Skip to main content
Log in

Computability of Products of Chainable Continua

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We examine conditions under which a semicomputable set in a computable topological space is computable. In particular, we examine topological pairs (A, B) with the following property: if X is a computable topological space and \(f:A\rightarrow X\) is an embedding such that f(A) and f(B) are semicomputable sets in X, then f(A) is a computable set in X. Such pairs (A, B) are said to have computable type. It is known that \((\mathcal {K},\{a,b\})\) has computable type if \(\mathcal {K}\) is a Hausdorff continuum chainable from a to b. It is also known that (In, In) has computable type, where In is the n-dimensional unit cube and In is its boundary in \(\mathbb {R}^{n} \). We generalize these results by proving the following: if \(\mathcal {K}_{i} \) is a nontrivial Hausdorff continuum chainable from ai to bi for \(i\in \{1,{\dots } ,n\}\), then \(({\prod }_{i=1}^{n} \mathcal {K}_{i} ,B)\) has computable type, where B is the set of all \((x_{1} ,{\dots } ,x_{n})\in {\prod }_{i=1}^{n} \mathcal {K}_{i}\) such that xi ∈{ai, bi} for some \(i\in \{1,{\dots } ,n\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brattka, V.: Plottable real number functions and the computable graph theorem. SIAM J. Comput. 38(1), 303–328 (2008)

    Article  MathSciNet  Google Scholar 

  2. Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theor. Comput. Sci. 305, 43–76 (2003)

    Article  MathSciNet  Google Scholar 

  3. Brattka, V., Weihrauch, K.: Computability on subsets of Euclidean space i: Closed and compact subsets. Theor. Comput. Sci. 219, 65–93 (1999)

    Article  MathSciNet  Google Scholar 

  4. Burnik, K., Iljazović, Z.: Computability of 1-manifolds. Log. Methods Comput. Sci. 10(2:8), 1–28 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Christenson, C.O., Voxman, W.L.: Aspects of Topology. Marcel Dekker Inc., New York (1977)

    MATH  Google Scholar 

  6. Engelking, R.: Dimension Theory. PWN – Polish Scientific Publishers, Warszawa (1978)

    MATH  Google Scholar 

  7. Horvat, M., Iljazović, Z., Pažek, B.: Computability of pseudo-cubes. to appear in Annals of Pure and Applied Logic

  8. Iljazović, Z.: Chainable and circularly chainable co-c.e. sets in computable metric spaces. J. UCS 15(6), 1206–1235 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Iljazović, Z.: Co-c.e. spheres and cells in computable metric spaces. Log. Meth. Comput. Sci. 7(3:05), 1–21 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Iljazović, Z.: Local computability of computable metric spaces and computability of co-c.e. continua. Glasnik matematički 47(67), 1–20 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Iljazović, Z.: Compact manifolds with computable boundaries. Log. Meth. Comput. Sci. 9(4:19), 1–22 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Iljazović, Z., Pažek, B.: Co-c.e. sets with disconnected complements. Theory Comput. Syst. 62(5), 1109–1124 (2018)

    Article  MathSciNet  Google Scholar 

  13. Iljazović, Z., Pažek, B.: Computable intersection points. Computability 7, 57–99 (2018)

    Article  MathSciNet  Google Scholar 

  14. Iljazović, Z., Sušić, I.: Semicomputable manifolds in computable topological spaces. J. Complex. 45, 83–114 (2018)

    Article  MathSciNet  Google Scholar 

  15. Iljazović, Z., Validžić, L.: Computable neighbourhoods of points in semicomputable manifolds. Ann. Pure. Appl. Logic 168(4), 840–859 (2017)

    Article  MathSciNet  Google Scholar 

  16. Kihara, T.: Incomputability of simply connected planar continua. Computability 1(2), 131–152 (2012)

    Article  MathSciNet  Google Scholar 

  17. Miller, J.S.: Effectiveness for embedded spheres and balls. Electron. Notes Theor. Comput. Sci. 66, 127–138 (2002)

    Article  Google Scholar 

  18. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Berlin (1989)

    Book  Google Scholar 

  19. Specker, E.: Der satz vom maximum in der rekursiven analysis. In: Heyting, A. (ed.) Constructivity in Mathematics, pp. 254–265. North Holland Publ. Comp., Amsterdam (1959)

  20. Tanaka, H.: On a \({\Pi }_{1}^{0}\) set of positive measure. Nagoya Math. J. 38, 139–144 (1970)

    Article  MathSciNet  Google Scholar 

  21. Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proc. London Math. Soc. 42, 230–265 (1936)

    MathSciNet  MATH  Google Scholar 

  22. Čičković, E., Iljazović, Z., Validžić, L.: Chainable and circularly chainable semicomputable sets in computable topological spaces. Arch. Math. Log. 58, 885–897 (2019)

    Article  MathSciNet  Google Scholar 

  23. Weihrauch, K.: Computability on computable metric spaces. Theor. Comput. Sci. 113, 191–210 (1993)

    Article  MathSciNet  Google Scholar 

  24. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

    Book  Google Scholar 

  25. Weihrauch, K.: Computable separation in topology, from t0 to t2. J. UCS 16(18), 2733–2753 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Weihrauch, K., Grubba, T.: Elementary computable topology. J. UCS 15(6), 1381–1422 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their useful suggestions and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvonko Iljazović.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been fully supported by Croatian Science Foundation under the project 7459 CompStruct.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čelar, M., Iljazović, Z. Computability of Products of Chainable Continua. Theory Comput Syst 65, 410–427 (2021). https://doi.org/10.1007/s00224-020-10017-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-020-10017-6

Keywords

Navigation