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Abstract
The paper deals with two similar inequalities:

(1) 2K((4, B,C)) < K((4, B)) + K({4,C)) + K((B,C)) + O(logn) ,
(2) 2K P((4, B,C)) < KP((4, B)) + KP({A,C)) + KP((B,C)) + 0(1) ,

where K denotes simple Kolmogorov entropy (i.e. the very first version of Kol-
mogorov complexity having been introduced by Kolmogorov himself) and K P
denotes prefix entropy (self-delimiting complexity by the terminology of M. Li
and P. M. B. Vitanyi [1]). It turns out that from (1) one can infer the following
well-known geometric fact:

|Vi2 < |Stcy| ' ISyzl : ISa:ZI )

where V' is a set in three-dimensional space, Szy, Syz, Sg, are its three two-
dimensional projections, and |W| is the volume (or the area) of W. And (2), in
its turn, is a corollary of the well-known Cauchy-Schwarz inequality. So the con-
nection between geometry and Kolmogorov complexity works in both directions.
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1. Inequality 2

1. INEQUALITY
For any binary words A, B and C whose length does not exceed n we have

2K((4, B,C)) < K((4, B)) + K({4,C)) + K({B,C)) + O(logn)

(By K we denote Kolmogorov complexity as defined in original Kolmogorov article, see, e.g.,
[1], p. 198; it is called sometimes “simple Kolmogorov entropy” and denoted by K'S. Because
of the term O(logn) other versions may be used, see above.)

2. PROOF
We rewrite the inequality as

(K((4, B,C)) — K((4,B))) + (K({4, B,C)) - K({A,C))) < K((B,C)) + O(logn) .

Now we use the equality K((X,Y)) = K(X) + K(Y|X) + O(logn) where K(Y|X) is condi-
tional complexity of Y when X is known and get

K(C|(4, B)) + K(B|(4,C)) < K({B,C)) + O(logn).

Now it remains to use that K(C|(4, B)) < K(C|B), K(B|(A,C)) < K(B) and refer to the
equality mentioned above.

3. APPLICATION

We use this inequality to prove a (well-known) geometric fact which seems to have nothing in
common with Kolmogorov complexity. Assume that we have a set V in a three-dimensional
space with coordinates x,y, z. Consider three projections Szy, Sy, and Sg,. By |Z| we mean
volume (or area) of Z.

Theorem (A continuous version.)

V12 < 1Szyl - 1Syz] - 1Sz

To avoid difficulties (non-measurable sets etc.) we shall consider a finite version:

Theorem (A discrete version.) Let X, Y, Z be finite sets, V C X xY x Z and Szy C X XY,
S:: CX xZ,8y, CY x Z are projections of V. Then

(#V)2 < (#Szy) ' (#SyZ) : (#Szz)-

Proof. Choose a random sequence v = (v1...v,) € V™. Its complexity is n - (log#V) +
O(logn). Now remember that v; is a triple (i, Yi, 2;), therefore v can be considered as a
triple (z,y, 2) where £ = (z1...Zn), y = (y1...Yn), 2= (21... zn). Now use our inequality:

2K(v) < K((z,9)) + K({3, 2)) + K({z, 2)) + O(logn).



4. Prefix entropy and L? -inequality 3

Remember that (z,y) can be considered also as a sequence of n elements of Sgy, therefore
K({z,y)) < n-log#5Szy + O(logn). Using similar inequalities for (y, z) and (z, z) we get

2nlog#V = 2K (v) < n- (log #Sgy + log #3Sy. + log #5;.) + O(logn).
Dividing by n and using that 1—°§3 — 0 we get

2log#V < log #Szy + log #5Sy, + log #Sz..

4. PREFIX ENTROPY AND L2-INEQUALITY

Because of the O(logn) term the inequality of section 1 is valid for all usual variants of
Kolmogorov complexity (entropy) such as decision entropy, monotone entropy and prefix
entropy. But the case of prefix entropy (called also self-delimiting complexity, see [1], p. 209)
is somehow special because logarithmic term may be omitted:

2K P({4, B,C)) < KP((A, B)) + KP((4,C)) + KP({B,C)) + O(1) .

It turns out that this inequality can be proved analytically, using Cauchy—Schwarz inequality.
Indeed, recall that K P may be defined as a —log, P where P is an a priori probability on
the set of natural numbers. Therefore, we should prove that

P%((A,B,C)) 2 c- P((4, B)) - P((4,C)) - P({B,C))

for some positive constant c. The a priori probability is defined as a maximum enumerable
from below function on natural numbers with a finite sum; therefore it is enough to show
that

> P((4,B)- P((4,C))- P(B,C)) < +c.
A,B,C

This fact is a consequence of the following inequality which we prefer to write using integrals
instead of sums:

J[] @ vt 2)hiy, 2 dodydz <

(/ A(z,y)dz dy) v (/ 9%(z, 2) dzr dz) 2 (/ h2(z,y) dydy) 2 .

This is a version of Cauchy-Schwarz inequality containing three L2-norm in the right-hand
side instead of two; it can be easily reduced to an ordinary Cauchy-Schwarz inequality:

///fm )9(z, 2)h(y, z) dzdy dz =

= //h(y, (/ f(z,y)9(z, z)d:z:) dydz <
// h(y, z) (/ (z,y) d:v) (/ g?(z, 2) da:) v dydz <
1/2

(/ fLQ(Z/,Z)d.l/tiZf)l/2 // ﬁ/ fz(w,y)dw)A( / 92(m,z)dm)4dydz =

soa) ¢z;)
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= ([ oma)” (ff etwrwteravas) " -
- (// W2 dy d") "’ (/ ow)dy [ ¥(2) dZ) "
(// hz(y’ z) dy dz) v (// f2($, y)dz dy) v (// gz(:c, z)dz dz) s .

Thus, the connection between geometrical facts and Kolmogorov complexity works in both
directions.

REFERENCES

1. M. Li and P. M. B. Vitanyi, Kolmogorov Complexity and its Applications, in:
J. v. Leeuwen (Ed.), Handbook of Theoretical Computer Science, vol. A (Algorithms and
Complezity), Elsevier, Amsterdam, (1990), 187-254.



