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Abstract

Generalizations of linear numeration systems in which IN is recognizable by

finite automata are obtained by describing an arbitrary infinite regular language

following the lexicographic ordering. For these systems of numeration, we show

that ultimately periodic sets are recognizable. We also study the translation and

the multiplication by constants as well as the order-dependence of the recogniz-

ability.

1 Introduction

A series of recent papers are devoted to numeration systems [2, 3, 8, 9, 12, 14, 19] and are
mainly concerned with the study of the so-called recognizable sets of integers. Roughly
speaking, a set of integers is recognizable if their representations have a very simple
syntax, i.e. if they form a regular language.

An usual way of representing integers, leading to the so-called linear representation
systems, is to consider a strictly increasing sequence (Un)n∈IN of integers and to use some
algorithm (such as the greedy algorithm) to represent each natural number x by a word
c0 . . . cn such that c0Un+ · · ·+ cnU0 = x [11]. For example, with Un = pn and the greedy
algorithm, one gets the standard numeration system with basis p.

Among the sets of integers possibly recognizable, IN is of special interest. For in-
stance, if it is recognizable, then one can easily check whether a word over the alphabet
of the digits represents an integer or not. Under quite general assumptions, it is shown
in [19] that for IN to be recognizable, it is necessary that Un satisfies a linear recurrence
relation. The sufficient condition given in [14] is that Un satisfies an extended beta poly-
nomial for the dominant root β > 1 of the recurrence . Examples of such systems are the
numeration systems defined by a recurrence relation whose characteristic polynomial is
the minimum polynomial of a Pisot number (like the standard numeration systems or
the Fibonacci system [3]).

A nice description of the recognizable sets has been obtained for the latter [3, 4]. They
are the sets of integers that can be defined in the Presburger arithmetic extended by
some predicate related to the considered Pisot number. In particular, various operations
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do preserve the recognizability, such as addition, translation and multiplication by a
constant.

In [5], Cobham shows that the only sets that are simultaneously recognizable with
respect to two standard numeration systems having multiplicatively independent integer
basis are precisely the finite unions of arithmetic progressions. This remarkable result
has been extended to non standard linear systems [4, 8, 13, 18], the more general version
being obtained quite recently in [9].

In the above mentionned results, a property of the considered systems seems to play
a crucial role: the representation x ∈ IN 7→ r(x) ∈ {digits}∗ is increasing with respect
to the lexicographic ordering (this is an assumption in [19], it is a consequence of the
greedy algorithm). Observe that a numeration system having this property is completely
determined by the language r(IN) and the ordering of the digits, the sequence Un and
the algorithm defining the system being just extra data devised to compute the function
r in some “practical” fashion.

Taking this into account, we thus define an (abstract) numeration system as being
a triple S = (L,Σ, <) where L is an infinite language over the totally ordered alphabet
(Σ, <). Enumerating the elements of L lexicographically with respect to < leads to a
one-to-one map rS from IN onto L. To any natural number n, it assigns the (n + 1)th

word of L, its S-representation, while the reciprocal map valS sends any word belonging
to L onto its numerical value. A subset X ⊂ IN is said to be S-recognizable if rS(X) is
a regular subset of L.

Having in mind a possible generalization of the Cobham’s theorem, it is natural to
check whether the ultimately periodic subsets of IN are S-recognizable . Of course, if
they are, then L = rS(IN) is regular. It is a quite remarkable fact that conversely, if L
is regular, then every arithmetic progression is indeed S-recognizable (a special case of
this result has been obtained separately in [16]).

As recalled above, the recognizability of IN is an important property that is often
required. Unless otherwise stated, we assume in the sequel that L is a regular language.
Under this assumption, we obtain algorithms to compute rS and valS. The first is a
generalization of the greedy algorithm involving the complexity functions of the states
w−1.L, w ∈ Σ∗, of the minimal automaton of L in place of the sequence Un (for more
about minimal automaton, see for instance [10]) . Both proved to be quite usefull in
many concrete experiments.

In a positional numeration system, each digit has its own weight so that the question
of changing the order of the digits is somewhat irrelevant in this case. In an abstract
numeration system, the letters has no a priori individual role and, as we show with
the help of the language {a, b}∗ \ a∗b∗, the family of recognizable sets depends on the
ordering of the alphabet. However, we exhibit two classes of regular languages for which
the recognizability of a set of integers is independent of the order on the alphabet. One of
these classes is the set of the slender languages [1]. The other is the set of the languages
L ⊂ Σ∗ for which the complexity functions of the associated languages w−1.L differ only
at finitely many places.

As for the stability of the recognizability under natural arithmetic operations, we
show that for each t, a subset X of IN is S-recognizable if and only if X + t is S-
recognizable. On the other hand, multiplication by a constant generally does not preserve
recognizability so that addition is not a regular map as well. For example, in the
numeration system S based on the language a∗b∗, the set of t ∈ IN for which tX is S-
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recognizable if X is S-recognizable consists of the perfect squares. Note that in this case,
the function valS is nothing else but the well known Peano’s function [21]; surprisingly,
the proof of the result is difficult and it relies partly on the properties of the Pell’s
equation [7, 20].

2 Basic definitions and notations

In this paper, if Σ is a finite alphabet then Σ∗ is the free monoid (with identity ε)
generated by Σ. For a set S, #S denotes the cardinality of S and for a string w ∈ Σ∗,
|w| denotes the length of w.

Let L ⊂ Σ∗ be a regular language. We denote ML = (K, s, F, δ,Σ) the minimal
automaton of L where K is the set of states, s is the initial state, F is the set of final
states and δ : K × Σ → K is the transition function. We often write k.σ instead of
δ(k, σ).

Recall that the elements of K are the sets w−1.L = {v ∈ Σ∗ : wv ∈ L}, w ∈ Σ∗. The
state k is of the form w−1.L if and only if k = s.w, w−1.L being then the set Lk of words
accepted by ML from k. In particular, L = Ls.

We denote ul(k) the number #(Lk ∩ Σl) of words of length l belonging to Lk and
vl(k) the number of words of length at most l belonging to Lk,

vl(k) =
l∑

i=0

ui(k).

If we are only interested in the number of words belonging to L, then we simply note ul

and vl instead of ul(s) and vl(s) provided that it does not lead to any confusion.

Definition 1 A numeration system S is a triple (L,Σ, <) where L is an infinite regular
language over the totally ordered alphabet (Σ, <).

For each n ∈ IN, rS(n) denotes the (n+1)th word of L with respect to the lexicographic
ordering and is called the S-representation of n.

Remark that the map rS : IN → L is an increasing bijection. For w ∈ L, we set
valS(w) = r−1

S (w). We call valS(w) the numerical value of w.

Definition 2 Let S be a numeration system. A subset X of IN is S-recognizable if rS(X)
is recognizable by finite automata.

Let S = (L,Σ, <) be a numeration system. Each k ∈ K for which Lk is infinite leads
to the numeration system Sk = (Lk,Σ, <). The applications rSk

and valSk
are simply

denoted rk and valk if the context is clear. If Lk is finite, the applications rk and valk are
defined as in the infinite case but the domain of the former restricts to {0, . . . ,#Lk − 1}.

3 Computation of valS and recognizability of ulti-

mately periodic sets

In this section, given any numeration system S = (L,Σ, <), we indicate how to compute
the function valS and show that the arithmetic progressions p+ IN q are S-recognizable.
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We first need a lemma.

Lemma 3 Let S = (L,Σ, <) be a numeration system. If αβ belongs to Lk, α, β ∈ Σ+,
then

valk(αβ) = valk.α(β) + v|αβ|−1(k)− v|β|−1(k.α) +
∑

α′<α

|α′|=|α|

u|β|(k.α
′).

Proof. We have to compute the number of words belonging to Lk and lexicographically
strictly lesser than αβ. There are three kinds of such words. The first consists of words
of length strictly lesser than αβ and counts v|αβ|−1(k) elements. The next one consists
of words of length |αβ| admitting the prefix α. Since a word α′β ′ belongs to Lk if and
only if β ′ belongs to Lk.α′, we see that there is valk.α(β)− v|β|−1(k.α) such words. It is
clear that there is

#{w ∈ Lk : w = α′β ′, |α′| = |α|, |β ′| = |β| and α′ < α} =
∑

α′<α

|α′|=|α|

u|β|(k.α
′)

words of the last kind. ✷

Remark 1 Taking for α a letter in lemma 3 one would deduce easily an effective algo-
rithm to compute valS.

Remark 2 It follows also from lemma 3 that for each word w,

valS(w) =
∑

k∈K

0≤l<|w|

ck,l ul(k)

where the “digits” ck,l are less or equal to #Σ.

Theorem 4 Let S = (L,Σ, <) be a numeration system and p, q two non negative
integers. The arithmetic progression p+ IN q is S-recognizable.

Proof. We can assume that p < q. We show that the the minimal automaton of
A = rS(p + IN q) is finite. Its states are the sets

w−1.A = {x ∈ Σ∗ : valS(wx) ≡ p mod q}, w ∈ Σ∗.

Observe first that the sequence vn(s) being a solution of a linear recurrence equation, is
ultimately periodic in ZZq, say of period t. By lemma 3, for |w| large enough, w−1.A is
thus of the form

{x : valk(x) + v|x|+i(s)− v|x|−1(k) +
∑

k′∈K

jk′ u|x|(k
′) ≡ p mod q}

for some k ∈ K, jk′ ∈ {0, . . . , q − 1} and i ∈ {0, . . . , t− 1}. ✷
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4 Computation of rS and reordering of the alphabet

We now explain how to compute effectively rS and discuss to what extend the S-
recognizable subsets of IN depend on the ordering of the alphabet.

Let S = (L,Σ, <) be a numeration system, where Σ = {σ1 < · · · < σp}.
It is clear that

|rS(n)| = inf
m
{m |n < vm}.

Set |rS(n)| = l then n − vl−1 is the number of words of length l belonging to L and
strictly lesser than rS(n).

To determine the first letter of the representation, we have to compute the number
N l

t of words of length l belonging to L and begining with σ1 or . . . or σt (t ≤ p)

N l
t =

t∑

i=1

ul−1(σ
−1
i .L).

If N l
t−1 ≤ n − vl−1 < N l

t then the first letter is σt. We proceed in the same way to
find out the other letters of the representation. Recall that if k is a state of ML then
δ(k, σj) = σ−1

j .k. Hence, the following algorithm that computes the S-representation w
of a given integer n.

Algorithm 1 Let l such that vl−1 ≤ n < vl,
k ← s
m← n− vl−1

w ← ε
for i ranging from 1 to l do

j ← 1
while m ≥ ul−i[δ(k, σj)] do

m← m− ul−i[δ(k, σj)]
j ← j + 1

k ← δ(k, σj)
w ← wσj.

Remark 3 If lim
n→+∞

vn+1

vn
= θ < ∞ then the temporal complexity of the algorithm is

O((#Σ) logθ n).

As an easy application of algorithm 1, we obtain a first class of numeration systems
in which the recognizable sets are independent of the order of the alphabet.

It is convenient to introduce notations for the change of numeration systems. Given
systems S = (L,Σ, <) and T = (L′,Σ′,≺), we set

ΘS,T = rT ◦ valS : L→ L′ and Θ′
S,T = valT ◦ rS : IN→ IN.

If the underlying S and T are known from the context, we simply write Θ and Θ′.

Proposition 5 Let S = (L,Σ, <) and T = (L,Σ,≺) be two numeration systems. Let
n0 be a non negative integer. If for all states k and k′ of ML = (K, s, F, δ,Σ),

un(k) = un(k
′), ∀n ≥ n0,

then X ⊂ IN is S-recognizable if and only if X is T -recognizable.
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Proof. Assume that Σ = {σ1 < · · · < σp} = {σν1 ≺ · · · ≺ σνp} where ν is a permutation

of {1, . . . , p}. We prove that the graph Θ̂ = {(x, y) ∈ L × L : valS(x) = valT (y)}
of Θ is regular over the alphabet Σ × Σ, showing that rT (X) = p2(Θ̂ ∩ p−1

1 (rS(X)) is
regular if and only if rS(X) is regular, where p1, p2 : (Σ × Σ)∗ → Σ∗ are the canonical
homomorphisms of projection.

Let (x, y) belonging to Θ̂. The two systems S and T have the same sequence (vn)n∈IN,
thus |x| = |y|.

By algorithm 1, if |x| ≥ n0 then

x = σi1 . . . σil
︸ ︷︷ ︸

α

β and y = σiν1
. . . σiνl

︸ ︷︷ ︸

α′

β ′

where |β| = |β ′| = n0, β ∈ Ls.α, β
′ ∈ Ls.α′ and

valSs.α
(β) = valTs.α′ (β

′).

To conclude, it is then sufficient to observe that the words of Θ̂ of length at least n0

are exactly the words accepted by the following nondeterministic finite automaton. The
set of states is (K × K) ∪ {f}. The initial state is (s, s). The new symbol f denotes
the unique final state. According to what precedes, there are two kinds of transitions.
First those of label (σi, σνi) mapping the state (k, k′) onto (k.σi, k

′.σνi). Second those of
label (β, β ′) mapping (k, k′) onto f , provided that |β| = |β ′| = n0, β ∈ Lk, β

′ ∈ Lk′ and
valSk

(β) = valTk′
(β ′). ✷

Example 1 The language over the alphabet {a, b} consisting of the words containing an
even number of a satisfies the hypothesis of proposition 5.

In the next proposition, we give equivalent formulations of the assumption of proposi-
tion 5. They are expressed in terms of the incidence matrix AL of the minimal automaton
ML of L. Recall that it is the matrix defined by

(AL)i,j =
p

∑

t=1

δki.σt,kj , 1 ≤ i, j ≤ κ,

where the σt’s and the ki’s denote the p letters and the κ states of ML respectively.
We denote fL the characteristic vector of the set of final states:

(fL)i =

{

1 if ki ∈ F
0 otherwise.

Observe that

(Am
L f)i =

κ∑

j=1

(Am
L )i,jfj = um(i). (1)
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Proposition 6 Let L be a regular language over an alphabet Σ and ML = (K, s, F, δ,Σ)
be its minimal automaton. Let m be the multiplicity of 0 as root of the minimum poly-
nomial of AL. Let r > m. The next assertions are equivalent

1. ∀n ≥ r, ∀k, k′ ∈ K, un(k) = un(k
′),

2. ∀n ≥ m, ∀k, k′ ∈ K, un(k) = un(k
′),

3. ∃λ ∈ IN0 : Am
L f = λ v, with v = (1, . . . , 1)˜.

In particular, ∀k ∈ K, ∀i ≥ 0, um+i(k) = (#Σ)ium(k).

Proof. This follows immediately from (1) and the well known fact that any polynomial
that is cancelled out by AL is the characteristic polynomial of a linear recurrence equation
satisfied by each of the sequences un(k). ✷

Here is another easy characterization of the languages for which the assumption of
proposition 5 holds true.

Proposition 7 Let L be a regular language over an alphabet Σ. It satisfies the hypoth-
esis of proposition 5 if and only if there exist n0, u0 ∈ IN such that for all w ∈ Σ∗,
#((w−1.L) ∩ Σn0) = u0. ✷

The set of slender languages is the second class of languages for which the recognizable
sets of integers are independent of the ordering of the alphabet.

Definition 8 [1] Let d be a positive integer. The language L is said to be d-slender if

∀n ≥ 0, un(s) ≤ d,

L is said to be slender if there exists d such that L is d-slender.

Lemma 9 [19] Let L be a regular language over the totally ordered alphabet (Σ, <). The
set I(L,<) (resp. G(L,<)) obtained by taking from all the words of L of the same length
only the first (resp. last) one in the lexicographic order is regular. ✷

Proposition 10 Let d be a positive integer. Let L be a regular d-slender language. Let
S = (L,Σ, <) and T = (L,Σ,≺) be two numeration systems. If X ⊂ IN is S-recognizable
then X is T -recognizable.

Proof. Like in the proof of Proposition 5, we show that the graph Θ̂ of the change of
systems is regular. Using lemma 9, we define iteratively the regular languages Ii,< and
Ii,≺ by

{

I1,< = I(L,<)
I1,≺ = I(L,≺),

and, for i = 2, . . . , d,






Ii,< = I[L \ (
i−1⋃

j=1
Ij,<), <]

Ii,≺ = I[L \ (
i−1⋃

j=1
Ij,≺),≺].
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Since for all x ∈ L, |x| = |Θ(x)|, the graph of Θ is thus given by

Θ̂ =
d⋃

j=1

[(Ij,< × Ij,≺) ∩ (Σ× Σ)∗] . ✷

In spite of the two previous propositions, the change of ordering of the alphabet
generally does not preserve the recognizability as we shall see about Σ = {a, b} and
L = Σ∗ \ a∗b∗.

Lemma 11 Let n ∈ IN. For U = (Σ∗,Σ, a < b) and V = (Σ∗,Σ, b ≺ a) one has

Θ′
U,V (n) = 3.2l − n− 3,

where l = |rU(n)|.

Proof. Observe that since #Σl = 2l, if w1 < · · · < w2l then w2l ≺ · · · ≺ w1. Moreover
2l − 1 ≤ n ≤ 2l+1 − 2. Thus

Θ′(n) = 2l+1 − 2− [n− (2l − 1)]. ✷

Proposition 12 Let Σ = {a, b} and L = Σ∗ \ a∗b∗. For all n ≥ 2, if l = |rU(n − 1)|
then

ΘS,T (ba b
n) = ab an−l−1 b rU(n− 1),

where S = (L,Σ, a < b), T = (L,Σ, b ≺ a) and U = (Σ∗,Σ, a < b). In particular,
valS(ba b

2b∗) is not T -recognizable.

Proof. The minimal automaton ML of L is given by

♥s ♥t ♥❥p✲b ✲a✲
✞

✝

☎

✆
a

✞

✝

☎

✆
b

✞

✝

☎

✆
a, b

Figure 1. The minimal automaton of Σ∗ \ a∗b∗.

Therefore Lp = Σ∗,
{

u0(s) = u1(s) = 0,
un(s) = 2n − n− 1, ∀n ≥ 2,

while un(t) = 2n − 1 for all n ∈ IN.
In L, there are vn+1(s) words of length at most n+ 1, un+1(s) words of length n+ 2

begining with a and un(p)−1 words of length n+2 begining with ba. Hence, the number
of words belonging to L and lexicographically lesser than ba bn is

valS(ba b
n) =

n+1∑

i=2

(2i − i− 1) + 2n+1 + 2n − n− 3.
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Using lemma 3, we sketch the computation of valT [ab a
n−l−1 b rU(n− 1)]

= valt[a
n−l−1 b rU(n− 1)] +

n+1∑

i=2
(2i − i− 1) + 2n + n

= valp[a
n−l−2 b rU(n− 1)] +

n+1∑

i=2
(2i − i− 1) + 2n+1 − 1

...

= valp[b rU(n− 1)] +
n+1∑

i=2
(2i − i− 1) + 2n+1 − 1 +

n−1∑

i=l+2
2i

= valp[rU(n− 1)] +
n+1∑

i=2
(2i − i− 1) + 2n+1 − 1 +

n−1∑

i=l+2
2i + 2l

= Θ′(n− 1) +
n+1∑

i=2
(2i − i− 1) + 2n+1 − 1 + 2n − 3.2l.

Hence the value of ΘS,T (ba b
n), in view of lemma 11. Applying the pumping lemma, it

is now straightforward to check that valS(ba b
2b∗) is not T -recognizable. ✷

5 Translation by a constant

Here we show that the S-recognizability of a set is conserved under the translation by a
constant. First we recall some classical results about numeration systems.

Lemma 13 [12] Let p ∈ IN \ {0, 1}. The normalization function

ν : {1, . . . , p}∗ → {0, . . . , p− 1}∗

which gives the normalized representation in base p of an integer (the representation
obtained by the greedy algorithm) is a rational function, its graph ν̂ is recognizable by a
finite letter-to-letter automaton. ✷

Lemma 14 [4] A subset of IN is recognizable in base p ≥ 2 if and only if it is definable
in the structure 〈IN,+, Vp〉, where for x 6= 0, Vp(x) is the greatest power of p dividing x
while Vp(0) = 1. ✷

Proposition 15 Let S = (L,Σ, <) be a numeration system. For each natural number
t, X + t is S-recognizable if X ⊂ IN is S-recognizable.

Proof. Let Σ = {σ1 < · · · < σp} and let the homomorphism h : Σ∗ → {1, . . . , p}∗
be defined by h : σi 7→ i. For x ∈ IN, the word h(rS(x)) = x0 . . . xl ∈ {1, . . . , p}∗ is a
representation in base p of the integer πp(h(rS(x))) = x0 p

l + · · ·+ xl p
0.

Since L is regular over Σ, by lemma 13, ν(h(L)) is regular over {0, . . . , p− 1} and
by lemma 14, the set

N = πp[ν(h(L))]

is definable in 〈IN,+, Vp〉.
The successor function SL : L→ L (with respect to the lexicographic order) is then

regular. Indeed, S = πp ◦ ν ◦ h ◦SL ◦ (πp ◦ ν ◦h)−1 is the restriction to N of the fucntion
x 7→ y defined in 〈IN,+, Vp〉 by the formula

(y ∈ N ) ∧ (x < y) ∧ (∀z)(z ∈ N ∧ x < z)→ (y ≤ z).

Assume now that X is S-recognizable, i.e. that rS(X) is a regular set. Then
rS(X + t) = St

L(rS(X)) is regular. ✷

9



6 Multiplication by a constant

In this section, we show that, in general, the multiplication by a constant does not
preserve the recognizability. To that end, we use the system S = (a∗b∗, {a, b}, a < b),
for which it is easy to see that

valS(a
pbq) =

1

2
(p+ q)(p+ q + 1) + q.

Remark 4 Observe that the r.h.s. is nothing else but the well-known Peano’s function
[21].

It would suffice to show that, say, the multiplication by two does not preserve recog-
nizability but here we are lucky enough to get more.

Theorem 16 Let S be the numeration system (a∗b∗, {a, b}, a < b) and let α ∈ IN. The
multiplication by α transforms the S-recognizable sets into S-recognizable sets if and only
if α is a perfect square.

Proof. (i)Sketch. If α is not a perfect square, we show that for a suitably choosen r,

Lr
α = arb∗ ∩ rS(αvalS(a

∗))

is infinite while the set of lengths |Lr
α| only contains finite arithmetic progressions so

that rS(αvalS(a
∗)) is not even context free, thanks to Parikh’s theorem [15].

If α = β2, IN2 is divided into β + 1 regions Ri in each of which an explicit formula
for the function M : (p, q) 7→ (r, s) such that α valS(a

pbq) = valS(a
rbs) can be supplied.

These regions come from length considerations: given a word of length l and of numerical
value x, there is β + 1 possible lengths for the word of value αx. The fact that the
multiplication by α preserves the regularity of the subsets of a∗b∗ follows then from an
easy lemma.

(ii) Case of a non perfect square. Let α be a non perfect square integer. We have

l ∈ |Lr
α| ⇔ ∃p : valS(a

rbl−r) = α valS(a
p).

In other words, l ∈ |Lr
α| if and only if

[2(r + s) + 3]2 − α(2p+ 1)2 = 8r + 9− α (2)

for some p, where s = l − r.
To guarantee that |Lr

α| be infinite, we choose r in such a way that

X2 − αY 2 = 8r + 9− α (3)

has infinitely many solutions with odd components. To that purpose, it suffices to choose
r such that 8r + 9 − α > 0 and that the equation (3) admits a solution (x, 1) with x
odd (cf. Appendix). This can be achieved with r of the form z2. Indeed, the equation
x2 − 8z2 = 9 has infinitely many solutions given by

(
x0

z0

)

=
(
3
0

)

,
(
xi+1

zi+1

)

=
(
3 8
1 3

)(
xi

zi

)

, ∀i ∈ IN.
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The xi’s are odd. We choose i such that 8z2i + 9− α > 0 and take x = xi.
The set of the solutions of (3) with odd components is a finite union of sequences

(X(j)
n , Y (j)

n )n∈IN, j = 1, . . . , m, such that X(j)
n > Cn for some C > 1 (cf. Appendix).

We are now in position to show that |Lr
α| only contains finite arithmetic progressions.

Suppose to the contrary that it contains an infinite progression. Then there exist λ, µ ∈
IN, µ > 0, and, for each t ∈ IN, indices nt ∈ IN, jt ∈ {1, . . . , m} such that

λ+ µt = X(jt)
nt

> Cnt .

Given t, the sequence n0, . . . , nmt contains at least t distincts numbers. Therefore

∀t ∈ IN, λ+ µmt > Ct,

a contradiction.
(iii)The case of a perfect square. Let α = β2 and β be an odd integer. The case β even
is treated in the same way.

We want to compute r, s such that α valS(a
pbq) = valS(a

rbs), i.e.

[2(r + s) + 3]2 − β2[2(p+ q) + 3]2 = 8r − 8pβ2 − 9(β2 − 1).

Let l = p+ q, l′ = r + s. Then

αl(l + 1) ≤ 2αvalS(a
pbq) ≤ αl(l + 3) and l′(l′ + 1) ≤ 2valS(a

rbs) ≤ l′(l′ + 3).

Therefore, l′(l′ + 1) ≤ β2l(l + 3) and β2l(l + 1) ≤ l′(l′ + 3). From this, it follows easily
that

r + s = β(p+ q) +

⌊

β

2

⌋

+ i

and thus
{

r = ri(p, q) := β(i+ 1)p− β(β − i− 1)q + 1
8
[(β + 2i+ 2)2 − 9]

s = si(p, q) := −βip+ β(β − i)q − 1
8
[(β + 2i)2 − 9]− 1

for some i ∈ {−1, . . . , β − 1}. These equations together with the conditions r, s ≥ 0
define β + 1 regions Ri which divide IN2.

The regular subsets of a∗b∗ are the finite unions of sets of the form

D = {ay+fzbw+gx : f, g ≥ 0},

w, x, y, z ≥ 0. Substituting y+ fz and w+ gx in place of p and q respectively in ri(p, q)
and si(p, q), one sees that D

′ = rS[α valS(D ∩Ri)] is of the form (4) of lemma 17 below,
the matrix A being

A =
(
zβ(i+ 1) −xβ(β − i− 1)
−zβi xβ(β − i)

)

.

One can apply the lemma to see that D′ is regular except if i = −1 or xz = 0. In these
cases, D′ is easily shown to be regular by direct inspection. ✷
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Lemma 17 Let A be a non singular p× p integral matrix. For i = 1, . . . , p, set

hi(n) = Ai1n1 + · · ·+ Aipnp − bi,

where n = (n1, . . . , np) ∈ INp and b1, . . . , bp ∈ ZZ. If the entries of dtm(A)A−1 are non
negative, then the language

L = {ah1

1 . . . ahp

p : h1(n) ≥ 0, . . . , hp(n) ≥ 0,n ∈ INp} (4)

is a regular subset of a∗1 . . . a
∗
p.

Proof. If n ∈ INp satisfies hi(n) ≥ 0 then (An)i = bi + ui, i.e.

ni =
p

∑

j=1

(A−1)ij(bj + uj), (5)

for some ui ∈ IN.
We need to describe those u = (u1, . . . , up) ∈ INp for which (5) defines non negative

integers ni.
If dtm(A) < 0, the entries of A−1 are negative, there are finitely many such u and

L is finite. If dtm(A) > 0, (A−1)ij ≥ 0, for large enough uj’s, (5) defines thus positive
numbers ni but it remains to ensure that they are integers. To that purpose, since
A−1 = A/dtm(A), where the entries of A are natural numbers, it is necessary and
sufficient that the remainders rj ∈ {0, . . . , dtm(A)− 1} of the division of uj by dtm(A)
satisfy

p
∑

j=1

Aij(bj + rj) ≡ 0 (mod dtm(A)).

There is a finite number of such (r1, . . . , rp) so that L is a finite union of regular languages
of the form (

a
dtm(A)
1

)∗
a
s1dtm(A)+r1
1 . . .

(

adtm(A)
p

)∗
aspdtm(A)+rp
p .

(The sj’s are choosen to guarantee that the uj’s be large enough for the corresponding
ni’s to be non negative.) ✷

7 Appendix

a) The next proposition sumarizes the well known facts that are used in he proof of
theorem 16. The reader will find in [7, 20] the material necessary to achieve its proof.

Proposition 18 Assume that α ∈ IN is not a perfect square and that N > 0 is a natural
number.
(i) The set of solutions (X, Y ) ∈ IN2 of the equation X2−αY 2 = N is the (finite) union
of the sequences (Xn, Yn)n∈IN defined by

(
Xi+1

Yi+1

)

=
(
u αv
v u

)(
Xi

Yi

)

, ∀i ∈ IN, and 0 < X0 ≤ u
√
N, (6)

where (u, v) ∈ IN2 is the minimal non trivial solution of U2 − αV 2 = 1, i.e. that for
which u > 1 is the smallest.

12



(ii) Each component of any solution (Xn, Yn)n∈IN of (6) are solutions of

Zi+2 = 2uZi+1 − Zi, ∀i ∈ IN.

In particular, X2n, X2n+1, Y2n and Y2n+1 are of the same parity as X0, X1, Y0 and Y1

respectively.
(iii) For any solution (Xn, Yn)n∈IN of (6), one has Xn > un. ✷

b) Taking advantage of lemmas 13 and 14, we give another proof of theorem 4, based
on the notion of substitution.

Lemma 19 [3, 4, 6] A subset X of IN is recognizable in base p if and only if the char-
acteristic sequence of X is generated by a p-substitution. ✷

Lemma 20 [6] The set of the infinite words generated by p-substitution is closed under
finite transduction. ✷

Proof of theorem 4. We use the notations of proposition 15. The set ν(h(L)) is a regular
subset of {0, . . . , |Σ|−1}∗ and by lemma 19, the characteristic sequence Ψ of π|Σ|[ν(h(L))]
is generated by a |Σ|-substitution. To conclude, use lemma 20 and observe that the
characteristic sequence of π|Σ|[ν(h(p+IN q))] is the image of Ψ under the following finite
transducer (the tail has p nodes and the head counts q of them)

✲ ♥ ✲1/0 ♥ ✲1/0 · · · ✲1/0 ♥�
�✒1/1

♥ ✲1/0 ♥
❅
❅❘
1/0

♥
�

�✠1/0
♥· · ·♥❅

❅■
1/0

Figure 2. The finite transducer for π|Σ|[ν(h(p + IN q))].

each state has a loop which corresponds to the reading and the writing of 0. ✷

c) The nature of the S-recognizable sets seems to depend strongly on the system S. In
standard numeration systems with integer basis, the set of squares is not recognizable
[4] while an example of system for which it is recognizable may be found in [16], p. 141.
Here is another example, based on lemma 9.

Proposition 21 Let S = (a∗b∗ ∪ a∗c∗, {a, b, c}, a < b < c). The set {n2 : n ∈ IN} is
S-recognizable.

Proof. Indeed, since #((a∗b∗ ∪ a∗c∗) ∩ Σn) = 2n + 1, the greatest word of length n in
a∗b∗ ∪ a∗c∗ has numerical value n2. ✷

Using the same idea, one can easily produces various examples of unusual recogniz-
able sets, such as {vn : n ∈ IN} for any regular language L.

13
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