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Abstract
Let F[X] be the polynomial ring over the variables X = {x1, x2, . . . , xn}. An ideal I =
〈p1(x1), . . . , pn(xn)〉 generated by univariate polynomials {pi(xi)}ni=1 is a univariate ideal. We
study the ideal membership problem for the univariate ideals and show the following results.

Let f(X) ∈ F[`1, . . . , `r] be a (low rank) polynomial given by an arithmetic circuit where
`i : 1 ≤ i ≤ r are linear forms, and I = 〈p1(x1), . . . , pn(xn)〉 be a univariate ideal. Given
~α ∈ Fn, the (unique) remainder f(X) (mod I) can be evaluated at ~α in deterministic time
dO(r) · poly(n), where d = max{deg(f),deg(p1) . . . ,deg(pn)}. This yields a randomized nO(r)

algorithm for minimum vertex cover in graphs with rank-r adjacency matrices. It also yields
an nO(r) algorithm for evaluating the permanent of a n × n matrix of rank r, over any field
F. Over Q, an algorithm of similar run time for low rank permanent is due to Barvinok [5]
via a different technique.
Let f(X) ∈ F[X] be given by an arithmetic circuit of degree k (k treated as fixed parameter)
and I = 〈p1(x1), . . . , pn(xn)〉. We show that in the special case when I = 〈xe1

1 , . . . , x
en
n 〉, we

obtain a randomized O∗(4.08k) algorithm that uses poly(n, k) space.
Given f(X) ∈ F[X] by an arithmetic circuit and I = 〈p1(x1), . . . , pk(xk)〉, membership testing
is W[1]-hard, parameterized by k. The problem is MINI[1]-hard in the special case when
I = 〈xe1

1 , . . . , x
ek

k 〉.
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7:2 Univariate Ideal Membership

1 Introduction

Let R = F[x1, x2, . . . , xn]1 be the ring of polynomials over the variables X = {x1, x2, . . . , xn}.
A subring I ⊆ R is an ideal if IR ⊆ I. Computationally, an ideal I is often given by
generators: I = 〈f1, f2, . . . , f`〉. Given f ∈ R and I = 〈f1, . . . , f`〉, the Ideal Membership
problem is to decide whether f ∈ I or not. In general, this is computationally highly
intractable. In fact, it is EXPSPACE-complete even if f and the generators fi, i ∈ [`] are
given explicitly by sum of monomials [21]. Nevertheless, special cases of ideal membership
problem have played important roles in several results in arithmetic complexity. For example,
the polynomial identity testing algorithm for depth three ΣΠΣ circuits with bounded top
fan-in; the structure theorem for ΣΠΣ(k, d) identities use ideal membership very crucially
[4, 13, 24].

In this paper, our study of ideal membership is motivated by a basic result in algebraic
complexity: the Combinatorial Nullstellensatz of Alon [1], and we recall a basic result in
that paper.

I Theorem 1. Let F be any field, and f(X) ∈ F[X]. Define polynomials gi(xi) =
∏
s∈Si

(xi−s)
for non-empty subsets Si, 1 ≤ i ≤ n of F. If f vanishes on all the common zeros of
g1, . . . , gn, then there are polynomials h1, . . . , hn satisfying deg(hi) ≤ deg(f)− deg(gi) such
that f =

∑n
i=1 higi.

The theorem can be restated in terms of ideal membership: Let f(X) ∈ F[X] be a
given polynomial, and I = 〈g1(x1), g2(x2), . . . , gn(xn)〉 be an ideal generated by univariate
polynomials gi without repeated roots. Let Z(gi) denote the zero set of gi, 1 ≤ i ≤ n. By
Theorem 1, if f 6∈ I then there is a ~α = (α1, . . . , αn) ∈ Z(g1)×· · ·×Z(gn) such that f(~α) 6= 0.
Of course, if f ∈ I then f |Z(g1)×···×Z(gn) = 0.

Ideals I generated by univariate polynomials are called univariate ideals. For any
univariate ideal I and any polynomial f , by repeated application of the division algorithm,
we can write f(X) =

∑n
i=1 hi(X)gi(xi) + R(X) where R is unique and for each i ∈ [n] :

degxi
(R) < deg(gi(xi)). Since the remainder is unique, it is convenient to write R = f

mod I. By Alon’s theorem, if f 6∈ I then there is a ~α ∈ Z(g1) × · · · × Z(gn) such that
R(~α) 6= 0.

As an application of the theorem, Alon and Tarsi showed that checking k-colorability
of a graph G is polynomial-time equivalent to testing whether the graph polynomial fG is
in the ideal 〈xk1 − 1, . . . , xkn − 1〉 [1]. It follows that univariate ideal membership problem
coNP-hard.

Univariate ideal membership is further motivated by its connection with two well-studied
problems. Computing the permanent of a n × n matrix over any field F can be cast in
terms of univariate ideal membership. Given a matrix A = (ai,j)1≤i,j≤n ∈ Fn×n, consider
the product of linear forms PA(X) =

∏n
i=1(

∑n
j=1 aijxj). The following observation is well

known.

I Fact 2. The permanent of the matrix A is given by the coefficient of the monomial
x1x2 · · ·xn in PA.

It follows immediately that PA(X) (mod 〈x2
1, . . . , x

2
n〉) = Perm(A) x1x2 · · ·xn. I.e., the

remainder PA (mod 〈x2
1, . . . , x

2
n〉) evaluates to Perm(A) at the point ~1 ∈ Fn.

1 We often use the shorthand notation F[X].
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Next, we briefly mention the connection of univariate ideal membership with the multi-
linear monomial detection problem, a benchmark problem that is useful in designing fast
parameterized algorithms for a host of problems [16, 17, 18, 28].

Notice that, given an arithmetic circuit C computing a polynomial f ∈ F[X] of degree k,
checking if f has a non-zero multilinear monomial of degree k is equivalent to checking if
f (mod 〈x2

1, . . . , x
2
n〉) is non-zero. Moreover, the constrained multilinear detection problem

studied in [6, 17] can also be viewed as a problem of deciding membership in a univariate
ideal.

Our Results. A contribution of this paper is to consider several parameterized problems
in arithmetic complexity as instances of univariate ideal membership. One parameter of
interest is the rank of a multivariate polynomial: We say f ∈ F[X] is a rank r polynomial if
f ∈ F[`1, `2, . . . , `r] for linear forms `j : 1 ≤ j ≤ r. This concept has found application in
algorithms for depth-3 polynomial identity testing [24]. Given a univariate ideal I, a point
~α ∈ Fn, and an arithmetic circuit computing a polynomial f of rank r, we obtain an efficient
algorithm to compute f (mod I) at ~α.

I Theorem 3. Let F be an arbitrary field where the field arithmetic can be done efficiently, and
C be a polynomial-size arithmetic circuit computing a polynomial f in F[`1, `2, . . . , `r], where
`1, `2, . . . , `r are given linear forms in {x1, x2, . . . , xn}. Let I = 〈p1, . . . , pn〉 be a univariate
ideal generated by pi(xi) ∈ F[xi], 1 ≤ i ≤ n. Given ~α ∈ Fn, we can evaluate the remainder f
(mod I) at the point ~α in time dO(r)poly(n), where d = max{deg(f), deg(pi) : 1 ≤ i ≤ n}.

This also allows us to check whether f ∈ I by picking a point ~α at random and checking
whether f (mod I) evaluated at ~α is zero or not. The intuitive idea behind the proof
of Theorem 3 is as follows. Given a polynomial f(X) ∈ F[`1, . . . , `r], a univariate ideal
I = 〈p1(x1), . . . , pn(xn)〉, and a point ~α ∈ Fn, we first find an invertible linear transformation
T such that the polynomial T (f) becomes a polynomial over at most 2r variables. Additionally
T has the property that T fixes the variables x1, . . . , xr. Then we recover the polynomial
(call it f̃) over at most 2r variables explicitly and perform division algorithm with respect to
the ideal I[r] = 〈p1(x1), . . . , pr(xr)〉. For notational convenience, call f̃ be the polynomial
obtained over at most 2r variables. It turns out T−1(f̃) is the true remainder f (mod I[r]).
Since the variables x1, . . . , xr do not play role in the subsequent stages of division, we can
eliminate them by substituting xi ← αi for each 1 ≤ i ≤ r. Then we apply the division
algorithm on T−1(f̃)|xi←αi:1≤i≤r recursively with respect to the ideal I[n]\[r] to compute the
final remainder at the point ~α.

Our next result is an efficient algorithm to detect vertex cover in low rank graphs. A
graph G is said to be of rank r if the rank of the adjacency matrix AG is of rank r. Graphs
of low rank were studied by Lovasz and Kotlov [2, 15] in the context of graph coloring. Our
idea is to construct a low rank polynomial from the graph and check its membership in an
appropriate univariate ideal.

I Theorem 4. Given a graph G = (V,E) on n vertices such that the rank of the adjacency
matrix AG is at most r, and a parameter k, there is a randomized nO(r) algorithm to decide
if the graph G has vertex cover of size k or not.

Theorem 3 also yields an nO(r) algorithm to compute the permanent of rank-r matrices
over any field. Barvinok had given [5] an algorithm of same running time for the permanent
of low rank matrices (over Q) using apolar bilinear forms. By Fact 2, if matrix A is rank
r then PA is a rank-r polynomial, and for the univariate ideal I = 〈x2

1, . . . , x
2
n〉 computing
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7:4 Univariate Ideal Membership

PA (mod I) at the point ~1 yields the permanent. Theorem 3 works more generally for
all univariate ideals. In particular, the ideal in the proof of Theorem 4 is generated by
polynomials that are not powers of variables. Thus, Theorem 3 can potentially have more
algorithmic consequences than the technique in [5].

If k is the degree of the input polynomial and the ideal is given by the powers of variables
as generators, we have a randomized FPT algorithm for the problem.

I Theorem 5. Given an arithmetic circuit C computing a polynomial f(X) ∈ Z[X] of
degree k and integers e1, e2, . . . , en, there is a randomized algorithm to decide whether
f ∈ 〈xe1

1 , x
e2
2 , . . . , x

en
n 〉 in O∗(4.08k) time.

Note that this generalizes the well-known problem of multilinear monomial detection
for which the ideal of interest would be I = 〈x2

1, x
2
2, . . . , x

2
n〉. Surprisingly, the run time

of the algorithm in Theorem 5 is independent of the ei. Brand et al. have given the first
FPT algorithm for multilinear monomial detection in the case of general circuit with run
time randomized O∗(4.32k) [7]. Recently, this problem has also been studied using the
Hadamard product [3] of the given polynomial with the elementary symmetric polynomial
(and differently using apolar bilinear forms [22]). When the number of generators in the ideal
is treated as the fixed parameter, the problem is W[1]-hard.

I Theorem 6. Given a polynomial f(X) ∈ F[X] by an arithmetic circuit C and univariate
polynomials p1(x1), p2(x2), . . . , pk(xk), checking if f 6∈ 〈p1(x1), p2(x2), . . . , pk(xk)〉 is W[1]-
hard with k as the parameter.

Theorem 6 is shown by a suitable reduction from independent set problem to ideal
membership. To find an independent set of size k, the reduction produces an ideal with k
univariates and the polynomial created from the graph has k variables. Unlike Theorem 5,
the above parameterization of the problem remains MINI[1]-hard even if the ideal is generated
by powers of variables. More precisely, we show the following result.

I Theorem 7. Let C be a polynomial-size arithmetic circuit computing a polynomial f ∈ F[X].
Let I = 〈x1

e1 , x2
e2 , . . . , xk

ek〉 be the given ideal where e1, . . . , ek are given in unary, checking
if f 6∈ I is MINI[1]-hard with k as parameter.

It turns out that the complement of the ideal membership problem can be easily reduced
from k-Lin-Eq problem which asks if there is a ~x ∈ {0, 1}n satisfying A~x = ~b, where A ∈ Fk×n
and ~b ∈ Fk.

We can show k-Lin-Eq is hard for the parameterized complexity class MINI[1] by reducing
the miniature version of 1-in-3 POSITIVE 3-SAT to it.

As already mentioned, the result of Alon and Tarsi [1] shows that the membership of fG
in 〈xk1 − 1, . . . , xkn − 1〉 is coNP-hard and the proof crucially uses the fact that the roots of
the generator polynomials are all distinct. This naturally raises the question if univariate
ideal membership is in coNP when each generator polynomial has distinct roots. We show
membership in coNP.

I Theorem 8. Let f ∈ Q[X] be a polynomial of degree at most d given by a black-box.
Let I = 〈p1(x1), . . . , pn(xn)〉 be an ideal given explicitly by a set of univariate polynomials
p1, p2, . . . , pn as generators of maximum degree bounded by d. Let L be the bit-size upper
bound for any coefficient in f, p1, p2, . . . , pn. Moreover, assume that pis have distinct roots
over C. Then there is a non-deterministic algorithm running in time poly(n, d, L) that decides
the non-membership of f in the ideal I.
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I Remark. The distinct roots case discussed in Theorem 8 is in stark contrast to the
complexity of testing membership of PA(X) in the ideal 〈x2

1, . . . , x
2
n〉. That problem is

equivalent to checking if Perm(A) is nonzero for a rational matrix A, which is hard for the
exact counting class C=P. Hence it cannot be in coNP unless the polynomial-time hierarchy
collapses.

Recall from Alon’s Nullstellensatz that if f 6∈ I, then there is always a point ~α ∈
Z(p1)× . . .× Z(pn) such that f(~α) 6= 0. Notice that in general the roots αi ∈ C and in the
standard Turing Machine model the NP machine can not guess the roots directly with only
finite precision. But we are able to prove that the NP machine can guess the tuple of roots
~̃α ∈ Qn using only polynomial bits of precision and still can decide the non-membership. The
main technical idea is to compute efficiently a parameter M only from the input parameters
such that |f(~̃α)| ≤ M if f ∈ I, and |f(~̃α)| ≥ 2M if f 6∈ I. The NP machine decides
the non-membership according to the final value of |f(~̃α)|. We remark that Koiran has
considered the weak version of Hilbert Nullstellensatz (HN) problem [14]. The input is a
set of multivariate polynomials f1, f2, . . . , fm ∈ Z[X] and the problem is to decide whether
1 ∈ 〈f1, . . . , fm〉. The result of Koiran shows that HN ∈ AM (under GRH), and it is an
outstanding open problem problem to decide whether HN ∈ NP.

Organization. In Section 2 we give some background results. We prove Theorem 3 and
Theorem 4 in Section 3. In Section 4, we explore the parameterized complexity of univariate
ideal membership. In the first subsection, we prove 5, and in the second subsection we prove
Theorems 6 and 7. Finally, in Section 5, we prove Theorem 8.

2 Preliminaries

Basics of Ideal Membership. Let F[X] be the ring of polynomials F[x1, x2, . . . , xn]. Let
I ⊆ F[X] be an ideal given by a set of generators I = 〈g1, . . . , g`〉. Then for any polynomial
f ∈ F[X], it is a member of the ideal if and only if f =

∑`
i=1 higi where ∀i : hi ∈ F[X].

Dividing f by the gi by applying the standard division algorithm does not work in general to
check if f ∈ I. Indeed, the remainder is not even uniquely defined. However, if the leading
monomials of the generators are already pairwise relatively prime, then we can apply the
division algorithm to compute the unique remainder.

I Theorem 9 (See[9], Theorem 3, proposition 4, pp.101). Let I be a polynomial ideal given
by a basis G = {g1, g2, · · · , gs} such that all pairs i 6= j LM(gi) and LM(gj) are relatively
prime. Then G is a Gröbner basis for I.

In particular, if the ideal I is a univariate ideal given by I = 〈p1(x1), . . . , pn(xn)〉, we can
apply the division algorithm to compute the unique remainder f (mod I). To bound the run
time of this procedure we note the following: Let p̄ denote the ordered list {p1, p2, . . . , pn}.
Let Divide(f ; p̄) be the procedure that divides f by p1 to obtain remainder f1, then divides
f1 by p2 to obtain remainder f2, and so on to obtain the final remainder fn after dividing by
pn. We note the following time bound for Divide(f ; p̄).

I Fact 10 (See [27], Section 6, pp.5-12). Let f ∈ F[X] be given by a size s arithmetic circuit
and pi(xi) ∈ F[xi] be given univariate polynomials. The running time of Divide(f ; p̄) is
bounded by O(s ·

∏n
i=1(di + 1)O(1)), where di = max{degxi

(f),deg(pi(xi))}.

FSTTCS 2018



7:6 Univariate Ideal Membership

On Roots of Univariate Polynomials. The following lemma shows that the absolute value
of any root of a univariate polynomial can be bounded in terms of the degree and the
coefficients. The result is folklore.

I Lemma 11. Let f(x) =
∑d
i=0 aix

i ∈ Q[x] be a univariate polynomial and α be a root of f .
Then, either |a0|∑d

i=1
|ai|
≤ |α| < 1 or 1 ≤ |α| ≤ d · maxi |ai|

|ad| .

Proof. Since α is a root of f , we have that, 0 = f(α) =
∑d
i=0 aiα

i = 0, and
∑d
i=1 aiα

i = −a0.
Then by an application of triangle inequality, we get that

∑d
i=1 |ai||α|i ≥ |a0|. Now we analyse

two different cases. In the first case assume that |α| < 1. Observe that |α| · (
∑d
i=1 |ai|) ≥ |a0|,

and hence |α| ≥ |a0|∑d

i=1
|ai|

. In the second case |α| ≥ 1. Observe that −adαd =
∑d−1
i=0 aiα

i.

Then use triangle inequality to get that |ad||α|d ≤ |α|d−1 · (
∑d−1
i=0 |ai|). Now we get the

following, |α| ≤
∑d−1

i=0
|ai|

|ad| ≤ d · maxi |ai|
|ad| . The lemma follows by combining the two cases. J

The next lemma shows that the separation between two distinct roots of any univariate
polynomial can be lower bounded in terms of degree and the size of the coefficients. This
was shown by Mahler [20].

I Lemma 12. Let g(x) =
∑d
i=0 aix

i ∈ Q[x] and 2−L ≤ |ai| ≤ 2L (if ai 6= 0). Let α, β are
two distinct roots of g. Then |α− β| ≥ 1

2O(dL) .

The following lemma states that any univariate polynomial can not get a very small value
(in absolute sense) on any point which is far from every root.

I Lemma 13. Let f =
∑d
i=1 aix

i be a univariate polynomial with 2−L ≤ |ai| ≤ 2L (if
ai 6= 0). Let α̃ be a point such that |α̃− βi| ≥ δ for every root βi of f then |f(α̃)| ≥ 2−Lδd.

Proof. We observe that, f(α̃) = c
∏d
i=1(α̃ − βi). Since |α̃ − βi| ≥ δ we get, |f(α̃)| =

|c|
∏d
i=1 |α̃− βi| ≥ 2−Lδd. This completes the proof. J

Parameterized Complexity Classes. We recall some standard definitions in parameterized
Complexity [10, ch.1,pp. 7-14]. We only state them informally. For a parameterized input
problem (x, k) with k be the parameter of interest, we say that the problem is in FPT if it has
an algorithm with run time f(k)|(x, k)|O(1) for some computable function f . A parameterized
reduction [10, def. 13.1] between two problems should be computable in time f(k)|(x, k)|O(1),
and if the reduction outputs (x′, k′) then k′ ≤ f(k).

The complexity class MINI[1] consists of parameterized problems that are miniature
versions of NP problems: For L ∈ NP, its miniature version mini(L) has instances of the
form (0n, x), where |x| ≤ k logn, k is the fixed parameter, and x is an instance of L. Showing
mini(L) to be MINI[1]-hard under parameterized reductions is evidence of its parameterized
intractability, for it cannot be in FPT assuming the Exponential Time Hypothesis [12].

Hadamard Product. We recall the definition of Hadamard product of two polynomials.

I Definition 14. Given two polynomials f, g ∈ F[X], the Hadamard product f ◦ g is defined
as f ◦ g =

∑
m[m]f · [m]g ·m.

In this paper we adapt the notion of Hadamard product suitably and define a scaled
version of Hadamard Product of two polynomials.
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I Definition 15. Given two polynomials f, g ∈ F[X], their scaled Hadamard Product f ◦s g,
is defined as f ◦s g =

∑
mm! · [m]f · [m]g ·m, where m = xe1

i1
xe2
i2
. . . xer

ir
and m! = e1! ·e2! · · · er!

abusing the notation.

I Remark. Given two polynomials f ∈ F[X] and g ∈ F[X], if one of these two is a multilinear
polynomial then scaled Hadamard product f ◦s g is same as Hadamard product f ◦ g.

Symmetric Polynomial and Weakly Equivalence of Polynomials. The symmetric polyno-
mial of degree k over n variables {x1, x2, . . . , xn}, denoted by Sn,k, is defined as follows:

Sn,k(x1, x2, . . . , xn) =
∑

T⊆[n],|T |=k

∏
i∈T

xi.

Notice that, Sn,k contains all the degree k multillinear terms. A recent result of Lee gives
the following homogeneous diagonal circuit for Sn,k [19].

I Lemma 16. The symmetric polynomial Sn,k can be computed by a homogenous Σ[s] ∧[k] Σ
circuit where s ≤

∑k/2
i=0
(
n
i

)
.

A polynomial f ∈ F[X] is said to be weakly equivalent to a polynomial g ∈ F[X], if the
following is true. For each monomial m, [m]f = 0 if and only if [m]g = 0. In this paper, we
will use polynomials weakly equivalent to Sn,k.

3 Ideal Membership for Low Rank Polynomials

In this section we prove Theorem 3. Given a r-rank polynomial f by an arithmetic circuit,
a univariate ideal I, and a point ~α ∈ Fn, we give an dO(r) time algorithm to evaluate
the remainder polynomial f (mod I) at ~α where d is the degree of the polynomial f . As
mentioned in Section 1, an application of our result yields an nO(r) time algorithm for
computing the permanent of rank-r matrices over any field. Barvinok [5], via a different
method, had obtained an nO(r) time algorithm for this problem over Q. We also obtain a
randomized nO(r) time algorithm for minimum vertex cover of low rank graphs. We first
define the notion rank of a polynomial in F[X].

I Definition 17. A polynomial f(X) ∈ F[X] is a rank-r polynomial if there are linear forms
`1, `2, . . . , `r such that f(X) is in the sub-algebra F[`1, . . . , `r].

For an unspecified fixed parameter r, we refer to rank-r polynomials as low rank polyno-
mials.

Given ~α ∈ Fn, a univariate ideal I = 〈p1(x1), . . . , pn(xn)〉, and a rank r polynomial
f(`1, . . . , `r) we show how to compute f(`1, . . . , `r) (mod I) at ~α using a recursive procedure
REM(f(`1, . . . , `r), I, ~α) efficiently. We introduce the following notation. For S ⊆ [n], the
ideal IS = 〈pi(xi) : i ∈ [S]〉.

We first observe the following lemma which shows how to remove the redundant variables
from a low rank polynomial.

I Lemma 18. Given a polynomial f(`1, . . . , `r) where `1, . . . , `r are linear forms in F[X],
there is an invertible linear transform T : Fn 7→ Fn that fixes x1, . . . , xr and the transformed
polynomial T (f) is over at most 2r variables.

Proof. Write each linear form `i in two parts: `i = `i,1 + `i,2, where `i,1 is the part over
variables x1, . . . , xr and `i,2 is over variables xr+1, . . . , xn. W.l.o.g, assume that {`i,2}r

′

i=1 is
a maximum linearly independent subset of linear forms in {`i,2}ri=1. Let T : Fn → Fn be the

FSTTCS 2018



7:8 Univariate Ideal Membership

invertible linear map that fixes x1, . . . , xr, maps the independent linear forms {`i,2}r
′

i=1 to
variables xr+1, . . . , xr+r′ , and suitably extends T to an invertible map. This completes the
proof. J

The following lemma shows that the univariate division and evaluating the remainder at
the end can be achieved by division and evaluation partially.

I Lemma 19. Let f(X) ∈ F[X] and I = 〈p1(x1), . . . , pn(xn)〉 be a univariate ideal. Let R(X)
be the unique remainder f (mod I). Let ~α ∈ Fr, r ≤ n and Rr(X) = f (mod I[r]). Then
R(α1, . . . , αr, xr+1, . . . , xn) = Rr(α1, . . . , αr, xr+1, . . . , xn) (mod I[n]\[r]).

Proof. From the uniqueness of the remainder for the univariate ideals, we get that R(X) =
Rr(X) (mod I[n]\[r]). Now we write explicitly the polynomial Rr(X) as Rr =

∑
ū rū ·

xu1
r+1 . . . , x

un−r
n where ru ∈ F[X[r]]. So we get that,

Rr (mod I[n]\[r]) =
∑
ū

rū

n−r∏
j=1

q(xr+j)

where q(xr+j) = x
uj

r+j (mod p(xr+j)). Then the lemma follows by substituting x1 =
α1, . . . , xr = αr in the relation R = Rr (mod I[n]\[r]). J

We require the following lemma in the proof of the main result of this section.

I Lemma 20. Let f ∈ F[X], and T : Fn → Fn be an invertible linear transformation fixing
x1, . . . , xr and mapping xr+1, . . . , xn to linearly independent linear forms over xr+1, . . . , xn.
Write R = f (mod I[r]) and R′ = T (f) (mod I[r]). Then R′ = T (R).

Proof. Let f =
∑r
i=1 hi(X) ·pi(xi)+R(X) and T (f) =

∑r
i=1 h

′
i(X) ·pi(xi)+R′(X). Note that

degxi
R,degxi

R′ < deg(pi(xi)) for 1 ≤ i ≤ r. Since T is invertible and also fixes x1, . . . , xr,
we can write f =

∑r
i=1 T

−1(h′i(X)) · pi(xi) + T−1(R′(X)). By the property of T it is clear
that degxi

(T−1(R′(X))) < deg(pi(xi)) for 1 ≤ i ≤ r. Combining two expression for f , we
immediately conclude that (R−T−1(R′)) = 0 (mod I[r]) which forces that R = T−1(R′). J

3.1 Proof of Theorem 3

Proof. We now describe a recursive procedure REM to solve the problem. The initial call to
it is REM(f(`1, . . . , `r), I[n], ~α). We apply the invertible linear transformation obtained in
Lemma 18 to get the polynomial T (f) over the variables x1, . . . , xr, xr+1, . . . , xr+r′ where
r′ ≤ r.2 The polynomial T (f) can be explicitly computed in time poly(L, s, n, dO(r)). Then
we compute the remainder polynomial f ′(x1, . . . , xr+r′) = T (f) (mod I[r]) by applying the
division algorithm which runs in time poly(L, s, n, dO(r)). Next we compute the polynomial
g = f ′(α1, . . . , αr, xr+1, . . . , xr+r′). Notice from Lemma 18 that T−1(xr+i) = `i,2 for 1 ≤ i ≤
r′, thus we are interested in the polynomial g(`1,2, . . . , `r′,2). Now we recursively compute
REM(g(`1,2, . . . , `r′,2), I[n]\[r], ~α

′) where ~α′ = (αr+1, . . . , αn).

2 We use f to denote f(`1, . . . , `r).
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Correctness of the algorithm. Let R(X) = f (mod I[n]) be the unique remainder poly-
nomial. Let Rr(X) = f (mod I[r]) and we know that Rr (mod I[n]\[r]) = R. So
by Lemma 19, to show the correctness of the algorithm, it is enough to show that
g(`1,2, . . . , `r′,2) = Rr(α1, . . . , αr, xr+1, . . . , xn).

Following Lemma 20, write R′ = f ′(x1, . . . , xr, xr+1, . . . , xn) = T (f) (mod I[r]). Then,
by Lemma 20 we conclude that R′ = T (Rr). It immediately follows that Rr = T−1(R′) =
f ′(x1, . . . , xr, T

−1(xr+1), . . . , T−1(xn)). Now by definition the polynomial g(`1,2, . . . , `r′,2)
is f ′(α1, . . . , αr, T

−1(xr+1), . . . , T−1(xr+r′)) which is simply Rr(α1, . . . , αr, xr+1, . . . , xn).

Time complexity. First, suppose that the field arithmetic over F can be implemented using
polynomial bits and L be the bit-size upper bound for any coefficient in f, p1, . . . , pn. This
covers all the finite fields where the field is given by an explicit irreducible polynomial. Also,
over any such field the polynomial T (f) can be explicitly computed from the input arithmetic
circuit deterministically in time poly(L, s, n, dO(r)).

Notice that in each recursive application the number of generators in the ideal is reduced
by at least one. Furthermore, in each recursive step we need time poly(L, s, n, dO(r)) to run
the division algorithm. This gives us a recurrence of t(n) ≤ t(n − 1) + poly(L, s, n, dO(r))
which solves to t(n) ≤ poly(L, s, n, dO(r)).

Bit-size growth over Q : Over Q, we only need to argue that the intermediate bit-size
complexity growth is only polynomial in the input size.Let L̃ be the maximum bit size of
any coefficient appearing in f(z1, . . . , zr), and let L be an upper bound on the bit sizes of
the other inputs, i.e. bit sizes of coefficients of `1, . . . , `r, p1, . . . , pn and α1, . . . , αn. We will
show that the circuit that we use in the next recursive step has coefficients of bit size at most
L̃+ poly(n, d, L).

Let |c(h)| denote the maximum coefficient (in absolute value) appearing in any polynomial
h. Then by direct expansion we can see that |c(f(`1, . . . , `r))| ≤ 2L̃+poly(n,d,L). Also the
linear transformation from lemma 18 can be implemented using poly-bit size entries. Together,
we get that that c(T (f(`1, . . . , `r)) ≤ 2L̃+poly(n,d,L). At this point, we expand the circuit and
obtain T (f) explicitly as a sum of dO(r) monomials. Then divide T (f) by p1(x1), . . . , pr(xr)
one-by-one, and substitute x1 = α1, . . . , xr = αr giving us the remainder g(xr+1, . . . , xr+r′).
We note that |c(g)| ≤ 2L̃+poly(n,d,L) 3. Now the algorithm passes the dO(r) size ΣΠΣ
circuit g(`1,2, . . . , `r′,2) (We note that T−1(xr+1) = `1,2, . . . , T

−1(xr+r′) = `r′,2), univariates
pr+1(xr+1), . . . , pn(xn) and the point (αr+1, . . . , αn) for the next recursive call. We note
that the bit-size upper bound L does not change for the input linear forms, and the
coefficient bit-size of f grows from L̃ to L̃+ poly(n, d, L) in one step of the recursion. This
gives us the recurrence S(n) ≤ S(n − 1) + poly(n, d, L) with S(1) = L̃, which solves to
S(n) = O(L̃+ poly(n, d, L)). J

I Remark. Given a rank r polynomial f(`1, . . . , `r) and a univariate ideal I =
〈p1(x1), . . . , pn(xn)〉, we can decide the membership of f in I by testing identity of f (mod I)
i.e. by evaluating f (mod I) at some α ∈ Fn chosen randomly [11, 29, 26]. Hence, the mem-
bership can be decided in randomized dO(r) · poly(n) time where d = max{deg(f), deg(pi) :
1 ≤ i ≤ n} using Theorem 3.

3 We tackle a similar situation in Section 5, and Lemma 33 gives further explanation on the bit-complexity
growth when we divide by univariate polynomials.
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3.2 Vertex Cover Detection in Low Rank Graphs
In the Vertex Cover problem, we are given a graph G = (V,E) on n vertices and an integer k
and the question is to decide whether there is a vertex cover of size k in G. This is a classical
NP-complete problem. In this section we show an efficient algorithm to detect vertex cover
in a graph whose adjacency matrix is of low rank.

Proof of Theorem 4. We present a reduction from Vertex Cover problem to Univariate
Ideal Membership problem that produces a polynomial whose rank is almost same as the
rank of AG. Consider the ideal I = 〈x2

1 − x1, x
2
2 − x2, . . . , x

2
n − xn〉 and the polynomial

f =
(n

2)∏
s=1

(~xAG~xT − s) ·
n−k−1∏
t=0

(
n∑
i=1

xi − t

)
,

where AG is the adjacency matrix of the graph G and ~x = (x1, x2, . . . , xn) is row-vector.

I Lemma 21. The rank of the polynomial f is at most r + 1.

Proof. We note that AG is symmetric since it encodes an undirected graph. Let Q be an
invertible n×n matrix that diagonalizes AG. So we have QAGQT = D where D is a diagonal
matrix with only the first r diagonal elements being non-zero. Let ~y = (y1, y2, . . . , yn) be
another row-vector of variables. Now, we show the effect of the transform ~x 7→ ~yQ on
the polynomial ~xAG~xT . Clearly, ~yQAGQT~yT = ~yD~yT and since there are only r non-zero
entries on the diagonal, the polynomial ~yD~yT is over the variables y1, y2, . . . , yr. Thus
g =

∏(n
2)
s=1(~xAG~xT − s) is a rank r polynomial. Also h =

∏n−k−1
t=0 (

∑n
i=1 xi − t) is a rank 1

polynomial as there is only one linear form
∑n
i=1 xi. Since f = gh, we conclude that f is a

rank r + 1 polynomial. J

Now the proof of Theorem 4 follows from the next claim.

I Claim 22. The graph G has a Vertex Cover of size k if and only if f 6∈ I.

Proof. First, observe that the set of common zeroes of the generators of the ideal I is the set
{0, 1}n. Let S be a vertex cover in G such that |S| ≤ k. We will exhibit a point ~α ∈ {0, 1}n
such that f(~α) 6= 0. This will imply that f 6∈ I. Identify the vertices of G with {1, 2, . . . , n}.
Define ~α(i) = 0 if and only if i ∈ S. Since ~xAG~xT =

∑
(i,j)∈EG

xixj and S is a vertex cover
for G, it is clear that ~xAG~xT (~α) = 0. Also (

∑n
i=1 xi)(~α) ≥ n− k. Then clearly f(~α) 6= 0.

For the other direction, suppose that f 6∈ I. Then by Theorem 1, there exists ~α ∈ {0, 1}n
such that f(~α) 6= 0. Define the set S ⊆ [n] as follows. Include i ∈ S if and only if ~α(i) = 0.
Since f(~α) 6= 0, and the range of values that ~xAG~xT can take is {0, 1, . . . , |E|}, it must be
the case that ~xAG~xT (~α) = 0. It implies that the set S is a vertex cover for G. Moreover,∏n−k−1
t=0 (

∑n
i=1 xi − t)(~α) 6= 0 implies that |S| ≤ k. J

The degree of the polynomial f is bounded by n2 + n and from Claim 22 we know
that f (mod I) is a non-zero polynomial if and only if G has a vertex cover of size k. By
Schwartz-Zippel-Demillo-Lipton [11, 29, 26] lemma (f (mod I))(~β) is non-zero with high
probability when ~β is chosen randomly from a small domain. Now, we need to just compute
(f (mod I))(~β) where f is a rank r+ 1 polynomial with `i = (~xQ−1)i for each 1 ≤ i ≤ r and
`r+1 =

∑n
i=1 xi which can be performed in (n, k)O(r) time using Theorem 3. J
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4 Parameterized Complexity of Univariate Ideals

We have already mentioned in Fact 2, that checking if the integer permanent is zero is
reducible to testing membership of a polynomial f(X) in the ideal 〈x2

1, . . . , x
2
n〉. So univariate

ideal membership is hard for the complexity class C=P even when the ideal is generated by
powers of variables [23]. In this section we study the univariate ideal membership with the
lens of parametrized complexity. The parameters we consider are either polynomial degree
or number of the generators for the ideal.

4.1 Parameterized by the Degree of the Polynomial
We consider the following: Let I be a univarite ideal given by generators and f ∈ F[X] a
degree k polynomial. Is checking whether f is in I fixed parameter tractable (with k as the
fixed parameter)?

We show that it admits an FPT algorithm for the special case when I = 〈xe1
1 , x

e2
2 , . . . , x

en
n 〉

and we work over either Z or any finite field of large characteristic.

4.1.1 Proof of Theorem 5
Proof. The proof consists of following three lemmas. Firstly, given an input instance a degree-
k f(X) and ideal I = 〈xe1

1 , x
e2
2 , . . . , x

en
n 〉 of ideal membership, we reduce it to computing the

(scaled) Hadamard product of f(X) and a polynomial g(X), where g(X) is a weighted sum of
all degree k monomials that are not in I. Then we show that we can evaluate Hadamard
product(defined in Section 2) of any two polynomials at a point in time roughly linear in the
product of the size of the circuits when one of the polynomials is given by a diagonal circuit
as input. Finally the last part of the proof is a randomized construction of a homogeneous
degree k diagonal circuit of top fain-in roughly O∗(4.08k) that computes a polynomial weakly
equivalent to the polynomial g with constant probability. Recall that, two polynomials f
and g are said to be weakly equivalent if they share same set of monomials.

To define the polynomial g(X), let Sm,k be the elementary symmetric polynomial of
degree k over m variables. Set m =

∑n
i=1(ei − 1). Let Sm,k is defined over the variable set

{z1,1, . . . , z1,e1−1, . . . , zn,1, . . . , zn,en−1}. We define g(X) as the polynomial obtained from
Sm,k replacing each zi,j by xi.

I Lemma 23. Given integers e1, e2, . . . , en, and a polynomial f(X) of degree k, f ∈
〈xe1

1 , x
e2
2 , . . . , x

en
n 〉 if and only if f ◦s g ≡ 0.

Proof. Suppose, f 6∈ 〈xe1
1 , x

e2
2 , . . . , x

en
n 〉, then f must contain a degree k monomial M =

xf1
1 x

f2
2 . . . xfn

n such that fi < ei for each 1 ≤ i ≤ n. From the construction, it is clear that
g(X) contains M . Therefore, the polynomial f ◦s g is not identically zero. The converse is
also true for the similar reason. J

I Lemma 24. Given a circuit C of size s computing a polynomial g ∈ F[X] and a homogeneous
degree k diagonal circuit Σ[s′]∧[k] Σ circuit D of top fan-in s′ computing f ∈ Q[X] and ~a ∈ Qn,
we can evaluate (f ◦s g)(~a) in deterministic ss′ · poly(n, k) time using poly(n, k) space.

Proof. Let M be a degree d monomial over X in f and M = xe1
1 · · ·xen

n , it follows from the
definition that(
M ◦s (b1x1 + . . .+ bnxn)d

)
(~a) =

(
M ! · d!

M ! · b
e1
1 · · · ben

n ·M
)

(~a) = d! ·M(a1b1, . . . , anbn).
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Recall that, M ! is used for e1! · · · en!. As ◦s distributes over addition, we can writef ◦s s′∑
i=1

(bi1x1 + . . .+ binxn)d
 (~a) = d! ·

s′∑
i=1

f(a1bi1, . . . , anbin).

The computation can be done in deterministic ss′ · poly(n, k) time using poly(n, k) space. J

I Lemma 25. There is an efficient randomized algorithm that constructs with constant
probability a homogeneous degree k diagonal circuit D of top fan-in O∗(4.08k) which computes
a polynomial weakly equivalent to the polynomial g (defined before Lemma 23).

Proof. To construct such a diagonal circuit D, we use the idea of [22]. We pick a collection
of colourings {ζ : [m]→ [1.5 · k]} of size roughly O∗(( e√

3 )k) uniformly at random. For each
such colouring ζi, we define a Π[1.5·k]Σ formula Pi =

∏1.5k
j=1 (Lj + 1), where Lj =

∑
`:ζi(`)=j x`.

We say that a monomial is covered by a coloring ζi if the monomial is in Pi. It is easy to see
that, given any multilinear monomial of degree k, the probability that a random coloring will
cover the monomial is roughly (

√
3
e )k. Hence, going over such a collection of colorings of size

O∗(( e√
3 )k) chosen uniformly at random, with a constant probability all the multilinear terms

of degree k will be covered. To take the Hadamard product with a polynomial of degree
k, we need to extract out the degree k homogeneous part (say P ′i ) from each Pi. Notice
that, using elementary symmetric polynomial over 1.5k many variables S1.5k,k, we can write
P ′i = S1.5k,k(L1, . . . , L1.5k). Now we use Lemma 16 to get a diagonal Σ ∧[k] Σ circuit of top

fan-in roughly
(1.5k

0.5k
)
for each P ′i . Define D =

∑O∗(( e√
3

)k)
i=1 P ′i . By a direct calculation, one

can obtain a diagonal circuit D of top fan-in O∗(4.08k) which is weakly equivalent to the
polynomial Sm,k. The construction of the polynomial g(X) from Sm,k is already explained
before Lemma 23. J

Now, given a circuit C computing f ∈ Z[X] and integers e1, . . . , en, to decide the
membership of f in the ideal I = 〈xe1

1 , . . . , x
en
n 〉, we construct a diagonal circuit D from

Lemma 25. Following Lemma 23, we can decide the membership of f in the ideal checking
the polynomial C ◦sD is identically zero or not which can be performed by randomly picking
~a ∈ Zn using Schwartz-Zippel-Demillo-Lipton Lemma [26, 29, 11] and evaluating (C ◦sD)(~a)
using Lemma 24. Over Z the given circuit can compute numbers as large as 22nO(1)

. To
handle this, a standard idea is to evaluate the circuit modulo a random polynomial bit
prime. J

4.2 Parameterized by Number of Generators
In this section, we consider the univariate ideal membership parameterized on the number
of generators of the ideal. More precisely, given a polynomial f(X), can we obtain an FPT
algorithm for testing membership in the univariate ideal 〈p1(x1), . . . , pk(xk)〉 parameterized
by k? We show that the problem is W[1]-hard. Moreover, in contrast to the previous case,
we obtain MINI[1]-hardness for a special case of the problem when the univariate generators
are just power of variables.

Proof of Theorem 6. We show a reduction from k-independent set, a well known W[1]-hard
problem [10], to this problem. Let G = (V,E) be a graph on n vertices and k be the size of
the independent set. We identify its vertex set with the numbers {1, 2, . . . , n} and the edges
are tuples over [n]× [n]. Define the univariate ideal I = 〈p1(x1), . . . , pk(xk)〉 where for each
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1 ≤ i ≤ k, we define pi(xi) =
∏n
j=1(xi − j). Now we are going to define a polynomial f that

uses only k variables which will be used for the ideal membership problem. First consider
the polynomial D =

∏
1≤i6=j≤k(xi − xj).

Now we define the polynomial,

f =
∏

1≤i 6=j≤k

∏
(u,v)∈E⊆[n]×[n]

[(xi − u)2 + (xj − v)2] · [(xj − u)2 + (xi − v)2].

The proof follows from the following claim.

I Claim 26. f ·D 6∈ 〈p1(x1), p2(x2), . . . , pk(xk)〉 if and only if G has an independent set of
size k.

Proof. We use Theorem 1 to prove the claim. Let {j1, j2, . . . , jk} be an independent set in
G. Notice that (j1, . . . , jk) is a common zero of the generators p1, . . . , pk. Now notice that
f · D does not vanish at the point (j1, . . . , jk) as all the edges (j`, j`′) : 1 ≤ `, `′ ≤ k are
absent in the edge set E. Thus there is a common root of the ideal on which f ·D does not
vanish and hence f ·D 6∈ 〈p1(x1), p2(x2), . . . , pk(xk)〉.

Now if f · D 6∈ 〈p1(x1), p2(x2), . . . , pk(xk)〉 then there is a common zero (j1, . . . , jk) of
the ideal on which f ·D does not vanish. Using the same argument one can easily see that
{j1, . . . , jk} is an independent set in G. J

J

4.2.1 Proof of Theorem 7
We first relate our univariate ideal membership problem with a linear algebraic problem
k-Lin-Eq. It turns that k-Lin-Eq problem is more amenable to the MINI[1]-hardness proof.
Finally we show a reduction from MINI-1-in-3 POSITIVE 3-SAT to k-Lin-Eq to complete the
proof.

I Definition 27. k-Lin-Eq
Input: Integers k, n in unary, a k × n matrix A with all the entries given in unary and a k
dimensional vector ~b with all entries in unary.
Parameter: k.
Question: Does there exist an ~x ∈ {0, 1}n such that A~x = ~b?

I Lemma 28. There is a parameterized reduction from k-Lin-Eq to the univariate ideal
membership problem when the ideal is given by the powers of variables as generators.

Proof. We introduce 2k variables x1, x2, . . . , xk, y1, y2, . . . , yk where two variables will be
used for each row. For each i ∈ [n], let µi =

∑n
j=1 aij . For each column ci = (a1i, a2i, . . . , aki)

we construct the polynomial Pi = (y1
a1iy2

a2i . . . yk
aki + x1

a1ix2
a2i . . . xk

aki). We let PA =∏n
i=1 Pi and we choose the ideal to be 〈xb1+1

1 , yµ1−b1+1
1 , . . . , xbk+1

k , yµk−bk+1
1 〉. Notice that

PA has a small arithmetic circuit which is polynomial time computable.

I Claim 29. An instance (A,~b) is an YES instance for k-Lin-Eq iff PA 6∈
〈xb1+1

1 , yµ1−b1+1
1 , . . . , xbk+1

k , yµk−bk+1
k 〉.

Proof of Claim. Suppose (A,~b) is an YES instance. Then there is an ~x ∈ {0, 1}n such that
A~x = ~b. Define S := {i ∈ [n] : ~xi = 1} where xi is the ith co-ordinate of ~x. Think of the
monomial where x1

a1ix2
a2i . . . xk

aki is picked from Pi for each i ∈ S and y1
a1iy2

a2i . . . yk
aki
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is picked from reaming Pj ’s where j ∈ S̄. This gives us the monomial xb1
1 y

µ1−b1
1 . . . xbk

k y
µk−bk

1
in the polynomial PA. Thus PA 6∈ 〈xb1+1

1 , yµ1−b1+1
1 , . . . , xbk+1

k , yµk−bk+1
k 〉.

Now we show the other direction. Now suppose PA 6∈
〈xb1+1

1 , yµ1−b1+1
1 , . . . , xbk+1

k , yµk−bk+1
k 〉. Let S := {i ∈ [n] : x1

a1ix2
a2i . . . xk

aki is picked from
Pi}. There must be a monomial x1

c1x2
c2 . . . xk

cky1
d1y2

d2 . . . yk
dk in PA such that for each

i,
∑
j∈S aij = ci ≤ bi ,

∑
j 6∈S aij = di ≤ (µi − bi). As, µi =

∑
j∈S aij +

∑
i 6∈S aij , we get

bi ≤
∑
j∈S aij . Hence,

∑
j∈S aij = bi for each i. Define ~x ∈ {0, 1}n where ~xi = 1 if i ∈ S

else ~xi = 0. This shows (A,~b) is an YES instance. J

J

Before we prove the MINI[1]-hardness of k-Lin-Eq, we show that the following problem is
MINI[1]-hard.

I Definition 30. MINI-1-in-3 POSITIVE 3-SAT
Input: Integers k, n in unary, a 3-SAT instance E consisting of only positive literals where E
has at most k logn variables and atmost k logn clauses.
Parameter: k.
Question: Does there exist a satisfiable assignment for E such that every clause has exactly
one TRUE literal?

I Claim 31. MINI-1-in-3 POSITIVE 3-SAT is MINI[1]-hard.

To prove the claim we only need to observe that the standard Schaefer Reduction [25] from
3-SAT to 1-in-3 POSITIVE 3-SAT is in fact a linear size reduction, that directly gives us an
FPT reduction from MINI-3SAT to MINI-1-in-3 POSITIVE 3-SAT.

Proof of Theorem 7. Given a MINI-1-in-3 POSITIVE 3-SAT instance E , order the variables
v1, . . . , vk logn and the clauses C1, . . . , Ck logn. Construct the following k logn×k logn matrix
M where the rows are indexed by the clauses and the columns are indexed by the variables.
M [i][j] is set to 1 if vj appears in Ci, otherwise set it to 0. Make M a 2k logn× n matrix by
adding an all zero row between every rows and appending all zero columns at the end. Now,
define ~e as a 2k logn dimensional vector where ith co-ordinate of e, ei = 1 when i is odd and
ei = 0 when i is even. We want to find ~y ∈ {0, 1}n such that M~y = ~e.

However this is not an instance of k-Lin-Eq. To make it so, we observe that M is a
bit matrix and ~e is a bit vector, hence we can modify them to a k × n matrix A and k

dimensional vector ~b in the following way. For each column j, think of the ith consecutive
2 logn bits as the binary expansion of a single entry, call it N and set A[i][j] to N . Similarly,
we modify ~e to a k dimensional vector ~b by considering 2 logn bits as a binary expansion of
a single entry. Now the proof follows from the following claim.

I Claim 32. E is an YES instance for MINI-1-in-3 POSITIVE 3-SAT if and only if there
exists an ~x ∈ {0, 1}n such that A~x = ~b.

Proof. Suppose there is such a satisfiable assignment for E . Define S := {j ∈ [k logn] |
vj = TRUE}. Define ~z ∈ {0, 1}n such that zj = 1 where j ∈ S else zj = 0. For each i,
as Ci contains exactly one TRUE literal, hence e2i+1 =

∑n
j=1M [i][j] · zj = 1 and e2i = 0.

Therefore ~z is a solution for M~y = ~e. As every integer has a unique binary expansion, hence
~z is also a solution for A~x = ~b.

Now we prove the other direction. Suppose A~z = ~b for some ~z ∈ {0, 1}n. From the
construction of the matrix M , it is sufficient to show that ~z is a satisfying assignment
for M~y = ~e. First we note that the numbers A[i][j], b[i] in their binary expansion have
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bits 1 in the odd location and 0 in the even locations. Let A[i][j] =
∑2 logn
t=1 aijt2t−1 and

b[i] =
∑2 logn
t=1 et2t−1. Since A~z = ~b we have

∑n
j=1A[i][j] · zj = b[i]. This shows that

n∑
j=1

A[i][j] · zj =
n∑
j=1

(2 logn∑
t=1

aijt2t−1

)
· zj =

2 logn∑
t=1

 n∑
j=1

aijt · zj

 2t−1.

Since E is a 3-CNF formula we have (
∑n
j=1 aijt ·zj) ∈ {0, 1, 2, 3}. Now we compare (

∑n
j=1 aijt ·

zj) with the binary expansion of b[i]. When t is odd the bit et is 1 and so there must be a 1
in the corresponding bit of (

∑n
j=1 aijt · zj). This shows that (

∑n
j=1 aijt · zj) 6= 0 when t is

odd. Now if (
∑n
j=1 aijt · zj) ∈ {2, 3} for any odd t then the term 2t+1 will be produced and

this will not match the expansion of b[i] as the et+1 = 0. Thus by the uniqueness of binary
expansion we conclude that (

∑n
j=1 aijt · zj) = 1 if t is odd and 0 otherwise. Thus M~y = ~e

has a solution with yi = zi. J

J

5 Non-deterministic Algorithm for Univariate Ideal Membership

In this section we prove Theorem 8. Given a polynomial f(X) ∈ Q[X] and a univariate ideal
I = 〈p1(x1), . . . , pn(xn)〉 where the generators are p1, . . . , pn, we show a non-deterministic
algorithm to decide the (non)-membership of f in I. By Theorem 1, it suffices to show that
there is a common zero ~α of the generators p1, p2, . . . , pn such that f(α) 6= 0. Since in general
~α ∈ Cn, it is not immediately clear how to guess such a common zero by a NP machine.
However, we are able to show that for the NP machine it suffices to guess such an ~α upto
polynomially many bits of approximation.

We begin by proving a few technical facts which are useful for the main proof. Write
f(X) =

∑n
i=1 hi(X) pi(xi) + R(X) where for all i ∈ [n], degxi

(R) < deg(pi). For any
polynomial g, let |c(g)| be the maximum coefficient (in absolute value) appearing in g. The
following lemma gives an estimate for the coefficients of the polynomials h1, . . . , hn, R.

I Lemma 33. Let 2−L ≤ |c(f)|, |c(pi)| ≤ 2L. Then there is L′ = poly(L, d, n) such that
2−L′ ≤ |c(hi)|, |c(R)| ≤ 2L′ where d is the degree upper bound for f , and {pi : 1 ≤ i ≤ n}.

Proof. The estimate on L′ follows implicitly from the known results [8]. It can be also seen
by direct computation. Write f(X) =

∑
i fi(x2, . . . , xn) xi1 and then divide xi1 (mod p1(x1))

for each i. The modulo computation can be done by writing xi1 = q1(x1)p(x1) + r1(x1) with
the coefficients of q1 and r1 are unknown. We can then solve it using standard linear algebra.
In particular, one can use the Cramer’s rule for system of linear equation solution. The
growth of the bit-size is only poly(L, d). More precisely, if cmax is the maximum among
|c(f)|, |c(p1)|, any final coefficient is at most cmax · 2poly(L,d). We repeat the procedure for
the other univariate polynomials one by one. The final growth on the coefficients size is at
most poly(n,L, d). J

Let ~α = (α1, . . . , αn) ∈ Cn be such that pi(αi) = 0, 1 ≤ i ≤ n. From Lemma 11, we get
that 1

2L̂
≤ |αi| ≤ 2L̂ where L̂ = poly(L, d). Let α̃i ∈ Q[i] be an ε-approximation of αi, e.g.

|αi − α̃i| ≤ ε. Then we show that the absolute value of pi(α̃i) is not too far from zero.

I Observation 34. For 1 ≤ i ≤ n we have that |pi(α̃i)| ≤ ε · 2(dL)O(1) .

Proof. Let pi(xi) = c ·
∏d
j=1(xi−βi,j) and w.l.o.g assume that α̃i is the approximation of the

root βi,1. Then |pi(α̃i)| ≤ ε · |c| ·
∏d
j=2 |α̃i−βi,j | ≤ ε · |c| ·

∏d
j=2(|βi,1−βi,j |+ ε) ≤ ε ·2poly(d,L).

The final bound follows from the bound on the roots given in Lemma 11. J

FSTTCS 2018
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Since we have an upper bound on the coefficients of the polynomials {hi : 1 ≤ i ≤ n}
from Lemma 33, it follows that for 1 ≤ i ≤ n we have that |hi(α̃)| ≤ 2(ndL)O(1) . Here we use
the fact that the approximate root αi can be trivially bounded by 2L̂+1.

5.1 Proof of Theorem 8
Proof. If f is not in the ideal I, by Alon’s Nullstellensatz, we know that there exists a tuple
~α = (α1, . . . , αn) ∈ Z(p1)× . . .× Z(pn) such that R(~α) 6= 0. Suppose that the NP Machine
guess the tuple ~̃α = (α̃1, . . . , α̃n) which is the ε-approximation of the tuple ~α = (α1, . . . , αn)
4. Using the black-box for f , obtain the value for f(~̃α). Next, we show that the value |f(~̃α)|
distinguishes between the cases f ∈ I and f 6∈ I.

Case 1: f ∈ I. |f(~̃α)| = |
∑n
i=1 hi(~̃α)pi(α̃i)| ≤ (

∑n
i=1 |hi(~̃α)|)·ε·2(dL)c1 ≤ ε·2(ndL)c2 . where

the constant c2 is fixed by Observation 34 and the bounds on |hi(~̃α)|.
Case 2: f 6∈ I. Recall the inequality for complex numbers : |Z1 + Z2| ≥ |Z2| − |Z1|. Using

this write |f(~̃α)| ≥ |R(~̃α)| −
∑n
i=1 |hi(~̃α)| |pi(~̃α)|. Notice that |R(~̃α)| ≥ |R(~α)| − |R(~̃α)−

R(~α)|. Combining we get the following : |f(~̃α) ≥ |R(~α)| − |R(~̃α)−R(~α)| − ε · 2(ndL)c2
.

Now to complete the proof, we show a lower bound on |R(~α)| and an upper bound for
|R(~̃α)−R(~α)|.

I Claim 35. |R(~α)| ≥ 1
2(ndL)c3 for some constant c3.

Proof. Define the polynomial R̂(xn) = R(α1, . . . , αn−1, xn) = c ·
∏d′

j=1(xn − βj) where c is
some constant and d′ ≤ d. Note that αn is not a zero for R̂(xn). Consider the polynomial
Q(xn) = pn(xn)R̂(xn). The set {αn, β1, . . . , βd′} ⊆ Z(Q) and αn 6= βj : 1 ≤ j ≤ d′. Using
the root separation bound for |αn − βj | obtained in Lemma 12, we can easily lower bound
that |R̂(αn)| ≥ 1

2(ndL)c3 . J

I Claim 36. |R(~̃α)−R(~α)| ≤ 2(ndL)c4 for some constant c4.

Proof. Define R0(~̃α) = R(~α) and Ri(~̃α) = R(α̃1, . . . , α̃i, αi+1, . . . , αn). Then we use triangle
inequality to notice that |R(~α)−R(~̃α)| ≤

∑n
i=1 |Ri−1(~̃α)−Ri(~̃α)|. Write explicitly Ri−1(~̃α)−

Ri(~̃α) =
∑
~e c~eα̃

e1
1 . . . α̃

ei−1
i−1 (αei

i − α̃ei
i )αei+1

i . . . αen
n . Notice the upper bounds on |αi| ≤

2(ndL)O(1) , and |αi − α̃i| ≤ ε. We apply these bounds and use triangle inequality to get that
|R(~̃α)−R(~α)| ≤ ε · 2(ndL)c4 . J

Combining Claim 35, and Claim 36, we get the lower bound |f(~̃α)| ≥ 1
2(ndL)c3 − ε ·

(2(ndL)c4 + 2(ndL)c2 ). To make the calculation precise, let 3M = 1
2(ndL)c3 and choose ε such

that ε · (2(ndL)c4 + 2(ndL)c2 ) ≤M .
The final implication will be |f(~̃α)| ≤M when f ∈ I and |f(~̃α)| ≥ 2M when f 6∈ I. It is

important to note that the parameter M can be pre-computed from the input parameters
efficiently.

Now we show how to verify that the guessed point ~̃α is a good approximation of the
roots for the univariate polynomials. We need to only verify that for each i, α̃i is a good
approximation for some root of the univariate polynomial pi(xi). The fact that it is also a
good approximation for the non-zero of R is already verified above. The NP machine, given

4 Later we fix ε suitably and use Lemma 13 to verify in polynomial time that ~̃α is indeed ε-approximation
of ~α.
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p1, . . . , pn guesses α̃i using b bits and verifies that |pi(α̃i)| < 2−Lεd which, by lemma 13,
shows that the guessed α̃i is ε-close to some root of pi.

We note that such a guess always exists. Indeed, invoking Observation 34 with |αi−α̃i| ≤ δ
we can conclude that |pi(α̃i)| ≤ δ · 2(dL)O(1) . Now, the NP machine can guess b bits such that
|αi − α̃i| ≤ 2−b. We require 2−b · 2(dL)O(1)

< 2−Lεd, simplifying we get, 2−b < 2−(dL)O(1) · εd.
Hence b > (dL)O(1) log 1

ε . Thus using poly(d, L, log 1
ε ) bits there is always a guess α̃i for

which |pi(α̃i)| < 2−Lεd. J
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