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Abstract
Divisorial gonality and stable divisorial gonality are graph parameters, which have
an origin in algebraic geometry. Divisorial gonality of a connected graph G can be
defined with help of a chip firing game on G. The stable divisorial gonality of G is
the minimum divisorial gonality over all subdivisions of edges of G. In this paper we
prove that deciding whether a given connected graph has stable divisorial gonality at
most a given integer k belongs to the class NP. Combined with the result that (sta-
ble) divisorial gonality is NP-hard by Gijswijt et al., we obtain that stable divisorial
gonality is NP-complete. The proof consists of a partial certificate that can be veri-
fied by solving an Integer Linear Programming instance. As a corollary, we have that
the total number of subdivisions needed for minimum stable divisorial gonality of a
graph with m edges is bounded by mO(mn).

Keywords Computational complexity · Graphs · Gonality

1 Introduction

The notions of the divisorial gonality and stable divisorial gonality of a graph find
their origin in algebraic geometry and are related to the abelian sandpile model (cf.
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[2]). Baker and Norine introduced divisor theory on graphs in [3]. The notion of
divisorial gonality was introduced by Baker [4], under the name gonality. As there
are several different notions of gonality in use (cf. [4–6]), we add the term divisorial,
following [5]. See [6, Appendix A] for an overview of the different notions.

Divisorial gonality and stable divisorial gonality have definitions in terms of a chip
firing game. In this chip firing game, played on a connected multigraph G = (V , E),
each vertex has a number of chips. When we fire a vertex v ∈ V , we move a chip
from vertex v over each edge with v as endpoint. Vertex v has its number of chips
decreased by the degree of v, and each neighbour u of v has its number of chips
increased by the number of edges from v to u. The divisorial gonality of a connected
graph G can be defined as the minimum number of chips in an initial assignment of
chips (called divisor) such that for each vertex v ∈ V , there is a sequence of firing
moves resulting in at least one chip on v and a non-negative number of chips on the
other vertices. See Section 2 for precise definitions.

A variant of divisorial gonality is stable divisorial gonality. The stable divisorial
gonality of a graph is the minimum of the divisorial gonality over all subdivisions of a
graph; we can subdivide the edges of the graph any nonnegative number of times. (In
the application in algebraic geometry, the notion of refinement is used. Here, we can
subdivide edges but also add new degree-one vertices to the graph in a refinement,
but as this never decreases the number of chips needed, we can ignore the possibility
of adding leaves. Thus, we use subdivisions instead of refinements.)

It is known that treewidth is a lower bound for stable divisorial gonality [7].
The stable divisorial gonality of a graph is at most the divisorial gonality, but this
inequality can be strict, see for example [8, Figure 2].

In this paper, we study the complexity of computing the stable divisorial gonality
of graphs: i.e., we look at the complexity of the STABLE DIVISORIAL GONALITY

problem: given an undirected graph G = (V , E) and an integer k, decide whether the
stable divisorial gonality of G is at most k. It was shown in [9] that divisorial gonality
is NP-complete. The same reduction gives that stable divisorial gonality is NP-hard.
However, membership of stable divisorial gonality in NP is not trivial: it is unknown
how many subdivisions are needed to obtain a subdivision with minimum divisorial
gonality. In particular, it is open whether a polynomial number of edge subdivisions
are sufficient.

In this paper, we show that stable divisorial gonality belongs to the class NP. We
use the following proof technique, which we think is interesting in its own right:
we give a partial certificate that describes some divisors. Checking whether those
divisors are equivalent is non-trivial, but can be done by solving an integer linear pro-
gram. Membership in NP follows by adding a certificate for the derived ILP instance
to the partial certificate that describes the divisors. As a corollary, we have that the
total number of subdivisions needed for minimum stable divisorial gonality of a graph
with m edges is at most mO(mn).

We finish this introduction by giving an overview of the few previously known
results on the algorithmic complexity of (stable) divisorial gonality. Bodewes et
al. [8] showed that deciding whether a graph has (stable) divisorial gonality at most
2 can be done in O(n log n + m) time. From [10] and [11], it follows that diviso-
rial gonality belongs to the class XP, i.e. there is an algorithm that decides in time
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O(nf (k)) whether dgon(G) ≤ k. It is open whether stable divisorial gonality is in
XP. NP-hardness of the notions was shown in [9].

2 Preliminaries

In this paper, we assume that each graph is a connected undirected multigraph, i.e.,
we allow parallel edges. In the algebraic number theoretic application of (stable)
divisorial gonality, graphs can also have selfloops (edges with both endpoints at the
same vertex), but as the (stable) divisorial gonality of graph does not change when we
remove selfloops, we assume that there are no selfloops (see the end of this section).
For a graph G, we will denote by n its number of vertices and by m the number of
edges.

A divisor D is a vector in Z
V (G). We can consider a divisor D as a function

D : V (G) → Z, which is an assignment of chips to vertices, each vertex v hav-
ing D(v) chips. The degree of a divisor is the total number of chips on the graph:
deg(D) = ∑

v∈V D(v). The support of D is supp(D) = {v ∈ V | D(v) �= 0}. We
call a divisor effective if D(v) ≥ 0 for all vertices v.

We will define an equivalence relation on the set of divisors. The Laplacian matrix
L is defined as follows:

Luv =
{

deg(v) if u = v,

- the number of edges from u to v otherwise.

Two divisors D and D′ are equivalent if and only if there exists a vector f ∈ Z
V (G)

such that D′ − D = Lf . We can consider f as a function f : V (G) → Z, we will
use the terms vector and function interchangeably.

An equivalent definition can be given using a notion of firing vertices. When we
fire a vertex v, we move chips from v to its neighbours along its incident edges:
starting from a divisor D, we obtain a new divisor, where D(v) is decreased by the
degree of v and for all neighbours u of v the value D(u) is increased by the number of
edges from v to u. Two divisors D and D′ are equivalent if D can be transformed into
D′ by firing vertices. This is indeed equivalent to the definition above: f describes
how often every vertex is fired.

A divisor D reaches a vertex v if it is equivalent to an effective divisor D′ with
D′(v) ≥ 1.

The divisorial gonality dgon(G) of a graph G is the minimum number k such
that there exists a divisor D with degree k that reaches all vertices of G. Since D is
equivalent to an effective divisor, we can assume D to be effective.

A subdivision of a graph G is a graph H obtained from G by applying the follow-
ing operation a nonnegative number of times: take an edge between two vertices v

and w and replace this edge by two edges to a new vertex x.
The stable divisorial gonality sdgon(G) of a graph G is the minimum number k

such that there exist a subdivision H of G and a divisor D on H with degree k that
reaches all vertices of H . That is, the stable divisorial gonality of a graph G is the
minimum divisorial gonality over all subdivisions of G.
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Instead of subdivisions, we can use refinements where we allow that we add sub-
divisions and trees, i.e., we can repeatedly add new vertices of degree one. But since
the stable divisorial gonality does not change when adding a vertex with degree one,
we only consider subdivisions.

As mentioned before, we remove selfloops of a graph, as that will not change the
stable divisorial gonality. Now that we have seen the definition of stable divisorial
gonality we can give a short argument why this holds. Notice that there will never
be chips fired along a selfloop, so removing a selfloop will not change the divisorial
gonality of a graph. A loop can be subdivided into a cycle however, but this will not
decrease the divisorial gonality of the graph. Suppose that G has a loop at vertex v,
and that H is the refinement of G at which the stable divisorial gonality is attained by
a divisor D. If the selfloop is subdivided, let D′ ∼ D be a divisor with as few chips
on the subdivisions of the loop as possible, that is, with at most 1 chip in total on the
vertices that are added to the selfloop. Notice that D′ reaches all vertices of H . If we
remove the subdivided selfloop from H , firing the same vertices will yield the same
result, with possibly some more chips on vertex v. Hence, D′ still reaches all vertices.
We conclude that the stable divisorial gonality does not increase by removing the
selfloops of G.

3 Equivalence

In this section we will discuss a condition for two divisors to be equivalent. This
section is based on a result in [7, Section 4], but given its relevance for this paper, we
will explain it here.

Recall that two divisors are equivalent if there exists a vector f ∈ Z
V (G) such that

D′ − D = Lf . We can consider f as a function V (G) → Z; f describes for every
vertex the number of times this vertex is fired. In this section we will show that we
can find an equivalent definition using a function g : E(G) → Z, which describes
for every edge how many chips are moved along that edge.

For an edge uv, we will need to know whether g(uv) describes the number of chips
that moves from u to v, or the other way around. For this, we need an orientation of
the edges.

Let G = (V , E) be a graph. Assign to every edge e of G an arbitrary orientation
σ(e). For every cycle C, and every edge e ∈ E let

σC(e) =
⎧
⎨

⎩

1 if e is traversed in C in the forward direction,
−1 if e is traversed in C in the backward direction,
0 if e is not contained in C.

Analogously, we define σP (e) for every path P . If a path P consists of a single edge
uv, we write σuv(e) for σP (e). So,

σuv(e) =
⎧
⎨

⎩

1 if e = uv is oriented from u to v,

−1 if e = uv is oriented from v to u,

0 if e �= uv.
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The following lemma is know as Kirchhoff’s potential law, see [12, pages 40, 297].
We include a proof, so that this paper is more self-contained.

Lemma 3.1 For a function g : E → Z, there exists a function f : V → Z such that
for every edge uv, oriented from u to v, it holds that g(uv) = f (u) − f (v) if and
only if for every fundamental cycle C:

∑

e∈C

g(e)σC(e) = 0.

Proof We define a function f as follows: Pick a vertex v ∈ V , and set f (v) = a for
some a ∈ Z. For u ∈ V , let P be a path from v to u and set

f (u) = a −
∑

e∈P

g(e)σP (e).

Notice that for f holds that g(uv) = f (u) − f (v). Moreover, every function f for
which g(uv) = f (u) − f (v) holds, is of this form.

This function f is well-defined if and only if for all paths P and Q from v to u, it
holds that

a −
∑

e∈P

g(e)σP (e) = a −
∑

e∈Q

g(e)σQ(e).

Hence, if and only if
∑

e∈P

g(e)σP (e) +
∑

e∈Q

g(e) · −σQ(e) = 0.

Since P followed by Q is reversed order forms a cycle, f is well-defined if and only
if for every cycle C:

∑

e∈C

g(e)σC(e) = 0. (1)

Since every cycle is the sum of some fundamental cycles, we conclude that f is
well-defined if and only if (1) holds for every fundamental cycle C.

Now we can provide an equivalent definition for two divisors to be equivalent.

Lemma 3.2 Let H be a subdivision of G. Let the orientation of the edges of H be
induced by the orientation of the edges of G. For every edge e ∈ E(G), let l(e) be the
number of edges that e is subdivided into in H . Let D, D′ be two divisors on G with
degree k. Then D and D′ are equivalent on H if and only if there exists a function
g : E(G) → {−k, −k + 1, . . . , k − 1, k} such that
• for every v ∈ V (G):

(D′ − D)(v) =
∑

u∼v in G

g(uv)σvu(uv), (2)
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• for every fundamental cycle C:
∑

e∈C

g(e)l(e)σC(e) = 0. (3)

Proof Suppose that D and D′ are equivalent in H . From the definition in Section 2,
we know that there is a function f ′ : V (H) → Z, such that Lf ′ = D′ − D. This
function f ′ describes how often every vertex v is fired to transform D into D′.

We now define the function g′, this will describe how many chips move over edge
e in the forward direction. Let e ∈ E(H) and suppose that edge e is directed from u

to v, set g′(e) = f (u) − f (v). Notice that −k ≤ g′(e) ≤ k, since there can move at
most k chips along each edge. By Lemma 3.1, it follows that for every fundamental
cycle C it holds that

∑

e∈C

g′(e)σC(e) = 0. (4)

Let e = uv be an edge of G, that is subdivided in e1, e2, . . . , er edges in H .
Let w ∈ V ′ \ V be a vertex that is added to this edge, and let ei and ei+1 be its
incident edges. Since D and D′ are divisors on G, we see that D′(w) = D(w) = 0.
It follows that g′(ei) = g′(ei+1). So for every edge e of G, that is subdivided in
e1, e2, . . . , er edges in H , it holds that g′(e1) = g′(e2) = . . . = g′(er ). Define the
function g : E(G) → Z by g(e) = g′(e1). Notice that g(uv) = (f ′(u)−f ′(v))/ l(e).

By the definition of g and the cycle condition (4) for g′, it follows that for every
fundamental cycle C it holds that

∑

e∈C

g(e)l(e)σC(e) = 0.

Moreover, since Lf ′ = D′ − D, for every vertex v ∈ V (G) we have that

(D′ − D)(v) = Lf ′(v)

= deg(v)f ′(v) −
∑

u∼v in H

f ′(u)

=
∑

u∼v in H

(f ′(v) − f ′(u))

=
∑

u∼v in H

g′(uv)σvu(uv)

=
∑

u∼v in G

g(uv)σvu(uv).

For the other direction, suppose that there exists a function g : E(G) → Z, that
satisfies the conditions (2) and (3). By Claim 3.1 it follows that there exists a function
f : V (G) → Z such that for every edge uv ∈ E(G), oriented from u to v, it holds
that g(uv)l(uv) = f (u) − f (v).

Define the function f ′ : V (H) → Z as follows. For v ∈ V (G), set f ′(v) = f (v).
For every vertex edge e = uv ∈ E(G), oriented from u to v, let w1, w2, . . . , wr be
the vertices that are added to e in H , in order from u to v. Set f ′(wi) = f (u)−ig(uv).
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It remains to check that Lf ′ = D′ − D. For wi we see that

Lf ′(wi) = 2f (wi) − f (wi−1) − f (wi+1)

= 0

= (D′ − D)(wi).

For v ∈ V (G), we see that

Lf ′(v) =
∑

u∼v in H

(f ′(v) − f ′(u))

=
∑

u∼v in G

g(uv)σvu(uv).

By (2), it follows that Lf ′(v) = (D′ − D)(v). We conclude that D′ and D are
equivalent in H .

4 A Certificate

Assume that we are given a yes-instance (G, k) of the problem. Without loss of gen-
erality, we assume that k ≤ n. There exists a subdivision H and an effective divisor
D on H with k chips that reaches all vertices. We do not know whether the number
of subdivisions in H is polynomial in the size of the graph, i.e. in the number of ver-
tices and edges of the graph, so we cannot include H in a polynomial certificate for
this instance. But the chips in D can be placed on added vertices of H , so we cannot
include D in our certificate either. However, we can include a polynomial subdivision
of G. We will choose a subdivision that allows us to include D as well.

Lemma 4.1 Let G be a graph with n vertices and stable divisorial gonality at most
k. There exists a subdivision G′ of G, such that

1. The number of vertices of G′ is at most n + k(n + 1), i.e., G′ is obtained from G

by adding at most k(n + 1) subdivision vertices.
2. There is a subdivisionH ofG′, such that there is an effective divisorD onH with

k chips that reaches all vertices and has only chips on vertices of G′. Moreover,
for all vertices v ∈ V (G), there is an effective divisor Dv on H with D ∼ Dv

with at least one chip on v and only chips on vertices of G′.

Proof Since G has stable divisorial gonality at most k, there exists a subdivision H

and an effective divisor D on H with k chips that reaches all vertices. For every
vertex v ∈ V (G), let Dv be an effective divisor on H such that Dv ∼ D and that has
a chip on vertex v. Now define U ⊆ V (H) as

U = supp(D) ∪
⋃

v∈V (G)

{supp(Dv)}.

Let G′ be the subdivision of G that contains all the vertices of U . Notice that H is a
subdivision of G′, and that the divisors D and Dv only have chips on G′.
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Notice that U contains at most (n + 1)k vertices, since we take the union over
n + 1 divisors, which each have k chips. So the number of vertices of G′ is at most
n + k(n + 1).

Remark 4.2 Notice that the divisor D could be chosen to be equal to one of the
divisors Dv . In that case, U would contain at most kn vertices, and the number of
vertices of G′ would be improved to n + kn.

This subdivision G′ is the first ingredient of our polynomial certificate. The second
ingredient is the divisor D, and the third ingredient all divisors Dv .

We now need to extend the certificate so that we can check in polynomial time
whether there is a subdivision H of G′ such that for all v it holds that D ∼ Dv

in H . To this end, we will check whether the conditions (2) and (3) in Lemma 3.2
are satisfied. For this, we pick an orientation of the edges of G′, and add this to the
certificate. Moreover, for every v ∈ V (G), we include a function gv : E(G′) →
{−k, −k + 1, . . . , k − 1, k} in the certificate. Now we only need the lengths l(e) of
the edges to be able to check the conditions.

This brings us back to the original problem: we do not know whether the number
of subdivision is polynomial, hence, we do not know whether the lengths l(e) are
polynomial. But we do know that D ∼ Dv in H for all v if and only if there exist
lengths l(e) such that the conditions on fundamental cycles are satisfied. We make
an integer linear program I of these equations. So, for every vertex v ∈ V (G) and
fundamental cycle C in G′, we have an equation

∑

e∈C

gv(e)l(e)σC(e) = 0.

Moreover, we have an inequality l(e) ≥ 1 for every edge e. This program has a
solution if and only if there is a subdivision H of G′ such that all divisors Dv are
equivalent to D in H . Since integer linear programming is in NP, we know that if
there is a solution to I, then there is a certificate D for the ILP instance that is
polynomial in the size of I. Since I is polynomial in the size of G′, this certificate is
polynomial in the size of G′ as well. In order to obtain a certificate for the STABLE

DIVISORIAL GONALITY problem, we include this certificate for I in the certificate
for STABLE DIVISORIAL GONALITY.

To conclude, a certificate for the STABLE DIVISORIAL GONALITY problem
consists of

• a subdivision G′ of G,
• an effective divisor D on G′,
• an effective divisor Dv on G′ with Dv(v) ≥ 1, for every v ∈ V (G),
• an orientation σ of the edges of G′,
• a function gv for every v ∈ V (G), and
• a certificate for the integer linear program I.

We can check the correctness of the certificate by checking whether the integer linear
program I is satisfied and whether for every v ∈ V (G) and w ∈ V (G′) the equation

(Dv − D)(w) =
∑

u∼w

gv(uw)σwu(uw)
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holds. This can be done in polynomial time, since there is a polynomial number of
equations to check.

5 Correctness

It remains to prove that there exists a certificate C if and only if sdgon(G) ≤ k.

Lemma 5.1 Let G be a graph with sdgon(G) ≤ k. There exists a certificate C.

Proof Let n be the number of vertices of G and let m be the number of edges. By
Lemma 4.1, there exists a subdivision G′, and effective divisors D and Dv on G′ for
every v ∈ V (G), such that there is a subdivision H of G′ such that D ∼ Dv . For
every edge e ∈ E(G′), let l(e) be the number of edges that e is subdivided into in H .

Choose an arbitrary orientation σ of the edges of G′. Since D ∼ Dv for every
vertex v ∈ V (G), by Lemma 3.2 there exist functions gv : E(G′) → Z such that
for every w ∈ V (G′) holds (Dv − D)(w) = ∑

u∼w gv(uw)σwu(uw) and for every
fundamental cycle C holds

∑
e∈C gv(e)l(e)σC(e) = 0. Now consider the integer

linear program I with a variable le for every edge e ∈ E(G′), and inequalities le ≥ 1
and for every fundamental cycle C of G′ equations

∑
e∈C gv(e)leσC(e) = 0 for all

v ∈ V (G). Notice that the number of equations is polynomial, since there are m−n+
1 fundamental cycles. We know that l(e) is a solution to this integer linear program.
As ILP’s have certificates with polynomially many bits (see e.g., [13]), there exists
a polynomial certificate for this program. This yields a polynomial certificate for
STABLE DIVISORIAL GONALITY.

We illustrate this proof with an example.

Example 5.2 Consider the graph in Fig. 1a. Consider the subdivision in Fig. 1b and
the divisor D with 5 chips on u. This divisor is equivalent to the divisors Dv and Dw

in Fig. 1a and f. The graph G′ in the certificate is the graph in Fig. 1e.

Fig. 1 (a) A graph G. (b) A subdivision of G and divisor D = Du. (c) A divisor Dv . (d) A divisor Dw .
(e) The graph G′.
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Orient e1 from u to y, e2 from y to v, e3 from u to v and e4 from v to w. The
corresponding functions are:

gu(e1) = 0, gu(e2) = 0, gu(e3) = 0, gu(e4) = 0

gv(e1) = 3, gv(e2) = 3, gv(e3) = 2, gv(e4) = 0

gw(e1) = 2, gw(e2) = 1, gw(e3) = 1, gw(e4) = 1

The only cycle in G′ is e1, e2, e3, so the integer linear program I is:

le1 ≥ 1, le2 ≥ 1

le3 ≥ 1, le4 ≥ 1

0 · le1 + 0 · le2 + 0 · le3 = 0

3 · le1 + 3 · le2 + −2 · le3 = 0

2 · le1 + 1 · le2 + −1 · le3 = 0

A solution to this program is le1 = le2 = le4 = 1 and le3 = 3. This completes the
certificate.

Lemma 5.3 Let G be a graph and k a natural number. If there exists a certificate C,
then sdgon(G) ≤ k.

Proof Suppose we are given a certificate. Let H be a the subdivision of G′ where
every edge e is subdivided into l(e) edges. We know that all the equations (Dv −
D)(w) = ∑

u∼w gv(uw)σwu(uw) and
∑

e∈C gv(e)l(e)σC(e) = 0 hold. By Lemma
3.2 it follows that D ∼ Dv in H for all vertices v ∈ V (G). So D reaches all vertices
of G.

Let w ∈ V (H) be a vertex which is added to an edge uv of G. Either a chip is
fired along e to go from Du to Dv , or there is a divisor Duv ∼ D with a chip on u

and a chip on v. In both cases we see that D reaches w. So D reaches all vertices of
H . We conclude that sdgon(G) ≤ k.

By Lemmas 5.1 and 5.3, the problem whether a given graph has divisorial gonality
at most a given integer k has a polynomial certificate, which gives our main result.

Theorem 5.4 STABLE DIVISORIAL GONALITY belongs to the class NP.

Combined with the NP-hardness of STABLE DIVISORIAL GONALITY by Gijswijt
et al. [9], this yields the following result.

Theorem 5.5 STABLE DIVISORIAL GONALITY is NP-complete.

6 A Bound on Subdivisions

In this section, we give as corollary of our main result a bound on the number of
subdivisions needed. We use the following result by Papadimitriou [13].
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Theorem 6.1 (Papadimitriou [13]) Let A be an m × n matrix, and b be a vector of
length m, such that each value in A and b is an integer in the interval [−a, +a]. If
Ax = b has a solution with all values being positive integers, then Ax = b has a
solution with all values positive integers that are at most n(ma)2m+1.

Corollary 6.2 Let G be a graph with stable divisorial gonality k. There is a graph
H , that is a subdivision of G, with the divisorial gonality of H equal to the stable
divisorial gonality of G, and H is obtained from G by subdividing at most mO(mn)

times.

Proof Let n′ be the number of vertices in G′ and m′ the number of edges in G′. We
have n′ ≤ n + k(n + 1), and m′ ≤ m + k(n + 1), with n the number of vertices of G

and m the number of edges of G.
By Lemma 5.1, we know that there is a certificate whose corresponding ILP has

a solution. The values le in this solution give the number of subdivisions of edges
in G′. If we have an upper bound on the number of subdivisions per edge needed to
obtain H from G′, say α, then (k(n + 1) + 1)α + k(n + 1) is an upper bound on the
number of subdivisions per edge to obtain H from G. Applying Theorem 6.1 to the
ILP gives such a bound, as described below.

The ILP has at most m′ variables of the form le. The number of inequalities in the
ILP is linear in the number of variables. An inequality can be replaced by an equation
by adding one variable. This gives a total of 2m′ = O(m + kn) variables. For every
edge of G′ we have an equation. In addition, for every vertex v ∈ V (G) and every
fundamental cycle of G′, we have an equation. So, the total number of equations is
m′+n(m−n+1). Note that m′+n(m−n+1) = O(mn); as G is connected, n ≤ m+1
and k ≤ n. Also, note that all values in matrix A and vector b are between −k and
k, i.e., we can set a = k in the application of Theorem 6.1. So, by Theorem 6.1, we
obtain that if there is a solution to the ILP, then there is one where all variables are
set to values at most

O(m + kn) · O(kmn)O(mn) = mO(mn).

We know that there is at least one certificate with a solution, so we can bound the
number of subdivisions of G′ by mO(mn). This gives that the number of subdivisions
per edge of G is at most

(k(n + 1) + 1)mO(mn) + k(n + 1) = O(m2)mO(mn) + O(m2) = mO(mn).

This results in m · mO(mn) = mO(mn) subdivisions in total.

7 Conclusion

In this paper, we showed that the problem to decide whether the stable divisorial
gonality of a given graph is at most a given number k belongs to the class NP.
Together with the NP-hardness result of Gijswijt et al. [9], this shows that the prob-
lem is NP-complete. We think our proof technique is interesting: we give a certificate
that describes some of the essential aspects of the firing sequences; whether there is
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a subdivision of the graph for which this certificate describes the firing sequences
and thus gives the subdivision that reaches the optimal divisorial gonality can be
expressed in an integer linear program. Membership in NP then follows by adding
the certificate of the ILP to the certificate for the essential aspects.

As a byproduct of our work, we obtained an upper bound on the number of subdi-
visions needed to reach a subdivision of G whose divisorial gonality gives the stable
divisorial gonality of G. Our upper bound still is very high, namely exponential in
a polynomial of the size of the graph. An interesting open problem is whether this
bound on the number of needed subdivisions can be replaced by a polynomial in the
size of the graph. Such a result would give an alternative (and probably easier) proof
of membership in NP: first guess a subdivision, and then guess the firing sequences.

There are several open problems related to the complexity of computing the (sta-
ble) divisorial gonality of graphs. Are these problems fixed parameter tractable,
i.e., can they be solved in O(f (k)nc) time for constant c and some function f that
depends only on k? Or can they be proven to be W [1]-hard, or even, is there a con-
stant c, such that deciding if stable divisorial gonality of a given graph G is at most c

is already NP-complete? Also, how well can we approximate the divisorial gonality
or stable divisorial gonality of a graph?

Acknowledgments We thank Gunther Cornelissen and Nils Donselaar for helpful discussions. We thank
an anonymous referee for the suggestion of a shorter and more elegant proof of the main result.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

1. Bodlaender, H.L., van der Wegen, M., van der Zanden, T.C.: Stable divisorial gonality is in NP
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