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Abstract
We study the problem of finding a minimum weight connected subgraph spanning at
least k vertices on planar, node-weighted graphs. We give a (4 + ε)-approximation
algorithm for this problem. We achieve this by utilizing the recent Lagrangian-
multiplier preserving (LMP) primal-dual 3-approximation for the node-weighted
prize-collecting Steiner tree problem by Byrka et al. (SWAT’16) and adopting an
approach by Chudak et al. (Math. Prog. ’04) regarding Lagrangian relaxation for
the edge-weighted variant. In particular, we improve the procedure of picking addi-
tional vertices (tree merging procedure) given by Sadeghian (2013) by taking a
constant number of recursive steps and utilizing the limited guessing procedure of
Arora and Karakostas (Math. Prog. ’06). More generally, our approach readily gives
a (4/3 · r + ε)-approximation on any graph class where the algorithm of Byrka et al.
for the prize-collecting version gives an r-approximation. We argue that this can be
interpreted as a generalization of an analogous result by Könemann et al. (Algorith-
mica ’11) for partial cover problems. Together with a lower bound construction by
Mestre (STACS’08) for partial cover this implies that our bound is essentially best
possible among algorithms that utilize an LMP algorithm for the Lagrangian relax-
ation as a black box. In addition to that, we argue by a more involved lower bound
construction that even using the LMP algorithm by Byrka et al. in a non-black-box
fashion could not beat the factor 4/3 · r when the tree merging step relies only on the
solutions output by the LMP algorithm.
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1 Introduction

We consider the node-weighted variant of the well-studied k-MST problem. Given
a graph G = (V , E) with non-negative node weights c : V → R+ and a positive
integer k, we consider the problem of finding a minimum cost connected subgraph
of G spanning at least k vertices. In analogy to the edge-weighted case, we call this
problem node-weighted k-MST (NW-k-MST) because the solution can be assumed
to be a tree. In fact, we focus on the rooted variant in which a given vertex r has
to be included in the final solution. To obtain the unrooted version, simply use the
resulting algorithm for each choice of root vertex.

It was already observed that this problem is �(log n)-hard to approximate [17].
However, the problem becomes easier when we restrict G to be a planar graph. It is
still NP-hard, as the edge-weighted variant is NP-hard even on planar graphs [18]. To
this end, consider the following reduction from edge-weighted variant to the node-
weighted variant. Each original vertex gets weight 0. Now, each edge e is replaced
with a new vertex ve of weight equal to the cost of e. Moreover, ve is connected by
two edges with original endpoints of e. Finally, each original vertex is connected to
l new leaves of weight 0 where l is a parameter. It is easy to see, that for l > |E|,
solutions for k-MST instances correspond to solutions to node-weighted (k · l + k −
1)-MST instances after reduction and vice-versa.

The above reduction preserves planarity. Therefore, the focus of this work is to
provide an approximation algorithm with small factor for planar NW-k-MST.

1.1 RelatedWork

1.1.1 Edge-Weighted k -MST

The standard, edge-weighted k-MST problem has been thoroughly studied. In a
sequence of papers [1, 9, 10] the 2-approximation algorithm for prize-collecting
Steiner tree problem [11] was used to finally obtain a 2-approximation algorithm for
k-MST. These results can be, to some extent, explained as in the work of Chudak et
al. [7] in terms of Lagrangian Relaxation.

In particular, a 5-approximation algorithm follows the framework known mostly
from Jain and Vazirani’s work on the k-median problem [12]. In these algo-
rithms, the Lagrangian multiplier preserving (LMP) property plays a crucial role.
The LMP property is also satisfied by the Goemans-Williamson algorithm for the
prize-collecting Steiner tree problem (PC-ST). Intuitively, the LMP property of an α-
approximation algorithm for some prize-collecting problem, means that the solutions
it produces would also be not more expensive than α times optimum value even if we
would have to pay α times more for penalties.

1.1.2 Node-Weighted k -MST

The NW-k-MST problem was already studied in the more general quota setting,
where each node has an associated profit, and the goal is to find the minimum
cost connected set of vertices having total profit at least �. In particular, an
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O(log n)-approximation was given in [17]. However, this result was based on their
invalid O(log n)-approximation for NW-PC-ST. Recently, Chekuri et al. [6] and also
independently Bateni et al. [2] proposed correct algorithms for generalizations of
NW-PC-ST, but without LMP guarantee. The result on the quota problem was finally
restored by Könemann et al. [14] who developed an LMP algorithm. In the related
master thesis [19], Sadeghian gives also an alternative way of picking vertices1 in the
reduction for the quota problem. In these results, the constant lost in the process was
not optimized.

1.1.3 Node-Weighted Planar Steiner Problems

Recently, the planar variants of Steiner problems received increased attention. In
particular, Demaine et al. [8] obtained a 6-approximation for the node-weighted
Steiner forest problem. The factor was further improved to 3 by Moldenhauer [16].
Both results rely on the moat-growing algorithm similar to that of Goemans and
Williamson [11]. Currently the best result for this problem is the 2.4 approximation
by Berman and Yaroslavtsev [3] who use a different oracle for determining violated
sets.

More general network design problems on planar graphs where also studied by
Chekuri et al. [5]. Finally, the result of Moldenhauer was generalized to the prize-
collecting variant by Byrka et al. [4], resulting in an LMP 3-approximation for NW-
PC-ST on planar graphs. We note that our result highly relies on this last algorithm.

1.1.4 Partial Cover

It can be seen, that our problem on arbitrary graphs generalizes the partial cover
problem. In this problem we are given a set cover instance along with a positive
integer k. The objective is to cover at least k ground elements by a family of sets
of minimum cost. In the prize-collecting version of the problem every element has
a penalty and the objective is to minimize the sum of costs of the chosen sets and
the penalties of the elements that are not covered. Könemann et al. [13] describe
a unified framework for partial cover. They show how to obtain an approximation
algorithm for a class I of partial cover instances if there is an r-approximate LMP
algorithm for the corresponding prize-collecting version. In particular, their result
implies a ( 4

3 + ε)r-approximation algorithm for the class I. Mestre [15] shows that
no algorithm that uses an LMP algorithm as a black box can obtain a ratio better than
4
3 r so these results are essentially optimal.

1.2 Our Result and Techniques

We give a polynomial-time (4 + ε)-approximation algorithm for the NW-k-MST
problem on planar graphs. Our result extends to an algorithm for the quota node-
weighted Steiner tree problem on planar graphs with the same factor.

1By picking vertices we mean augmenting the smaller solution with some vertices of larger solution. This
is an important ingredient for the Lagrangian Relaxation technique
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The main technique we use is the Lagrangian relaxation framework (as mentioned
in the section above) where two solutions — one with fewer and the other with more
than k nodes — are combined to obtain a feasible tree. The overview of our algorithm
is as follows:

1. guess a skeleton and prune the instance
2. using the LMP algorithm [4], find trees T1, T2 with ≤ k and ≥ k nodes,

respectively
3. combine T1 and T2 into a single tree with exactly k vertices

This is the standard design (although guessing step is not always necessary) of algo-
rithms based on Lagrangian relaxation framework. However, in order to optimize the
constant we employ additional ideas and techniques.

The first guessing step bears some similarities to that of Arora and Karakostas [1]
where they improve Garg’s 3-approximation for edge-weighted k-MST to 2+ε. This
additional guessing allows them to pay ε ·OPT instead of OPT for connecting a single
set of vertices to the rest of the solution. Here, we provide a node-weighted variant of
this idea and also use it more extensively, because we have to buy multiple (but still
a constant number of) such connections. In our approach, we guess a set of vertices
from optimum solution and call it a skeleton. Then, we can safely prune the instance
ensuring that each remaining node will be not too far away from the skeleton. The
guessing step is described in Section 2.

For the second step, we have to slightly modify the primal-dual LMP 3-
approximation algorithm [4], so it returns solutions containing the guessed skeleton.
This modification is technical and is described — together with the method used to
find suitable T1 and T2 — in Section 4.

In the third step, we combine T1 and T2 by extending the procedure of picking
vertices of Sadeghian [19]. He finds some cost-effective subset of vertices, which is
two times larger than needed. We show that by picking vertices in certain order and
applying recursion a constant number of times, we are able to pick almost exactly
the number of nodes that is needed. Although, the number of components of this
set of nodes might be arbitrary, we need to buy only a constant number of connec-
tions to restore connectivity. This is our main contribution and is described in the
Section 3.

The resulting approximation factor of our algorithm is (4 + ε). Additionally, we
show some evidence that our combining step is in some sense optimal. More pre-
cisely, we show that no other algorithm, using LMP 3-approximation as a black-box
and which does not use planarity can give better constant than 4. This is obtained by
interpreting our algorithm in terms of the results for the partial cover problem. The
optimality of our algorithm within this framework is discussed in Section 5.

2 Pruning the Instance

First, we assume that we know OPT up to a factor 1 + ε by using standard guessing
techniques [9]. A node v is called ε-distant to a node set U ⊆ V if there exists a path
P in G from v to a node u ∈ U of node weight c(V (P ) \ {u}) ≤ ε · OPT.
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Lemma 1 Consider an optimum solution T and an ε > 0. Then there exists a set
W ⊆ V (T ) of size at most 1/ε such that each node in T is ε-distant to W ∪ {r}.

Proof Consider T as a tree rooted at r . For any node u in this tree let Tu denote the
subtree hanging from u. A subtree Tu is called good if for any node in Tu the total
weight of the unique path from this node to u within Tu (including the weight of the
end nodes) is at most ε · OPT.

We traverse T in a bottom-up fashion starting with the leaves. We maintain the
invariant (by removing subtrees) that for all nodes u visited so far and still being in
T , the subtree Tu is good. To this end, when we encounter a node u such that Tu is
good we just continue with the traversal. If Tu is bad, however, then there must be a
path P within Tu ending in u of node weight c(P ) ≥ ε · OPT. We include u into W

and assign P as a witness to u. Because of our invariant for all (if any) children v of
u, we have that Tv is good. This means in particular that for all nodes z in Tu the node
weight (excluding the weight of u) of the path from z to u is at most ε · OPT. Finally,
remove Tu from T and continue with the traversal. We stop when we reach the root
r at which point we remove the remaining tree (for the sake of analysis).

First, note that the set W has cardinality at most 1/ε because we assigned to each
node in W a witness path of weight at least ε ·OPT and because the witness paths are
pairwise node-disjoint. Second, observe that whenever we removed a node z from T

as part of a subtree Tu, the node weight (excluding the weight of u) of the path from
z to u was at most ε · OPT. Hence, for every node in T there exists such a path to a
node in W ∪ {r} at the end of the tree traversal since every node was removed.

In the sequel, we will call such a set W whose existence is provided by the above
lemma an ε-skeleton.

In a pre-processing, we iterate over all nO(1/ε) many sets W ′ ⊆ V with |W ′| ≤
1/ε thereby guessing the ε-skeleton W whose existence is guaranteed by the above
lemma. Moreover, we prune all nodes u from the instance that are not ε-distant to
W ∪ {r}.

3 The (4 + ε)-Approximation Algorithm

Sadeghian [19, Chapter 3] describes a O(log n) approximation for node-weighted
quota Steiner tree problem. His result is established using a framework of [7],
repeated also in [17] where a primal-dual LMP approximation algorithm for the
prize-collecting Steiner tree problem can be used along with the Lagrangian relax-
ation method to obtain an approximation algorithm for the quota version of the prob-
lem. Sadeghian loses some large constant factor in the process. Direct application of
his result would yield two digit approximation factor for our problem.

We now show that carefully injecting the LMP 3-approximation algorithm for
NW-PC-ST on planar graphs given in [4] into his analysis yields a (4 + ε)-
approximation. However, in the process, we need a more efficient way to pick
additional vertices. We show that it is possible to pick a cheap set of these vertices.

Theory of Computing Systems (2020) 64: –626 644630



Although it will not be connected, only a constant number of additional ε-distant
vertices will suffice to connect the picked vertices.

For ease of the presentation, we will focus on the NW-k-MST problem. The
algorithm for quota version can be then easily deduced by arguments of Bateni et
al. [2]

The analysis relies on the following lemma.

Lemma 2 We can produce trees T1 and T2 containing all the vertices W from the
ε-skeleton and the root r of sizes |T1| ≤ k ≤ |T2|, such that for α1, α2 ≥ 0 with
α1 + α2 = 1 and α1|T1| + α2|T2| = k we have that

α1c(T1) + α2c(T2) ≤ (3 + ε)OPT

The construction of these trees T1 and T2 and the proof of above lemma is
described in Section 4.

Let now q = k − |T1| be the number of vertices that are missing from the tree T1.
We will now show, that these vertices can be picked from T2 \ T1 without paying too
much.

Lemma 3 It is possible to find a (not necessarily connected) set S of at least q

vertices in T2 \ T1 of cost at most (1 + ε2)α2c(T2), which can be connected to T1
by connecting additionally O(log(1/ε2)) many ε-distant vertices to the ε-skeleton,
where ε2 is any constant.

Proof Here, we substantially extend the analysis in [19]. Consider a graph T ′
2 con-

structed from T2 by contracting all vertices from T1 ∩ T2 to a single vertex r ′. Define
the cost of this vertex r ′ to 0 (we will buy T1 anyway). From now on, whenever we
count the cardinality of some subset S of vertices in T ′

2, we do not count vertex r ′.

Definition 1 A subset of vertices S is cost-effective if c(S)
|S| ≤ c(T ′

2)

|T ′
2| .

Lemma 4 If cost-effective set S has size (1 + ε2)q then its cost is at most (1 +
ε2)α2c(T2).

Proof

c(S) ≤ |S|c(T
′
2)

|T ′
2|

≤ (1 + ε2)q
c(T2)

|T2| − |T1| ≤ (1 + ε2)α2c(T2),

where we used the fact that α2 = k−|T1||T2|−|T1| .
So now, our goal is to find a cost-effective set S in T ′

2 of size only slightly larger
that q. First, we start with a procedure for picking at most 2q vertices as in [19].
Initialize graph H with any spanning tree of T ′

2. Observe that H is cost-effective.
Consider any edge e of H . Let X and Y be the two components that would be created
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after removing the edge e from H . At least one of these two components must be cost-
effective. For any cost-effective component from this two, say X, do the following.
If X has enough vertices, i.e. |X| ≥ q, remove Y from H and continue. Otherwise,
contract vertices of X to a single super vertex and set its cost to the sum of all vertices
in X. We consider that the new super-vertex has super-cardinality equal to |X|.

It can be seen that after repeating this procedure as many times as possible, the
graph H will be a star graph with super-cardinality of each leaf at most q. Let p be
the number of leaves of H . In the case when p ≤ 1 it is easy to see, that taking
the whole graph H would result in a cost-effective set of vertices of size at most 2q.
Therefore, assume now that p ≥ 2. Then, there exists a central vertex of the star
graph H , call it c, which is not a super vertex. Moreover, every leaf v must be cost-
effective (otherwise either we would remove v, or H would consist of two nodes).
Observe also, that the super-cardinality of each leaf is at most q. Hence adding leaves
to S one by one, would eventually lead to the set S with super-cardinality at most 2q

(and at least q). Finally, S could be connected to T1 by a single path from vertex c.
We now modify this procedure of adding leaves. First, consider them in the order

of decreasing super-cardinalities. To this end, let v1, v2, . . . vp be leaves of H and
s1 ≥ s2 ≥ · · · ≥ sp be the corresponding super-cardinalities. Find the smallest i such
that

∑i
j=1 sj + si+1 ≥ q. If si+1 = 1, then the desired set S consist of all vertices in

v1, v2, . . . vi+1 and it has exactly q vertices. Otherwise, add the first i leaves to the
set S. Let t = ∑i

j=1 sj be the number of vertices added to S. Now, instead of adding
to S all vertices in the super vertex si+1, we expand this super vertex back to the
original graph and repeat the above process with the new number of vertices to pick
equal to q ′ = q − t . Observe that, because of sorting we have that t ≥ 1

2q, which
also implies that q ′ ≤ 1

2q. This process is repeated recursively up to l times—where
l is a parameter— but in the last call we take the last leaf completely (Fig. 1).

Let now q1, q2, . . . , ql be the numbers of vertices to pick in respective recursive
calls (note that q1 = q and qj ≤ 1

2qj−1). The total number of picked vertices is
then at most q + 2ql ≤ (1 + 2−l+2)q. Therefore, to find the desired set S of at most
(1+ε2)q vertices, we need only a constant number of recursive calls — parameter l is
only O(log(1/ε2)). Moreover all the vertices of S can be connected to T1 by buying
paths from the central nodes of all the l star graphs that appeared in the process. This
finishes the proof.

To construct a feasible solution, take the set S guaranteed by the above lemma
and connect it to T1 by the O(log(1/ε2)) shortest paths to the ε-skeleton. Denote this
solution by SOL1. Let also SOL2 be the entire tree T2. Our algorithm outputs cheaper
of the two solutions SOL1 and SOL2.

This enables us to prove the following.

Lemma 5 Assuming ε ≤ 1, the cost of the cheaper of the two solutions SOL1 and
SOL2 is (4 + O(

√
ε)) · OPT.

Proof To bound the cost of the cheaper of two solutions SOL1 and SOL2 we employ
the following Lemma by Könemann et al. [13].
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Fig. 1 Construction given in Lemma 3. The star graphs are build recursively. From each star graph, some
vertices are picked (gray color) in the decreasing order of super-cardinality. Later, the cost-effective set
of gray vertices is connected to T1 via a constant number of shortest paths from centers of stars, forming
SOL1

Lemma 6 (Lemma 6 in [13]) For any r > 1 and δ > 0, we have

max
α ∈ (0, 1)

β ∈ [0, r]
min

{
r(1 + δ) − (1 − α)β

α
, r(1 + δ) + αβ

}

=
(

4

3
+ O(

√
δ)

)

r .

The above equation comes from an optimization problem which can be solved by
case analysis and balancing variables. For the proof, we refer the reader to the work of
Könemann et al. [13]. Below, we will show how to use Lemma 6 to prove Lemma 5.

Let α = α2 and β = c(T1)
OPT

. With this notation we obtain in a similar way as
Könemann et al. [13]

c(SOL1) ≤ c(T1) + (1 + ε2)α · c(T2) + ε · O(log(1/ε2)) · OPT

≤ α · c(T1) + (1−α) · c(T1)+(1 + ε2)α · c(T2) + ε · O(log(1/ε2)) · OPT

≤ (3(1 + ε2) + αβ) · OPT + ε · O(log(1/ε2)) · OPT,

and

c(SOL2) = c(T2) = α·c(T2)
α

≤ (3+ε)OPT−(1−α)c(T1)
α

≤ 3(1+ε)−(1−α)β
α

· OPT .
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By setting r = 3 and δ = ε = ε2 we obtain via Lemma 6 that the better of the two
solutions has cost no more than (4+O(

√
ε+ε log 1/ε)) ·OPT = (4+O(

√
ε)) ·OPT

completing the proof.

3.1 Generalization to Non-Planar Graph Classes

Note that in our algorithm, we use planarity exclusively by exploiting that the LMP
algorithm of Byrka et al. [4] for the prize-collecting version has ratio 3 on planar
graphs. Their algorithm, however, can be executed on an arbitrary graph class (e.g.
H-minor-free graphs). Thus all our calculations can be carried through by replacing
3 with any factor r ≥ 1 thereby obtaining the following generalization.

Corollary 1 The above algorithm has performance (4/3 + ε)r for any graph class
where the algorithm of Byrka et al. [4] has a performance ratio of r .

4 Lagrangian Relaxation andMoat Growing on Planar Graphs

In this section we prove Lemma 2. The proof utilizes Lagrangian Relaxation and
follows a framework similar to the one in [7].

We start with the following LP relaxation for the NW-k-MST problem, where solu-
tions are additionally constrained to contain all guessed vertices W of the ε-skeleton.
For each vertex v we have the xv variable indicating whether we will include this ver-
tex in the solution. The z variables are indexed by sets of vertices not containing the
root and the guessed vertices. There exists optimum integral solution, such that only
the one zX variable is set to 1. This would be for the set X of vertices not included in
the final solution.

min
∑

v∈V \{r} xvcv (LP )

s.t .
∑

v∈�(S) xv + ∑
X : S ⊆ X

X ∩ W = ∅
zX ≥ 1 ∀S ⊆ V \ {r}

xv + ∑
X : v ∈ X

X ∩ W = ∅
zX ≥ 1 ∀v ∈ V \ {r}

∑
X⊆V \{r} |X|zX ≤ n − k (1)

xv ≥ 0 ∀v ∈ V \ {r}
zX ≥ 0 ∀X ⊆ V \ {r}

The first two types of constraints guarantee connectivity of the solution to the root
vertex and skeleton W . The �(S) denotes the neighborhood of the set S, i.e. the set
of vertices that are not in S, but have a neighboring vertex in S.
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The constraint (1) ensures that the final solution will have at least k vertices and
introduces difficulties. Therefore, we move it to the objective function obtaining the
following Lagrangian Relaxation:

min
∑

v∈V \{r} xvcv + λ
(∑

X⊆V \{r} |X|zX − (n − k)
)

(LR(λ))

s.t .
∑

v∈�(S) xv + ∑
X : S ⊆ X

X ∩ W = ∅
zX ≥ 1 ∀S ⊆ V \ {r}

xv + ∑
X : v ∈ X

X ∩ W = ∅
zX ≥ 1 ∀v ∈ V \ {r}

xv ≥ 0 ∀v ∈ V \ {r}
zX ≥ 0 ∀X ⊆ V \ {r}

The above LP (ignoring the constant −λ(n − k) term in the objective function) is
exactly the LP for the node-weighted prize-collecting Steiner tree (NW-PC-ST in
which the penalty of each vertex in V ′ = V \ W is equal to the parameter λ) with a
slight modification that the subset of vertices W is required to be in the solution.

Consider now, the dual of the LR(λ):

max
∑

S⊆V \{r} yS + ∑
v∈V \{r} pv − λ(n − k) (DLR(λ))

s.t .
∑

S:v∈�(S) yS + pv ≤ cv ∀v ∈ V \ {r}
∑

X⊆S yX + ∑
v∈S pv ≤ λ|S| ∀S ⊆ V ′ \ {r}

yS ≥ 0 ∀S ⊆ V \ {r}

Now, we can leverage the slightly modified primal-dual LMP 3-approximation for
(NW-PC-ST) given in [4].

Lemma 7 There exists a polynomial time algorithm that given graph G with penal-
ties λ and a subset of vertices W returns a tree T λ and a dual solution (yλ, pλ) for
DLR(λ) such that:

c(T λ) + 3λ(n − |T λ|) ≤ 3

⎛

⎝
∑

S⊆V \{r}
yλ
S +

∑

v∈V \{r}
pλ

v

⎞

⎠ , (2)

where T λ contains all vertices of W .

The proof of the above lemma is deffered to Section 4.1.
Let us now see how we can use it to finish the proof of Lemma 2. We pro-

ceed essentially as in [19] and [7]. By subtracting 3λ(n − k) from both sides of
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inequality (2) and simplifying the notation so that DSλ = ∑
S⊆V \{r} yλ

S +
∑

v∈V \{r} pλ
v denotes the value of a dual solution we have that

c(T λ) + 3λ(k − |T λ|) ≤ 3 (DSλ − λ(n − k))

≤ 3 · DLR(λ) ≤ 3 · OPT.

Observe that for λ = 0 the algorithm could output a tree with at least k vertices
(because of moats growing around vertices in W , see next subsection). In this case
the resulting tree is a 3-approximation so we do not need the merging procedure
described in Section 3. Otherwise, for some large λ, e.g. the maximum cost of a
vertex, the resulting tree would contain all the vertices. Therefore, we do the binary
search for λ such that |T λ| is close to k. In a lucky event |T λ| = k and then we
don’t need the merging procedure described in Section 3. Otherwise, we obtain λ1
and λ2 such that |T λ1 | < k < |T λ2 |. By making enough steps of the binary search
we can ensure that λ2 − λ1 ≤ ε·OPT

3n
. Let these trees be T1 and T2. Now, by setting

α1 = |T2|−k
|T2|−|T1| and α2 = k−|T1||T2|−|T1| and using inequality (2) twice we have that

α1c(T1) + α2c(T2) ≤ 3 (α1DS1 + α2DS2 − α1λ1(n − |T1|) − α2λ2(n − |T2|))
≤ 3 (α1DS1 + α2DS2 − λ2(n − k) + (λ2 − λ1)(n − |T1|))

≤ 3 (OPT + (λ2 − λ1)n)

≤ (3 + ε) OPT,

where we used the fact that the convex combination of DS1 and DS2 is a feasible
solution for DLR(λ2).

4.1 Moat Growing

In this section we describe the slight technical modification needed in the primal-dual
algorithm for NW-PC-ST problem on planar graphs given in [4] and give the proof of
Lemma 7. Observe, that there are two differences in the LPs used (comparing above
DLR(λ) to DLPPCST in [4]).

First, we have to include some guessed vertices W in the solution. However, this
can be easily guaranteed by assigning to them a sufficiently large penalty. Second,
we have additional constraints and corresponding dual variables pv . This is due to the
fact, that in our setting all vertices can have both nonzero penalty and cost, while in
the previous setting the reduction step was employed so that each vertex is a terminal
with some penalty and zero cost or a Steiner vertex with zero penalty. However, this
reduction can also be done as follows. For every vertex v ∈ V , set pv to the minimum
of cost and penalty. Then define the reduced costs and reduced penalties. This does
not influence the approximation factor, nor the LMP guarantee.

For completeness, we now give a description of the resulting LMP primal-dual
algorithm. First, we assign an infinite penalty to guessed vertices W . Then, we
eliminate pv variables as described above.

The algorithm maintains a set of moats, i.e., a family of disjoint sets of vertices. In
each step, these moats can be viewed as the components of the graph induced by the
so far bought nodes. Each moat has an associated potential equal to the total penalty
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of vertices inside this moat minus the sum of the dual variables for all the subsets of
this moat. The moats with positive potential are active, with the exception that the
moat containing the root is always inactive.

The algorithm raises simultaneously the dual variables of all the active moats. For
the growth of a moat we pay with its potential. We can have two events.

In the first event, some vertex goes tight, i.e., the inequality for this vertex in
the dual program becomes tight. In this case we buy this vertex and merge all the
neighboring moats, setting the potential accordingly to the sum of all previous moats’
potentials. We declare this new moat inactive whenever it contains a root vertex.

In the second event, some moat goes tight, i.e. the inequality in the dual program
becomes tight for some set of vertices. This corresponds to the situation when the
potential of this moat drops to zero. In this case we declare this moat inactive and we
mark all the previously unmarked terminals inside it as marked with the current time.
Observe that in the dual we do not have these inequalities for sets containing guessed
vertices W . This means, that all the vertices of W will be connected to the root vertex.

We repeat this process until we do not have any active moats. Then we start a
pruning phase. We consider all the bought vertices in the reverse order of buying. We
delete a vertex v if the removal of v would not disconnect any unmarked terminal
or any terminal marked with time greater than the time of buying the vertex v. We
return the pruned set of bought vertices as the solution.

We now give a more formal proof of Lemma 7.

Proof of Lemma 7 Set cost cv of every vertex v ∈ V to 1. Now, for every vertex
w ∈ W , set its penalty πw to infinity (or a large number, e.g. |V | is enough). For
all other vertices v ∈ V \ W , set πv = λ. Then, for every vertex v ∈ V , define
pλ

v = min{cv, πv}. Finally for every v ∈ V , let c′
v = cv − pλ

v and π ′
v = πv − pλ

v .
We run the algorithm from Section 2 of [4] on graph G with costs c′ and penal-

ties π ′. By Theorem 1 in [4], this algorithm produces tree T λ and dual variables yλ
S

feasible for the DLPPCST such that

c′(T λ) + 3π ′(V \ T ) ≤ 3
∑

S⊆V \{r}
yλ
S

By adding 3
∑

v∈V \{r} pv to both sides of this inequality, we get inequality (2). Now,

we claim that W ⊆ T λ. Because of the huge potential, the moats containing vertices
of W will be active until they connect to root r , therefore every w ∈ W will remain
unmarked. As pruning phase removes only some marked vertices, the claim follows.
It remains to show that (yλ, pλ) is also a feasible solution to DLR(λ). This however
follows immediately by adding pλ

v to both sides of inequality (1) (and respectively∑
v∈S pv to inequality (2)) of DLPPCST in [4].

5 Trying to Beat the Factor of 4: Relation to the Partial Cover

Here we draw connections to the recent work on the partial cover problems.
Könemann et al. [13] showed how to obtain a (4/3 + ε)r-approximation algorithm
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for the partial cover problems using an r-approximate LMP algorithm for the cor-
responding prize-collecting version as a black-box. Their approach is roughly as
follows. First, the most expensive sets from the optimum solution are guessed and
all sets which are more expensive are discarded. Further, the black-box algorithm is
used together with binary search to find two solutions, one, say S1, feasible but pos-
sibly expensive, and the other, say S2, infeasible but inexpensive. Then the merging
procedure is employed to obtain a solution S3. Finally, the cheapest solution of the
S1 and S3 is returned.

5.1 Generalizing the Algorithm of Könemann et al.

Extending a folklore reduction from set cover type problems to node-weighted
Steiner tree problems, we argue that our algorithm may be interpreted as a non-trivial
generalization of the above-outlined algorithm by Könemann et al. [13].

First of all, the following reduction shows that the partial covering problem can
be encoded as the quota node-weighted Steiner tree problem. The reduction creates
for each element a vertex with zero cost and profit 1. Then, for each set it creates a
node with the same cost and zero profit and connects it to the elements covered by
this set. Finally, the root vertex is added and connected to all the set-corresponding
nodes. The target quota profit is set to be the same as the requirement for the partial
cover problem.

For such a reduced instance, we can run the preprocessing step from Section 2
which will remove the expensive sets (we could also employ the Könemann’s prepro-
cessing beforehand). Then, we would run any LMP algorithm for the prize-collecting
cover problems within the Lagrangian relaxation framework which would indicate
two families of sets to merge. Putting it on the reduced instance, these would corre-
spond to two trees to merge. More precisely, take to the tree the set-corresponding
nodes, the root vertex and the elements covered by sets. Now, we can apply the merg-
ing procedure described in the Lemma 3 with a slight adjustment needed to account
for quota variant. In particular we modify the notion of cost-effectiveness to account
profits instead of cardinalities and we also redefine the super-cardinality to be the
sum of profits. To retrieve the solution from the tree, simply take the sets correspond-
ing to non-zero cost nodes in the tree. Finally, output the cheaper of the two feasible
solutions giving a partial cover with the same quality as the one by obtained via the
algorithm by Könemann et al.

We remark that the above argument does not work in the reverse direction. The
graph instances that are created have a very specific structure with three node layers
ensuring that any partial cover solution is automatically connected at no additional
cost. Achieving connectivity for general graphs, however, is not implied and guar-
anteeing this structural property without loss in the performance guarantee of the
algorithm can be seen as a main contribution of our work.

5.2 Black-Box Optimality

Now, the above reduction, together with a lower bound construction by Mestre [15]
implies that our approach is best possible using the LMP algorithm as a black-box
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Fig. 2 The instance of partial cover given by Mestre [15]

and without referring to the underlying graph class. To see this, observe, that the
Mestre’s construction given in Theorem 3.1 in [15], can be transformed to an instance
of quota node-weighted Steiner tree instance by using the above reduction.

Here, we repeat the Mestre’s example, as we will extend it further. Fix some inte-
ger constant q. The instance consists of q3 ground elements aligned in the grid of size
q by q with q elements in each cell. Then we have q sets A1, A2, . . . Aq , each cov-
ers all elements in the corresponding column of a grid. Analogously, we have q sets
B1, B2, . . . Bq which cover rows. Moreover, each Bi set has two more ground ele-
ments. Then, we have q sets O1, O2, . . . Oq , where set Oi covers i-th element from
each cell of the grid and a single element which is also covered by Bi . This construc-
tion is illustrated in Fig. 2, where the set O1 is marked with circles. Then, costs of
sets are defined as follows: c(Ai) = 2

3 · r
q

, c(Bi) = 4
3 · r

q
, c(Oi) = 1

q
, where r = 3

in our case.
For such instance, optimal prize-collecting cover is either the empty cover or

A1, A2, . . . Aq or B1, B2, . . . Bq or O1, O2, . . . , Oq . Now, the target value of k is set
to q3 + q for which the optimal partial cover are O-sets. Now, if the LMP algorithm
returns A-sets for some penalties λ, and B-sets for slightly larger penalties λ+, then
— as Mestre shows — the merging procedure can do no better than 4

3 · r approxima-
tion. Thus, without knowing the inner-workings of the LMP algorithm, one can not
obtain a better approximation algorithm for partial cover using the general method
of merging LMP solutions. For details regarding this construction, we refer to the
original work of Mestre [15].

Consider now the corresponding quota Steiner tree instance of the above partial
cover instance. This construction is not giving a complete lower bound for our prob-
lem by two reasons. First, the instance is not planar, second, the LMP algorithm is
not exemplifying the proof of Mestre’s Lemma 3.3 [15].2 Indeed, the LMP algorithm

2This lemma states that there exists an LMP algorithm which returns either sets A or B (depending on the
initial penalty λ).
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would buy cheap O-vertices straight ahead. Despite these two issues, this instance
is still useful in the following sense: it already shows that in order to beat the factor
4/3 · r for NW-k-MST, we would need to consider the inner-workings of the LMP
algorithm or the underlying graph class (e.g. planarity).

5.3 Inner-Workings are Not Enough

Finally, we extend Mestre’s example to show that even examining the inner-workings
of the algorithm of Section 4.1 without referring to the underlying graph class (such
as planar graphs) in the merging procedure is not enough to beat the factor of
4/3 · r . We do this by giving a modified instance for which the LMP algorithm
of Section 4.1 returns either A or B sets. We will work with the instance of node-
weighted prize-collecting Steiner tree problem obtained from Mestre’s construction
via our reduction.

To build an intuition, we point out two main difficulties concerning the reduced
instance with respect to the moat-growing algorithm.

First, the Steiner vertices corresponding to A and B sets are much more expensive
related to O-vertices. Since the number of terminals adjacent to these Steiner vertices
is roughly the same, the O-vertices would be bought by the algorithm first and remain
in our solution. In order to solve this problem, we will introduce a so-called handicap
gadget, which will allow us to enforce earlier buying time of more expensive vertices.

The second problem is a technical issue. The costs of Steiner vertices are affected
by penalties before growth phase (see the reduced costs of Section 4.1). This makes
deriving claims about buying time of vertices more difficult. To alleviate this incon-
venience we will aggregate more potential on terminals. We now describe the two
constructions solving the two above problems.

5.3.1 The Potential Aggregation

We propose the following modification of an instance. Connect by stars a large
amount of new terminals to every terminal t , each t having its own set of γ 
 q ter-
minals. Observe now, that in the beginning of the GROW phase, the moat-growing
algorithm for each terminal t will immediately form a single component consisting
of t and added terminals. The total potential of this moat will be equal to γ · λ.
Therefore, the initial potential λ needed for moat-growing algorithm to grow moats
reaching Steiner vertices can be arbitrarily small. This in turn, allows us to insist that
reduced cost of Steiner vertices is comparable to the original cost.

5.3.2 The Handicap Gadget

We introduce a gadget which allows to significantly reduce the buying time of expen-
sive A and B vertices so that they would go tight at the same time and also much
earlier than the cheaper O-vertices would.

The gadget consist of a grid of terminals with q columns and q2 rows. Each B-
vertex is connected to every vertex of a grid. Each A-vertex is connected only to all
vertices inside q

2 columns. These columns are assigned in a way that each column is
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assigned to at least one A vertex. Finally each vertex Oi is connected to all vertices
in column i. It can be seen that in the growth phase of the LMP algorithm, the B

vertices gain their contribution to cost roughly two times faster than A vertices. Since
B vertices are twice as expensive, after adding this gadget, the buying time of A and
B should be now roughly the same and much smaller than that of O vertices.

5.3.3 Finishing the Construction

Here, we describe the final construction and analyze the behavior of the algorithm
from Section 4.1 on this instance. We extend the instance from Section 5.2. Recall,
that each set corresponds now to a Steiner vertex which is also directly connected to
the root vertex. On top of that construction, add the handicap gadget.

After adding the stars for potential aggregation the number of terminals is now
γ · (2 ·q3 +2 ·q). By handicap gadget, the buying time of A and B vertices is roughly
the same. Finally set the target k appropriately, i.e. k = (2 · q3 + q) · γ . Let I be the
resulting instance.

Lemma 8 There exist the initial potential λ such that, the LMP algorithm of
Section 4.1 for the instance I returns the A solution, while for the slightly larger
potential λ+ it returns the B solution.

Proof First, we claim that, there is an initial potential λ1 for which all the A vertices
will be bought, but neither B, nor O vertices. To see this, observe that the buying
time of the first vertex is computed by dividing the cost of a vertex by number of
neighboring terminals (moats) and taking a minimum. Let t (A), t (B), t (O) be these
ratios for vertices of corresponding type. We have that:

t (A) =
(

4
3 · r

q
− λ1

)
· 1

q2+ 1
2 q3

t (B) =
(

2
3 · r

q
− λ1

)
· 1

q2+2+q3

t (O) =
(

1
q

− λ1

)
· 1

q2+1+q

Note, that by potential aggregation, λ1 is arbitrarily small. Thus, for q large enough
we have that t (A) < t(B) < t(O). Now, the λ1 that we are looking for is computed
from the equation t (A) = γ · λ1.

Now, increase the λ value starting from λ1 to the point just before that B-vertices
get tight. Now, at some slightly larger initial potential λ+, the B-vertices will be
bought ending the growth phase. However, the pruning phase of the moat-growing
algorithm will then keep all the B-vertices and prune all the A-vertices.

Now, using analogous arguments as in the result of Mestre [15] we conclude the
following.

Corollary 2 For any r > 1 there is an infinite family of graphs where the natural
moat growing algorithm for NW-PC-ST [4] has a ratio r but where any feasible
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solution to the NW-k-MST problem using only the nodes returned by this algorithm
has cost at least 4/3 · r times that of an optimum solution.

5.3.4 Interpretation

In the edge-weighted case of k-MST, Garg [10] was able to carefully exploit the inner
workings of the Goemans-Williamson algorithm [11] for the Lagrangian relaxation to
match its ratio of 2. Corollary 2 means that our approach is in a certain sense optimal
and that we would need to deviate from this framework to improve on the loss of
factor 4/3 in the tree-merging step. This could possibly be achieved by exploiting
structural properties of the underlying graph class or using nodes outside the solution
returned by the LMP algorithm.

Even when we exploit planarity it seems to be non-trivial to beat factor 4 along
the lines of Garg [9, 10]. The changes in the solutions by increasing initial potentials
of vertices can be much larger than those in the edge-weighted variant. In particular,
one can observe situations of node-flips in which two potentially distant vertices
exchange their presence in the solution. Also, in contrast to edge-weighted variant, a
single node can be adjacent to any number of moats and not only two. This in turn
causes a large difference in two trees produced by the algorithm. In particular, the
old vertices as described by Garg [9] (think of them as the vertices of T1 ∩ T2) can
form any number of connected components which may be expensive to connect even
when the graph is planar.

6 Conclusions and Comments

The 4 + ε approximation factor was obtained for the NW-k-MST problem on pla-
nar graphs. In the process we used the Lagrangian Relaxation technique. Our work
can be interpreted as a generalization of a work on partial cover [13]. The result by
Mestre [15] implies that our factor is essentially best possible using the underlying
LMP algorithm for the NW-PC-ST as a black-box. It shows that one would have to
exploit planarity in the merging process to beat factor 4.

Our ultimate hope would be to match the factor of 3 of the LMP algorithm. We
think that the question of whether this is possible is very interesting and challenging.
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