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Abstract

For a graph G = (V,E) with no isolated vertices, a set D ⊆ V is called a semipaired dominating
set of G if (i)D is a dominating set ofG, and (ii)D can be partitioned into two element subsets such
that the vertices in each two element set are at distance at most two. The minimum cardinality of a
semipaired dominating set of G is called the semipaired domination number of G, and is denoted by
γpr2(G). The MINIMUM SEMIPAIRED DOMINATION problem is to find a semipaired dominating
set of G of cardinality γpr2(G). In this paper, we initiate the algorithmic study of the MINIMUM
SEMIPAIRED DOMINATION problem. We show that the decision version of the MINIMUM SEMI-
PAIRED DOMINATION problem is NP-complete for bipartite graphs and split graphs. On the positive
side, we present a linear-time algorithm to compute a minimum cardinality semipaired dominating
set of interval graphs and trees. We also propose a 1 + ln(2∆ + 2)-approximation algorithm for the
MINIMUM SEMIPAIRED DOMINATION problem, where ∆ denote the maximum degree of the graph
and show that the MINIMUM SEMIPAIRED DOMINATION problem cannot be approximated within
(1− ε) ln |V | for any ε > 0 unless NP ⊆ DTIME(|V |O(log log |V |)).

Keywords: Domination, Semipaired Domination, Bipartite Graphs, Chordal Graphs, Graph algo-
rithm, NP-complete, Approximation algorithm.

1 Introduction

A dominating set in a graph G is a set D of vertices of G such that every vertex in V (G) \ D is
adjacent to at least one vertex in D. The domination number of G, denoted by γ(G), is the minimum
cardinality of a dominating set of G. The MINIMUM DOMINATION problem is to find a dominating
set of cardinality γ(G). More thorough treatment of domination, can be found in the books [6, 7]. A
dominating set D is called a paired dominating set if G[D] contains a perfect matching. The paired
domination number of G, denoted by γpr(G) is the minimum cardinality of paired dominating set of G.
The concept of paired domination was introduced by Haynes and Slater in [11].
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A relaxed form of paired domination called semipaired domination was introduced by Haynes and
Henning [8] and studied further in [12, 9, 10]. A set S of vertices in a graph G with no isolated vertices
is a semipaired dominating set, abbreviated a semi-PD-set, of G if S is a dominating set of G and S
can be partitioned into 2-element subsets such that the vertices in each 2-element set are at distance at
most 2. In other words, the vertices in the dominating set S can be partitioned into 2-element subsets
such that if {u, v} is a 2-set, then the distance between u and v is either 1 or 2. We say that u and v are
semipaired. The semipaired domination number of G, denoted by γpr2(G), is the minimum cardinality
of a semi-PD-set of G. Since every paired dominating set is a semi-PD-set, and every semi-PD-set is a
dominating set, we have the following observation.

Observation 1.1. ([8]) For every isolate-free graph G, γ(G) ≤ γpr2(G) ≤ γpr(G).

By Observation 1.1, the semipaired domination number is squeezed between two fundamental dom-
ination parameters, namely the domination number and the paired domination number.

More formally, the minimum semipaired domination problem and its decision version are defined as
follows:
MINIMUM SEMIPAIRED DOMINATION problem (MSPDP)

Instance: A graph G = (V,E).

Solution: A semi-PD-set D of G.

Measure: Cardinality of the set D.

SEMIPAIRED DOMINATION DECISION problem (SPDDP)

Instance: A graph G = (V,E) and a positive integer k ≤ |V |.

Question: Does there exist a semi-PD-set D in G such that |D| ≤ k?

In this paper, we initiate the algorithmic study of the semipaired domination problem. The main
contributions of the paper are summarized below. In Section 2, we discuss some definitions and notations.
In Section 3, we discuss the difference between the complexity of paired domiantion and semipaired
domination in graphs. In Section 4, we show that the SEMIPAIRED DOMINATION DECISION problem
is NP-complete for bipartite and split graphs. In Section 5 and Section 6, we propose a linear-time
algorithms to solve the MINIMUM SEMIPAIRED DOMINATION problem in interval graphs and trees
respectively. In Section 7, we propose an approximation algorithm for the MINIMUM SEMIPAIRED

DOMINATION problem in general graphs. In Section 8, we discuss an approximation hardness result.
Finally, Section 9, concludes the paper.

2 Terminology and Notation

For notation and graph theory terminology, we in general follow [13]. Specifically, let G = (V,E)
be a graph with vertex set V = V (G) and edge set E = E(G), and let v be a vertex in V . The
open neighborhood of v is the set NG(v) = {u ∈ V |uv ∈ E} and the closed neighborhood of v is
NG[v] = {v} ∪ NG(v). Thus, a set D of vertices in G is a dominating set of G if NG(v) ∩D 6= ∅ for
every vertex v ∈ V \D, whileD is a total dominating set ofG ifNG(v)∩D 6= ∅ for every vertex v ∈ V .
The distance between two vertices u and v in a connected graph G, denoted by dG(u, v), is the length of
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a shortest (u, v)-path in G. If the graph G is clear from the context, we omit it in the above expressions.
We write N(v), N [v] and d(u, v) rather than NG(v), NG[v] and dG(u, v), respectively.

For a set S ⊆ V (G), the subgraph induced by S is denoted by G[S]. If G[C], where C ⊆ V , is a
complete subgraph of G, then C is a clique of G. A set S ⊆ V is an independent set if G[S] has no
edge. A graph G is chordal if every cycle in G of length at least four has a chord, that is, an edge joining
two non-consecutive vertices of the cycle. A chordal graph G = (V,E) is a split graph if V can be
partitioned into two sets I and C such that C is a clique and I is an independent set. A vertex v ∈ V (G)
is a simplicial vertex of G if NG[v] is a clique of G. An ordering α = (v1, v2, ..., vn) is a perfect
elimination ordering (PEO) of vertices of G if vi is a simplicial vertex of Gi = G[{vi, vi+1, ..., vn}]
for all i, 1 ≤ i ≤ n. Fulkerson and Gross [4] characterized chordal graphs, and showed that a graph
G is chordal if and only if it has a PEO. A graph G = (V,E) is bipartite if V can be partitioned into
two disjoint sets X and Y such that every edge of G joins a vertex in X to a vertex in Y , and such a
partition (X,Y ) of V (G) is called a bipartition of G. Further, we denote such a bipartite graph G by
G = (X,Y,E). A graph G is an interval graph if there exists a one-to-one correspondence between
its vertex set and a family of closed intervals in the real line, such that two vertices are adjacent if and
only if their corresponding intervals intersect. Such a family of intervals is called an interval model of a
graph.

In the rest of the paper, all graphs considered are simple connected graphs with at least two vertices,
unless otherwise mentioned specifically. We use the standard notation [k] = {1, . . . , k}. For most of the
approximation related terminologies, we refer to [1, 14].

3 Complexity difference between paired domination and semipaired dom-
ination

In this section, we make an observation on complexity difference between paired domination and
semipaired domination. We show that the decision version of the MINIMUM PAIRED DOMINATION

problem is NP-complete for GP4 graphs, but the MINIMUM SEMIPAIRED DOMINATION problem is
easily solvable for GP4 graphs. The class of GP4 graphs was introduced by Henning and Pandey in [15].
Below we recall the definition of GP4 graphs.

Definition 3.1 (GP4-graph). A graph G = (V,E) is called a GP4-graph if it can be obtained from
a general connected graph H = (VH , EH) where VH = {v1, v2, . . . , vnH}, by adding a path of
length 3 to every vertex of H . Formally, V = VH ∪ {wi, xi, yi, zi | 1 ≤ i ≤ nH } and E =
EH ∪ {viwi, wixi, xiyi, yizi | 1 ≤ i ≤ nH }.

Theorem 3.1. If G is a GP4-graph, then γpr2(G) = 2
5 |V (G)|.

Lemma 3.1. If G is a GP4-graph constructed from a graph H as in Definition 3.1, then H has a paired
dominating set of cardinality k, k ≤ nH if and only if G has a semi-PD-set of cardinality 2nH + k.

Since the decision version of the MINIMUM PAIRED DOMINATION problem is known to be NP-
complete for general graphs [11], the following theorem follows directly from Lemma 3.1.

Theorem 3.2. The decision version of the MINIMUM PAIRED DOMINATION problem is NP-complete
for GP4-graphs.
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4 NP-completeness Results

In this section, we study the NP-completeness of the SEMIPAIRED DOMINATION DECISION prob-
lem. We show that the SEMIPAIRED DOMINATION DECISION problem is NP-complete for bipartite
graphs and split graphs.

4.1 NP-completeness proof for bipartite graphs

Theorem 4.1. The SEMIPAIRED DOMINATION DECISION problem is NP-complete for bipartite graphs.

Proof. Clearly, the SEMIPAIRED DOMINATION DECISION problem is in NP for bipartite graphs. To
show the hardness, we give a polynomial reduction from the MINIMUM VERTEX COVER problem.
Given a non-trivial graph G = (V,E), where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}, we
construct a graph H = (VH , EH) in the following way:

Let Vk = {vki | i ∈ [n]} and Ek = {ekj | j ∈ [m]} for k ∈ [2]. Also assume that A = {ai | i ∈ [n]},
B = {bi | i ∈ [n]}, C = {ci | i ∈ [n]}, and F = {fi | i ∈ [n]}.

Now define VH = V1 ∪ V2 ∪ E1 ∪ E2 ∪A ∪B ∪ C ∪ F ,
and EH = {v1i fi, v2i fi, aibi, bici, aifi | i ∈ [n]} ∪ {vkpeki , vkq eki | k ∈ [2], i ∈ [m], vp, vq are endpoints of
edge ei in G}. Fig. 2 illustrates the construction of H from G.
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Figure 1: An illustration of the construction of H from G in the proof of Theorem 4.1.

Note that the set I1 = V1∪V2∪A∪C is an independent set inH . Also, the set I2 = E1∪E2∪F ∪B
is an independent set in H . Since VH = I1 ∪ I2, the graph H is a bipartite graph. Now to complete the
proof, it suffices for us to prove the following claim:

Claim 4.1. The graph G has a vertex cover of cardinality at most k if and only if the graph H has a
semi-PD-set of cardinality at most 2n+ 2k.

Proof. Let Vc = {vi1 , vi2 , . . . , vik} be a vertex cover ofG of cardinality k. ThenDp = {v1i1 , v
1
i2
, . . . , v1ik}∪

{v2i1 , v
2
i2
, . . . , v2ik} ∪B ∪ F is a semi-PD-set of H of cardinality 2n+ 2k.

Conversely, suppose that H has a semi-PD-set D of cardinality at most 2n + 2k. Note that D ∩
{ai.bi, ci, fi}| ≥ 2 for each i ∈ [n]. Hence, without loss of generality, we may assume that {bi, fi | i ∈
[n]} ⊆ D, where bi and fi are semipaired. Hence |D∩(E1∪E2∪V1∪V2)| ≤ 2k. Let S = (V1∪E1)∩D.
Without loss of generality, we may also assume that |S| ≤ k. Now, if e1i ∈ S for some i ∈ [m], and none
of its neighbors belongs to D, then e1i must be semipaired with some vertex e1j where j ∈ [m] \ {i}, and
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also there must exists a vertex v1k which is a common neighbor of e1i and e1j . In this case, we replace the
vertex e1i in the set S with the vertex v1k and so S ← (S \ {e1i }) ∪ {v1k} where v1k and e1j are semipaired.
We do this for each vertex e1i ∈ S where i ∈ [m] with none of its neighbors in the setD. For the resulting
set S, |S ∩ V1| ≤ k and every vertex e1i has a neighbor in V1 ∩ S. The set Vc = {vi | v1i ∈ S} is a vertex
cover of G of cardinality at most k. This completes the proof of the claim.

Hence, the theorem is proved.

4.2 NP-completeness result for split graphs

Theorem 4.2. The SEMIPAIRED DOMINATION DECISION problem is NP-complete for split graphs.

Proof. Clearly, the SEMIPAIRED DOMINATION DECISION problem is in NP. To show the hardness, we
give a polynomial time reduction from the DOMINATION DECISION problem, which is well known NP-
complete problem. Given a non-trivial graph G = (V,E), where V = {vi | i ∈ [n]} and E = {ej | j ∈
[m]}, we construct a split graph G′ = (VG′ , EG′) as follows:

Let Vk = {vki | i ∈ [n]} and Uk = {uki | i ∈ [n]} for k ∈ [2]. Now define VG′ = V1 ∪ V2 ∪ U1 ∪ U2,
and EG′ = {uv | u, v ∈ V1 ∪ U1, u 6= v} ∪ {v2i v1j , u2iu1j | i ∈ [n] and vj ∈ NG[vi]}. Note that the set
A = V1 ∪U1 is a clique in G′ and the set B = V2 ∪U2 is an independent set in G′. Since VG′ = A∪B,
the constructed graph G′ is a split graph. Fig. 2 illustrates the construction of G′ from G.
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Figure 2: An illustration to the construction of G′ from G in the proof of Theorem 4.2.

Now, to complete the proof of the theorem, we only need to prove the following claim.

Claim 4.2. G has a dominating set of cardinality k if and only ifG′ has a semi-PD-set of size cardinality
2k.

Proof. LetD = {vi1 , vi2 , . . . , vik} be a dominating set of size atmost k ofG. ThenDsp = {v1i1 , v
1
i2
, . . . , v1ik}∪

{u1i1 , u
1
i2
, . . . , u1ik} is a semi-PD-set of G′ of size atmost 2k.

Conversely, suppose thatG has a semi-PD-setDsp of cardinality at most 2k. Let S1 = (V1∪V2)∩Dsp

and S2 = U1 ∪ U2 ∩Dsp. Then either |S1| ≤ k or |S2| ≤ k. Without loss of generality, let us assume
that |S1| ≤ k. Note that if v2i ∈ S1 and none of neighbors belong to S1 then we replace v2i by some of
its neighbor v1j in the set S1. So, we may assume that S1 ∩ V2 = φ. Now the set D = {vi | v1i ∈ S1} is
a dominating set of G of size atmost k. Hence, the result follows.

Hence, the theorem is proved.
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5 Algorithm for Interval Graphs

In this section, we present a linear-time algorithm to compute a minimum cardinality semi-PD-set of
an interval graph.

A linear time recognition algorithm exists for interval graphs, and for an interval graph an interval
family can also be constructed in linear time [2, 5]. Let G = (V,E) be an interval graph and I be its
interval model. For a vertex vi ∈ V , let Ii be the corresponding interval. Let ai and bi denote the left and
right end points of the interval Ii. Without loss of generality, we may assume that no two intervals share
a common end point. Let α = (v1, v2, . . . , vn) be the left end ordering of vertices of G, that is, ai < aj
whenever i < j. Now we first prove the following lemmas.

Lemma 5.1. Let α = (v1, v2, . . . , vn) be the left end ordering of vertices of G. If vivj ∈ E for i < j,
then vivk ∈ E for every i < k < j.

Proof. The proof directly follows from the left end ordering of vertices of G.

Define the set Vi = {v1, v2, . . . , vi}, for each i ∈ [n].

Lemma 5.2. If G is a connected interval graph, then G[Vi] is also connected.

Proof. The proof can easily be done using induction on i.

Let F (vi) be the least index vertex adjacent to vi, that is, if F (vi) = vp, then p = min{k | vkvi ∈ E}.
In particular, we define F (v1) = v1. Let L(vi) = vq, where q = max{k | vkvi /∈ E and k < i}. In
particular, if L(vi) does not exist, we assume that L(vi) = v0 (v0 /∈ V ). LetGi = G[Vi] andDi denote a
semi-PD-set of Gi of minimum cardinality. Recall that we only consider connected graphs with at least
two vertices.

Lemma 5.3. For i ≥ 2, if F (vi) = v1, then Di = {v1, vi}.

Proof. Note that every vertex in Gi is dominated by v1, and dGi(v1, vi) = 1. Hence, Di = {v1, vi}.

Lemma 5.4. For i > 1, if F (vi) = vj , j > 1 and F (vj) = v1, then Di = {v1, vj}.

Proof. Note that every vertex in Gi is dominated by some vertex in the set {v1, vj}, and dGi(v1, vi) = 1.
Hence, Di = {v1, vi}.

Lemma 5.5. For r < k < j < i, let F (vi) = vj , F (vj) = vk F (vk) = vr. If every vertex vl where
k < l < j, is adjacent to at least one vertex in the set {vj , vr}, then the following holds:
(a) {vj , vr} ⊆ Di.
(b) vj is semipaired with vr in Di.
(c) Di ∩ {vs+1, . . . , vr, vr+1, . . . , vi} = {vj , vr}.

Proof. (a) To dominate vi, either vi ∈ Di or vi1 ∈ Di, where j ≤ i1 < i and vi1 ∈ NGi(vi). If i1 6= j
and vi1 is semipaired with some vertex vj1, then NGi(vi1) ⊆ NGi(vj), and dGi(vj , vj1) ≤ 2. Hence, we
can update the set Di as Di = (Di \ {vi1}) ∪ {vj} and semipair vj with vj1. This proves that vj ∈ Di.

If vr also belongs to Di, then we are done. Otherwise, if vj is semipaired with vj1 (where j1 6= r),
then j1 > r. Also, NG[vj1] ⊆ NG[vj ] ∪ NG[vr]. In that case, we can update the set Di as Di =
(Di \ {vj1}) ∪ {vr}. Hence, {vj , vr} ⊆ Di.
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(b) Suppose {vj , vr} ⊆ Di. If vj is semipaired with vr in Di, then we are done. Otherwise, if vj is not
semipaired with vr, assume that vj is semipaired with vj1 and vr is semipaired with vr1. Note that j1
must be greater than r, and NGi [vj1] ⊆ NGi [vj ]∪NGi [vr]. Therefore, the set Di \ {vj1} also dominates
all the vertices of Gi.

Suppose that NGi(vr1) ⊆ Di. In this case, D′ = Di \ {vj1, vr1} is a semi-PD-set of Gi where vj
and vr are semipaired. This contradicts the fact that Di is a semi-PD-set of Gi of minimum cardinality.
Hence, NGi(vr1) * Di.

Let vr2 ∈ Di \NGi(vr1). Now update the set Di as follows: remove vj1 from Di, add vr2 in the set
Di, semipair vj with vr and vr1 with vr2. Clearly, the updated set is also a semi-PD-set of Gi of mini-
mum cardinality. This proves that there always exists a semi-PD-set Di of Gi such that {vj , vr} ⊆ Di,
and vj is semipaired with vr in Di.

(c) We know that {vj , vr} ⊆ Di∩{vs+1, . . . , vr, vr+1, . . . , vi}. We need to show thatDi∩{vs+1, . . . , vr,
vr+1, . . . , vi} = {vj , vr}, that is, there is no other vertex from the set {vs+1, . . . , vr, vr+1, . . . , vi} be-
longs to Di. Suppose, to the contrary, that there does not exist any Di for which Di ∩ {vs+1, . . . , vr,
vr+1, . . . , vi} = {vj , vr}. So, for each Di, |Di ∩ {vs+1, . . . , vr, vr+1, . . . , vi}| ≥ 3. Consider a set Di

for which |Di ∩ {vs+1, . . . , vr, vr+1, . . . , vi}| is minimum.
Let |Di ∩ {vs+1, . . . , vr, vr+1, . . . , vi}| = l. Also, assume that vp ∈ Di, where p 6= j, r and

s+1 ≤ p ≤ i. Also, assume that vp is semipaired with vp1 inDi. Now consider the following two cases.
Case 1. p1 > s. If vs ∈ Di, then if, some vertex of the set {v1, v2, . . . , vs} is dominated by vp or vp1,
then that vertex is also dominated by vs. In that case, Di \ {vp, vp1} is also a semi-PD-set of Gi, which
is a contradiction. If vs /∈ Di and NGi(vs) ⊆ Di, then also Di \ {vp, vp1} is a semi-PD-set of Gi, which
is again a contradiction. Hence, vs /∈ Di and NGs(vs) * Di. Suppose vq ∈ NGs(vs)∩Di. Then, update
the set Di as Di = (Di \ {vp, vp1}) ∪ {vs, vq}. Note that Di is still a semi-PD-set of Gi of minimum
cardinality, and |Di ∩ {vs+1, . . . , vr, vr+1, . . . , vi}| < l, a contradiction.
Case 2. p1 ≤ s. If vs /∈ Di, then the updated set Di = (Di \ {vp})∪{vs} is also a semi-PD-set of Gi of
minimum cardinality. If vs ∈ Di and NGs(vp1) ⊆ Di, then the updated set Di = Di \ {vp, vp1} is also
a semi-PD-set of Gi, a contradiction. If vs ∈ Di and NGs(vp1) * Di, let vq ∈ NGs(vp1) \ Di. Then,
update Di as Di = (Di \{vp})∪{vq}. Note that Di is still a semi-PD-set of Gi of minimum cardinality,
and |Di ∩ {vs+1, . . . , vr, vr+1, . . . , vi}| < l, a contradiction.

Since both Case 1 and Case 2 produce a contradiction, there exists a semi-PD-set Di of Gi of mini-
mum cardinality, for which the set Di ∩ {vs+1, . . . , vr, vr+1, . . . , vi} contains only vj and vr.

Lemma 5.6. For r < k < j < i, let F (vi) = vj , F (vj) = vk F (vk) = vr. If every vertex vl where
k < l < j, is adjacent to at least one vertex in the set {vj , vr}, then the following holds.
(a) Di = {vj , vr} if L(vr) = v0.
(b) Di = {v1, v2, vj , vr} if L(vr) = v1.
(c) Di = Ds ∪ {vj , vr} if L(vr) = vs with s ≥ 2.

Proof. (a) Clearly Di = {vj , vr}.

(b) From Lemma 5.5, we know that {vj , vr} ⊆ Di. Also, other than v1, all vertices are dominated
by the set {vj , vr}. Hence, Di = {v1, v2, vj , vr}.

(c) Clearly Ds ∪ {vj , vr} is a semi-PD-set of Gi. Hence |Di| ≤ |Ds| + 2. We also know that there
exists a semi-PD-set Di of Gi of minimum cardinality such that Di ∩ {vs+1, vs+2, . . . , vi} = {vj , vr}
(where vj and vr are semipaired in Di). Hence Di \ {vj , vr} ⊆ V (Gs). Also, {vj , vr} dominates the set
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{vs+1, vs+2, . . . , vn}, implying that the set {v1, v2, . . . , vs} is dominated by the vertices inDi \{vj , vr}.
Hence, the set Di \ {vj , vr} is semi-PD-set of Gs. Therefore, |Ds| ≤ |Di| − 2. This proves that
|Di| = |Ds|+ 2. Hence, Di = Ds ∪ {vj , vr}.

Lemma 5.7. For r < k < j < i, let F (vi) = vj , F (vj) = vk F (vk) = vr, and {vl | k < l < j} *
NGi [vr] ∪ NGi [vj ]. Let t = max{l | k < l < j and vlvj /∈ E} (assume that such a t exists). Let
F (vt) = vb. Then, the following holds.
(a) {vj , vb} ⊆ Di.
(b) vj is semipaired with vb in Di.
(c) Di ∩ {vs+1, . . . , vb, vb+1, . . . , vi} = {vj , vb}.

Proof. (a) First we show that vj ∈ Di. Suppose vj /∈ Di. Let vp be the vertex dominating vi in Di.
Note that j < p ≤ i and NGi [vp] ⊆ NGi [vj ]. Let vq be the vertex semipaired with vp in Di. Since
N [vp] ⊆ N [vj ], any vertex which is within distance 2 from vp is also within distance 2 from vj . We can
update Di as Di \ {vp} ∪ {vj} with vj semipaired with vq. Hence, Di contains vj . Similarly, we can
show that Di also contains vb. So, {vj , vb} ⊆ Di.

(b) If vj is semipaired with vb inDi, then we are done. Suppose, to the contrary, that vj is not semipaired
with vb in Di. So, assume that vj is semipaired with vp and vb is semipaired with vq in Di. We consider
the four cases based on the values of the indices p and q.
Case 1. p > b and q > b. Here, NGi [vp]∪NGi [vq] ⊆ NGi [vj ]∪NGi [vb]. Hence, the set Di \ {vp, vq} is
also a semi-PD-set of Gi, a contradiction.
Case 2. p < b and q < b. Since the distance between vp and vj is at most 2, p ≥ r. If q < b and
dGi(vq, vb) ≤ 2, then dGi(vq, vp) ≤ 2. So, in the set Di, vj can be semipaired with vb, and vp can be
semipaired with vq.
Case 3. p > b and q < b. Here, NGi [vp] ⊆ NGi [vj ] ∪ NGi [vb]. If NGi(vq) ⊆ Di, then the set
Di \ {vp, vq} is also a semi-PD-set of Gi, a contradiction. If NGi(vq) * Di, let vx ∈ NGi(vq) \ Di.
Then update Di as Di = (Di \ {vp}) ∪ {vx}, and semipair vq with vx and vj with vb.
Case 4. p < b and q > b. Since the distance between vp and vj is at most 2, p ≥ r. Also
NGi [vq] ⊆ NGi [vj ] ∪NGi [vb]. If NGi(vp) ⊆ Di, then the set Di \ {vp, vq} is also a semi-PD-set of Gi,
a contradiction. If NGi(vp) * Di, let vy ∈ NGi(vp) \Di. Then update Di as Di = (Di \ {vq}) ∪ {vy},
and semipair vp with vy and vj with vb.

By the above four cases, there always exists a semi-PD-set Di of Gi of minimum cardinality such
that vj is semipaired with vb in Di. This completes the proof of part (b).

(c) The proof is similar to the proof of Lemma 5.5(c), and hence is omitted.

Lemma 5.8. For r < k < j < i, let F (vi) = vj , F (vj) = vk F (vk) = vr, and {vl | k < l < j} *
NGi [vr] ∪ NGi [vj ]. Let t = max{l | k < l < j and vlvj /∈ E} (assume that such a t exists). Let
F (vt) = vb. Then, the following holds.
(a) Di = {vj , vb} if L(vb) = v0.
(b) Di = {v1, v2, vj , vb} if L(vb) = v1.
(c) Di = Ds ∪ {vj , vb} if L(vb) = vs with s ≥ 2.

Proof. The proof is similar to the proof of Lemma 5.6, and hence is omitted.

Based on above lemmas, we present an algorithm to compute a minimum semi-PD-set of an interval
graph.
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Algorithm 1 SEMI-PAIRED-DOM-IG(G)
Input: An interval graph G = (V,E) with a left end ordering α = (v1, v2, . . . , vn) of vertices of G.
Output: A semi-PD-set D of G of minimum cardinality.
V ′ = V ;
while (V ′ 6= φ) do

Let i = max{k | vk ∈ V ′}. if (F (vi) = v1) then
D = D ∪ {v1, vi};
V ′ = V ′ \ {v1, v2, . . . , vi};

else if (F (vi) = vj and F (vj) = v1 where j > 1) then
D = D ∪ {v1, vj}; V ′ = V ′ \ {v1, v2, . . . , vi};

else if (F (vi) = vj and F (vj) = vk where k ≥ 2) then
Let F (vk) = vr. if {vk+1, vk+2, . . . , vj−1} ⊆ NG[vj ] ∪NG[vr] then

if (L(vr) = v0) then
D = D ∪ {vj , vr};
V ′ = V ′ \ {v1, v2, . . . , vi};

else if (L(vr) = v1) then
D = D ∪ {v1, v2, vj , vr};
V ′ = V ′ \ {v1, v2, . . . , vi};

else
Let (L(vr) = vs) where s ≥ 2.
D = D ∪ {vj , vr};
V ′ = V ′ \ {vs+1, vs+2, . . . , vi};

else
Let t = max{l | k < l < j and vl /∈ NG(vj)} and F (vt) = vb. if (L(vb) = v0) then

D = D ∪ {vj , vb};
V ′ = V ′ \ {v1, v2, . . . , vi};

else if (L(vb) = v1) then
D = D ∪ {v1, v2, vj , vb};
V ′ = V ′ \ {v1, v2, . . . , vi};

else
Let (L(vb) = vs) where s ≥ 2.
D = D ∪ {vj , vb};
V ′ = V ′ \ {vs+1, vs+2, . . . , vi};

Here, we illustrate the algorithm SEMI-PAIRED-DOM-IG, with the help of an example. An interval
graph G and its interval model I is shown in Fig 3.

For the interval graph G given in Fig. 3, the algorithm SEMI-PAIRED-DOM-IG computes a semi-
PD-set of minimum cardinality in 3 iterations. Below, we illustrate all the 3 iterations of the algorithm.
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Figure 3: An interval model I and corresponding interval graph G.

INITIALLY

V ′ = {v1, v2, . . . , v16} and D = φ.

ITERATION 1
i = 16 and F (vi) = F (v16) = v15 6= v1
j = 15 and F (vj) = F (v15) = v13 6= v1
k = 13 and F (vk) = F (v13) = v12

r = 12 and {vk+1 . . . , vj−1} = {v14} ⊆ NG[vj ] ∪NG[vr]
Since L(vr) = L(v13) = v10 and s = 10 > 2,

D = D ∪ {v13, v15} and V ′ = V ′ \ {v11 . . . v16}.
AFTER ITERATION 1

D = {v13, v15} and V ′ = {v1, v2 . . . v10}
ITERATION 2

i = 10 and F (vi) = F (v10) = v9 6= v1
j = 9 and F (vj) = F (v9) = v7 6= v1
k = 7 and F (vk) = F (v7) = v5

r = 5 and {vk+1 . . . , vj−1} = {v9} * NG[vj ] ∪NG[vr]
In this case t = max{l | k < l < j and vl /∈ NG(vj)} = 8 and

F (vt) = F (v8) = v6 (clearly b = 6)
Since L(vb) = L(v6) = v4 and s = 4 > 2,

D = D ∪ {v6, v9} and V ′ = V ′ \ {v5 . . . v10}.
AFTER ITERATION 2

D = {v6, v9, v13, v15} and V ′ = {v1, v2, v3, v4}
ITERATION 3

i = 4 and F (vi) = F (v4) = v2 6= v1
j = 2 and F (vj) = F (v2) = v1, hence

D = D ∪ {v1, v2} and V ′ = V ′ \ {v1, v2, v3, v4}.
AFTER ITERATION 3

D = {v1, v2, v6, v9, v13, v15} and V ′ = φ
As V ′ = φ hence, loop terminates.
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Our algorithm returns the setD = {v1, v2, v6, v9, v13, v15}, which is a minimum cardinality semi-PD-set
of the interval graph G.

Theorem 5.1. Given a left end ordering of vertices of G, the algorithm SEMI-PAIRED-DOM-IG com-
putes a semi-PD-set of G of minimum cardinality in linear-time.

Proof. By Lemmas 5.3, 5.4, 5.6 and 5.8, we can ensure that the algorithm SEMI-PAIRED-DOM-IG
computes a semi-PD-set of G of minimum cardinality. Also, it can be easily seen that the algorithm can
be implemented in O(m+ n) time, where n = |V (G)| and m = |E(G)|.

6 Algorithm for Trees

In this section, we present a linear-time algorithm to compute a minimum cardinality semipaired
dominating set in trees.

Let T = (V,E) be a tree, and β = (vn, vn−1, . . . , v1) be the BFS ordering of vertices of T starting at
a pendant vertex vn. Let α = (v1, v2, . . . , vn) be the reverse ordering of β. In our algorithm, we process
the vertices in the order they appear in α. Let p(vi) denote the parent of vertex vi. If vi is the root vertex,
we assume p(vi) = vi.

The idea behind our algorithm is the following. We start with an empty set D, an array L and an
array M . Initially L[vi] = 0 and M [vi] = 0 for all vi ∈ V . We process the vertices one by one in the
order α = (v1, v2, . . . , vn). During each of the iterations, we update D, L and M suitably. During the
iterations, L[vi] = 0 if vi is not selected in D, L[vi] = 1 if vi is selected in D but not semipaired, and
L[vi] = 2 if vi is selected in D and semipaired. Also, M [vi] = k if vk need to be semipaired with some
vertex in NT [vi] \D. At the end of the algorithm D becomes a minimum cardinality semi-PD-set of the
given tree T . At the ith iteration, we process the vertex vi. While processing vi, we update D, L and M
as follows.
Case 1: i 6= n, n− 1 and vi is not dominated by D.
Subcase 1.1: For every vr ∈ NT [p(vi)], M [vr] = 0.
Update D = D ∪ {p(vi)}, L[p(vi)] = 1 and M [p(vj)] = j, where vj = p(vi).
Subcase 1.2: For some vr ∈ NT [p(vi)], M [vr] 6= 0.
Let C = {vr ∈ NT [p(vi)] | M [w] 6= 0}. Let vk be the least index vertex in C and m[vk] = vs. Update
L[p(vi)] = L[vs] = 2, and D = D ∪ {p(vi)}.
Case 2: i ∈ {n, n− 1} and vi is not dominated by D.
Update L[vn−1] = L[vn] = 2, and D = D ∪ {vn−1, vn}.
Case 3: vi is dominated by D and M [vi] = 0.
No Update in D, L and M are made.
Case 4: vi is dominated by D and M [vi] = k 6= 0 (that is, vk need to be semipaired with some vertex in
NT [vi] \D).
Subcase 4.1: L[p(vi)] = 0.
Update L[p(vi)] = L[vk] = 2, M [vi] = 0 and D = D ∪ {p(vi)}.
Subcase 4.1: L[p(vi)] = 1.
This case will not arrive.
Subcase 4.3: L[p(vi)] = 2.
Update L[vi] = L[vk] = 2, M [vi] = 0 and D = D ∪ {vi}.

Theorem 6.1. The MINIMUM SEMIPAIRED DOMINATION problem is linear-time solvable in trees.
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7 Approximation Algorithm

In this section, we present a greedy approximation algorithm for the MINIMUM SEMIPAIRED DOMI-
NATION problem in graphs. We also provide an upper bound on the approximation ratio of this algorithm.
The greedy algorithm is described as follows.

Algorithm 2 : APPROX-SEMI-PAIRED-DOM-SET(G)
Input: A graph G = (V,E) with no isolated vertex.
Output: A semi-PD-set D of G.
begin

D = ∅;
i = 0; D0 = ∅;
while (V \ (D0 ∪D1 ∪ . . . ∪Di) 6= ∅) do

i = i+ 1;
choose two distinct vertices u, v ∈ V such that dG(u, v) ≤ 2 and |(NG[u]∪NG[v])\(D0∪D1∪. . .∪Di−1)|
is maximized;
Di = (NG[u] ∪NG[v]) \ (D0 ∪D1 ∪ . . . ∪Di−1);
D = D ∪ {u, v};

return D;

Lemma 7.1. The algorithm APPROX-SEMI-PAIRED-DOM-SET produces a semi-PD-set of G in poly-
nomial time.

Proof. Clearly, the output set D produced by the algorithm APPROX-SEMI-PAIRED-DOM-SET is a
semi-PD-set of G. Also, each step of the algorithm can be computed in polynomial time. Hence, the
lemma follows.

Lemma 7.2. For each vertex v ∈ V , there exists exactly one set Di which contains v.

Proof. We note that V = D0 ∪ D1 ∪ . . . D|D|/2. Also, if v ∈ Di, then v /∈ Dj for i < j. Hence, the
lemma follows.

By Lemma 7.2, there exists only one index i ∈ [|D|/2] such that v ∈ Di for each v ∈ V . We now
define dv = 1

|Di| . Now we are ready to prove the main theorem of this section.

Theorem 7.1. The MINIMUM SEMIPAIRED DOMINATION problem for a graphG with maximum degree
∆ can be approximated with an approximation ratio of 1 + ln(2∆ + 2).

Proof. For any finite set X 6= ∅,
∑
x∈X

1

|X|
= 1. Hence, we have

|D| = 2

|D|
2∑

i=1

∑
w∈Di

1

|Di|
= 2

∑
w∈V

dw.

LetD∗ = {u1, v1, u2, v2, . . . , u |D∗|
2

, v |D∗|
2

} be a semi-PD-set ofG of minimum cardinality, where ui

is semipaired with vi, for each i ∈ [ |D
∗|
2 ]. Define M = {{u1, v1}, {u2, v2}, . . . , {u |D∗|

2

, v |D∗|
2

}}. Note
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that for each vertex w, there exists a pair {ui, vi} ∈ M such that w ∈ NG[ui] ∪ NG[vi]. Hence, the
following inequality follows. ∑

w∈V
dw ≤

∑
{ui,vi}∈M

∑
w∈NG[ui]∪NG[vi]

dw.

Consider a pair {u, v} ∈ M and define zk = |(NG[u] ∪ NG[v]) \ (D0 ∪ D1 ∪ D2 ∪ . . . Dk)| for
k ∈ {0} ∪ [ |D|2 ]. Clearly, zk−1 ≥ zk for k ∈ [ |D|2 ]. Suppose l is the smallest index such that zl = 0. At
the kth step of the algorithm, Dk contains zk−1 − zk vertices from the set NG[u] ∪NG[v]. Hence

∑
w∈NG[u]∪NG[v]

dw =
l∑

k=1

(zk−1 − zk) · 1

|Dk|
.

At the kth step of the algorithm, we choose the pair uk, vk such that |Dk| = |(NG[uk] ∪ NG[vk]) \
(D0∪D1∪· · ·∪Dk−1)| is maximum. Hence |Dk| ≥ |(NG[u]∪NG[v])\(D0∪D1∪· · ·Dk−1)| = zk−1.
Therefore the following inequality follows.

∑
w∈NG[u]∪NG[v]

dw ≤
l∑

k=1

zk−1 − zk
zk−1

.

For all integers a < b, we know that H(b) − H(a) ≥ b−a
b , where H(b) =

b∑
i=1

1

i
and H(0) = 0.

Therefore

∑
w∈NG[u]∪NG[v]

dw ≤
l∑

k=1

H(zk−1)−H(zk) = H(z0) = H(|NG[u] ∪NG[v]|) ≤ H(2∆ + 2).

It follows that

|D| = 2
∑
w∈V

dw ≤
∑

{u,v}∈M
H(2∆ + 2) = |D∗|H(2∆ + 2) ≤ (ln(2∆ + 2) + 1) · |D∗|.

This shows that the MINIMUM SEMIPAIRED DOMINATION problem can be approximated with an
approximation ratio of 1 + ln(2∆ + 2).

8 Lower bound on approximation ratio

To obtain the lower bound on the approximation ratio of the MINIMUM SEMIPAIRED DOMINATION

problem, we give an approximation preserving reduction from the MINIMUM DOMINATION problem.
The following approximation hardness result is already known for the MINIMUM DOMINATION prob-
lem.

Theorem 8.1. [3] For a graph G = (V,E), the MINIMUM DOMINATION problem cannot be approxi-
mated within (1− ε) ln |V | for any ε > 0 unless NP ⊆ DTIME (|V |O(log log |V |)).

Now, we are ready to prove the following theorem.
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Theorem 8.2. For a graph G = (V,E), the MINIMUM SEMIPAIRED DOMINATION problem cannot be
approximated within (1− ε) ln |V | for any ε > 0 unless NP ⊆ DTIME (|V |O(log log |V |)).

Proof. Let G = (V,E), where V = {v1, v2, . . . , vn} be an arbitrary instance of the MINIMUM DOM-
INATION problem. Now, we construct a graph H = (VH , EH), an instance of the MINIMUM SEMI-
PAIRED DOMINATION problem in the following way: VH = {v1i , v2i , w1

i , w
2
i , zi | i ∈ [n]} and EH =

{w1
i v

1
j , w

2
i v

2
j | vj ∈ NG[vi]} ∪ {v1i v1j , v2i v2j , zizj | 1 ≤ i < j ≤ n} ∪ {v1i zj , v2i zj | i ∈ [n], j ∈ [n]}.

Fig. 4 illustrates the construction of H from G.
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Figure 4: An illustration of the construction of H from G in the proof of Theorem 8.2.

Let V k = {vki | i ∈ [n]} and W k = {wk
i | i ∈ [n]} for k = 1, 2. Also, assume that Z = {zi | i ∈

[n]}. Note that V 1 ∪ Z is a clique in H . Also V 2 ∪ Z is a clique in H .
Let D∗ denote a minimum dominating set of G. Then the set D′ = {v1i , v2i | vi ∈ D∗} is a semi-PD-

set of H . Hence, if D∗sp denotes a semi-PD-set of H of minimum cardinality, then |D∗sp| ≤ 2|D∗|.
Suppose that the MINIMUM SEMIPAIRED DOMINATION problem can be approximated within a

ratio of α, where α = (1 − ε) ln(|VH |) for some fixed ε > 0, by some polynomial time approximation
algorithm, say Algorithm A. Next, we propose an algorithm, which we call APPROX-DOMINATING-
SET, to compute a dominating set of a given graph G in polynomial time.

Algorithm 3 : APPROX-DOMINATING-SET(G)
Input: A graph G = (V,E).
Output: A dominating set D of G.
begin

Initialize k = 0;
Construct the graph H;
Compute a semi-PD-set Dsp of H using Algorithm A;
Define D′sp = Dsp;
if (|D′sp ∩ (V 1 ∪W 1)| ≤ |Dsp|/2) then

k=1;
else

k=2;
for i=1 to n do

if (NH(wk
i ) ∩D′sp == ∅) then

D′sp = (D′sp \ wk
i ) ∪ {vki };

D = {vi | vki ∈ D′sp ∩ V k};
return D;
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Next, we show that the set D returned by Algorithm 3 is a dominating set of G. If Dsp is any semi-
PD-set of H , then clearly either |Dsp ∩ (V 1 ∪ W 1)| ≤ |Dsp|/2 or |Dsp ∩ (V 2 ∪ W 2)| ≤ |Dsp|/2.
Assume that |Dsp ∩ (V k ∪W k)| ≤ |Dsp|/2 for some k ∈ [2]. Now, to dominate a vertex wk

i ∈ W k,
either wk

i ∈ Dsp or vkj ∈ Dsp where vkj ∈ NH(wi). If NH(wk
i ) ∩Dsp is an empty set, then we update

Dsp by removing wk
i and adding vkj for some vkj ∈ NH(wi), and call the updated set D′sp. We do this for

each i from 1 to n. Note that even for the updated setD′sp, we have |D′sp∩ (V k∪W k)| ≤ |Dsp|/2. Also,
in the updated set D′sp, for each wk

i , NH(wk
i )∩ (Dsp ∩ V k) is non-empty. Hence |D′sp ∩ V k| ≤ |Dsp|/2

and D′sp ∩ V k dominates W k. Therefore the set D = {vi | vki ∈ D′sp ∩ V k} is a dominating set of G.
Also |D| ≤ |Dsp|/2.

By above arguments, we may conclude that the Algorithm 3 produces a dominating set D of the
given graph G in polynomial time, and |D| ≤ |Dsp|/2. Hence, |D| ≤ |Dsp|

2 ≤ α |D
∗
sp|
2 ≤ α|D∗|.

Also α = (1−ε) ln(|VH |) ≈ (1−ε) ln(|V |) where |VH | = 5|V |. Therefore the Algorithm APPROX-
DOMINATING-SET approximates the minimum dominating set within ratio (1 − ε) ln(|V |) for some
ε > 0. By Theorem 8.1, if the minimum dominating set can be approximated within ratio (1− ε) ln(|V |)
for some ε > 0, then NP ⊆ DTIME (|V |O(log log |V |)). Hence, if the MINIMUM SEMIPAIRED DOMINA-
TION problem can be approximated within ratio (1 − ε) ln(|VH |) for some ε > 0, then NP ⊆ DTIME
(|VH |O(log log |VH |)). This proves that the MINIMUM SEMIPAIRED DOMINATION problem cannot be
approximated within (1− ε) ln(|VH |) unless NP ⊆ DTIME (|VH |O(log log |VH |)).

9 Conclusion

In this paper, we initiate the algorithmic study of the MINIMUM SEMIPAIRED DOMINATION prob-
lem. We have resolved the complexity status of the problem for bipartite graphs, chordal graphs and in-
terval graphs. We have proved that the SEMIPAIRED DOMINATION DECISION problem is NP-complete
for bipartite graphs and split graphs. We also present a linear-time algorithm to compute a semi-PD-set
of minimum cardinality for interval graphs and trees. A 1 + ln(2∆ + 2) approximation algorithm for the
MINIMUM SEMIPAIRED DOMINATION problem in general graphs is given, and we prove that it can not
be approximated within any sub-logarithmic factor. It will be interesting to study better approximation
algorithms for this problem for bipartite graphs, chordal graphs and other important graph classes.
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