π(v) with wv(P ) > 0, P ≥v Q; or (S2) There exists a proper suffix S
of Q such that

∑
P∈π(v,S) wv(P ) = wu(S), where u is the start node of S, and for

each P ∈ π(v, S) with wv(P ) > 0, P ≥v Q.
Given an F-CSR G with node set V , object set O, node preference relations ≥i

for i ∈ V , and utility preference relations�i for i ∈ V , we construct an instance I of
FSPP as follows. For nodes i, j ∈ V and object α ∈ O, we introduce the following
FSPP vertices.
– hold(i, α) representing the amount of α that node i will store in its cache.
– serve(i, j, α) representing the amount of α that node j will serve for i given a

placement for V \ {i}.
– serve’(i, j, α), an auxiliary vertex needed for serve(i, j, α).
– serve(i, α), representing the amount of α that other nodes will serve for i given a

placement for V \ {i}.
– hold(i), representing the best response of i give the placement of other nodes.
– hold’(i, α), an auxiliary vertex needed for hold(i, α).

We now present the path sets and preferences for each vertex of the FSPP in-
stance.

– serve(i, α): the path set includes all paths of the form 〈serve(i, α), hold(j, α), d〉,
and serve(i, α) prefers 〈serve(i, α),hold(j, α), d〉 over 〈serve(i, α), hold(k, α), d〉
if j ≥i k.

– serve’(i, j, α): the path set includes all paths of the form 〈 serve’(i, j, α), serve(
i, α), hold(j, α), d〉 and the direct path 〈serve’(i, j, α), d〉. For the preference
order, serve’(i, j, α) prefers all paths 〈serve’(i, j, α), serve(i, α), hold(j, α), d〉
equally, and all of them over the direct path.

– serve(i, j, α): the path set includes the path 〈serve’(i, j, α), d〉 and the direct path
〈serve(i, j, α), d〉 with a higher preference for the former path.

– hold(i): the path set includes paths of the form 〈hold(i), serve(i, j, α), d〉, and
hold(i) prefers the path 〈hold(i), serve(i, j, α), d〉 over 〈hold(i), serve(i, k, β), d〉
if (j, α) wi (k, β).

– hold’(i, α): the path set includes paths of the form 〈 hold’(i, α), hold(i), serve(
i, j, α), d〉 all of which are preferred equally, and the direct path 〈hold’(i, α), d〉
which is preferred the least.

– hold(i, α): the path set includes two paths 〈hold’(i, α), d〉 and the direct path with
a higher preference for the former path.

We now show that the F-CSR instance has an equilibrium if and only if the FSPP
instance has an equilibrium. Our proof is by giving a mapping f from global frac-
tional placements in the F-CSR instance to feasible solutions in the FSPP instance
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such that (a) if P̃ is an equilibrium for the F-CSR instance, then f(P̃ ) is an equi-
librium for the FSPP instance, and (b) if w is an equilibrium for the FSPP instance,
then f−1(w) is an equilibrium for the F-CSR instance.

Let P̃ denote any fractional placement of the F-CSR instance. We now define the
solution f(P̃ ) of the FSPP instance. In f(P̃ ) vertex hold(i, α) plays P̃i(α) on the
direct path and 1 − P̃i(α) on the other path in its path set, for every i in V and α in
O. The remaining vertices play their best responses, considered in the following or-
der. First, consider vertices of the form serve(i, α). In the best response, the amount
played by serve(i, α) on the path 〈serve(i, α), hold(j, α), d〉, equals µi,P̃ ,α(j); re-
call that µi,P̃ ,α(j) is the assignment that is lexicographically minimal under the

node preference relation ≥i subject to the condition that µi,P̃ ,α ≤ P̃k(α) for each
k and

∑
k µi,P̃ ,α(k) = 1. We next consider the vertices of the form serve’(i, j, α).

In its best response, vertex serve’(i, j, α) plays µi,P̃ ,α(j) on the path 〈serve’(i, j, α),
serve(i, α), hold(j, α), d〉. Next, in its best response, vertex serve(i, j, α) plays µi,P̃ ,α(j)

on its direct path and 1− µi,P̃ ,α(j) on its remaining path. We now consider the best
response of vertex hold(i); it distributes its unit among paths of the form 〈hold(i),
serve(i, j, α), d〉 (for all j in V \ {i} and α in O) lexicographically maximally un-
der the total preorder wi over node-object pairs. That is, hold(i) plays bi,P̃ (α, j) on
the path 〈hold(i), serve(i, j, α), d〉. We next consider the best response of the vertex
hold’(i, α); it plays 1 −

∑
j bi,P̃ (α, j) on its direct path and bi,P̃ (α, j) on the path

〈hold’(i, α), hold(i), serve(i, j, α), d〉. This completes the definition of the solution
f(P̃ ).

We now argue that if P̃ is an equilibrium so is f(P̃ ). By construction, every
vertex other than of the form hold(i, α) play their best responses in f(P̃ ). We next
show that i plays a best response in P̃ if and only if the vertices hold(i, α) play their
best response in f(P̃ ). The best response of hold(i, α) is to play 1−

∑
j bi,P̃ (α, j) on

the path 〈hold(i, α), hold’(i, α), d〉 and the
∑
j bi,P̃ (α, j) on its direct path. The best

response of i in P̃ is to set P̃i(α) to
∑
j bi,P̃ (α, j). Thus if P̃ is an equilibrium, then

so is f(P̃ ). Furthermore, if w is an equilibrium, by definition of f , P̃ = f−1(w) is
well-defined. Since the best responses of i and the vertices hold(i, α) are consistent,
P̃ is also an equilibrium. This completes the reduction from F-CSR to FSPP, placing
F-CSR in PPAD.

7.3 PPAD-Hardness

This section is devoted to the proof of the following theorem.

Theorem 11 The problem of finding an equilibrium in F-CSR games is PPAD-hard
even when the underlying cost function d is a metric.

Our reduction is from preference games [39]. Given a preference game G with n
players 1, 2, . . . , n and their preferences given by ≥i, we construct an F-CSR game
Ĝ as follows. The game Ĝ has a set V of n2+3n players numbered 1 through n2+3n,
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and a set O of 2n objects α1, . . . , α2n. We set the utility function for each node to be
the sum utility function, thus ensuring that the desired monotonicity and consistency
conditions are satisfied.

We next present the metric cost function d over the nodes. We group the players
into four sets V1 = {i : 1 ≤ i ≤ n}, V2 = {i · n + j : 1 ≤ i ≤ n, 1 ≤ j ≤ n},
V3 = {n2 +n+ i : 1 ≤ i ≤ n}, and V4 = {n2 + 2n+ i : 1 ≤ i ≤ n}. For each node
i in V1 and j in V3, we set dii = 2 and dij = 4. We set dn2+n+i,n2+2n+i = 3. For
each node i in V1 and k = i · n + j, we set dik as follows: if j >i i then dij equals
6− `/n when j is the `th most preferred player for i; if i ≥i j, then dij equals 1. All
the other distances are obtained by using metric properties.

We finally specify the object weights. For k ∈ V1, we set rk(αi) = 1 for all
i 6= k such that i ≥k k; we set rk(αk) = 2.5 such that 4 < 2rk(αk) ≤ 5. For
node k = i · n + j in V2, we set rk(αj) = 1. For node k = n2 + n + i in V3,
we set rk(αi) = rk(αi+n) = 1. Finally, for node k = n2 + 2n + i in V4, we set
rk(αi+n) = 1.

Given a placement P for Ĝ, we define a solution ω(P ) = {wij} for the prefer-
ence game G: wij = Pi(αj). The following lemma immediately follows from the
definition of Ĝ.

Lemma 18 The following statements hold for any placement P for Ĝ.

– For k = i · n + j, 1 ≤ j ≤ n, Pk is a best response to P−k if and only if
Pk(αj) = 1.

– For k = n2 + n + i, 1 ≤ i ≤ n, Pk is a best response to P−k if and only if
Pk(αn+i) = 1.

– For k = n2+n+i, Pk is a best response to P−k if and only if Pk(αi) = 1−Pi(αi)
and Pk(αn+i = Pi(αi).

Lemma 19 Let P be a placement for Ĝ in which every node not in V1 plays their
best response. Then, the best response of a node i in V1 is the lexicographically max-
imum (Pi(αj1), Pi(αj2), . . . , Pi(αjn)), where j1 ≥i j2 ≥i · · · ≥i jn, subject to the
constraint that Pi(αj) ≤ Pj(αj) for j 6= i. ut

Proof Fix a node i in V1. By Lemma 18, node i ·n+ j holds object j, for 1 ≤ j ≤ n;
each of these nodes is at distance at least 5 and at most 6 away from i. By Lemma 18,
for every node k = n2 + n+ j, 1 ≤ j ≤ n, Pk(αj) = 1− Pj(αj) and Pk(αn+j) =
Pj(αj).

We now consider the best response of node i. We first note that for any j ∈
{1, . . . , n} \ {i} such that i ≥i j, Pi(αj) = 0 since the nearest full copy of αj
is nearer than the nearest node holding any fraction of object αi. Let S denote the
set of j such that j ≥i i. For any j in S \ {i}, Pi(αj) ≤ Pj(αj) since node n2 +
n + j at distance 5 holds 1 − Pj(αj) fraction of αj , the nearest node holding any
fraction of αi is at distance 4, and 4ri(αi) > 5ri(αj). Furthermore, for any j, k
in S if j >i k, then the farthest Pj(αj) fraction of αj is farther than the farthest
Pk(αk) fraction of αk, implying that in the best response, if Pi(αj) < Pj(αj) then
Pi(αk) = 0. Thus, the best response of i is the unique lexicographically maximum
solution (Pi(αj1), Pi(αj2), . . . , Pi(αjn)), where j1 ≥i j2 ≥i · · · ≥i jn, subject to
the constraint that Pi(αj) ≤ Pj(αj) for j 6= i.
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Lemma 20 A placement P is an equilibrium for Ĝ if and only if ω(P ) is a equilib-
rium for G and every node not in V1 plays their best response in P .

Proof Consider an equilibrium placement P for Ĝ Clearly, every node plays their
best response. We now prove that ω(P ) is an equilibrium for G. Fix a node i in
V1. By Lemma 19, the best response of i is the unique lexicographically maximum
solution (Pi(αj1), Pi(αj2), . . . , Pi(αjn)), where j1 ≥i j2 ≥i · · · ≥i jn, subject to
the constraint that Pi(αj) ≤ Pj(αj) for j 6= i. Since this applies to every node i,
it is immediate from the definitions of ω(P ) and preference games that if P is an
equilibrium for Ĝ then ω(P ) is an equilibrium for G.

We now consider the reverse direction. Suppose we have a placement P in which
every player not in V1 plays their best response and ω(P ) is an equilibrium for the
preference game G. By Lemma 19 and the definition of ω(P ), the best response of i
in G matches that in the F-CSR game; hence every player in V1 also plays their best
response in P , implying that P is an equilibrium for Ĝ.

The construction of Ĝ fromG is clearly polynomial time. Furthermore, given any
equilibrium for Ĝ, an equilibrium for G can be constructed in linear time. We thus
have a reduction from a PPAD-complete problem to F-CSR implying that the latter
is PPAD-hard, thus completing the proof of Theorem 11.

8 Concluding remarks

In this paper, we first define the integral and fractional selfish replication games (CSR
and F-CSR) in networks. In our setup each node has a bounded cache capacity for
uniform size objects. We prove that every hierarchical network has a pure Nash equi-
librium, introducing the notion of fictional players. We almost completely character-
ize the complexity of CSR games, i.e. which classes have an equilibrium, the com-
plexity of determine whether it exists, and if so, how efficiently it can be found.
For the open complexity question about undirected networks with binary preferences
(proved to be potential games), we conjecture that finding equilibria is PLS-hard.
For the cases of games where equilibria exist, we study the convergence of the best
response process. The main focus of this work is in equilibria, leaving the problem
of estimating the price of anarchy for all the configurations as future work, extending
the work of [20].

We also show that F-CSR games always have equilibria, though they may be hard
to find. It is not hard to argue that an equilibrium in the corresponding integral variant
is an equilibrium in the fractional instance. So whenever an “integral” equilibrium can
be determined efficiently, so can a “fractional” equilibrium. An interesting direction
of research is to identify other special cases of fractional games where equilibria
may be efficiently determined. We also note that our proof of existence of equilibria
in F-CSR games, currently presented for the case of unit-size objects, extends to
arbitrary object sizes.

Finally, even though our proofs work for a model that the sets of nodes, objects,
and preference relations are all static, we believe that our results will be meaningful



Cache Me If You Can: Capacitated Selfish Replication Games in Networks 35

for dynamically changing environments. Developing better models for addressing
infrequently changes is a very important practical research direction.
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