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Abstract Orbit Problems are a class of fundamental reachability questions that
arise in the analysis of discrete-time linear dynamical systems such as automata,
Markov chains, recurrence sequences, and linear while loops. Instances of the
problem comprise a dimension d ∈ N, a square matrix A ∈ Qd×d, and a query
regarding the behaviour of some sets under repeated applications of A. For instance,
in the Semialgebraic Orbit Problem, we are given semialgebraic source and target
sets S, T ⊆ Rd, and the query is whether there exists n ∈ N and x ∈ S such that
Anx ∈ T .
The main contribution of this paper is to introduce a unifying formalism for
a vast class of orbit problems, and show that this formalism is decidable for
dimension d ≤ 3. Intuitively, our formalism allows one to reason about any first-
order query whose atomic propositions are a membership queries of orbit elements in
semialgebraic sets. Our decision procedure relies on separation bounds for algebraic
numbers as well as a classical result of transcendental number theory—Baker’s
theorem on linear forms in logarithms of algebraic numbers. We moreover argue
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that our main result represents a natural limit to what can be decided (with respect
to reachability) about the orbit of a single matrix. On the one hand, semialgebraic
sets are arguably the largest general class of subsets of Rd for which membership
is decidable. On the other hand, previous work has shown that in dimension
d = 4, giving a decision procedure for the special case of the Orbit Problem with
singleton source set S and polytope target set T would entail major breakthroughs
in Diophantine approximation.



First-Order Orbit Queries 3

1 Introduction

Given d ∈ N, a square matrix A ∈ Qd×d, and a point s ∈ Rd, the orbit of s under A
is the infinite sequence 〈s,As,A2s,A3s, . . .〉. Given a target set T , a classical decision
problem is whether there exists n ∈ N such that Ans ∈ T . One way to categorise
such problems is according to the types of sets allowed for the source and target
(e.g., polytopes or semialgebraic sets). We collectively refer to the various problems
that arise in this way as Orbit Problems. Orbit Problems occur naturally in the
reachability analysis of discrete-time linear dynamical systems, including Markov
chains, automata, recurrence sequences, and linear loops in program analysis (see [6,
13,10] and references therein).

In order to describe the main result of this paper in relation to existing work,
we identify three successively more general types of Orbit Problems. In the point-

to-point version both the source and target are singletons with rational coordinates;
in the Polytopic Orbit Problem the source and target S and T are polytopes (i.e.,
sets defined by conjunctions of linear inequalities with rational coefficients); in the
Semialgebraic Orbit Problem S and T are semialgebraic sets defined with rational
parameters.

The question of the decidability of the Point-to-Point Orbit Problem was raised
by Harrison in 1969 [11]. The problem remained open for ten years until it was
finally resolved in a seminal paper of Kannan and Lipton [13], who in fact gave a
polynomial-time decision procedure.

The Polytopic Orbit Problem is considerably more challenging than the point-
to-point version, and its decidablity seems out of reach for now. Indeed the special
case in which S is a singleton and T is a linear subspace of Rd of dimension d− 1 is
a well-known decision problem in its own right, called the Skolem Problem, whose
decidability has been open for many decades [22]. In contrast to the point-to-point
case the only positive decidability results for the Polytopic Orbit Problem are in
the case of fixed dimension d. For the Skolem Problem, decidability is known for
d ≤ 4 [16,24]. In case S and T are allowed to be arbitrary polytopes, decidability
is known in case d ≤ 3 [1] (see also [5]). While Kannan and Lipton’s decision
procedure in the point-to-point case mainly relied on algebraic number theory (e.g.,
separation bounds between algebraic numbers and prime factorisation of ideals in
rings of algebraic integers), the decision procedures for the Skolem Problem and
the Polytopic Orbit Problem additionally use results from transcendental number
theory (specifically Baker’s theorem about linear forms in logarithms of algebraic
numbers). It was shown in [5] that the existence of a decision procedure for the
Polytopic Orbit Problem in dimension d = 4 would entail computability of the
Diophantine approximation types of a general class of transcendental numbers (a
problem considered intractable at present). Not only does this suggest that the
use of sophisticated transcendental tools is unavoidable in analysing the Polytopic
Orbit Problem, it also indicates that further progress beyond the case d = 3 is
contingent upon significant advances in the field of Diophantine approximation.

In a preliminary version of this paper [2], we remained in dimension d = 3 and
considered a generalisation of previous work by allowing the source and target
sets to be semialgebraic, that is, defined by Boolean combinations of polynomial
equalities and inequalities. This allowed us to handle three-dimensional source and
target sets in much greater geometrical generality than polytopes. In applications
to program analysis and dynamical systems, semialgebraic sets are indispensable
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to formulate sufficiently expressive models (e.g., to describe initial conditions and
transition guards) and in model analysis (e.g., in synthesising invariants and barrier
certificates and approximating sets of reachable states) [17,14]. As we elaborate
below, in this paper we present a unifying approach to the problems above, which
enables us to handle much richer settings.

Revisiting the above problems, we can formulate the types of orbit queries
as follows: the Point-to-Point Orbit Problem is given by the sentence ∃n ∈ N .

Ans = t, and the Polytopic and Semialgebraic Orbit Problems can be written as
∃n ∈ N ∃x ∈ Rd . x ∈ S ∧Anx ∈ T . In both cases, we essentially ask whether there
exists a stage n of the orbit for which some first-order condition holds, where the
condition is allowed to specify membership queries in, e.g., semialgebraic sets.

In this work, we generalize the above view (and in particular our results in [2])
and provide a specification formalism for first-order orbit queries, which subsumes
the Semialgebraic Orbit Problem, as well as other interesting queries, and unifies all
the above problems. Our main technical result is establishing the decidability of our
formalism for dimension d = 3. Formally, our queries have the form ∃n ∈ N . Φ(n),
where Φ(n) is a first-order sentence that may include atomic propositions of the
form Anx ∈ T , for semialgebraic T .

As in previous work on the Skolem Problem and on the Polytopic Orbit Problem,
Baker’s Theorem plays a crucial role in the present development. Technically, there
are two main difficulties in generalising from the polytopic case to general queries
involving first-order (i.e., semialgebraic) statements. The first difficulty lies in the
delicate analytic arguments that are required to bring Baker’s Theorem to bear.
More precisely: (i) we need to resort to symbolic quantifier elimination (in lieu
of explicit Fourier-Motzkin elimination, which had been used in the Polytopic
Orbit Problem), since we are now dealing with non-linear constraints; (ii) we also
need to perform spectral calculations symbolically, via the use of Vandermonde
methods, instead of the explicit direct approach possible in our earlier work; and
(iii) we replace triangulation of polytopes by cylindrical algebraic decomposition of
semialgebraic sets into cells, which again necessitates a new symbolic treatment
along with a substantially refined analysis based on Taylor approximation of the
attendant functions.

In summary, this paper provides a decision procedure for a vast family of Orbit
Problems in dimension d = 3, involving semialgebraic sets. The latter appears to
be a natural limit to the positive decidability results that can be obtained for such
problems, barring major new advances in Diophantine approximation.

On a technical level, our contributions are threefold: in Section 3 we introduce
our model and demonstrate its expressive power. We then formulate the decision
problem at hand, and state our main theorem. In Section 4 we start by analysing
a quantifier-free version of the problem, namely the case where only queries of
the form Ans ∈ T for fixed s and T are allowed. We then reduce this problem in
Section 4.1 to solving certain systems of polynomial-exponential equalities and
inequalities, and in Section 4.2 we show precisely how to solve such systems. The
second technical contribution consists in handling the general case of the problem,
in Section 5. There, we show how to circumvent problems that arise in the presence
of quantifiers, and arrive at a system that can ultimately be solved using the
techniques and results developed in Section 4.2.
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2 Mathematical Tools

In this section we introduce the key technical tools used in this paper.

2.1 Algebraic numbers

For p ∈ Z[x] a polynomial with integer coefficients, we denote by ‖p‖ the bit length
of its representation as a list of coefficients encoded in binary. Note that the degree

of p, denoted deg(p) is at most ‖p‖, and the height of p — i.e., the maximum of the
absolute values of its coefficients, denoted H(p) — is at most 2‖p‖.

We begin by summarising some basic facts about the field of algebraic numbers
(denoted A) and (efficient) arithmetic therein. The main references include [4,7,
21]. A complex number α is algebraic if it is a root of a single-variable polynomial
with integer coefficients. The defining polynomial of α, denoted pα, is the unique
polynomial of least degree, and whose coefficients do not have common factors, which
vanishes at α. The degree and height of α are respectively those of pα, and are denoted
deg(α) and H(α). A standard representation1 for algebraic numbers is to encode α
as a tuple comprising its defining polynomial together with rational approximations
of its real and imaginary parts of sufficient precision to distinguish α from the
other roots of pα. More precisely, α can be represented by (pα, a, b, r) ∈ Z[x]×Q3

provided that α is the unique root of pα inside the circle in C of radius r centred
at a+ bi. A separation bound due to Mignotte [15] asserts that for roots α 6= β of
a polynomial p ∈ Z[x], we have

|α− β| >
√

6

d(d+1)/2Hd−1
(1)

where d = deg(p) and H = H(p). Thus if r is required to be less than a quarter
of the root-separation bound, the representation is well-defined and allows for
equality checking. Given a polynomial p ∈ Z[x], it is well-known how to compute
standard representations of each of its roots in time polynomial in ‖p‖ [4,7,19]. Thus
given an algebraic number α for which we have (or wish to compute) a standard
representation, we write ‖α‖ to denote the bit length of this representation. From
now on, when referring to computations on algebraic numbers, we always implicitly
refer to their standard representations.

Note that Equation (1) can be used more generally to separate arbitrary
algebraic numbers: indeed, two algebraic numbers α and β are always roots of
the polynomial pαpβ of degree at most deg(α) + deg(β), and of height at most
H(α)H(β). Given algebraic numbers α and β, one can compute α + β, αβ, 1/α
(for α 6= 0), α, and |α|, all of which are algebraic, in time polynomial in ‖α‖+ ‖β‖.
Likewise, it is straightforward to check whether α = β. Moreover, if α ∈ R, deciding
whether α > 0 can be done in time polynomial in ‖α‖. Efficient algorithms for all
these tasks can be found in [4,7].

1 Note that this representation is not unique.
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2.2 First-order theory of the reals

Let ~x = x1, . . . , xm be a list of m real-valued variables, and let σ(~x) be a Boolean
combination of atomic predicates of the form g(~x) ∼ 0, where each g(~x) ∈ Z[~x] is a
polynomial with integer coefficients over these variables, and ∼ ∈ {>,=}. A formula

of the first-order theory of the reals is of the form Q1x1Q2x2 · · ·Qmxmσ(~x), where each
Qi is one of the quantifiers ∃ or ∀. Let us denote the above formula by τ , and write
‖τ‖ to denote the bit length of its syntactic representation. Tarski famously showed
that the first-order theory of the reals is decidable [23]. His procedure, however,
has non-elementary complexity. Many substantial improvements followed over the
years, starting with Collins’s technique of cylindrical algebraic decomposition [8],
and culminating with the fine-grained analysis of Renegar [21]. In this paper, we
will use the following theorems [20,21].

Theorem 1 (Renegar [20]) The problem of deciding whether a closed formula τ

of the form above holds over the reals is in 2EXP, and in PSPACE if τ has only

existential quantifiers.

Theorem 2 (Renegar [21]) There is an algorithm that, given a formula τ(x1, . . . , xm)
where x1, . . . , xm are free variables, computes an equivalent quantifier-free formula in

disjunctive normal form (DNF) Φ(x1, . . . , xm) =
∨
I

∧
J RI,J(x1, . . . , xm) ∼I,J 0

where RI,J is a polynomial 2 and ∼I,J∈ {>,=}. Moreover, the algorithm runs in time

22O(‖τ‖)
, and in particular, ‖Φ‖ = 22O(‖τ‖)

.

A set S ⊆ Rd is semialgebraic if there exists a formula Φ(x1, . . . , xd) in the first-
order theory of the reals with free variables x1, . . . , xd such that S = {(c1, . . . , cd) :
Φ(c1, . . . , cd) is true}.

We remark that algebraic constants can also be incorporated as coefficients in
the first-order theory of the reals (and in particular, in the definition of semialgebraic
sets), as follows. Consider a polynomial g(x1, . . . , xm) with algebraic coefficients
c1, . . . , ck. We replace every cj with a new, existentially-quantified variable yj , and
add to the sentence the predicates pcj (yj) = 0 and (yj − (a + bi))2 < r2, where
(pcj , a, b, r) is the representation of cj . Then, in any evaluation of this formula to
True, it must hold that yj is assigned value cj .

3 First-Order Orbit Queries

In this section we introduce and motivate the model of First-Order Orbit Queries.
Given a matrix A ∈ Qd×d, a first-order orbit query (fooq) over A is a sentence of
the form ∃n ∈ N . Φ(n), where Φ(n) is a fully quantified first-order sentence whose
atomic propositions are either of the form p(~x) ≥ 0 for a polynomial p ∈ Z[~x], or
of the form An~x ∈ T for a semialgebraic set T . We refer to the latter form as
orbit propositions. Note that the matrix A is fixed for the query, but there can be
multiple semialgebraic sets at play. In the following we omit A when it is clear
from context.

Clearly, fooqs subsume the first-order theory of the reals. In particular, we can
express queries such as ~x ∈ S for a semialgebraic set S.

We illustrate this formalism with some important examples.

2 Technically, the indices should be I, JI , but we omit the dependency of J on I for simplicity.



First-Order Orbit Queries 7

Example 1 (The Kannan-Lipton Orbit Problem) The Kannan-Lipton Orbit Prob-
lem [12,13] described in Section 1 can be formulated as the fooq ∃n ∈ N . Ans ∈ {t},
where s, t ∈ Qd are the initial and target vectors, respectively. Observe that this is
a “quantifier-free” fooq, since both s and t are fixed.

Example 2 (The Semialgebraic Collision Problem) The Semialgebraic Collision Prob-
lem, described in Section 1, can also be formulated as a fooq: given semialgebraic
sets S, T ⊆ Rd, we have the fooq ∃n ∈ N ∃x ∈ Qd . x ∈ S ∧Anx ∈ T .

Example 2 is the original problem studied in a preliminary version of this work [2].
However, fooqs are much more general, as we now illustrate.

Example 3 (The Semialgebraic Parking Problem) A dual version of the Semialgebraic
Collision Problem asks, given semialgebraic sets S, T and a matrix A, whether
AnS ⊆ T for some n ∈ N. That is, whether the entire set S becomes contained in T

after some applications of A (intuitively, does S “park” within T during its orbit).
We can formulate this as follows: ∃n ∈ N ∀x ∈ Qd . x ∈ S → Anx ∈ T .

Example 4 (Near-Coverage Parking) A less-restrictive version of the Semialgebraic
Parking Problem asks the following: given semialgebraic sets S, T , a matrix A,
and ε ≥ 0, does there exist n ∈ N such that for every point x ∈ S, there is
another point y ∈ Rd that is at distance at most ε from x, and for which Any ∈ T
(for ε = 0 this is exactly the Parking Problem). This is formulated as follows:
∃n ∈ N ∀x ∈ Qd ∃y ∈ Qd . |y − x| ≤ ε ∧ (x ∈ S → Any ∈ T ).

The fundamental decision problem for fooqs is determining the truth value—
given a fooq ∃n ∈ N . Φ(n), decide whether it holds. We dub this simply the fooq

Problem.
Note that when the fooq Problem is decidable, we can trivially also decide

whether the negation of a fooq is true, namely whether ∀n ∈ N . ¬Φ(n) holds. This
enables us to handle universal quantification on n, as well as existential.

As explained in Section 1, for dimension d > 3, the decidability status of even
simple fragments of the fooq Problem are open. Thus, we henceforth restrict
attention to the case d = 3.

For uniformity, we assume without loss of generality that the quantifiers in Φ(n)
are pushed outside. Thus, Φ(n) is of the form Q1x1, . . . , Qmxm . Ψ(n, x1, . . . , xm),
where each Qi is either ∃ or ∀, the xi are real-valued variables, and Ψ is a quantifier-
free formula whose atomic propositions are as above.

Our main result is the following.

Theorem 3 The fooq Problem is decidable.

We prove Theorem 3 in an incremental fashion: in Section 4 we handle a restricted
version of the problem, where Φ(n) is quantifier-free. Then, in Section 5 we show
how to eliminate quantifiers from Φ(n), thus reducing the general case to the
quantifier-free case.

4 Almost Self-Conjugate Systems of Inequalities

In this section we lay the groundwork for solving the fooq Problem in dimension
3. We do so by initially treating the case where the formula Φ(n) is quantifier free.



8 Shaull Almagor et al.

4.1 Analysis of the Quantifier-Free First-Order Orbit Query Problem

In the quantifier-free fooq Problem, we are given a query of the form ∃n ∈ N Φ(n)
and a matrix A, where Φ(n) is a Boolean combination of expressions in the following
forms:

1. g(~s) ∼ 0 where g ∈ Z[~x], ~s ∈ (A ∩R)3 is a vector with real-algebraic3 entries
and ∼ ∈ {>,=}.

2. An~s ∈ T where s ∈ (A ∩R)3 and T ⊆ R3 is a semialgebraic set.

and we wish to determine whether the query holds.
First, note that expressions of the first form do not depend on n, and can

thus be resolved and replaced with true or false. We thus assume that no such
expressions exist in Φ(n).

Let T ⊆ Rd be a semialgebraic set such that An~s ∈ T is an orbit proposition in
Φ(n) (recall that there may be several such ~s and T pairs). By Theorem 2, we can
compute a quantifier-free representation of T . That is, we can write T = {(x, y, z) :∨
I

∧
J RI,J(x, y, z) ∼I,J 0} where RI,J are polynomials with integer coefficients,

and ∼I,J ∈ {>,=}. Note that then, An~s ∈ T iff
∨
I

∧
J RI,J (An~s) ∼I,J 0.

Applying this for each orbit proposition An~s ∈ T in Φ(n), and transforming
Φ(n) to disjunctive normal form, we can write (abusing the indices I, J and the
notation RI,J ) Φ(n) =

∨
I

∧
J RI,J (An~sI,J ) ∼I,J 0, with ∼I,J ∈ {>,=}.

For the purpose of solving the fooq Problem, we note that it is enough to
consider each disjunct separately. Thus, we can assume Φ(n) =

∧
J RJ (An~sJ ) ∼J 0

and it remains to decide whether ∃n ∈ N Φ(n).
Next, consider the eigenvalues of A. Since A is a 3× 3 matrix, then either it

has only real eigenvalues, or it has one real eigenvalue and two conjugate complex
eigenvalues. In particular, if A has complex eigenvalues, then it is diagonalisable.

The case where A has only real eigenvalues is treated in Appendix A, and is
considerably simpler.

Henceforth, we assume A has complex eigenvalues, so that A = PDP−1 with

D =

λ 0 0
0 λ 0
0 0 ρ

, where λ is a complex eigenvalue, ρ ∈ R, and P an invertible matrix.

Observe that An = PDnP−1. By carefully analysing the structure of P , it is not

hard to show that for every ~s ∈ (A∩R)3, we have that Ans =

a1λn + a1λ
n

+ b1ρ
n

a2λ
n + a2λ

n
+ b2ρ

n

a3λ
n + a3λ

n
+ b3ρ

n


where the ai and bi are algebraic (and depend on ~s and A) and the bi are also real
(see Appendix C for a detailed analysis).

Thus, we want to decide whether there exists n ∈ N such that RJ(a1λ
n +

a1λ
n

+ b1ρ
n, a2λ

n + a2λ
n

+ b2ρ
n, a3λ

n + a3λ
n

+ b3ρ
n) ∼J 0 for every J (Observe

that a1, a2, a3, b1, b2, b3 may also depend on J , but we omit that for readability).
Since RJ is a polynomial, then by aggregating coefficients we can write, for

every ~s ∈ (A ∩R)d,

RJ (An~s) =
∑

0≤p1,p2,p3≤k
αp1,p2,p3λ

np1λ
np2

ρnp3 + αp1,p2,p3λ
np1

λnp2ρnp3 (2)

3 Formally, only rational numbers should be allowed. However, the results of this section are
meant to apply for a formula obtained by removing quantifiers in a general fooq. Thus, we
must account for algebraic numbers as well.
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for some k ∈ N, where the α’s depend on ~s,A and RJ . Note that we treat the (real)
coefficients of ρ as a sum of complex conjugate coefficients, but this can easily be
achieved by writing e.g., cρnp = c

2ρ
np + c

2ρ
np.

We notice that the polynomial RJ (An~s), consists of conjugate summands. More
precisely, R(An~s), when viewed as a polynomial in λn, λ

n
, and ρn, has the following

property.

Property 1 (Almost Self-Conjugate Polynomial) A complex polynomial Q(z1, z2, z3)
over C3 is almost self-conjugate if

Q(z1, z2, z3) =
∑

0≤t1,t2,t3≤`
δt1,t2,t3z

t1
1 z

t2
2 z

t3
3 + δt1,t2,t3z

t1
2 z

t2
1 z

t3
3 .

That is, if z2 = z1 and z3 is a real variable, then the monomials in Q appear in
conjugate pairs with conjugate coefficients.

We refer to the conjunction
∧
J RJ (An~s) ∼J 0 as an almost self-conjugate system.

It remains to show that we can decide whether there exists n ∈ N that solves the
system.

4.2 Solving Almost Self-Conjugate Systems

Our starting point is now an almost self-conjugate system as described above. In
the following, we will consider a single conjunct RJ (An~s) ∼J 0.

We start by normalising the expression RJ(An~s) ∼J 0 in the form of (2), as

follows. Let Λ = max
{
|λp1λp2ρp3 | : αp1,p2,p3 6= ∅

}
, we divide the expression in (2)

by Λn, and get that RJ (An~s) ∼J 0 iff

k∑
m=0

βmγ
nm + βmγ

nm + r(n) ∼J 0 (3)

where the βm are algebraic coefficients, γ = λ
|λ| satisfies |γ| = 1 and r(n) =∑k′

l=1 χlµ
n
l + χlµl

n with χl being algebraic coefficients, and |µl| < 1 for every

1 ≤ l ≤ k′. Moreover, every µl is a quotient of two elements of the form λp1λ
p2
ρp3 ,

and thus, by Section 2.1, deg(µl) = ‖RJ‖O(1) and H(µl) = 2‖RJ‖
O(1)

. Note that for
simplicity, we reuse the number k, although it may differ from k in (2). We refer to
Equation (3) as the normalised expression.

In the following, we assume that at least one of the βj is nonzero for j ≥ 1.
Indeed, otherwise we can recast our analysis on r(n), which is of lower order.

We now split our analysis according to whether or not γ is a root of unity. That
is, whether γd = 1 for some d ∈ N.

4.2.1 The case where γ is a root of unity

Suppose that γ is a root of unity. Then, the set {γn : n ∈ N} is a finite set{
γ0, . . . , γd−1

}
. Thus, by splitting the analysis of An~s according to n mod d, we can

reduce the problem to d instances which involve only real numbers. In Appendix B
we detail how to handle this case, and comment on its complexity.
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4.2.2 The case where γ is not a root of unity

When γ is not a root of unity, the set {γn : n ∈ N} is dense in the unit circle.
With this motivation in mind, we define, for a normalised expression, its dominant

function f : C → R as f(z) =
∑k
m=0 βmz

m + βmz
m. Observe that (3) is now

equivalent to f(γn) + r(n) ∼J 0.
Our main technical tool in handling (3) is the following lemma.

Lemma 1 Consider a normalised expression as in (3). Let ‖I‖ be its encoding length,

and let f be its dominant function. Then there exists N ∈ N computable in polynomial

time in ‖I‖ with N = 2‖I‖
O(1)

such that for every n > N it holds that

1. f(γn) 6= 0,

2. f(γn) > 0 iff f(γn) + r(n) > 0,

3. f(γn) < 0 iff f(γn) + r(n) < 0.

In particular, the lemma implies that if f(γn) + r(n) = 0, then n ≤ N . That is, if
∼J is “=”, then there is a bound on n that solves the system.

Remark 1 In the formulation of Lemma 1, we measure the complexity with respect

to ‖I‖. However, recall that when the input is T , we actually have ‖I‖ = 22O(‖T‖)
.

The analysis in Lemma 1 thus allows us to separate the blowup required for
analysing the semialgebraic target from our algorithmic contribution. In particular,
when the target has bounded description length, we can obtain better complexity
bounds.

We prove Lemma 1 in the remainder of this section.
Since {γn : n ∈ N} is dense on the unit circle, our interest in f is also about

the unit circle. By identifying C with R2, we can think of f as a function of
two real variables. In this view, f(x, y) is a polynomial with algebraic coeffi-
cients, and we can therefore compute a description of the algebraic set Zf ={

(x, y) : f(x, y) = 0 ∧ x2 + y2 = 1
}

. We start by showing that this set is finite. Define

g : (−π, π]→ R by g(x) = f(eix). Explicitly, we have g(x) =
∑k
m=0 2|βm| cos(mx+

θm) where θm = arg(βm). Clearly there is a one-to-one correspondence between Zf
and the roots of g.

We present the following proposition, which will be reused later in the proof.

Proposition 1 For every x ∈ (−π, π] there exists 1 ≤ j ≤ 4k such that g(j)(x) 6= 0,

where g(j) is the j-th derivative of g.

Proof Assume by way of contradiction that g′(x) = . . . = g4k(x) = 0. For every
1 ≤ j ≤ 4k we have that

g(j)(x) =


∑k
m=1m

j2|βm| cos(mx+ θm) j ≡4 0∑k
m=1−m

j2|βm| sin(mx+ θm) j ≡4 1∑k
m=1−m

j2|βm| cos(mx+ θm) j ≡4 2∑k
m=1m

j2|βm| sin(mx+ θm) j ≡4 3

(note that the summand that corresponds to m = 0 is dropped out in the derivative,
as it is constant).
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Splitting according j mod 4, we rewrite the equations g(j)(x) = 0 in matrix
form as follows.4

for j ≡4 0 :


14 24 · · · k4

18 28 · · · k8
...

...
...

...

14k 24k · · · k4k




2|β1| cos(x+ θ1)
2|β2| cos(2x+ θ2)

...
2|βk| cos(kx+ θk)

 =


0
0
...
0



for j ≡4 1 :


−11 −21 · · · −k1

−15 −25 · · · −k5
...

...
...

...

−14k−3 −24k−3 · · · −k4k−3




2|β1| sin(x+ θ1)
2|β2| sin(2x+ θ2)

...
2|βk| sin(kx+ θk)

 =


0
0
...
0



for j ≡4 2 :


−12 −22 · · · −k2

−16 −26 · · · −k6
...

...
...

...

−14k−2 −24k−2 · · · −k4k−2




2|β1| cos(x+ θ1)
2|β2| cos(2x+ θ2)

...
2|βk| cos(kx+ θk)

 =


0
0
...
0



for j ≡4 3 :


13 23 · · · k3

17 27 · · · k7

...
...

...
...

14k−1 24k−1 · · · k4k−1




2|β1| sin(x+ θ1)
2|β2| sin(2x+ θ2)

...
2|βk| sin(kx+ θk)

 =


0
0
...
0


Observe that the matrices we obtain are minors of Vandermonde Matrices (up

to their sign), and as such are non-singular [9]. It follows that
2|β1| sin(x+ θ1)
2|β2| sin(2x+ θ2)

...
2|βk| sin(kx+ θk)

 =


0
0
...
0

 and


2|β1| cos(x+ θ1)
2|β2| cos(2x+ θ2)

...
2|βk| cos(kx+ θk)

 =


0
0
...
0


Recall that we assume at least one βj′ is nonzero for some 1 ≤ j′ ≤ k, so we have
cos(j′x+θj′) = sin(j′x+θj′) = 0, which is clearly a contradiction. We thus conclude
the proof.

By Proposition 1, it follows that g is not constant, and therefore f(x, y) is not
constant on the curve x2 + y2 = 1. By Bezout’s Theorem, we have that Zf is finite,
and consists of at most 4k points. Moreover, f is a semialgebraic function (that is,
its graph {(x, y, f(x, y)) : x, y ∈ R} is semialgebraic set in R3). Thus, the points in
Zf have semialgebraic coordinates, and we can compute them. By identifying R2

with C, denote Zf = {z1, . . . , z4k}.

Remark 2 Since the polynomial f has algebraic coefficients, it is not immediately
clear how the degree and height of the points in Zf relate to ‖f‖. However, recall
that the algebraic coefficients in f are polynomials in the entries of Ans, which are,

4 By splitting modulo 2, we could actually improve the bound in the proposition from 4k to
2k, but this further complicates the proof.
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in turn, algebraic numbers of degree at most 3 whose description is polynomial in
that of A and s.

Thus, we can define Zf with a formula in the first-order theory of the reals with
a fixed number of variables. Using results of Renegar [21], we show in Appendix D
that the points in Zf have semialgebraic coordinates with description length
polynomial in ‖f‖.

We now employ the following lemma from [18], which is itself a consequence of
the Baker-Wüstholz Theorem [3].

Lemma 2 ([18]) There exists D ∈ N such that for all algebraic numbers ζ, ξ of

modulus 1, and for every n ≥ 2, if ζn 6= ξ, then |ζn − ξ| > 1

n(‖ζ‖+‖ξ‖)D .

Since γ is not a root of unity, it holds that γn1 6= γn2 for every n1 6= n2 ∈ N.
Thus, there exists a computable N1 ∈ N such that γn /∈ Zf for every n > N1.

Moreover, by [6, Lemma D.1], we have that N1 = ‖f‖O(1). By Lemma 2, there
exists a constant D ∈ N such that for every n ≥ N1 and 1 ≤ j ≤ 4k we have that
|γn − zj | > 1

n(‖f‖D)
(since

∥∥zj∥∥+ ‖γ‖ = O(‖f‖)). Intuitively, for n > N1 we have

that γn does not get close to any zi “too quickly” as a function of n. In particular,
for n > N1 we have f(γn) 6= 0. It thus remains to show that for large enough n,
r(n) does not affect the sign of f(γn) + r(n). Intuitively, this is the case because
r(n) decreases exponentially, while |f(γn)| is bounded from below by an inverse
polynomial.

For every zj ∈ Zf , let ϕj = arg zj , so that f(z) = 0 iff g(ϕj) = 0. We assume
without loss of generality that ϕj ∈ (−π, π) for every 1 ≤ j ≤ 4k. Indeed, if ϕj = π

for some j, then we can shift the domain of g slightly so that all zeros are in the
interior.

For every 1 ≤ j ≤ 4k, let Tj be the Taylor polynomial of g around ϕj such
that the degree dj of Tj is minimal and Tj is not identically 0. Thus, we have

Tj(x) =
g(dj )(ϕj)

dj !
(x− ϕj)dj . By Proposition 1 we have that dj ≤ 4k for every j. In

addition, the description of Tj is computable from that of ‖f‖.
By Taylor’s inequality, we have that for every x ∈ [−π, π] it holds that |g(x)−

Tj(x)| ≤ Mj |x−ϕj |dj+1

(dj+1)! where Mj = maxx∈[−π,π]

{
g(dj+1)(x)

}
(where g is extended

naturally to the domain [−π, π]). By our description of g(dj+1)(x), we see that Mj

is bounded by M = 4kmax1≤i≤k {|βi|} k4k+1.
Let ε1 > 0 be such that the following conditions hold for every 1 ≤ j ≤ 4k.

1. sign(g′(x)) does not change in (ϕj , ϕj + ε1) nor in (ϕj − ε1, ϕj).
2. |g(x)− Tj(x)| ≤ 1

2 |Tj(x)| for every x ∈ (ϕj − ε1, ϕj + ε1).
3. sign(g′(x)) = sign(T ′j(x)) for every x ∈ (ϕj − ε1, ϕj + ε1).

Note that we can assume (ϕj − ε1, ϕj + ε1) ⊆ (−π, π), since by our assumption
ϕj ∈ (−π, π) for all 1 ≤ j ≤ 4k.

An ε1 as above exists due to the following properties (see Figure 1 for an
illustration):

– There are only finitely many points where g′(x) = 0,
– Tj(x) is of degree dj , whereas |g(x)− Tj(x)| is upper-bounded by a polynomial

of degree dj + 1, and
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Fig. 1 g(x) and two Taylor polynomials: T1(x) around ϕ1 and T2(x) around ϕ2. The shaded
regions show where requirements (1)–(3) hold, which determine ε1. Observe that for T1, the
most restrictive requirement is |g(x)− T1(x)| ≤ 1

2
T1(x), whereas for T2 the restriction is the

requirement that T2(x) is monotone.

– T ′j(x) is the Taylor polynomial of degree dj − 1 of g′(x) around ϕj , so by
bounding the distance |g′(x)− T ′j(x)| we can conclude the third requirement.

In order to establish Lemma 1, we must be able to effectively compute ε1. We
thus proceed with the following lemma.

Lemma 3 ε1 can be computed in polynomial time in ‖f‖, and 1
ε1

= 2‖f‖
O(1)

.

Proof We compute δ1, δ2, δ3 that satisfy requirements 1,2, and 3, respectively. Then,
taking ε1 = min {δ1, δ2, δ3} will conclude the proof.

Condition 1: We compute δ1 > 0 such that sign(g′(x)) does not change in (ϕj −
δ1, ϕj) nor in (ϕj , ϕj + δ1). This is done as follows. Recall that g(x) = f(eix) =∑k
m=0 βme

imx + βmeimx. It is not hard to check that g′(x) =
∑k
m=0 imβme

imx +

imβmeimx. Let f̂(z) : C→ R be the function f̂(z) =
∑k
m=0 imβmz + imβmz, then

g′(x) = f̂(eix) and
∥∥∥f̂∥∥∥ = O(‖f‖).

Consider the algebraic set F =
{
z : |z| = 1 ∧ f̂(z) = 0

}
, then

{
x : g′(x) = 0

}
=

{arg(z) : z ∈ F}. By similar arguments as those by which we found the roots
of f on the unit circle, namely by adapting Proposition 1 to f̂ , we can con-
clude that F contains at most 4k points. Thus, it is enough to set δ1 such that(⋃4k

j=1(ϕj − δ1, ϕj) ∪ (ϕj , ϕj + δ1)
)
∩ F = ∅.

By Equation (1), we have that for z 6= z′ ∈ F it holds that |z − z′| >
√
6

d
d+1
2 ·Hd−1

where d and H are the degree and height of the roots of f̂(z) (see Remark 2). Thus,

1/|z − z′| is 2‖f‖
O(1)

, and has a polynomial description. Since | arg(z)− arg(z′)| >
|z−z′|, we conclude that by setting δ1 = min

{
|z − z′| : z 6= z′ ∈ F

}
/3, it holds that

1
δ1

has a polynomial description in ‖f‖, and δ1 satisfies the required condition.

Condition 2: Next, we compute δ2 > 0 such that |g(x)− Tj(x)| ≤ 1
2 |Tj(x)| for every

x ∈ (ϕj − δ2, ϕj + δ2). Recall that Tj(x) =
g(dj )(ϕj)

dj !
(x− ϕj)dj . Note that this case

is more challenging than Condition 1, as unlike g(x) = f(eix), the polynomial Tj(x)
has potentially transcendental coefficients (namely ϕj). For clarity, we omit the
index j in the following. Thus, we write T, d, ϕ instead of Tj , dj , ϕj , etc.
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In order to ignore the absolute value, assume T (x) ≥ g(x) > 0 in an interval
(ϕ,ϕ+ξ) for some ξ > 0 (the other cases are treated similarly). Then, the inequality
above becomes g(x)− 1

2T (x) ≥ 0. Since the degree of T is d, then by the definition of
T , the first d−1 derivatives of g in ϕ vanish. Define h(x) = g(x)− 1

2T (x), then we have

h(ϕ) = 0, h′(ϕ) = 0, . . . , h(d−1)(ϕ) = 0 and h(d)(ϕ) = g(d)(ϕ)− 1
2g

(d)(ϕ) = 1
2g

(d)(ϕ).

By our assumption, T (x) ≥ 1
2T (x) for x ∈ (ϕ,ϕ+ ξ), so h(d)(ϕ) > 0. In addition,

recall that |h(d+1)(x)| = |g(d+1)(x)| ≤M for every x ∈ [−π, π]. Thus, by writing the

d-th Taylor expansion of h(x) around ϕ, we have that h(x) = h(d)(ϕ)
d! (x−ϕ)d+E(x)

where |E(x)| ≤ M
(d+1)! (x− ϕ)d+1. We now have that

h(x) ≥ 1

2

g(d)(ϕ)

d!
(x− ϕ)d − M

(d+ 1)!
(x− ϕ)d+1.

Taking x ∈ (ϕ,ϕ+ g(d)(ϕ)(d+1)
2M ), it is easy to check that h(x) ≥ 0. We can now set

δ2 = g(d)(ϕ)(d+1)
2M , which satisfies the required condition.

Condition 3: Finally, we compute δ3 > 0 such that sign(g′(x)) = sign(T ′j(x)) for
every x ∈ (ϕj − δ3, ϕj + δ3). Observe that T ′j(x) is the (dj −1)-th Taylor polynomial

of g′(x) around ϕj . Thus, by following the reasoning used to find δ2, we can find δ3
such that |g′(x)− T ′j(x)| ≤ 1

2 |T
′
j(x)| for every x ∈ (ϕ− δ3, ϕ+ δ3), and in particular

it holds that sign(g′(x)) = sign(T ′j(x)) for every x ∈ (ϕj − δ3, ϕj + δ3).
As mentioned above, by setting ε1 = min {δ1, δ2, δ3}, we conclude the proof.

Conditions 1, 2, and 3 above imply that within the intervals (ϕj − ε1, ϕj + ε1) we
have that |g(x)| ≥ 1

2 |Tj(x)|, that g(x) and Tj(x) have the same sign, and that they
are both decreasing/increasing together.

We now claim that there exist a polynomial p(n) and a number N2 ∈ N such
that for every n > N2 it holds that |g(arg(γn))| > 1

p(n) . In order to compute p(n),

we compute separate polynomials for the domain
⋃4k
j=1(ϕj − ε1, ϕj + ε1) and for its

complement. Then, taking their minimum and bounding it from below by another
polynomial yields p(n).

We start by considering the case where arg(γn) ∈
⋃4k
j=1(ϕj − ε1, ϕj + ε1). Recall

that since γ is not a root of unity, then for every n > N1 it holds that γn /∈
Zf = {z1, . . . , z4k}. Then, by Lemma 2, for every 1 ≤ j ≤ 4k and every n ≥ N2 =
max {N1, 2} we have |γn−zj | > 1

n(‖f‖D)
. In addition, |γn−zj | ≤ | arg(γn)−ϕj | (since

the LHS is the Euclidean distance and the RHS is the spherical distance). Therefore,
| arg(γn)−ϕj | > 1

n(‖f‖D)
, so either arg(γn) > ϕj+ 1

n(‖f‖D)
or arg(γn) < ϕj− 1

n(‖f‖D)
.

Next, we have that if arg(γn) ∈ (ϕj − ε1, ϕj + ε1) for some 1 ≤ j ≤ 4k, then

|g(arg(γn))| ≥ 1
2 |Tj(arg(γn))| ≥ 1

2 min
{
|Tj(ϕj + 1

n(‖f‖D)
)|, |Tj(ϕj − 1

n(‖f‖D)
)|
}

, where

the last inequality follows from condition 3 above, which implies that Tj is monotone
with the same tendency as g.

Observe that Tj(ϕj − 1

n(‖f‖D)
) = g(dj )(ϕ)

dj !
1

n(‖f‖D)
and that similarly Tj(ϕj +

1

n(‖f‖D)
) = − g

(dj )(ϕ)
dj !

1

n(‖f‖D)
are both inverse polynomials (in n). Thus, |g(arg(γn))|

is bounded from below by an inverse polynomial. Moreover, these polynomials can
be easily computed in time polynomial in ‖f‖.
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Finally, we note that for x /∈
⋃4k
j=1(ϕj−ε1, ϕj+ε1) we can compute in polynomial

time a bound B > 0 such that |g(x)| > B. Indeed, B = min{|g(x)| : x ∈ [−π, π] \⋃4k
j=1(ϕj−ε1, ϕj +ε1)} (where g(−π) is defined naturally by extending the domain),

and we have that |B| > 0 since we assumed none of the ϕj are exactly at π (in
which case we would have had g(−π) = 0). In particular, we can combine the two
domains and compute a polynomial p as required. We remark that we can compute
‖B‖ in polynomial time, since it is either at least 1

2 |Tj(ϕj ± ε1)| for some 1 ≤ j ≤ 4k
(and by Lemma 3, ‖ε1‖ can be computed in polynomial time), or it is the value of
one of the extrema of g, and the latter can be computed by finding the extrema of
the (algebraic) function f on the unit circle.

To recap, for every n > N2 it holds that |g(arg(γn))| > 1
p(n) for a non-negative

polynomial p, and both N2 and p can be computed in polynomial time in the
description of the input.

Next, we wish to find N3 ∈ N such that for every n > N3 it holds that

r(n) < 1
p(n) . Recall that r(n) =

∑k′

l=1 χlµ
n
l + χlµl

n where for every 1 ≤ l ≤ k′ we

have that µl is algebraic with deg(µl) = ‖f‖O(1) and H(µl) = 2‖f‖
O(1)

. Observe
that 1− |µl| is also an algebraic number. Indeed, 1− |µl| = 1−

√
µlµl. Moreover, we

get that deg(1− |µl|) ≤ deg(µl)
4, as it is the root of a polynomial of degree at most

deg(µl)
4, and that H(1− |µl|) is polynomial in H(µl). Since |µl| < 1, by applying

Equation (1), we get 1− |µl| = |1− |µl|| >
√
6

d(d+1)/2H(µl)
d−1 where d = deg(µl)

O(1)

and H(µl) = 2‖I‖
O(1)

. It follows that we can compute δ ∈ (0, 1) with 1
δ = 2‖I‖

O(1)

such that 1− |µl| > δ, and hence |µ|n < 1− δ. Thus,

|r(n)| ≤
k′∑
l=1

2|χl||µl|mn ≤
k′∑
l=1

2|χl|(1− δ)mn ≤ 2k′ max
1≤l≤k′

|χl|(1− δ)n

We can now compute ε ∈ (0, 1) and N3 ∈ N such that:

1. 1
ε = 2‖I‖

O(1)

2. N3 = 2‖I‖
O(1)

3. For every n > N3 it holds that |r(n)| < (1− ε)n

Finally, by taking N4 ∈ N such that (1 − ε)n < 1
p(n) (which satisfies N4 =

2‖I‖
O(1)

) for all n > N4, we can now conclude that for every n > max {N2, N3, N4},
the following hold.

1. f(γn) = g(arg(γn)) 6= 0.
2. If f(γn) > 0, then g(arg(γn)) > 0, so g(arg(γn)) > 1

p(n) . Since |r(n)| < 1
p(n) , it

follows that f(γn) + r(n) = g(arg(γn)) + r(n) > 1
p(n) − |r(n)| > 0. Conversely, if

f(γn) + r(n) > 0, then g(arg(γn)) + r(n) > 0, but since |g(arg(γn))| > 1
p(n) and

|r(n)| < 1
p(n) , then it must hold that g(arg(γn)) > 0, so f(γn) > 0.

3. If f(γn) < 0, then g(arg(γn)) < 0, so g(arg(γn)) < − 1
p(n) . Since |r(n)| < 1

p(n) , it

follows that f(γn) + r(n) = g(arg(γn)) + r(n) < − 1
p(n) + |r(n)| < 0. Conversely,

if f(γn) + r(n) < 0, then g(arg(γn)) + r(n) < 0, but since |g(arg(γn))| > 1
p(n)

and |r(n)| < 1
p(n) , then it must hold that g(arg(γn)) < 0, so f(γn) < 0.

This concludes the proof of Lemma 1. ut
We are now ready to use Lemma 1 in order to solve the systems.
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Theorem 4 The problem of deciding whether an almost self-conjugate system has a

solution is decidable.

Proof Consider an almost self-conjugate system of the form
∧
J RJ (An~s) ∼J 0. For

each expression RJ (An~s) ∼J 0, let f be the corresponding dominant function, as
per Lemma 1, and compute its respective bound N . If ∼J is “=”, then by Lemma 1,
if the equation is satisfiable for n ∈ N, then n < N .

If all the ∼J are “>”, then for each such inequality compute {z : f(z) > 0},
which is a semialgebraic set. If the intersection of these sets is empty, then if n is a
solution for the system, it must hold that n < N . If the intersection is non-empty,
then it is an open set. Since γ is not a root of unity, then {γn : n ∈ N} is dense in
the unit circle. Thus, there exists n > N such that γn is in the above intersection,
so the system has a solution. Checking the emptiness of the intersection can be
done using Theorem 1.

Thus, it remains to check whether there exists a solution n < N , which is clearly
decidable.

Observe that from Theorem 4, combined with Section 4.1, we can conclude
the decidability of quantifier-free fooq Problem. However, as it turns out, we can
reuse Theorem 4 to obtain a much stronger result, namely the decidability of the
general fooq Problem.

5 Quantifier Elimination from First-Order Orbit Queries

In this section we complete the proof of Theorem 3, showing that the fooq

Problem is decidable. Intuitively, this is done by reducing the general problem
to the quantifier-free case of Section 4. Technically, we do not actually construct
an equivalent quantifier-free query, but rather reduce the fooq Problem to the
problem of solving a system of almost self-conjugate polynomials, and then apply
Theorem 4.

Proof (of Theorem 3) Consider a matrix A ∈ Q3×3 and let Φ(n) = Q1x1, . . . , Qmxm
Ψ(n, x1, . . . , xm) be a fooq as described in Section 3. We again assume that A has
a complex eigenvalue. As in Section 4, the case where all eigenvalues are real is
handled in Appendix A.

Consider an orbit proposition An~x ∈ T in Ψ , where ~x = (x1, x2, x3) consists
of (possibly) quantified variables.5 Following a similar analysis to Section 4.1, we

write A = PDP−1 with D =

λ 0 0
0 λ 0
0 0 ρ

, where λ is a complex eigenvalue, ρ ∈ R, and

P an invertible matrix. Then, we have An~x = PDnP−1~x, and for every 1 ≤ i ≤ 3
we have An(~x)i =

∑3
j=1(ai,jλ

n + ai,jλ
n

+ bi,jρ
n)xj with ai,j ∈ A and bi,j ∈ A ∩R.

That is, each coordinate 1 ≤ i ≤ 3, is a linear combination of x1, x2, x3 where the
coefficients are of the form above. In particular, the coefficient of every xj is an
almost self-conjugate polynomial (see Appendix C for a complete analysis).

Next, again as in Section 4.1, we write T = {(x, y, z) :
∨
I

∧
J RI,J (x, y, z) ∼I,J 0}

where RI,J are polynomials with integer coefficients, and ∼I,J ∈ {>,=}.

5 We use x1, x2, x3 to represent constants or variables from x1, . . . , xm. For readability, we
do not introduce double indices for these variables.
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Consider a monomial of the form xs11 x
s2
2 x

s3
3 in RI,J (~x). Replacing ~x with An~x,

the monomial then becomes Q(λn, λ
n
, ρn)xs11 x

s2
2 x

s3
3 , where Q(z1, z2, z3) is an al-

most self-conjugate polynomial. Indeed, this follows since the coordinates of An~x
above are almost self-conjugate polynomials, and products of almost self-conjugate
polynomials remain almost self-conjugate.

Recall that the polynomials RI,J in the description of T have integer (and in
particular, real) coefficients. By lifting the discussion about monomials to RI,J , we
can write

RI,J (An(~x)) =
∑

0≤s1,s2,s3≤k
QI,Js1,s2,s3(λn, λ

n
, ρn)xs11 x

s2
2 x

s3
3

where k ∈ N and the coefficients QI,Js1,s2,s3 are almost self-conjugate.
Thus, we can replace the orbit proposition An~x ∈ T with

∨
I

∧
J RI,J (An(~x)) ∼I,J

0, with RI,J (An(~x)) expanded as above.
Applying this to every orbit propositions in Ψ and converting Ψ to DNF, we

can write Ψ as∨
E

∧
F

SE,F (xE,F1 , xE,F2 , xE,F3 ) ∼E,F,1 0 ∧ gE,F (x1, . . . , xm) ∼E,F,2 0

where gE,F ∈ Z[~x], ∼E,F,1,∼E,F,2 ∈ {>,=}, xE,Fi ∈ {x1, . . . , xm} for every i ∈
{1, 2, 3}, and

SE,F (x, y, z) =
∑

0≤s1,s2,s3≤k
QE,Fs1,s2,s3(λn, λ

n
, ρn)xs1ys2zs3

Note that we must include the “standard” first-order atomic propositions gE,F

in every conjunct, which leads to slightly cumbersome indexing.
Intuitively, we now want to eliminate the quantifiers on x1, . . . , xm in the

expression above. However, we cannot readily do so, as the expression is also
quantified by n ∈ N. Nonetheless, in the following we manage to circumvent this
problem by increasing the dimension of the problem.

Let K be the number of polynomials QE,Fs1,s2,s3 that appear in Ψ , indexed by

E,F, s1, s2, s3. We introduce real-valued variables yE,Fs1,s2,s3 that, intuitively, serve as

placeholders for the polynomials QE,Fs1,s2,s3(λn, λ
n
, ρn). Thus, define S̃E,F (x, y, z) =∑

0≤s1,s2,s3≤k y
E,F
s1,s2,s3x

s1ys2zs3 .
Consider the set

U =

(y1, . . . , yK) ∈ RK :

Q1x1, . . . Qmxm,
∨
E

∧
F

S̃E,F (xE,F1 , xE,F2 , xE,F3 ) ∼E,F,1 0

∧gE,F (x1, . . . , xm) ∼E,F,2 0


Observe that U is a semialgebraic set. Indeed, the terms in S̃E,F are not dependent
on S, and so these are polynomials. Thus, by Theorem 2, we can eliminate the
quantifiers on x1, . . . , xm, and write

U =

{
(y1, . . . , yK) ∈ RK :

∨
I

∧
J

VI,J (y1, . . . , yK) ∼I,J 0

}
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where VI,J are polynomials with integer coefficients (and we re-use the indices
I, J). It is now the case that ∃n ∈ N Φ(n) holds iff there exists n ∈ N such that
(Q1(λn, λ

n
, ρn), . . . , QK(λn, λ

n
, ρn)) ∈ U . That is, we need to decide whether there

exist I and n ∈ N such that VI,J(Q1(λn, λ
n
, ρn), . . . , QK(λn, λ

n
, ρn)) ∼I,J 0 for

every J .
It is easy to see that since the polynomials QE,Fs1,s2,s3 are almost self-conjugate,

then so is VI,J (Q1(λn, λ
n
, ρn), . . . , QK(λn, λ

n
, ρn) (when viewed as a polynomial in

λn, λ
n
, ρn).

Thus, the conjunction∧
J

VI,J (Q1(ζn, ζ
n
, ηn), . . . , QK(ζn, ζ

n
, ηn))

is an almost self-conjugate system for every I, and by Theorem 4, it is decidable
whether it has a solution. This concludes the proof.

6 Discussion and Generalizations

This paper establishes the decidability of First-Order Orbit Queries in dimension
at most three. The class of first-order definable sets is arguably the largest natural
class for which membership is decidable. Thus, our results reach the limit of what
can be decided about the orbit of a single matrix. Moreover, our techniques shed
light on the decidability (or hardness) of orbit problems in higher dimensions: the
techniques we develop for analysing orbits can be applied to any matrix (in any
dimension) whose eigenvalues have arguments that are pairwise linearly dependent
over Q (i.e., the arguments of all the eigenvalues are rational multiples of some
angle θ). Indeed, it is easy to see that the orbits generated by such matrices can be
reduced to solving almost self-conjugate systems (see Section 4). This can be put
in contrast to known hardness results [5] in dimension d ≥ 4, which require a single
pair of eigenvalues whose arguments do not satisfy the above property. Thus, we
significantly sharpen the border of known decidability, and allow future research to
focus on hard instances.

Technically, our contribution uncovers two interesting tools. First, the identi-
fication of almost self-conjugate polynomials, and their amenability to analysis
(Section 4), and second, the ability to abstract away integral exponents in order
to perform quantifier elimination, by increasing the dimension (Section 5). The
former arises naturally in the context of matrix exponentiation, while the latter is
an obstacle that is often encountered when quantifying over semialgebraic sets in
the presence of a discrete operator (e.g., matrix exponentiation). In the future, we
plan to further investigate the applications of these directions.

In addition, we remark that our formalism can be slightly generalized, to
capture an even wider set of queries: observe that our queries separate orbit
propositions from standard first-order proposition. Technically, however, all we
require is that the polynomials we work with are almost self-conjugate. Thus, we
can also handle queries whose atomic propositions are of the form g(~x) ∼ 0 where
g ∈ Z[~x], ∼ ∈ {>,=}, and each entry of ~x is either a real-valued variable, or a
coordinate of Any for a variable y. That is, we can combine entries of Any with
first-order variables, within the same atomic proposition. For the sake of clarity,
we did not use this formalism in the paper.
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A The case of only real eigenvalues

In this section we consider the Semialgebraic Orbit Problem in the case where the matrix A
has only real eigenvalues, denoted ρ1, ρ2, ρ3. In this case, by converting A to Jordan normal
form, there exists an invertible matrix B ∈ (A ∩R)3×3 such that one of the following holds:

1. A = B−1

ρ1 0 0
0 ρ2 0
0 0 ρ3

B, in which case An = B−1

ρn1 0 0
0 ρn2 0
0 0 ρn3

B.

2. A = B−1

ρ1 1 0
0 ρ2 0
0 0 ρ3

B with ρ1 = ρ2, in which case An = B−1

ρn1 nρn−1
1 0

0 ρn1 0
0 0 ρn3

B.

3. A = B−1

ρ1 1 0
0 ρ2 1
0 0 ρ3

B with ρ1 = ρ2 = ρ3, in which case An = B−1

ρn1 nρn−1
1

1
2
n(n− 1)ρn−2

1

0 ρn1 nρn−1
1

0 0 ρn1

B.

In any of the forms above, we can write

Ans =

A1(n)ρn1 +B1(n)ρn2 + C1(n)ρn3
A2(n)ρn1 +B2(n)ρn2 + C2(n)ρn3
A3(n)ρn1 +B3(n)ρn2 + C3(n)ρn3


where the Ai, Bi, and Ci are polynomials whose degree is less than the multiplicity of their
corresponding eigenvalue.

In Sections 4 and 5, we reduce the problem to finding a solution to an almost self-conjugate
system. In the case of real eigenvalues, the notion of almost self-conjugate is meaningless, as
there are no complex numbers involved. Thus, following the analysis thereof, and plugging
the entries of Ans, we reduce the problem to solving a system of expressions of the form∧
J RJ (Ans) ∼J 0, where

RJ (Ans) =
∑

0≤p1,p2,p3≤k
αJp1,p2,p3 (n)ρp1n1 ρp2n2 ρp3n3 (4)

for some k ∈ N, and αJp1,p2,p3 (n) are polynomials.
Assuming ρ1, ρ2, ρ3 > 0 (otherwise we can split according to odd and even n), for each

such expression we can compute a bound N ∈ N based on the rate of growth of the summands,
such that either for every n > N the equation holds, or for every n > N it does not hold.

B The case where γ is a root of unity

We assume that γ = λ
|λ| is a root of unity. That is, there exists d ∈ N such that γd = 1, so we

have that {γn : n ∈ N} =
{
γ0, . . . , γd−1

}
.

Let n ∈ N and write m = (n mod d). We can now write

Ans =

a1|λ|nγm + a1|λ|nγm + b1ρn

a2|λ|nγm + a2|λ|nγm + b2ρn

a3|λ|nγm + a3|λ|nγm + b3ρn

 =

2Re(a1γm)|λ|n + b1ρn

2Re(a2γm)|λ|n + b2ρn

2Re(a3γm)|λ|n + b3ρn


Observe that there exists n ∈ N such that Ans ∈ T iff there exist 0 ≤ m ≤ d − 1 and
r ∈ N ∪ {0} such that Ard+ms ∈ T . We can thus split our analysis according to m ∈
{0, . . . , d− 1}. For every such m, we need to decide whether there exists r ∈ N∪ {0} such that2Re(a1γm)|λ|m(|λ|d)r + b1ρm(ρd)r

2Re(a2γm)|λ|m(|λ|d)r + b2ρm(ρd)r

2Re(a3γm)|λ|m(|λ|d)r + b3ρm(ρd)r

 Note that γm, |λ|m and ρm are constants. Therefore,

these expressions contain only realalgebraic constants, the system can be viewed as a case
handled in the setting of all real eigenvalues. We can thus proceed with the analysis in Section A.
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Finally, we remark that d ≤ deg(γ)2. The proof appears in [13], and we bring it here for
completeness. Since γ is a primitive root of unity of order d, then the defining polynomial pγ
of γ is the d-th Cyclotomic polynomial, so deg(γ) = Φ(d), where Φ is Euler’s totient function.

Since Φ(d) ≥
√
d, we get that d ≤ deg(γ)2. Therefore, the number of cases we consider is

polynomial in the original input, and does not involve a blowup in the complexity.

C Change of Basis Matrices in the 3 × 3 case

In this section we consider a diagonalisable matrix A ∈ Q3×3 with complex eigenvalues. Thus,
we can write A = PDP−1 with D = diag(λ, λ, ρ) with λ ∈ A and ρ ∈ A ∩R.

Note that the columns of the matrix P are eigenvectors of A, and moreover, conjugate
eigenvalues have conjugate eigenvectors and real eigenvalues have real eigenvectors. We can
therefore assume

P =

a a db b e
c c f


for a, b, c ∈ A and d, e, f ∈ R ∩A.

Lemma 4 Let E = diag(δ1, δ2, δ3) be a diagonal matrix, then every coordinate of PEP−1 is
of the form αδ1 + αδ2 + βδ3, where α ∈ A and β ∈ A ∩R.

Proof The proof is straightforward: we compute the matrix P−1, and then the product PEP−1.
We leave it to the reader to verify the following: first, the determinant of P is pure-imaginary,

i.e., det(P ) = mi for m ∈ R ∩A. Second, we have

P−1 =
1

mi

fb− ec dc− fa ea− dbce− bf af − cd bd− ae
bc− cb ca− ac ab− ba


Finally, it is very easy (yet tedious) to verify that PEP−1 satisfies the claim. We demonstrate

by computing the coordinate (PEP−1)1,2.
We have that the first row of PE is (aδ1, aδ2, dδ3), and hence

(PEP−1)1,2 = (PE)1,1P
−1
1,2 + (PE)1,2P

−1
2,2 + (PE)1,3P

−1
3,2

=
1

mi
(aδ1(dc− fa) + aδ2(af − cd) + dδ3(ca− ac))

=
1

m
(−iδ1(adc− afa) + iδ2(acd− afa)− iδ3(dca− dac))

It is now easy to see that the coefficients of δ1 and δ2 are conjugates, and the coefficient of δ3
is real, as desired.

D Bounds on the Description Size of Points in Zf

We complete the analysis of Remark 2.

Recall that f(z) =
∑k
m=0 βmz

m+βmzm, and Zf = {z : f(z) = 0 ∧ |z| = 1}. Further recall
that for every 0 ≤ m ≤ k, βm is a polynomial in a1, a2, a3, a1, a2, a3, b1, b2, b3, where all the
latter are linear combinations of roots of the characteristic polynomial of A, and are therefore
algebraic numbers of degree at most 3 and description polynomial in ‖A‖+ ‖s‖.

We can now express the condition f(z) = 0 using a quantified formula in the first-order
theory of the reals by replacing each of the constants above (i.e. a1, etc.) by their corresponding
description, as per Section 2.2. It follows that in this description, there are at most 9 variables.
We now employ the following result due to Renegar [21].
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Theorem 5 (Renegar) Let M ∈ N be fixed. Let τ(y) be a formula of the first-order theory
of the reals. Assume that the number of (free and bound) variables in τ(y) is bounded by M .
Denote the degree of τ(y) by d and the number of atomic predicates in τ(y) by n.

There is a polynomial time (polynomial in ‖τ(y)‖) procedure which computes an equivalent
quantifier-free formula

χ(y) =

I∨
i=1

Ji∧
j=1

hi,j(y) ∼i,j 0

where each ∼i,j is either > or =, with the following properties:

1. Each of I and Ji (for 1 ≤ i ≤ I) is bounded by (n+ d)O(1).

2. The degree of χ(y) is bounded by (n+ d)O(1).

3. The height of χ(y) is bounded by 2‖τ(y)‖(n+d)
O(1)

.

We apply this theorem to the description of Zf given above, where we identify C with

R2 so that f is indeed a polynomial. Then, we obtain in polynomial time a description of Zf .

Moreover, the degrees of the entries is bounded by ‖f‖O(1) and their height is bounded by

2‖f‖
O(1)

.


