
ar
X

iv
:1

80
6.

06
22

3v
2

 [
cs

.D
S]

 2
8

Ju
l 2

01
8

Advice Complexity of Priority Algorithms

Allan Borodin∗

University of Toronto

bor@cs.toronto.edu

Joan Boyar†

University of Southern Denmark

joan@imada.sdu.dk

Kim S. Larsen‡

University of Southern Denmark

kslarsen@imada.sdu.dk

Denis Pankratov†

Concordia University

denis.pankratov@concordia.ca

Abstract

The priority model of “greedy-like” algorithms was introduced by Borodin, Nielsen,
and Rackoff in 2002. We augment this model by allowing priority algorithms to have
access to advice, i.e., side information precomputed by an all-powerful oracle. Obtaining
lower bounds in the priority model without advice can be challenging and may involve
intricate adversary arguments. Since the priority model with advice is even more powerful,
obtaining lower bounds presents additional difficulties. We sidestep these difficulties by
developing a general framework of reductions which makes lower bound proofs relatively
straightforward and routine. We start by introducing the Pair Matching problem, for
which we are able to prove strong lower bounds in the priority model with advice. We
develop a template for constructing a reduction from Pair Matching to other problems in
the priority model with advice – this part is technically challenging since the reduction
needs to define a valid priority function for Pair Matching while respecting the priority
function for the other problem. Finally, we apply the template to obtain lower bounds
for a number of standard discrete optimization problems.

1 Introduction

Greedy algorithms are among the first class of algorithms studied in an undergraduate com-
puter science curriculum. They are among the simplest and fastest algorithms for a given
optimization problem, often achieving a reasonably good approximation ratio, even when the
problem is NP-hard. In spite of their importance, the notion of a greedy algorithm is not
well defined. This might be satisfactory for studying upper bounds; when an algorithm is
suggested, it does not matter much whether everyone agrees that it is greedy or not. However,
lower bounds (inapproximation results) require a precise definition. Perhaps giving a precise
definition for all greedy algorithms is not possible, since one can provide examples that seem
to be outside the scope of the given model.

Setting this philosophical question aside, we follow the model of greedy-like algorithms due to
Borodin, Nielsen, and Rackoff [8]. The fixed priority model captures the observation that many

∗Research is supported by NSERC.
†Supported in part by the Independent Research Fund Denmark, Natural Sciences, grant DFF-7014-00041.

1

http://arxiv.org/abs/1806.06223v2

greedy algorithms work by first sorting the input items according to some priority function,
and then, during a single pass over the sorted input, making online irrevocable decisions for
each input item. This model is similar to the online algorithm model with an additional
preprocessing step of sorting inputs. Of course, if any sorting function is allowed, this would
trivialize the model for most applications. Instead, a total ordering on the universe of all
possible input items is specified before any input is seen, and the sorting is done according
to this ordering, after which the algorithm proceeds as an online algorithm. This model has
been adopted with respect to a broad array of topics [20, 2, 16, 12, 19, 5, 7, 3]. In spite of
the appeal of the model, there are relatively few lower bounds in this model. There does
not seem to be a general method for proving lower bounds; that is, the adversary arguments
tend to be ad-hoc. In addition, the basic priority model does not capture the notion of side
information. The assumption that an algorithm does not know anything about the input is
quite pessimistic in practice. This issue has been addressed recently in the area of online
algorithms by considering models with advice (see [9] for an overview). In these models, side
information, such as the number of input items or a maximum weight of an item, is computed
by an all powerful oracle and is available to an algorithm before seeing any of the input.
This information is then used to make better online decisions. The goal is to study trade-offs
between advice length and the competitive ratio.

We introduce a general technique for establishing lower bounds on priority algorithms with
advice. These algorithms are a simultaneous generalization of priority algorithms and online
algorithms with advice. Our technique is inspired by the recent success of the binary string
guessing problem and reductions in the area of online algorithms with advice. We identify a
difficult problem (Pair Matching) that can be thought of as a sorting-resistant version of the
binary string guessing problem. Then, we describe the template of gadget reductions from
Pair Matching to other problems in the world of priority algorithms with advice. This part
turns out to be challenging, mostly because one has to ensure that priorities are respected by
the reduction. We then apply the template to a number of classic optimization problems. We
restrict our attention to the fixed priority model. We also note that we consider deterministic
algorithms unless otherwise specified.

Related model. Fixed priority algorithms with advice can be viewed in terms of the fixed
priority backtracking model of Alekhnovich et al [1]. That model starts by ordering the inputs
using a fixed priority function and then executes a computation tree where different decisions
can be tried for the same input item by branching in the tree, and then choosing the best
result. The lower bound results generally consider how much width (maximum number of
nodes for any fixed depth in the tree) is necessary to obtain optimality where the width proven
is often of the form 2Ω(n). In contrast, our results give a parameterized trade-off between the
number of advice bits and the competitive ratio. However, given an algorithm in the fixed
priority backtracking model, the logarithm of the width gives an upper bound on the number
of bits of advice needed for the same approximation ratio. Similarly, a lower bound on the
advice complexity gives a lower bound on width.

Organization. We give a formal description of the models in Section 2. We motivate the
study of the priority model with advice in Section 3. We introduce and analyze the Pair
Matching problem in Section 4. We describe the reduction framework for obtaining lower
bounds in Section 5 and apply it to classic problems in Section 6. We conclude in Section 7.

2

2 Preliminaries

We consider optimization problems for which we are given an objective function to minimize
or maximize, and measure our success relative to an optimal offline algorithm.

Online Algorithms with Advice. In an online setting, the input is revealed one item at
a time by an adversary. An algorithm makes an irrevocable decision about the current item
before the next item is revealed. For more background on online algorithms, we refer the
reader to the texts by Borodin and El-Yaniv [6] and Komm [15].

The assumption that an online algorithm does not know anything about the input is quite
often too pessimistic in practice. Depending on the application domain, the algorithm designer
may have access to knowledge about the number of input items, the largest weight of an input
item, some partial solution based on historical data, etc. The advice tape model for online
algorithms captures the notion of side information in a purely information-theoretic way as
follows. An all-powerful oracle that sees the entire input prepares the infinite advice tape
with bits, which are available to the algorithm during the entire process. The oracle and the
algorithm work in a cooperative mode – the oracle knows how the algorithm will use the bits
and is trying to maximize the usefulness of the advice with regards to optimizing the given
objective function. The advice complexity of an algorithm is a function of the input length
and is the number of bits read by the algorithm in the worst case for inputs of a given size.
For more background on online algorithms with advice, see the survey by Boyar et al. [9].

Fixed Priority Model with Advice. Fixed priority algorithms can be formulated as
follows. Let U be a universe of all possible input items. An input to the problem consists of
a finite set of items I ⊂ U satisfying some consistency conditions. The algorithm specifies
a total order on U before seeing the input. Then, the input items are revealed according
to the total order specified by the algorithm. The algorithm makes irrevocable decisions
about the items as they arrive.1 The overall set of decisions is then evaluated according to
some objective function. The performance of the algorithm is measured by the asymptotic
approximation ratio with respect to the value provided by an optimal offline algorithm. The
notion of advice is added to the model as follows. After the algorithm has chosen a total order
on U , an all-powerful oracle that has access to the entire input I creates a tape of infinitely
many bits. The algorithm knows how the advice bits are created and has access to them
during the online decision phase. Our interest is in how many bits of advice the algorithm
uses compared with the result it obtains.

We consider only countable universes U . In this case, having a total order on elements in
U is equivalent (via a simple inductive argument) to having a priority function P : U → R.
The assumption of the universe being countable is natural, but also necessary for the above
equivalence: there are uncountably many totally ordered sets that do not embed into the
reals with the standard order.

Definition 2.1 Let U be the universe of input items and let P : U → R be a priority function.
For u1, u2 ∈ U , we write u1 <P u2 to mean P (u1) < P (u2). We will say that larger priority
means that the item appears earlier in the input, i.e., u1 <P u2 means that u2 appears before

1In the adaptive priority model, the algorithm is allowed to specify a new ordering depending on previous
items and decisions before a new input item is presented.

3

u1 when the input is given according to P . �

Example. Kruskal’s optimal algorithm for the minimum spanning tree problem is a fixed
priority algorithm without advice. The universe of items is U = N × N × Q. An item
(i, j, w) ∈ U represents an edge between a vertex i and a vertex j of weight w. The consistency
condition on the input is that the edge {i, j} can be present at most once in the input. The
total order on the universe is specified by all items of smaller weight having higher priority
than all items of larger weight, breaking ties, say, by lexicographic order on the names of
vertices. Kruskal’s algorithm processes input items in the given order and greedily accepts
those items that do not result in cycles.

In this paper, we shall only consider the following input model for graph problems in the
priority setting:

Vertex arrival, vertex adjacency : an input item consists of a name of a vertex together with
a set of names of adjacent vertices. There is a consistency condition on the entire input: if u
appears as a neighbor of v, then v must appear as a neighbor of u.

Binary String Guessing Problem. Later we introduce the Pair Matching problem that
can be viewed as a priority model analogue of the following online binary string guessing
problem.

Definition 2.2 The Binary String Guessing Problem [4] with known history (2-SGKH) is
the following online problem. The input consists of (n, σ = (x1, . . . , xn)), where xi ∈ {0, 1}.
Upon seeing x1, . . . , xi−1 an algorithm guesses the value of xi. The actual value of xi is
revealed after the guess. The goal is to maximize the number of correct guesses. �

Böckenhauer et al. [4] provide a trade-off between the number of advice bits and the approx-
imation ratio for the binary string guessing problem.

Theorem 2.3 [Böckenhauer et al. [4]] For the 2-SGKH problem and any ε ∈ (0, 12], no online
algorithm reading fewer than (1 − H(ε))n advice bits can make fewer than εn mistakes for
large enough n, where H(p) = H(1− p) = −p log(p)− (1− p) log(1− p) is the binary entropy
function.

Competitive and Approximation Ratios. The performance of online algorithms is mea-
sured by their competitive ratios. For a minimization problem, an online algorithm ALG is
said to be c-competitive if there exists a constant α such that for all input sequences I we
have ALG(I) ≤ cOPT(I) + α, where ALG(I) denotes the cost of the algorithm on I and
OPT(I) is the value achieved by an offline optimal algorithm. The infimum of all c such that
ALG is c-competitive is ALG’s competitive ratio. For a maximization problem, ALG(I) is
referred to as profit, and we require that OPT(I) ≤ cALG(I)+α. In this way, we always have
c ≥ 1 and the closer c is to 1, the better. Priority algorithms are thought of as approximation
algorithms and the term (asymptotic) approximation ratio is used (but the definition is the
same).

4

3 Motivation

In this section we present a motivating example for studying the priority model with advice.
We present a problem that is difficult in the pure priority setting or in the online setting
with advice, but easy in the priority model with advice. Furthermore, the advice is easily
computed by an offline algorithm.

The problem of interest is called Greater Than Mean (GTM). In the GTM problem, the input
is a sequence x1, . . . , xn of rational numbers. Let m =

∑

i xi/n denote the sample mean of
the sequence. The goal of an algorithm is to decide for each xi whether xi is greater than
the mean or not, answering 1 or 0, respectively. We can also assume that the length of the
sequence n is known to the algorithm in advance. We start by noting that there is a trivial
optimal priority algorithm with little advice for this problem.

Theorem 3.1 For Greater Than Mean, there exists a fixed priority algorithm reading at
most ⌈log n⌉ advice bits, solving the problem optimally.

Proof The priority order is such that x1 ≥ x2 . . . ≥ xn. Thus, the integers arrive in the order
from largest to smallest. The advice specifies the earliest index i ∈ [n] such that xi ≤ m. �

Next, we show that a priority algorithm without advice has to make many errors2.

Theorem 3.2 For Greater Than Mean and any ε ∈ (0, 12], no fixed priority algorithm without
advice can make fewer than (1/2 − ε)n mistakes for large enough n.

Proof Let A be a fixed priority algorithm without advice for the GTM problem. Let P
be the corresponding priority function. For simplicity, we assume that repeated items must
occur consecutively when ordered according to P . We show how to get rid of the consecutive
repeated items assumption in the remark immediately following this proof. Consider integers
in the interval [0, 2]. One of the following two cases must occur:

Case 1: there exists i, j ∈ [0, 2] such that i < j and j >P i. Consider the behavior of the
algorithm on the input where j is presented n− 1 times first. If the algorithm answers 1 on
the majority of these n− 1 requests, then the last element is set to j, ensuring that all the 1
answers were incorrect. If the algorithm answers 0 on the majority, then the last element is
set to i, ensuring that all the 0 answers were incorrect. In either case, the algorithm makes
at least (n− 1)/2 mistakes.

Case 2: the priority function on the interval [0, 2] is 0 >P 1 >P 2. Consider the behavior
of the algorithm on the input where the first item is 0 and the following n − 2 items are set
to 1. If an algorithm answers 1 on the majority of the n − 2 items, then the last item is 2.
Thus, the mean is 1, ensuring that all the 1 answers on the items with value 1 are incorrect.
If an algorithm answers 0 on the majority of the n − 2 items, then the last item is 1. Thus,
the mean is strictly smaller than 1, ensuring that all the 0 answers of the algorithm on the 1
items are incorrect. In either case, the algorithm can be made to produce errors on (n− 2)/2
items, which is at least (1/2 − ε)n for n ≥ 1/ε. �

2In Theorem 3.2 and in all of our lower bound advice results, we state the result so as to include ε = 1

2
, in

which case the conditions “fewer than (1/2− ε)” and “fewer than (1−H(ε))” make the statements vacuously
true.

5

Remark 3.3 Suppose that we allow repeated input items to appear non-consecutively when
ordered according to P . Formally, this can be modeled by the universe Q × N. The input
item (x, id) consists of a rational number x, called the value of an item, and its identification
number id . Input to the GTM problem is a subset of Q × N. The GTM problem is defined
entirely in terms of values of input items, and repeated values are distinguished by their id .
Fix a priority function P and choose n different items of value 1, i.e., i1, . . . , in. Suppose that
we have an item of value 0 that is of higher priority than any of the ij and an item of value 2
that is of lower priority than any of the ij . Then we can repeat the argument of Case 2 from
the proof above.

Otherwise, pick 2n+ 1 distinct items of value 1. Call them i1, i2, . . . , i2n+1 in the decreasing
order of priorities. For items in+1, . . . , i2n either (a) there is no item of value 0 of higher
priority than all of them, or (b) there is no item of value 2 of lower priority than all of them
(otherwise, it is covered by the previous case). To handle (a), pick an arbitrary item of value 0.
This item has lower priority than in+1, and, in particular, lower priority than all of i1, . . . , in.
This can be handled similarly to Case 1 in the proof above. Thus, the only scenario left is (b)
when there is no item of value 2 of lower priority than all of in+1, . . . , i2n. Pick n arbitrary
items of value 2 – they all have priority higher than i2n+1. Thus, this can again be handled
similarly to Case 1 in the proof above. �

Finally, we show that an online algorithm requires a lot of advice to achieve good performance
for the GTM problem. The proof is a minor modification of a reduction from 2-SGKH to
the Binary Separation Problem (see [10] for details). We present the proof in its entirety for
completeness.

Theorem 3.4 For the Greater Than Mean problem and any ε ∈ (0, 12], no online algorithm
reading fewer than (1 −H(ε))(n − 1) advice bits can make fewer than εn mistakes for large
enough n.

Proof We present a reduction from the 2-SGKH problem to the GTM problem. Let A
be an online algorithm with advice for the GTM problem. Our reduction is presented in
Algorithm 1. In the course of the reduction, an online input x1, . . . , xn of length n for the
2-SGKH problem is converted into an online input y1, . . . , yn+1 of length n+ 1 for the GTM
problem with the following properties: The number of advice bits is preserved and for each
i ∈ [n], our algorithm A for 2-SGKH makes a mistake on xi if and only if A makes a mistake
on yi. This would finish the proof of the theorem.

Let S = {i ∈ [n] | xi = 1} and T = [n] \ S. The reduction uses a technique similar to binary
search to make sure that ∀i ∈ S and ∀j ∈ T we have yi > yj, i.e., all the yi corresponding to
xi = 1 are larger than all the yj corresponding to xj = 0. Then yn+1 is chosen to make sure
that the mean of the entire stream y1, . . . , yn+1 lies between the smallest yi with i ∈ S and
the largest yj with j ∈ T . This implies that yi is greater than the mean if and only if the
corresponding xi = 1.

6

Algorithm 1 Reduction from 2-SGKH to GTM

procedure Reduction-2-SGKH-to-GTM

ℓ1 ← 0, u1 ← 1
for i = 1 to n do

yi ← (ℓi + ui)/2
if A predicts yi is greater than mean then

predict xi = 1
else

predict xi = 0

receive actual xi
if actual xi = 1 then

ui+1 ← yi, ℓi+1 ← ℓi
else

ui+1 ← ui, ℓi+1 ← yi

yn+1 ←
n+1
2 (ℓn+1 + un+1)−

∑n
i=1 yi

The following invariants are easy to see and are left to the reader: (1) ui > ℓi; (2) if xi = 1,
then ui > yi ≥ ui+1; (3) if xi = 0, then ℓi < yi ≤ ℓi+1.

The required properties of the reduction follow immediately from the invariants. Let i ∈ S
and j ∈ T . Then, yi ≥ un+1 > ℓn+1 ≥ yj. Finally, observe that yn+1 is chosen so that the
mean is

∑n+1
i=1 yi/(n+1) =

∑n
i=1 yi/(n+ 1) + yn+1/(n+ 1) = (1/2)(ℓn+1 + un+1). This mean

correctly separates S from T . �

4 Pair Matching Problem

We introduce an online problem called Pair Matching. The input consists of a sequence of n
distinct rational numbers between 0 and 1, i.e., x1, . . . , xn ∈ Q ∩ [0, 1]. After the arrival of
xi, an algorithm has to answer if there is a j ∈ [n] \ {i} such that xi + xj = 1, in which case
we refer to xi and xj as forming a pair and say that xi has a matching value, xj . The answer
“accept” is correct if xj exists, and “reject” is correct if it does not. Note that since the xi are
all distinct, if xi =

1
2 , the correct answer is “reject”, since 1

2 cannot have a matching value.

We let pairs(x1, . . . , xn) denote the number of pairs in the input x1, . . . , xn.

4.1 Online Setting

Analyzing Pair Matching in the online setting is relatively straightforward for both determin-
istic and randomized algorithms.

We start with a simple upper bound achieved by a deterministic online algorithm.

Theorem 4.1 For Pair Matching, there exists a 2-competitive algorithm, answering correctly
on n− pairs(x1, . . . , xn) input items.

7

Proof The algorithm works as follows: suppose the algorithm has already given answers for
items x1, . . . , xi−1, and a new item xi arrives. If there is a j ∈ [i − 1] such that xi + xj = 1,
then the algorithm answers “accept”. Otherwise, the algorithm answers “reject”. Observe
that the algorithm always answers correctly on all items that do not come from pairs. There
are n − 2 · pairs(x1, . . . , xn) such items. Moreover, it always answers correctly on exactly a
half of all items that form pairs – namely, it answers incorrectly on the first item from a
given pair and answers correctly on the second item from the given pair. Thus, the algorithm
gives pairs(x1, . . . , xn) correct answers in addition to the n − 2 · pairs(x1, . . . , xn) answers
given correctly on items not forming pairs. The total number of correct answers is n −
pairs(x1, . . . , xn). Observe that pairs(x1, . . . , xn) ≤ n/2. Thus, this simple online algorithm
gives correct answers on ≥ n/2 items, achieving competitive ratio of at least 2. �

Next, we show that the above upper bound is actually tight.

Theorem 4.2 For Pair Matching, no deterministic online algorithm can achieve a competi-
tive ratio less than 2.

Proof Let A be a hypothetical deterministic algorithm for Pair Matching. An adversary
keeps track of the current pool of possible inputs X. Initially, X = Q ∩ [0, 1]. An adversary
picks an arbitrary number x ∈ X as the first input item. Depending on how A answers on x
there are two cases.

Case 1: If A answers “reject” on x, then the adversary picks 1 − x as the next input item.
One can assume that A answers correctly on 1−x. Then, the adversary removes x and 1−x
from X and proceeds.

Case 2: If A answers “accept” on x, then the adversary removes x and 1 − x from X (thus,
the matching value 1− x is never given) and proceeds.

Observe that in Case 1 the algorithm makes mistakes on 1/2 of the sub-input corresponding
to that case. In Case 2, removing x and 1 − x from X ensures that x is not part of a pair
in the input. Thus, the algorithm makes mistakes on the entire sub-input corresponding to
Case 2. �

Next, we analyze randomized online algorithms for Pair Matching. A modification of the
simple deterministic algorithm results in a better competitive ratio.

Theorem 4.3 For Pair Matching, there exists a randomized online algorithm that in expec-
tation answers correctly on 2n/3 input items.

Proof Let α ∈ [0, 1] be a parameter to be specified later. Intuitively, α denotes the probability
with which our algorithm is going to answer “reject” on input items which are not obviously
part of a pair. More specifically, suppose that the algorithm has already given answers for
items x1, . . . , xi−1, and a new item xi arrives. If there is a j ∈ [i−1] such that xi+xj = 1, then
the algorithm answers “accept”. Otherwise, the algorithm answers “reject” with probability
α. We can analyze the performance of the algorithm by analyzing the following three groups
of input items:

Input items that are not part of a pair : There are n − 2 · pairs(x1, . . . , xn) such input items
and the algorithm answers correctly on α(n − 2 · pairs(x1, . . . , xn)) in expectation.

8

Input items that are the first of a pair : There are pairs(x1, . . . , xn) such input items and the
algorithm answers correctly on (1− α) pairs(x1, . . . , xn) of them in expectation.

Input items that are the last of a pair : There are pairs(x1, . . . , xn) such input items and the
algorithm answers correctly on all of them.

Thus, in expectation the algorithm gives correct answers on

α(n− 2 · pairs(x1, . . . , xn)) + (1− α) pairs(x1, . . . , xn) + pairs(x1, . . . , xn)

= αn− (3α− 2) pairs(x1, . . . , xn)

items. Observe that as long as α ≥ 2/3, we can use the bound pairs(x1, . . . , xn) ≤ n/2 to
derive a lower bound of αn− (3α− 2)n/2 on the number of correct answers, and the largest
value, 2n/3, is attained for α = 2/3. Values of α less than 2/3 give poorer results for the case
when there are no pairs. �

Next, we show that the above algorithm is an optimal randomized algorithm for Pair Match-
ing.

Theorem 4.4 For Pair Matching, no randomized online algorithm can achieve a competitive
ratio less than 3/2.

Next, we show that the above algorithm is an optimal randomized algorithm for Pair Match-
ing.

Proof Let A be a hypothetical randomized algorithm for Pair Matching. An adversary keeps
track of the current pool of possible inputs X. Initially, X = Q ∩ [0, 1]. An adversary picks
an arbitrary number x ∈ X as the first input item. Let p be the probability that A answers
“reject” on x. Depending on the value of p, there are two cases.

Case 1: p > 2/3, then the adversary picks 1−x as the next input item. One can assume that
A answers correctly on 1−x. Then, the adversary removes x and 1−x from X and proceeds.

Case 2: p ≤ 2/3, then the adversary removes x and 1− x from X and proceeds.

Observe that in Case 1, the algorithm is given two input items and it answers correctly on
(1 − p) + 1 = 2 − p input items in expectation. Thus, the fraction of correct answers is
1− p/2 < 1− 1/3 = 2/3.

In Case 2, removing x and 1 − x from X ensures that x is not part of a pair in the input.
Thus, the algorithm answers correctly on p ≤ 2/3 of the input in this case in expectation. �

Lastly, we prove that online algorithms need a lot of advice in order to start approaching a
competitive ratio of 1 for Pair Matching.

Theorem 4.5 For Pair Matching and any ε ∈ (0, 12], no deterministic online algorithm read-
ing fewer than (1−H(ε))n/2 advice bits can make fewer than εn mistakes for large enough n.

Proof We prove the statement by a reduction from the 2-SGKH problem. Let A be an online
algorithm solving Pair Matching. Fix an arbitrary infinite sequence of distinct numbers (yi)

∞
i=1

from [0, 1].

Let x1, . . . , xn be the input to 2-SGKH. The online reduction works as follows. Suppose that
we have already processed x1, . . . , xi−1 and we have to guess the value of xi. We query A on

9

yi. If A answers that yi is a part of a pair, then the algorithm predicts xi = 1; otherwise,
the algorithm predicts xi = 0. Then the actual value of xi is revealed. If the actual value is
1, then the reduction algorithm feeds 1− yi as the next input item to A. We assume that A
answers correctly on 1− yi in this case. If the actual value of xi is 0, the algorithm proceeds
to the next step.

Note that the number of mistakes that the reduction algorithm makes is exactly equal to the
number of mistakes that A makes. The statement of the theorem follows by observing that
the input to A is of length at most 2n. �

4.2 Priority Setting

In this section, we show that Theorem 4.5 also holds in the priority setting. The proof becomes
a bit more subtle, so we give it in full detail.

Theorem 4.6 For Pair Matching and any ε ∈ (0, 12], no fixed priority algorithm reading
fewer than (1−H(ε))n/2 advice bits can make fewer than εn mistakes for large enough n.

Proof We prove the statement by a reduction from the online problem 2-SGKH. Let A be
a priority algorithm solving Pair Matching, and let P be the corresponding priority function.
(Note that we assume that the algorithm knows P ; this is the case in all of our priority
algorithm reductions.) The reduction follows the proof of Theorem 4.5 closely. The idea
is to transform the online input to 2-SGKH into an input to Pair Matching. The difficulty
arises from having to present the transformed input in the online fashion while respecting the
priority function P .

Let x1, . . . , xn be the input to 2-SGKH. The online reduction works as follows. The online
algorithm picks n distinct numbers y1, . . . , yn from [0, 1] and creates a list z1, . . . , z2n consisting
of yi and 1 − yi sorted according to P . The algorithm keeps a (max-heap ordered) priority
queue Q of elements from zi as well as a subsequence Z of z1, . . . , z2n. The reduction always
picks the first element z from Z. We maintain the invariant that 1 − z appears later in Z
according to P . If needed, the reduction algorithm will enter 1− z onto Q to be simulated as
an input to A at the right time later on.

Initialization. Initially, Q is empty and Z is the entire sequence z1, . . . , z2n. Before the
element x1 arrives, the algorithms feeds z1 to A. If A answers that z1 is a part of a pair,
then the online algorithm predicts x1 = 1; otherwise the algorithm predicts x1 = 0. Then the
online algorithm finds j such that zj = 1 − z1 and updates Z by deleting z1 and zj . Then
x1 is revealed. If the actual value of x1 is 1, the algorithm inserts zj into Q; otherwise the
algorithm does not modify Q.

Middle step. Suppose that the algorithm has processed x1, . . . , xi−1 and has to guess the
value of xi. The algorithm picks the first element z from the subsequence Z. While the top
element of Q has higher priority than z according to P , the algorithm deletes that element
from the priority queue and feeds it to A. Then, the algorithm feeds z to A. The next steps
are similar to the initialization case. If A answers that z is a part of a pair, then the online
algorithm predicts xi = 1; otherwise the algorithm predicts xi = 0. The online algorithm
finds z′ in Z such that z = 1− z′, and updates Z by deleting z and z′. Then xi is revealed. If

10

the actual value of xi is 1, the algorithm inserts z′ into Q; otherwise the algorithm does not
modify Q.

Post-processing. After the algorithm finishes processing xn, it feeds the remaining elements
(in priority order) from Q to A.

It is easy to see that the online algorithm feeds a subsequence of z1, . . . , z2n to A in the correct
order according to P . In addition, the online algorithm makes exactly the same number of
mistakes as A (assuming that A always answers correctly on the second element of a pair).
The statement of the theorem follows since the size of the input to A is at most 2n. �

5 Reduction Template

Our template is restricted to binary decision problems since the goal is to derive inapprox-
imations based on the Pair Matching problem. (See also the discussion in Section 6.2.) In
reducing from Pair Matching to a problem B, we assume that we have a priority algorithm
ALG with advice, for problem B, with priorities defined by P . Based on ALG and P , we de-
fine a priority algorithm ALG′ with advice and a priority function, P ′, for the Pair Matching
problem. Input items x1, x2, . . . , xn in Q∩ [0, 1] to Pair Matching arrive in an order specified
by the priority function we define, based on P . We assume that we are informed when the
input ends and can take steps at that point to complete our computation. Knowing the size n
of the input, which one naturally would in many situations after the initial sorting according
to P ′, would of course be sufficient.

Based on the input to the Pair Matching problem, we create input items to problem B, and
they have to be presented to ALG, respecting the priority function P . Responses from ALG
are then used by ALG′ to help it answer “accept” or “reject” for its current xi. Actually,
ALG will always answer correctly for a request xj = 1 − xi when i < j, so the responses
from ALG are only used when this is not the case. The main challenge is to ensure that the
input items to ALG are presented in the order determined by P , because the decision as to
whether or not they are presented needs to be made in time, without knowing whether or not
the matching value will arrive.

Here, we give a high level description of a specific kind of gadget reduction. A gadget G for
problem B is simply some constant-sized instance for B, i.e., a collection of input items that
satisfy the consistency condition for problem B. For example, if B is a graph problem in the
vertex arrival, vertex adjacency model, G could be a constant-sized graph, and the universe
then contains all possible pairs of the form: a vertex name coupled with a list of possible
neighboring vertex names. Note that each possible vertex name exists many times as a part
of an input, because it can be coupled with many different possible lists of vertex names. The
consistency condition must apply to the actual input chosen, so for each vertex name u which
is listed as a neighbor of v, it must be the case that v is listed as a neighbor of u.

The gadgets used in a reduction will be created in pairs (gadgets in a pair may be isomorphic
to each other, so that they are the same up to renaming), one pair for each input item less
than or equal to 1/2 (for x = 1/2, the gadget will only be used to assign a priority to x = 1/2).
One gadget from the pair is presented to ALG when 1 − x appears later in the input; and
the other gadget when it does not. Using fresh names in the input items for problem B, we

11

ensure that each input item less than 1
2 to the Pair Matching problem has its own collection

of input items for its gadgets for problem B. The pair of gadgets associated with an input
item x ≤ 1/2 can be written (G1

x, G
2
x). The same universe of input items is used for both of

these gadgets.

We write maxP G to denote the first item according to P from the universe of input items
for G, i.e., the highest priority item. For now, assume that ALG responds “accept” or “reject”
to any possible input item. This captures problems such as vertex cover, independent set,
clique, etc.

For each x ≤ 1/2, the gadget pair satisfies two conditions: the first item condition, and
the distinguishing decision condition. The first item condition says that the first input item
m1(x) according to P gives no information about which gadget it is in. To accomplish this,
we define the priority function for ALG′ as P ′(x) = P (maxP G1

x) for all x ≤ 1/2 and set
m1(x) = maxP G1

x = maxP G2
x (the second equality holds since we assume the two gadgets

have the same input universe). The distinguishing decision condition says that the decision
with regards to item m1(x) that results in the optimal value of the objective function in G1

x

is different from the decision that results in the optimal value of the objective function in G2
x.

This explains why the one gadget is presented to ALG when 1− x appears later in the input
sequence and the other when it does not.

Now that the first item of the gadget associated with x is defined, the remaining actual input
items in the gadget pair for x must be completely defined according to the distinguishing
decision condition. This gives two sets (overlapping, at least in m1(x)) of input items. The
item with highest priority among all of the items in the actual gadget pair, ignoring m1(x),
is called m2(x), and we define P ′(1 − x) = P (m2(x)) for x < 1/2. Thus, we guarantee the
following list of properties: x < 1/2 will arrive before 1 − x in the input sequence for Pair
Matching for ALG′, m1(x) will arrive for algorithm ALG at the same time, ALG’s response
for m1(x) can define the response of ALG′ to x, and the decision as to which gadget in the
pair is presented for x can be made at the time 1 − x arrives or ALG′ can determine that
it will not arrive (because either the input sequence ended or an x′ with lower priority than
1− x arrived).

To warm up, we start with an example reduction from Pair Matching to a somewhat artificial
problem. This reduction then serves as a model for the general reduction template.

5.1 Example: Triangle Finding

Consider the following priority problem in the vertex arrival, vertex adjacency model: for each
vertex v, decide whether or not v belongs to some triangle (a cycle of length 3) in the entire
input graph. The answer “accept” is correct if v belongs to some triangle, and otherwise
the answer should be “reject”. We refer to this problem as Triangle Finding. This problem
might look artificial and it is optimally solvable offline in time O(n2), but as mentioned
above, advice-preserving reductions between priority problems require subtle manipulations
of a priority function. The Triangle Finding problem allows us to highlight this issue in a
relatively simple setting.

Theorem 5.1 For Triangle Finding and any ε ∈ (0, 12], no fixed priority algorithm reading

12

at most (1−H(ε))n/8 advice bits can make fewer than εn/4 mistakes.

Proof We prove this theorem by a reduction from the Pair Matching problem. Let ALG
be an algorithm for the Triangle Finding problem, and let P be the corresponding priority
function. Let x1, . . . , xn be the input to Pair Matching. We define a priority function P ′ and
a valid input sequence v1, . . . , vm to Triangle Finding. When x1, . . . , xn is presented according
to P ′ to our priority algorithm for Pair Matching, it is able to construct v1, . . . , vm for ALG,
respecting the priority function P . Moreover, our algorithm for Pair Matching will be able
to use answers of ALG to answer the queries about x1, . . . , xn.

Now, we discuss how to define P ′. With each number x ∈ Q∩[0, 1/2], we associate four unique
vertices v1x, v

2
x, v

3
x, v

4
x. The universe consists of all input items of the form (vix, {v

j
x, vkx}) with

i, j, k ∈ [4], i 6∈ {j, k} and j < k; there are 12 input items for each x: 4 possibilities for the
vertex, and for each of the

(3
2

)

= 3 possibilities for the ordered pair of neighbors. Let m1(x)
be the first item according to P among the 12 items. Using only the input items from the
12 items we are currently considering, we extend this item in two ways, to a 3-cycle C3

x and
to a 4-cycle C4

x. When we write C3
x or C4

x, we mean the set of items forming the 3-cycle or
4-cycle, respectively. Now, P ′ is defined as follows:

P ′(x) =

{

P (m1(x)), if x ≤ 1/2
maxg∈(C3

1−x
∪C4

1−x
)\{m1(1−x)} P (g), otherwise

In other words, if x > 1/2, we set P ′(x) to be the first element other than m1(1 − x) in
C3
1−x ∪ C4

1−x. In terms of our high level description given at the beginning of this section,
(C3

x, C
4
x) form the pair of gadgets – a triangle and a square. By construction, this pair

of gadgets satisfies the first item condition. By the definition of the problem, the optimal
decision for all vertices in C3

x is “accept” (belongs to a triangle) and the optimal decision for
all vertices in C4

x is “reject” (does not belong to a triangle). Thus, these gadgets also satisfy
the distinguishing decision condition.

Let x1, . . . , xn denote the order input items are presented to our algorithm as specified by P ′.
Our algorithm constructs an input to ALG which is consistent with P along the following
lines: for each x ≤ 1/2 that appears in the input, the algorithm constructs either a three-cycle
or a four-cycle (disjoint from the rest of the graph). Thus, each x ≤ 1/2 is associated with one
connected component. During the course of the algorithm, each connected component will be
in one of the following three states: undecided, committed, or finished. When x ≤ 1/2 arrives,
the algorithm initializes the construction with the item m1(x) and sets the component status
to undecided. It answers “accept” (there will be a matching pair) for x if ALG responds
“accept” (triangle) for m1(x), and it answers “reject” if ALG responds “reject” (square).

Note that for any x ≤ 1/2, P ′(x) > P ′(1 − x), so if x′ > 1/2 arrives and 1 − x′ has not
appeared earlier, ALG′ can simply reject x′ and does not need to present anything to ALG.
If x has arrived and at some point, 1 − x arrives, the algorithm commits to constructing
the 3-cycle C3

x. If ALG′ had guessed correctly that 1 − x would arrive, it is because ALG
responded “accept” for m1(x)) and also guessed correctly. If ALG′ had guessed that 1 − x
would not arrive, it is because ALG guessed that a square would arrive, and both guessed
incorrectly. If some x′ arrives with P ′(x′) < P ′(1 − x) for some x 6= x′ and x has arrived
earlier, then ALG′ can be certain that 1 − x will not arrive. It commits to constructing the
4-cycle C4

x. Thus, if ALG
′ answered “reject” for x, it answered correctly, and a square makes

13

ALG’s decision for m1(x) correct. Similarly, if ALG′ answered “accept” for x, it answered
incorrectly, so a square makes ALG’s decision incorrect.

At the end of the input, ALG′ finishes off by checking which values of x have arrived without
1 − x arriving or some x′ with higher priority than 1 − x arriving, and ALG again commits
to the 4-cycle, as in the other case where 1− x does not arrive.

Throughout the algorithm, there are several connected components, each of which can be
undecided, committed, or finished. Note that an undecided component corresponding to in-
put x consists of a single item m1(x). Upon receiving an item y, the algorithm first checks
whether some undecided components have turned into committed ones: namely if an unde-
cided component consisting of m1(x) satisfies P ′(1 − x) > P ′(y), it switches the status to
a committed component according to the rules described above. Then, the algorithm feeds
input items corresponding to committed yet unfinished connected components to ALG and
does so in the order of P up until the priority of such items falls below P ′(y) (this can be
done by maintaining a priority queue). Finally, the algorithm processes the item y by either
creating a new component or by turning an undecided component into a decided one. Then,
the algorithm moves to the next item. Due to our definition of P ′ and this entire process,
the input constructed for ALG is valid and consistent with P . Observe that the input to
ALG′ is of size at most 4n, so the number of advice bits must be divided by four relative to
Theorem 4.6, and the theorem follows. �

5.2 General Template

In this subsection, we establish two theorems that give general templates for gadget reductions
from Pair Matching – one for maximization problems and one for minimization problems. The
high level overview has been given at the beginning of this section.

We let ALG(I) denote the objective function for ALG on input I. The size of a gadget G,
denoted by |G|, is the number of input items specifying the gadget. We write OPT(G) to
denote the best value of the objective function on G. Recall that we focus on problems where
a solution is specified by making an accept/reject decision for each input item. We write
BAD(G) to denote the best value of the objective function attainable on G after making the
wrong decision for the first item (the item with highest priority, max(G)), i.e., if there is an
optimal solution that accepts (rejects) the first item of G, then BAD(G) denotes the best
value of the objective function given that the first item was rejected (accepted). We say that
the objective function for a problem B is additive, if for any two instances I1 and I2 to B
such that I1 ∩ I2 = ∅, we have OPT(I1 ∪ I2) = OPT(I1) + OPT(I2).

Theorem 5.2 Let B be a minimization problem with an additive objective function. Let
ALG be a fixed priority algorithm with advice for B with a priority function P . Suppose that
for each x ∈ Q∩ [0, 1/2] one can construct a pair of gadgets (G1

x, G
2
x) satisfying the following

conditions:

The first item condition: m1(x) = maxP G1
x = maxP G2

x.

The distinguishing decision condition: the optimal decision for m1(x) in G1
x is different from

the optimal decision for m1(x) in G2
x (in particular, the optimal decision is unique for

14

each gadget). Without loss of generality, we assume m1(x) is accepted in an optimal
solution in G1

x.

The size condition: the gadgets have finite sizes, and we let s = maxx(|G
1
x|, |G

2
x|), where the

cardinality of a gadget is the number of input items it consists of.

The disjoint copies condition: for x 6= y and i, j ∈ {1, 2}, input items making up Gi
x and Gj

y

are disjoint.

The gadget OPT and BAD condition: the values OPT(G1
x), BAD(G1

x) as well as OPT(G2
x),

BAD(G2
x) are independent of x, and we denote them by OPT(G1), BAD(G1), OPT(G2),

and BAD(G2); we assume that OPT(G2) ≥ OPT(G1).

Define r = min
{

BAD(G1)
OPT(G1)

, BAD(G2)
OPT(G2)

}

. Then for any ε ∈ (0, 12), no fixed priority algorithm

reading fewer than (1 −H(ε))n/(2s) advice bits can achieve an approximation ratio smaller
than

1 +
ε(r − 1)OPT(G1)

εOPT(G1) + (1− ε)OPT(G2)
.

Proof The proof proceeds by constructing a reduction algorithm (fixed priority with advice)
for Pair Matching that uses ALG to make decisions about input items. We start by defining
a priority function for the reduction algorithm.

Define m2(x) to be the highest priority input item in G1
x or G2

x different from m1(x), i.e.,

m2(x) = max
((

G1
x ∪G2

x

)

\ {m1(x)}
)

.

We define a priority function P ′ as follows.

P ′(x) =

{

P (m1(x)), if x ≤ 1
2

P (m2(1− x)), if x > 1
2

For the Pair Matching problem, we denote the given input sequence ordered by P ′ as I =
〈x1, . . . , xn〉. We have to give an overall strategy for how the reduction algorithm for Pair
Matching handles an input item xi and which input items it presents to ALG. In order to
do this, we use a priority queue Q which is a max-heap ordered based on the priority of
input items to problem B, with the purpose of presenting these input items in the correct
order (respecting P , highest priority items appear first). When ALG′ commits to a particular
gadget in a pair, the remainder of that gadget (all inputs except m1(x) which has already
been presented) are inserted into Q.

By definition, P ′(xi) > P ′(1 − xi) for all xi < 1/2. Thus, m1(xi) is presented to ALG in
Line 14 before the remaining parts of the same gadget associated with xi are inserted into Q
in one of Lines 6, 10, or 17.

Since the priority of any xi < 1
2 is defined to be the priority of m1(xi), the m1(xi)s are

presented in the correct relative order.

Clearly, input items entered into the priority queue, Q, are extracted and presented to ALG
in the correct relative order, and before any m1(xi) is presented, higher priority items are

15

Algorithm 2 Reduction Algorithm, ALG′

Given: ALG with priority function P for problem B

1: Q. init() ⊲ Initialize Q to empty
2: for i = 1, . . . , n do

3: if xi ≥
1
2 then

4: if xi = 1− xj for some j < i then
5: accept xi
6: insert G1

xj
\ {m1(xj)} into Q

7: else

8: reject xi

9: for all 1 ≤ j < i s.t. P ′(xi−1) > P ′(1− xj) > P ′(xi) do ⊲ no 1− xj
10: insert G2

xj
\ {m1(xj)} into Q

11: while Q.findmax() > P ′(xi) do
12: present Q. deletemax() to ALG

13: if xi <
1
2 then

14: present m1(xi) to ALG
15: answer the same as ALG
16: for all 1 ≤ j ≤ n s.t. P ′(1− xj) ≤ P ′(xn) do ⊲ no 1− xj
17: insert G2

xj
\ {m1(xj)} into Q

18: while not Q. isempty() do
19: present Q. deletemax() to ALG

16

presented first in Line 12. The remaining issues are whether the remainder of the gadget
associated with some xj is entered into Q early enough relative to some m1(xi) from another
gadget and whether all gadgets are eventually completely presented to ALG.

By the definition of m2, the priority of m2(xj) is at least the priority of any remaining input
item in the gadget associated with xj.

Consider the point in time when xi arrives. If 1 − xj arrived earlier or P ′(1 − xj) is greater
than P ′(xi−1), the gadget associated with xj would have been processed correctly or have
been inserted into Q earlier. Before m1(xi) is presented to ALG, a check is made to see if
P (m2(xj)) = P ′(1 − xj) > P ′(xi) = P (m1(xi)). If the check in the if -statement is positive,
the entire remaining part of gadget for xj is inserted into Q at this point in Line 10.

If some xj <
1
2 arrives, but 1− xj never arrives, if P ′(1 − xj) ≤ P ′(xn), this is discovered in

Line 16 and the remainder of G2
xj

is presented to ALG in Line 17.

Thus, input items are presented to ALG in the order defined by its priority function P .

Now we turn to the approximation ratio obtained. We want to lower bound the number of
incorrect decisions by ALG. We focus on the input items which are m1(xi) for some input
xi < 1/2 to the Pair Matching Problem and assume that ALG answers correctly on anything
else.

When ALG′ receives an xi < 1/2, in Line 15 it answers the same for xi as ALG does for
m1(xi). By considering the four cases where the gadget associated with xi is later inserted
into Q, we can see that this answer for xi was correct for ALG

′ if and only if the answer ALG
gave for m1(xi) could lead to the optimal result for the gadget associated with xi.

• If xi = 1 − xj arrives, then G1
xj

is committed to and the remainder of G1
xj

is inserted

into Q in Line 6. If ALG′ answered “accept” to xj, then ALG has accepted m1(xj) and
ALG could obtain the optimal result on G1

xj
, by the definition of these gadget pairs. If

ALG′ answered “reject” to xj, then ALG has rejected m1(xj) and ALG cannot obtain
the optimal result on G1

xj
, again by the definition of these gadget pairs.

• If xi = 1 − xj does not arrive, then G2
xj

is committed to and the remainder of G2
xj

is inserted into Q in Lines 10 or 17. If ALG′ answered “reject” to xj , then ALG has
rejected m1(xj) and ALG could obtain the optimal result on G2

xj
, by the definition of

these gadget pairs. If ALG′ answered “accept” to xj , then ALG has accepted m1(xj)
and ALG cannot obtain the optimal result on G2

xj
, again by the definition of these

gadget pairs.

We know from Theorem 4.6 that for any ε ∈ (0, 1/2], any priority algorithm with advice
length less than (1 − H(ε))n/2 makes at least εn mistakes. Since we want to lower bound
the performance ratio of ALG, and since a ratio larger than one decreases when increasing
the numerator and denominator by equal quantities, we can assume that when ALG answers
correctly, it is on the gadget with the larger OPT -value, G2. For the same reason, we can
assume that the “at least εn” incorrect answers are in fact exactly εn, since classifying some
of the incorrect answers as correct just lowers the ratio. For the incorrect answers, assume
that the gadget G1 is presented w times, and, thus, the gadget, G2, εn− w times.

Denoting the input created by ALG′ for ALG by I, we obtain the following, where we use

17

that BAD(Gj) ≥ rOPT(Gj).

ALG(I)
OPT(I) ≥

(1−ε)nOPT(G2)+wBAD(G1)+(εn−w)BAD(G2)
(1−ε)nOPT(G2)+wOPT(G1)+(εn−w)OPT(G2)

≥ (1−ε)nOPT(G2)+wrOPT(G1)+(εn−w)rOPT(G2)
(1−ε)nOPT(G2)+wOPT(G1)+(εn−w)OPT(G2)

= 1 + w(r−1)OPT(G1)+(εn−w)(r−1)OPT(G2)
wOPT(G1)+(n−w)OPT(G2)

Taking the derivative with respect to w and setting equal to zero gives no solutions for w, so
the extreme values must be found at the endpoints of the range for w which is [0, εn].

Inserting w = 0, we get 1 + ε(r − 1), while w = εn gives

1 +
ε(r − 1)OPT(G1)

εOPT(G1) + (1− ε)OPT(G2)
.

The latter is the smaller ratio and thus the lower bound we can provide.

�

The following theorem for maximization problems is proved analogously.

Theorem 5.3 Let B be a maximization problem with an additive objective function. Let
ALG be a fixed priority algorithm with advice for B with a priority function P . Suppose that
for each x ∈ Q∩ [0, 1/2] one can construct a pair of gadgets (G1

x, G
2
x) satisfying the conditions

in Theorem 5.2. Set r = min
{

OPT(G1)
BAD(G1) ,

OPT(G2)
BAD(G2)

}

. Then for any ε ∈ (0, 12), no fixed priority

algorithm reading fewer than (1−H(ε))n/(2s) advice bits can achieve an approximation ratio
smaller than

1 +
ε(r − 1)OPT(G1)

εOPT(G1) + (1− ε)rOPT(G2)
.

Proof The proof proceeds as for the minimization case in Theorem 5.2 until the calculation
of the lower bound of ALG(I)

OPT(I) . We continue from that point, using the inverse ratio to get
values larger than one.

We use that BAD(Gj) ≤ OPT(Gj)/r.

OPT(I)
ALG(I) ≥

(1−ε)nOPT(G2)+wOPT(G1)+(εn−w)OPT(G2)
(1−ε)nOPT(G2)+wBAD(G1)+(εn−w)BAD(G2)

≥ (1−ε)nOPT(G2)+wOPT(G1)+(εn−w)OPT(G2)

(1−ε)nOPT(G2)+w
r
OPT(G1)+ εn−w

r
OPT(G2)

Again, taking the derivative with respect to w gives an always non-positive result. Thus, the
smallest value in the range [0, εn] for w is found at w = εn. Inserting this value, we continue
the calculations from above:

OPT(I)
ALG(I) ≥

(1−ε)nOPT(G2)+wOPT(G1)+(εn−w)OPT(G2)

(1−ε)nOPT(G2)+w
r
OPT(G1)+ εn−w

r
OPT(G2)

= (1−ε)nOPT(G2)+(εn)OPT(G1)
(1−ε)nOPT(G2)+ εn

r
OPT(G1)

= (1−ε)rOPT(G2)+εrOPT(G1)
(1−ε)rOPT(G2)+εOPT(G1)

= 1 + ε(r−1)OPT(G1)
(1−ε)rOPT(G2)+εOPT(G1)

18

The latter is the smaller ratio and thus the lower bound we can provide.

�

We mostly use Theorems 5.2 and 5.3 in the following specialized form.

Corollary 5.4 With the set-up from Theorems 5.2 and 5.3, we have the following:

For a minimization problem, if OPT(G1) = OPT(G2) = BAD(G1)− 1 = BAD(G2)− 1, then
no fixed priority algorithm reading fewer than (1 − H(ε))n/(2s) advice bits can achieve an
approximation ratio smaller than 1 + ε

OPT(G1)
.

For a maximization problem, if OPT(G1) = OPT(G2) = BAD(G1)+ 1 = BAD(G2)+ 1, then
no fixed priority algorithm reading fewer than (1 − H(ε))n/(2s) advice bits can achieve an
approximation ratio smaller than 1 + ε

OPT(G1)−ε
.

Next, we describe a general procedure for constructing gadgets with the above properties.
For simplicity, we do it for graph problems in the vertex arrival, vertex adjacency input
model. Later we discuss what is required to carry out such general constructions for other
combinatorial problems. In the case of graphs, an input item consists of a vertex name with
the names of neighbors of that vertex. First, consider defining a single gadget instead of a pair.

We define a gadget in several steps. As the first step, we define a graph G =
(

[n], E ⊂
(

[n]
2

)

)

over n vertices. Then, when defining a gadget based on input x to Pair Matching, we pick
n vertex names Vx and give a bijection f : Vx → [n]. Finally, we read off the resulting input
items in the order given by the priority function. Thus, we think of G as giving a topological
structure of the instance, and it is converted into an actual instance by assigning new names to
the vertices. The reason that the names from the topological structure are not used directly
is that we want to define a separate gadget instance for each x ∈ Q ∩ [0, 1/2]. Thus, all
gadgets instances are going to have the same topological structure3, but will differ in names
of vertices.

For graphs in the vertex arrival, vertex adjacency model, we say that two input items are
isomorphic if they have the same number of neighbors, i.e., they differ in just the names of
the vertices and the names of their neighbors. A topological structure G consisting only of
isomorphic items is a regular graph. For any priority function P and any vertex v ∈ [n], we can
force the corresponding item to appear first according to P by naming vertices appropriately.
Fix x and consider all possible input items that can be formed from Vx consistently with G.
One of those items appears first according to P . Define a bijection f by first mapping that
first item to u and its neighbours in G, and extending this one-to-one correspondence to other
vertices in G in an arbitrary, consistent manner. In this case, the input item corresponding
to u would appear first according to P in the input to the graph problem. Because all items
are isomorphic, it is always possible to extend the bijection to all of G.

Now, suppose that two topological structures G1 = ([n], E1) and G2 = ([m], E2) consist only
of isomorphic items. Using a similar idea, for each priority function P , each x ∈ Q ∩ [0, 1/2),
each u ∈ [n], and each v ∈ [m], one can assign names to vertices of G1 and G2 such that the
first input item according to P is associated with u in G1 and the same item is associated

3However, both gadgets within a pair do not necessarily have the same topological structure. In Triangle
Finding, they did not.

19

with v in G2. In particular, this means that as long as the two topological structures are
regular, we can always convert them into gadgets satisfying the first item condition.

Suppose that there is a vertex u in G1 that appears in every optimal solution in G1, i.e.,
a “reject” decision leads to non-optimality. Furthermore, suppose that there is a vertex v
in G2 that is excluded from every optimal solution in G2, i.e., an “accept” decision leads
to non-optimality. Then for each x, using the above construction, we can make the first
item according to P be associated with u in G1 and with v in G2. This means that we can
always convert the topological structures into gadgets satisfying the distinguishing decision
condition. Finally, observe that the size condition is satisfied with s = max(|G1|, |G2|).

We note a very important special case of the above construction. Suppose that a single topo-
logical structure G that consists solely of isomorphic input items is such that the optimal
solution is unique and non-trivial, i.e., both “accept” and “reject” decisions must be repre-
sented in the optimal solution. Then we can duplicate G and pick u to be a vertex which is
accepted in the unique solution and v to be a vertex which is rejected in the unique solution,
and apply the above construction. All in all, this reduces the problem of defining gadgets to
finding a small regular graph with a unique, non-trivial optimal solution. The size of such a
graph is then equal to the parameter s in Theorems 5.2 and 5.3 and Corollary 5.4. One can
relax the condition of a unique solution and require that the topological gadget has an input
item u with decision “accept” in every optimal solution, and an input item v with decision
“reject” in every optimal solution.

This gadget construction can clearly be carried out in other input models. There are very
few requirements: we need to have a notion of isomorphism between input items, and a
notion of the topological structure of a gadget. Once we have those two notions, if we find a
topological structure consisting only of isomorphic items with a unique, non-trivial optimal
solution, then we immediately conclude that the problem requires the tradeoff between advice
and approximation ratio as outlined in Theorems 5.2 and 5.3 and Corollary 5.4 with parameter
s equal to the size of the topological template.

We finish this section by remarking that one can perform similar reductions with gadgets
where not all input items are isomorphic. In our last example in Section 6.6, we present a
reduction for Vertex Cover using two gadget pairs with some vertices of degree 2 and others
of degree 3. One simply needs that there is one gadget pair for the case where a vertex
of degree 2 has the highest priority and another gadget pair for the case where a vertex of
degree 3 has highest priority. For both gadget pairs, s = 7, the optimal value is 3, and
the minimum possible objective value for the gadget in the pair is 4. Thus, the results of
Theorem 5.2 (or Theorem 5.3 if it was a mazimization problem) and Corollary 5.4 can be
applied. This idea can be extended to other input models where the gadgets have input items
which are not isomorphic. For simplicity, we do not restate the two theorems or the corollary
for the extension where there are t different classes of isomorphic input items and thus t pairs
of gadgets.

20

6 Reductions to Classic Optimization Problems

In this section, we provide examples of applications of the general reduction template. With
the exception of bipartite matching, all of these problems are NP-hard, as a consequence
of the NP-completenes of their underlying decision problems, as established in the seminal
papers by Cook [11] and Karp [14]. Furthermore, these problems are known to have various
hardness of approximation bounds.

6.1 Independent Set

First, we consider the maximum independent set problem in the vertex arrival, vertex adja-
cency input model. Consider the topological structure of a gadget in Figure 1. There are 5
vertices on the top and 3 vertices on the bottom. All top vertices are connected to all bottom
vertices. Additionally, the 5 vertices on the top form a cycle. In this way, each vertex has
degree 5 and hence all the input items are isomorphic. If we pick any vertex from the top
to be in the independent set, then we forgo all the bottom vertices, and we are essentially
restricted to picking an independent set from C5, which has size at most 2. On the other
hand, we could pick all 3 vertices from the bottom to form an independent set.

Suppose without loss of generality that the highest priority input item is (1, {4, 5, 6, 7, 8}).
The optimal decision for the first vertex is unique: For G1, one should accept, and for G2,
reject.

4 5 6 7 8

1 2 3

1 4 3 2 5

6 7 8

Figure 1: Topological structure of the gadgets (G1, G2) for independent set.

In this case, the maximum number s of input items for a gadget is 8, OPT(G1) = OPT(G2) =
3, and BAD(G1) = BAD(G2) = 2. By Corollary 5.4, we can conclude the following:

Theorem 6.1 For Maximum Independent Set and any ε ∈ (0, 12], no fixed priority algorithm
reading fewer than (1 − H(ε))n/16 advice bits can achieve an approximation ratio smaller
than 1 + ε

3−ε
.

Theorem 6.1 is related to but incomparable with the inapproximation bound results on priority
algorithms (without advice) of Borodin et al. [5] for weaker models.

6.2 Bipartite Matching

Given a bipartite graph G = (U, V,E) where E ⊆ U × V , a matching in G is a collection of
vertex disjoint edges. For maximum bipartite matching, we must find a matching of maximum

21

cardinality. In this section, we consider the maximum bipartite matching problem in vertex
arrival, vertex adjacency model. In this model, an input item consists of a vertex name
necessarily from U together with names of neighbors necessarily in V . Thus, the U -side can
be considered to be “online” and the whole graph G is revealed one vertex from U at a time.

Note that our framework was stated to work for decisions over a binary alphabet Σ =
{“accept”, “reject”}. Strictly speaking, in bipartite matching, decisions are stated most
naturally over a larger alphabet. For instance, consider an input item (u, {v1, . . . , vk}), then
the decision can be thought of as being made over an alphabet Γ = V ∪{⊥}. Here, a decision
v stands for matching u with v, and a decision ⊥ stands for not matching u at all. We can
still apply our framework to bipartite matching by surjectively mapping Γ onto Σ via f as
follows: f(v) = “accept”, f(⊥) = “reject”. In effect, we convert a priority algorithm with
decisions over Γ into a priority algorithm with decisions over Σ. Since we are interested in
lower bounds, the result for Σ carries over to Γ. Of course, this idea is not specific to bipartite
matching, and similar alphabet transformations can be done for all problems with decisions
over non-binary alphabets. It is reasonable to believe that a framework applicable directly to
non-binary alphabets could be used to derive stronger inapproximation results.

Following the reduction template, two input items are isomorphic if the corresponding ver-
tices have the same degree. Thus, a gadget consists of isomorphic items if it is a bi-
partite graph that is regular on the U -side, whereas there are no requirement for the V -
side. Consider the topological structure of the 3 by 3 gadgets in Figure 2, where G1 =
([3], [3], E1) with E1 = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 2), (3, 3)} and G2 = ([3], [3], E1) with
E2 = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 1), (3, 3)}. All input items are isomorphic – they are ver-
tices of degree 2. Suppose without loss of generality that the highest priority input item is
(1, {1, 2}). The optimal decision for the first vertex is unique: For G1 choose the edge (1, 1),
and for G2 choose (1, 2).

1

2

3

1

2

3

1

2

3

1

2

3

Figure 2: Topological structure of the gadgets (G1, G2) for bipartite matching.

In this case, the (maximum) number s of input items (the number of vertices given) for any
of the two gadgets is 3, OPT(G1) = OPT(G2) = 3, and BAD(G1) = BAD(G2) = 2. By
Corollary 5.4, we can conclude the following:

Theorem 6.2 For Maximum Bipartite Matching and any ε ∈ (0, 12], no fixed priority al-
gorithm reading fewer than (1 − H(ε))n/6 advice bits can achieve an approximation ratio
smaller than 1 + ε

3−ε
.

Theorem 6.2 is related to but also incomparable with the results by Pena and Borodin [18],
showing a 1

2 asymptotic inapproximation bound for priority algorithms without advice, and
to the results by Dürr et al. [13] on inapproximation bounds for online algorithms with advice.

22

6.3 Maximum Cut

Consider the unweighted maximum cut problem in the vertex arrival, vertex adjacency input
model. The goal is to partition vertices into two sets (blocks of the partition) such that the
number of edges crossing the two sets is maximized. The partition is specified by an algorithm
by assigning 0 or 1 to vertices. In addition, we require that 0 is assigned to vertices belonging
to the larger block of the partition. The gadget from Section 6.1 (see Figure 1) also works for
the maximum cut problem. There is a unique non-trivial maximum cut for that gadget: the
cut induced by partitioning vertices into {1, 2, 3} and {4, 5, 6, 7, 8} for G1 and into {6, 7, 8}
and {1, 2, 3, 4, 5} for G2.

Suppose without loss of generality that the highest priority input item is (1, {4, 5, 6, 7, 8}).
The optimal decision for the first vertex is unique: For G1, respond 1, and for G2, respond 0.

In this case, the maximum number s of input items for a gadget is 8, OPT(G1) = OPT(G2) =
15, and BAD(G1) = BAD(G2) = 14. By Corollary 5.4, we can conclude the following:

Theorem 6.3 For Maximum Cut and any ε ∈ (0, 12], no fixed priority algorithm reading fewer
than (1−H(ε))n/16 advice bits can achieve an approximation ratio smaller than 1 + ε

15−ε
.

6.4 Maximum Satisfiability

We consider the MAX-SAT problem (and, in fact, MAX-3-SAT) in the following input model.
An input item (x, S+, S−) consists of a variable name x, a set S+ of clause information tuples
for those clauses in which x appears positively, and a set S− of clause information tuples for
those clauses where the variable x appears negatively. The clause information tuples for a
particular clause contain the name of the clause, the total number of literals in that clause,
and the names of the other variables in the clause, but no information regarding whether those
other variables are negated or not. This corresponds to Model 2 in [18]. A gadget is then a
set of input items defining a consistent CNF-SAT formula. Thus, for every clause information
tuple (C, ℓ, V) for a variable x with V = {xi1 , xx2

, . . . , xir}, we have that ℓ = r + 1 (since
the variable itself is in the clause along with r other literals), and for each xij , the variable x
occurs in an information tuple associated with xij , along with the same clause name C and
the same length ℓ. Two input items are isomorphic if the are the same up to renaming of the
variables. The goal is to satisfy the maximum number of clauses. Consider the following pair
of instances (gadgets):

G1 = C1 ∧ C2 ∧ C3 ∧ C4 ∧C5 ∧ C6 ∧ C7 ∧ C8,

where
C1 = (x1 ∨ x2 ∨ x3) C2 = (x1 ∨ ¬x2 ∨ ¬x3)

C3 = (x1 ∨ ¬x2 ∨ x3) C4 = (x1 ∨ x2 ∨ ¬x3)

C5 = (¬x1 ∨ x2 ∨ x3) C6 = (¬x1 ∨ x2 ∨ x3)

C7 = (¬x1 ∨ ¬x2 ∨ ¬x3) C8 = (¬x1 ∨ ¬x2 ∨ ¬x3)

There are only 3 variables, each appearing in every clause. In addition, each variable occurs
positively in four clauses and negatively in four others.

23

When restricting the clauses C1 through C4 to just the variables x2 and x3, the result is all
possible clauses over x2 and x3. Therefore, no truth assignment for x2 and x3 can satisfy all
four clauses, unless x1 is set to True. To satisfy C5 through C8, we can set x2 to True and x3
to False. Thus, every maximum assignment has x1 set to True.

Consider
G2 = C1 ∧ C2 ∧ C3 ∧ C4 ∧C5 ∧ C6 ∧ C7 ∧ C8,

where
C1 = (¬x1 ∨ x2 ∨ x3) C2 = (¬x1 ∨ ¬x2 ∨ ¬x3)

C3 = (¬x1 ∨ ¬x2 ∨ x3) C4 = (¬x1 ∨ x2 ∨ ¬x3)

C5 = (x1 ∨ x2 ∨ x3) C6 = (x1 ∨ x2 ∨ x3)

C7 = (x1 ∨ ¬x2 ∨ ¬x3) C8 = (x1 ∨ ¬x2 ∨ ¬x3)

The universe of inputs for these gadgets consists of all input items (x, S+, S−), where x ∈
{x1, x2, x3}, and each of S+ and S− contain four distinct clause information tuples with
clause names in the set {C1, C2, C3, C4, C5, C6, C7, C8}, lengths equal to 3, and variable sets
containing the other two variables not equal to x. All eight clause names will appear in every
input item.

Suppose without loss of generality that the highest priority input among all of these possibil-
ities is

(x1, {(C1, 3, {x2, x3}), (C2, 3, {x2, x3}), (C3, 3, {x2, x3}), (C4, 3, {x2, x3})},

{(C5, 3, {x2, x3}), (C6, 3, {x2, x3}), (C7, 3, {x2, x3}), (C8, 3, {x2, x3})}).

Note that the optimal decision for x1 is unique for each of these gadgets and is “True” for G1

and “False” for G2.

In this case, the maximum number s of input items for a gadget is 3, OPT(G1) = OPT(G2) =
8, and BAD(G1) = BAD(G2) = 7. By Corollary 5.4, we can conclude the following:

Theorem 6.4 For Maximum 3-Satisfiability and any ε ∈ (0, 12], no fixed priority algorithm
reading fewer than (1−H(ε))n/6 advice bits can achieve an approximation ratio smaller than
1 + ε

8−ε
.

Note that the gadget pair used in the proof above has repeated clauses. We believe it is pos-
sible to prove a similar result without repeated clauses at the expense of a more complicated
gadget.

Theorem 6.4 is related to but incomparable with the Poloczek [19] Maximum Satisfiabil-
ity inapproximation result for adaptive priority algorithms (without advice) that, as in our
theorem, uses their input Model 2.

6.5 A Job Scheduling Problem

In this section, we consider job scheduling on a single machine of unit time jobs with prece-
dence constraints. In this problem, we are given a set of jobs with precedence constraints
specifying, for example, that if job J1 and job J2 are scheduled, then J1 has to precede job J2.

24

The precedence constraints are not necessarily compatible, i.e., there could be a cyclic set of
constraints. We are interested in scheduling a maximum number of jobs that are compatible.
We can think of the precedence constraints as specifying a directed graph, in which case it is
called the maximum induced directed acyclic subgraph problem. This problem is the com-
plement of the minimum feedback vertex set problem – one of Karp’s original NP-complete
problems [14]. Inapproximation bounds were proven by Lund and Yannakakis in [17]. The
schedule can be obtained from such a subgraph by ordering the jobs topologically and schedul-
ing them one after another in that order. Thus, the input items are of the form (J, S+, S−),
where J is the name of a job, S+ is the set of jobs such that if they were scheduled together
with J they would have to be scheduled before J , and S− is the set of jobs such that if they
were scheduled together with J they would have to be scheduled after J . Using graph termi-
nology, S+ consists of all incoming neighbors of J and S− consists of all outgoing neighbors of
J . An input item describes a subgraph consisting of a distinguished vertex together with all
of its predecessors and successors and all edges connecting to or from the distinguished vertex.
Two input items are considered isomorphic if they are isomorphic as graphs. This implies in
particular that they have the same in- and out-degrees. Figure 3 shows a topological gadget
such that every optimal solution contains Job 0 and excludes Job 8, and it consists only of
isomorphic items (each vertex has in-degree 2, out-degree 2, and 4 different neighbors in all).

0 1 2 3

4 5 6 7

8

Figure 3: Topological structure of a gadget for job scheduling of unit time jobs with precedence
constraints.

In this case, the maximum number s of input items for a gadget is 9, OPT(G1) = OPT(G2) =
6 (for instance, schedule Jobs 1, 0, 2, 5, 4, 6), and BAD(G1) = BAD(G2) = 5. By Corollary 5.4,
we can conclude the following:

Theorem 6.5 For Job Scheduling of Unit Time Jobs with Precedence Constraints and any
ε ∈ (0, 12], no fixed priority algorithm reading fewer than (1 − H(ε))n/18 advice bits can
achieve an approximation ratio smaller than 1 + ε

6−ε
.

6.6 Vertex Cover

Consider the minimum vertex cover problem in the vertex arrival, vertex adjacency input
model.

We use the construction from [5] to obtain two pairs of gadgets, one if the highest priority
input item has degree 2 and the other if it has degree 3. For each input x to Pair Matching,

25

the universe of input items contains names of seven vertices, and for each of the vertices all
possibilities for both degrees two and three.

First note that both graphs in Fig. 4 have vertex covers of size 3.

4

3 7 5

2 6

1 4

3

7

52

61

Figure 4: Graph 1 to the left and Graph 2 to the right.

However, in order to obtain a vertex cover of size 3, it is necessary to accept vertex 1 in
Graph 1 and reject vertex 2 in Graph 1. Thus, the gadget pair for vertices of degree 2
consists of two copies of Graph 1, where the highest priority vertex is vertex 1 in the first
gadget and vertex 2 in the second.

Similarly, in order to obtain a vertex cover of size 3, it is necessary to accept vertex 3 in
Graph 1 and reject vertex 1 in Graph 2. Thus, the gadget pair for vertices of degree 3
consists of Graph 1, where the highest priority vertex is vertex 3, and Graph 2, where the
highest priority vertex is vertex 1.

The highest priority vertex must have one of these two degrees, so the reduction can continue
with the correct gadget pair for that degree.

For either gadget pair, the maximum number s of input items for a gadget is 7, OPT(G1) =
OPT(G2) = 3, and BAD(G1) = BAD(G2) = 4. By Corollary 5.4, we can conclude the
following:

Theorem 6.6 For Minimum Vertex Cover and any ε ∈ (0, 12], no fixed priority algorithm
reading fewer than (1 − H(ε))n/14 advice bits can achieve an approximation ratio smaller
than 1 + ε

3 .

Below we show a weaker result using a regular graph, so all input items are isomorphic.

Consider the topological structure of a gadget in Figure 5. It is a 4-regular graph on 8
vertices. This graph has a unique, non-trivial minimum vertex cover {2, 3, 4, 6, 8} (we have
verified by enumeration). Note that this is very similar to the case for Independent Set, in
that an isomorphic copy of the same graph can be used for the other gadget in the pair.
Then, assuming that (2, {1, 3, 4, 7}) is the first input item, accepting the vertex can lead to
the unique optimum vertex cover in the gadget depicted, and renaming the vertex to one
different from {2, 3, 4, 6, 8} and rejecting the vertex can lead to the unique optimum vertex
cover in a second gadget.

26

1

2

3

4

5

6

7

8

Figure 5: Topological structure of a gadget for vertex cover.

In this case, the maximum number s of input items for a gadget is 8, OPT(G1) = OPT(G2) =
5, and BAD(G1) = BAD(G2) = 6. By Corollary 5.4, we can conclude the following:

Theorem 6.7 For Minimum Vertex Cover and any ε ∈ (0, 12], no fixed priority algorithm
reading fewer than (1 − H(ε))n/16 advice bits can achieve an approximation ratio smaller
than 1 + ε

5 .

7 Concluding Remarks

We have developed a general framework for showing linear lower bounds on the number of
advice bits required to get a constant approximation ratio for fixed priority algorithms with
advice. The framework relies on reductions from the Pair Matching problem — an analogue
of the Binary String Guessing problem from the online world, resistant to universe orderings.
Many problems remain open:

• Can our framework (or a modification of it) show non-constant inapproximation results
with large advice, for example, for independent set?

• In vertex coloring, any decision for the first item can be completed to an optimal solu-
tion. Can our framework be modified to handle such problems? For example, see an
argument for the makespan problem in [20].

• An interesting goal is to study the “structural complexity” of online and priority al-
gorithms. Can one define analogues of classes such as NP, NP-Complete, ♯P, etc. for
online/priority problems? If so, are complete problems for these classes natural?

Acknowledgements. Part of the work was done when the second and third authors were
visiting the University of Toronto, the first author was visiting Toyota Technological Institute
at Chicago, and the fourth author was a postdoc at the University of Toronto.

27

References

[1] Michael Alekhnovich, Allan Borodin, Joshua Buresh-Oppenheim, Russell Impagliazzo,
Avner Magen, and Toniann Pitassi. Toward a model for backtracking and dynamic
programming. Computational Complexity, 20(4):679–740, 2011.

[2] Spyros Angelopoulos and Allan Borodin. On the power of priority algorithms for facility
location and set cover. Algorithmica, 40(4):271–291, 2004.

[3] Bert Besser and Matthias Poloczek. Greedy matching: Guarantees and limitations.
Algorithmica, 77(1):201–234, 2017.

[4] Hans-Joachim Böckenhauer, Juraj Hromkovič, Dennis Komm, Sacha Krug, Jasmin
Smula, and Andreas Sprock. The string guessing problem as a method to prove lower
bounds on the advice complexity. Theor. Comput. Sci., 554:95–108, 2014.

[5] Allan Borodin, Joan Boyar, Kim S. Larsen, and Nazanin Mirmohammadi. Priority
algorithms for graph optimization problems. Theor. Comput. Sci., 411(1):239–258, 2010.

[6] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

[7] Allan Borodin and Brendan Lucier. On the limitations of greedy mechanism design for
truthful combinatorial auctions. ACM Trans. Economics and Comput., 5(1):2:1–2:23,
2016.

[8] Allan Borodin, Morten N. Nielsen, and Charles Rackoff. (Incremental) priority algo-
rithms. Algorithmica, 37(4):295–326, 2003.

[9] Joan Boyar, Lene M. Favrholdt, Christian Kudahl, Kim S. Larsen, and Jesper W.
Mikkelsen. Online algorithms with advice: A survey. ACM Comput. Surv., 50(2):19:1–
19:34, 2017.

[10] Joan Boyar, Shahin Kamali, Kim S. Larsen, and Alejandro López-Ortiz. Online bin
packing with advice. Algorithmica, 74(1):507–527, 2016.

[11] Stephen A. Cook. The complexity of theorem-proving procedures. In 3rd Annual ACM
Symposium on Theory of Computing (STOC), pages 151–158. ACM, 1971.

[12] Sashka Davis and Russell Impagliazzo. Models of greedy algorithms for graph problems.
Algorithmica, 54(3):269–317, May 2009.

[13] Christoph Dürr, Christian Konrad, and Marc P. Renault. On the power of advice and
randomization for online bipartite matching. In 24th Annual European Symposium on
Algorithms (ESA), volume 57 of LIPIcs, pages 37:1–37:16. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2016.

[14] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations, The IBM Research Symposia Series, pages 85–103, 1972.

[15] Dennis Komm. An Introduction to Online Computation – Determinism, Randomization,
Advice. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2016.

28

[16] Neal Lesh and Michael Mitzenmacher. Bubblesearch: A simple heuristic for improving
priority-based greedy algorithms. Inf. Process. Lett., 97(4):161–169, 2006.

[17] Carsten Lund and Mihalis Yannakakis. The approximation of maximum subgraph prob-
lems. In 20th International Colloquium on Automata, Languages and Programming
(ICALP), volume 700 of LNCS, pages 40–51. Springer, 1993.

[18] Nicolas Pena and Allan Borodin. On the limitations of deterministic de-randomizations
for online bipartite matching and max-sat. ArXiv, 2016. arXiv:1608.03182 [cs.DS].

[19] Matthias Poloczek. Bounds on greedy algorithms for MAX SAT. In 19th Annual Eu-
ropean Symposium on Algorithms (ESA), volume 6942 of LNCS, pages 37–48. Springer,
2011.

[20] Oded Regev. Priority algorithms for makespan minimization in the subset model. Inf.
Process. Lett., 84(3):153–157, 2002.

29

	1 Introduction
	2 Preliminaries
	3 Motivation
	4 Pair Matching Problem
	4.1 Online Setting
	4.2 Priority Setting

	5 Reduction Template
	5.1 Example: Triangle Finding
	5.2 General Template

	6 Reductions to Classic Optimization Problems
	6.1 Independent Set
	6.2 Bipartite Matching
	6.3 Maximum Cut
	6.4 Maximum Satisfiability
	6.5 A Job Scheduling Problem
	6.6 Vertex Cover

	7 Concluding Remarks

