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Abstract

We study the complexity of satisfiability and model-checking of the linear-time tem-
poral logic with past (pltl). More precisely, we consider several fragments of pltl,
depending on the allowed set of temporal modalities, the use of negations or the nesting
of future formulae into past formulae. Our results show that "past is for free", that is
it does not bring additional theoretical complexity, even for small fragments, and even
when nesting future formulae into past formulae. We also remark that existential and
universal model-checking can have different complexity for certain fragments.

Introduction

Temporal logics.

In 1977, Pnueli [20] introduced temporal logics for reasoning about concurrent
programs. Those logics provide powerful methods for specifying and verifying
properties of reactive systems. We refer to [3,5,18,19] for more motivations and
background.

The temporal framework most used in research studies is linear-time propo-
sitional temporal logic (called ltl). An ltl formula expresses properties about
the ordering of events along the runs of a system under study. For instance, that
at all times a request eventually gives rise to a grant can be expressed with:

G (request ⇒ F grant) (S1)

Temporal logics with past.

ltl is a pure-future temporal logic, i.e. a logic where modalities only refer
to the future of the current state. It is possible, however, to define past-time
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modalities [10,8,16]. For example, for expressing that a grant may only occur if
some request has been issued, we would write

G (grant ⇒ F
−1

request) (S2)

It is well-known, since [10], that past-time modalities do not increase ex-
pressiveness of ltl. [7] gives a method for translating ltl+Past formulae into
equivalent pure-future ltl formulae. For instance, an equivalent pure-future
formula for (S2) is

G¬grant ∨ (¬grant)U request (S3)

expressing that either there is no grant at all, or there is no grant until the first
request. By concern of minimality, since it does not add expressive power, past
has not been widely studied, and model-checkers such as Spin or Cadence-SMV

do not handle ltl+Past specifications. Several methods have been proposed for
model-checking ltl+Past [23,11], but as far as we know, these have not been
implemented.

The benefits of the past.

Allowing past-time modalities makes specifications easier and more natural
(i.e. closer to the natural language specifications) [16]. Furthermore, there is
a sense in which ltl+Past really brings more expressive power: [14] shows a
succinctness gap between ltl and ltl+Past, i.e. there exists ltl+Past formulae
that only have ltl equivalents of exponential size. Finally, since model-checking
and satisfiability are not more difficult for ltl+Past (pspace-complete in both
cases [22]), one could argue that ltl+Past should be preferred.

These arguments seem to indicate that past is for free. Can this observation
be made stronger and more systematic? In this paper, we investigate if this result
still holds for different fragments of ltl+Past, in order to characterize fragments
that are more expressive but not harder to verify.

Our contribution.

We provide a systematic study of fragments of ltl+Past obtained by three
kinds of restrictions: on the set of allowed modalities, on the use of negations,
and on nesting of past and future modalities. These results rely on a few basic
techniques that are used throughout the paper.

Related work.

As regards fragments of ltl+Past, [21] studies lusat, the fragment of ltl+Past
with only U and S, and provides an optimal (pspace) automata-theoretic algo-
rithm. [4] studies the complexity of several fragments of ltl obtained by limit-
ing the temporal height and the number of atomic propositions. Branching-time
temporal logics with past have been investigated in [13,15].
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Outline of the paper.

In the sequel, we first formally define the structures, logics and problems
under study, and sum up our results. In section 2 we prove the np-completeness
results, and in section 3, the pspace-completeness results. We summarize our
study and conclude in section 4.

1 pltl: Linear Temporal Logic with Past

Syntax of pltl.

Let AP = {P1, P2, . . .} be a countable set of atomic propositions. We define
the syntax of pltl as follows:

pltl 3 φ, ψ ::= ψ ∨ φ | ¬φ | Xφ | ψUφ | X−1φ | ψSφ | P1 | P2 | . . .

where U reads “until”, S reads “since”, X is “next” and X
−1, “previous”.

Some very useful abbreviations are commonly defined: > ≡ P1 ∨ ¬P1, ⇒,
⇔, ... As for temporal modalities, we will use the classical F and G, as well as
their past counterparts F

−1φ ≡ >Sφ and G
−1φ ≡ ¬F

−1¬φ, read “eventually in
the past” and “always in the past” respectively.

Modalities S, X
−1, F

−1 and G
−1 are called “past modalities”, while U , X, F,

G are “future modalities”.

Semantics.

Formulas of pltl are interpreted over paths. A path is a pair (π, ξ) in which
π is an infinite sequence of states π(0), π(1), ... and ξ is a mapping from
{π(0), π(1), . . . , π(n), . . .} → 2AP . This way, the states of π are labeled with
atomic propositions.

Given a path (π, ξ), a natural i and a formula φ, we inductively define the
relation π, i |= φ (read “φ holds at position i along π”) as follows:

π, i |= P if, and only if, P ∈ ξ(π(i)),

π, i |= φ ∧ ψ if, and only if, π, i |= φ and π, i |= ψ,

π, i |= ¬φ if, and only if, π, i 6|= φ,

π, i |= Xφ if, and only if, π, i+ 1 |= φ,

π, i |= ψUφ if, and only if, there exists some j ≥ i s.t. π, j |= φ

and for all i ≤ k < j, π, k |= ψ,

π, i |= X
−1φ if, and only if, i > 0 and π, i− 1 |= φ,

π, i |= ψSφ if, and only if, there exists some j ≤ i s.t. π, j |= φ

and for all j < k ≤ i, π, k |= ψ.

Two formulas are (globally) equivalent over a class Π of paths (which we
denote φ ≡Π ψ) if for any path π ∈ Π and any integer i, the equivalence π, i |=
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φ ⇔ π, i |= ψ holds. The formulas are initially equivalent over Π (φ ≡Π
i ψ) if

for all paths π ∈ Π, π, 0 |= φ ⇔ π, 0 |= ψ is true. Whenever Π is not given, the
equivalence has to hold along any possible path, namely (2AP )N.

Obviously, two equivalent formulas are initially equivalent. The converse does
not hold. For instance, P1SP2 and P2 are initially equivalent, but they clearly
are not globally equivalent.

A formula φ is said to be initially (resp. globally) valid over Π if it is initially
(resp. globally) equivalent to > over Π. It is initially (resp. globally) satisfiable
over Π if its negation is not initially (resp. globally) valid over Π. This means
that there exists a path π ∈ Π (resp. and a position i along that path) such that
π, 0 |= φ (resp. π, i |= φ).

These definitions formalize the results we mentioned about expressive power
in the introduction: that pltl is as expressive as ltl [10,8,7] means that for any
pltl formula, there exists an initially equivalent ltl formula. The succinctness
gap from [14] can be expressed as follows: there exists a sequence of pltl formulas
(φn), s.t. |φn| ∈ O(n), and for which any sequence of equivalent ltl formulas
(ψn) verifies that |ψn| ∈ Ω(2n).

Verification problems.

In this paper, we are concerned with the following questions:

• initial satisfiability, as defined above. Note that, generally speaking, this prob-
lem and global satisfiability are inter-reducible: a formula φ is globally sat-
isfiable if, and only if, Fφ is initially satisfiable, and conversely, φ is initially
satisfiable if, and only if, G

−1
F

−1φ is globally satisfiable;

• universal model-checking, which is initial validity over a given set Π of paths;

• existential model-checking, which is initial satisfiability over a given set Π of
paths.

For model-checking, the set Π is often defined through a Kripke Structure
(KS for short), that is, a 4-tuple K = (Q,Q0, l, R) in which Q is a finite set of
states, Q0 is the set of initial states, l ∈ (2AP )Q indicates the propositions that
are true in each state of Q, and R ⊆ Q × Q is a total relation representing the
set of allowed transitions. The size of K, which we denote |K|, is |Q| + |R|. A
KS generates a set Π of paths in the obvious way.

It should be remarked right now that, in the general case, the two model-
checking problems are dual: indeed, there exists a path satisfying a formula φ
if, and only if, it is not the case that every path satisfies the negation of φ. But
this equivalence only holds for logics (or fragments of logics) allowing negation.

Fragments of pltl.

We consider three types of restrictions: first of all, restrictions about the
allowed modalities. For denoting the fragment of ltl where only M1, . . . ,Mp are
allowed, we use the classical notation L(M1, . . . ,Mp). For instance, L(F) is the
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logic where F is the only allowed temporal modality 2 . The second restriction
we deal with affects negations: we write L

+(F,X), for example, for the logic
where the only modalities are F and X, and where modalities can not occur
in the scope of a negation. Last, a formula is said to be stratified if it has no
future modality in the scope of past modalities [17]. Sets of stratified formulas
are denoted by Ls(. . .). We write L

+
s (F,S) when combining restrictions about

negation and stratification.

For example, F(a ∧ G
−1(b ∨ Fc)) lies in L

+(F,G−1), but it is not stratified.
It is initially equivalent to (b ∨ Fc)Ua, which is in L

+(U). And it is globally
equivalent to F(a ∧ (Fc ∨ G

−1b ∨ bSc)), which belongs to Ls(F,S).

Our results.

We get in the sequel the following results:

Exist. model-ch. Univ. model-ch. Satisf.

L
+(F),L+(G),L+(X) np-c. conp-c. np-c.

L
+(F,X) np-c. [22] pspace-c. np-c. [22]

L
+(G,X) pspace-c. (conp-c.) pspace-c.

L
+(U) pspace-c. pspace-c. pspace-c.

L(X,X−1,S) np-c. (conp-c.) np-c.

L
+
s (F,X−1) (np-c.) (pspace-c.) (np-c.)

L
+
s (G,X−1) pspace-c. (conp-c.) pspace-c.

L
+(F,X,F−1,X−1) np-c. (pspace-c.) np-c.

L
+(G,X,G−1,X−1) (pspace-c.) (conp-c.) (pspace-c.)

L(F,F−1) np-c. (conp-c.) np-c. [6]

L
+
s (F,S) pspace-c. pspace-c. pspace-c.

L
+
s (G,S) pspace-c. pspace-c. (np-c.)

L
+(G,S) (pspace-c.) (pspace-c.) np-c.

pltl pspace-c. [22] pspace-c. [22] pspace-c. [22]

The results in bold are proved in this paper, the ones in parentheses are corol-
laries. For instance, existential model-checking for L

+
s (F,X−1) is np-complete

since it is a subcase of existential model-checking for L
+(F,F−1,X,X−1), and

since it is more general than existential model-checking for L
+(F). This entails,

by duality, that universal model-checking of L
+
s (G,X−1) is conp-complete.

2 In this case, we see F as a modality, and not as an abbreviation of >U·.
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Such techniques can be used to find the complexity of all the fragments we
defined (not all of them are listed in the previous table).

2 NP-complete problems

2.1 np-hardness of verifying linear temporal properties

All the fragments we consider have at least np-hard satisfiability problems since
temporal logic encompasses boolean logic. Model-checking is somewhat different:
boolean formulas can be evaluated in polynomial time in a given KS. Here we
show that (existential) model-checking is np-hard for all non-trivial fragments of
pltl.

Theorem 2.1 Existential model-checking is np-hard for L
+(F), L

+(G) and
L

+(X).

Proof

• We adapt the proof in [22] for np-hardness of model-checking L(F). Intuitively,
the satisfiability of a 3-sat-instance

∧

i

∨

j

αi,j , where the αi,j are literals on

{x1, x2, . . . , xn}, is equivalent to the existence of a path verifying
∧

i

∨

j

Fαi,j in

the following structure:

x1

x1

x2

x2

xn

xn

• in the same way, the satisfiability of
∧

i

∨

j

αi,j is equivalent to the existence of

a path s.t.
∧

i

∨

j

G¬(αi,j) in the same structure.

• for L
+(X), the idea is that a 3-sat-instance

∧

i

∨

j

αi,j is satisfiable if, and

only if, the above structure contains a path verifying
∧

i

∨

j

X
2n(αi,j)−1αi,j, where

n(xk) = n(xk) = k. See [4] for more details. �

By duality, we get

Theorem 2.2 Universal model-checking for L
+(G), L

+(F) and L
+(X) are co-

np-hard.

2.2 np-easy problems

What we saw in the previous section entails that any non-trivial verification
problem concerning linear temporal logics is np-hard. We know from [22] that
this lower bound is optimal for L(F) and L

+(F,X), that is, the satisfiability
and (existential) model-checking problems for these logics are np-complete. In
the rest of this section, we prove np-easiness of satisfiability for four other frag-
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ments: L(X,X−1,S), L(F,F−1), L
+(F,F−1,X,X−1), and L

+(G,S). These re-
sults carry on to existential model-checking, except for L

+(G,S), for which we
will prove in the next section that model-checking is pspace-complete.

We use a systematic method in order to do this:

• we first prove that those fragments have the so-called “polynomial witness
property”, i.e. every satisfiable formula can be satisfied in a path of polynomial
“size” (formal definitions given below).

• we show that given a potential witness π, one can check in polynomial time
whether π |= φ.

This obviously gives an np-algorithm for satisfiability: first guess the witness,
and then check it. In several cases, this technique also provides a proof for
np-easiness of the model-checking problems: Indeed, we show that we can add
arbitrary states in the polynomial witness, and this ensures that we can find
a polynomial witness in the Kripke structure under study. In these cases, the
algorithm for existential model-checking is as follows: first guess the witness,
check that it is a run in the Kripke structure, and check that it satisfies the
formula.

First of all, we need to introduce more formal definitions: A path (π, ξ) is said
to be ultimately periodic if there exist two integers m and p, with p > 0, such
that for any integer n ≥ m, πn = πn+p. Such a path can be finitely represented
by a loop, that is an ultimately-periodic deterministic Kripke structure. More
precisely, given two integers m and p > 0, a loop of type (m, p) is the structure
(Q, {0}, l, R) such that Q = J0;m + p − 1K and R = {(i, i+ 1) | i ∈ J0;m + p−
2K}∪{(m+p−1,m)}. A loop is then a finite structure “encoding” an ultimately-
periodic path. We write πL the path associated to a loop L. The size of a loop
of type (m, p) is the integer m+ p. The size of an ultimately periodic path is the
size of the smallest loop encoding that path.

2.2.1 Model checking a loop

We first recall the following result:

Theorem 2.3 Given a pure-future formula φ and a loop L, one can check in
time O(|L| · |φ|) whether πL, 0 |= φ.

Over deterministic KS, the ctl model-checking algorithm can be used for
ltl formulas too, since quantification will always refer to the unique execution.

This simple approach does not extend to the problem of checking whether
a loop satisfies a pltl formula, hence a formula “with past time”. In fact, in a
loop, future is deterministic but past is not, that is any state has one successor
but states have two (or even zero) predecessors in the transition relation.

The following lemma gives a way to overcome that problem. First remember
that the temporal height (resp. future-temporal height, past-temporal height) of
a formula is the maximal number of nested modalities (resp. future modalities,
past modalities) in the formula. More generally, we define the temporal height
w.r.t. one or several modalities as being the maximum number of times those
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modalities are nested. We denote it by hO1,...,On
(φ). In the sequel, hP (φ) denotes

the past-temporal height of φ, i.e. hS,X−1(φ) .

Lemma 2.4 Let φ be a pltl-formula. For any loop L of type (m, p), for all
k ≥ m+ hP (φ)p,

πL, k |= φ iff πL, k + p |= φ.

Roughly speaking, this lemma states that after some initial fluctuations, past
modalities in φ cannot distinguish how many times the loop has been unwound.

Proof The proof is by inuction on the structure of the formula φ:

• for φ = P , φ = ¬φ1 and φ = φ1 ∨ φ2, the result is obvious;

• if φ = Xφ1 or φ = φ1Uφ2, we can apply the ind. hyp. to states occurring after
the k-th one. This gives the result.

• if φ = X
−1φ1, then since k − 1 ≥ m + (hP (φ1) + 1)p − 1 ≥ m + hP (φ1)p,

we get from the induction hypothesis the equivalence πL, k − 1 |= φ1 ⇔
πL, k − 1 + p |= φ1. Thus πL, k |= X

−1φ1 ⇔ πL, k + p |= X
−1φ1;

• if φ = φ1Sφ2, we have hP (φ) = max(hP (φ1), hP (φ2))+1. Suppose that πL, k |=
φ. There exists some k′ ≤ k s.t. πL, k

′ |= φ2, and for k′ < l ≤ k, πL, l |= φ1.
Two cases may arise:
· if k′ < k − p, then we know that the states from πk−p to πk satisfy φ1. By

induction hypothesis, so do the states from πk to πk+p. Thus, πL, k + p |= φ,
since πL, k

′ |= φ2 and all the states between πk′+1 and πk+p satisfy φ1;
· otherwise, k′ ≥ k − p ≥ m+ hP (φ1)p, and the induction hypothesis directly

applies to the states between πk′ and πk.
Thus πL, k |= φ ⇒ πL, k + p |= φ. The reverse implication may be proved
similarly. �

Corollary 2.5 Model-checking pltl over loops can be done in polynomial time.

Proof [Idea] Let φ be a formula with past temporal height h, and L a loop of
type (m, p). We use dynamic programming in order to fill an array V of boolean
values, where V (n, ψ) is true if, and only if, the n-th state satisfies the subformula
ψ. Lemma 2.4 enables to deal only with the first m+ (h+ 1)p states of the loop.
For all natural n less than m+ (h+ 1)p, and for all subformulas ψ of φ, we can
inductively compute whether πL, n |= ψ (this is an easy extension of the labelling
algorithm for ctl). �

2.2.2 Looking for ultimately periodic paths

We recall that an ultimately-periodic witness exists for any satisfiable formula of
pltl.

Theorem 2.6 A pure-future formula φ ∈ ltl is satisfiable if, and only if, it is
satisfiable in a loop. A KS K “existentially” satisfies a formula φ if, and only if,
it contains an ultimately-periodic path satisfying φ. These results also hold for
pltl formulas.
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Proof For ltl, the first statement is shown in [22]. The second one can be
shown by a classical reduction from model-checking to satisfiability (see [22,
lemma 4.3]).

The result is extended to pltl thanks to the following theorem:

Theorem 2.7 ([10,7]) For any formula φ ∈ pltl, there exists a boolean com-
bination φ̃ of pure-future and pure-past formulas, s.t. φ ≡ φ̃. �

2.2.3 np-easy fragments

There simply remains to find the fragments having the “polynomial witness prop-
erty”. We show that for these fragments, we get a polynomial witness by selecting
polynomialy many states from an arbitrary witness loop, while keeping the sat-
isfaction of the temporal property.

This first requires some new definitions: Given a path (π, ξ), a subpath is
a path (π′, ξ|π′) where π′ is a subsequence of π. We equivalently say that π′ is
a subpath of π, or that π contains π′. If π′ is a subpath of π, there exists an
increasing function f such that, for all i, π′

i = πf(i). We will write π′ vf π when
we need the function f . Otherwise, we simply write π′ v π.

In the same way, given a loop L, a subloop is a loop L′ whose associated path
is a subpath of the path associated to L. We also write L′ vf L in that case.
Note that a subloop could be bigger than its original loop. For instance, from a
loop (ab)ω (whose size is 2), we can extract the loop aaba(aab)ω, with size 7.

Let L = uvω be a loop. We say that a subloop L′ = u′v′ω of L is acceptable,
and we write L′ 4f L, whenever f([1, |u′|]) ⊆ [1, |u|] and f([|u′| + 1, |u′v′|]) ⊆
[|u|+ 1, |uv|]. The size of an acceptable subloop is always lower than or equal to
the size of the original loop.

The following four technical lemmas directly entail the polynomial witness
property for the four pltl fragments under study. They prove np-easiness of
satisfiability for these fragments. But only the first three give np-easiness of
existential model-checking.

Lemma 2.8 The truth of an L(X,X−1,S)-formula φ in the initial state of a
path π only depends on the hX(φ) first states of π.

This result is obvious.

Lemma 2.9 Let φ ∈ L(F,F−1), and L be a loop s.t. πL, i |= φ for some integer
i. Then there exists an acceptable subloop L′ 4 L, whose size is polynomial in
|φ|, containing πi, and s.t. any acceptable subloop L′′ s.t. L′ 4 L′′ 4f L satisfies
πL′′ , f−1(i) |= φ.

Proof We suppose that the loop L is of type (m, p), and that, for some i,
πL, i |= φ. We write h = hP (φ).

For each subformula of φ of the form F
−1ξ, if there exists a position where ξ

is satisfied, then we know from lemma 2.4 that there is one less than m+ hp. If
it exists, we write

iF−1ξ = min{i | πL, i |= ξ}
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The same holds for subformulas of the form Fξ: if there exists a state satisfying
ξ, we write

iFξ = max{j ∈ J0;m+ hp− 1K | πL, j |= ξ}

For each F- or F
−1-subformula ψ, we define jψ to be either equal to iψ if

iψ ≤ m, or congruent to iψ modulo p and between m and m + p − 1 otherwise.
We define L′ to be the acceptable subloop of L built by keeping state jψ for all
F- and F

−1-subformulas ψ of φ. We also add the current state πi, and possibly
some other states. We let f be the function s.t. πL′ 4f πL. Remark that L′ has
type (m′, p′) with m′ ≤ m and p′ ≤ p, and that we have f(m′) ≤ m ≤ f(m′ + 1)
and, for all k, f(m′ + kp′) ≤ m+ kp ≤ f(m′ + kp′ + 1).

The example shown on figure 1 explains this construction.

unwind the loop

select the states you
want to keepcreate the corresponding

acceptable subloop

a b c d e f g a b c d e f g c′ d′ e′ f ′ g′ c′′ d′′ e′′ f ′′ g′′

a b c d e f g c′ d′ e′ f ′ g′ c′′ d′′ e′′ f ′′ g′′b c e f

Figure 1. Construction of L
′

We now have to prove that this construction is correct. For this, we show
that

∀ψ ∈ SF(φ),∀j ∈ N, πL′ , j |= ψ ⇔ πL, f(j) |= ψ

where we write SF(φ) for the set of subformulas of φ and their negation.

We prove this by induction on the structure of ψ:

• for atomic propositions and boolean combinations, the result is straightfor-
ward;

• if ψ = Fψ1, suppose that for some i, πL′ , i |= Fψ1. Then for some state j ≥ i,
we have πL′ , j |= ψ1. By ind. hyp. and since f is increasing, we get a state
f(j) ≥ f(i) s.t. πL, f(j) |= ψ1, and πL, f(i) |= Fψ1.

Conversely, if we suppose that πL, f(i) |= Fψ1, then there exists a state
j ≥ f(i) s.t. πL, j |= ψ1. Two cases may arise:
· either j ≤ m + hp − 1, then we have j ≤ iFψ1

. By ind. hyp. we get that
πL′ , f−1(iFψ1

) |= ψ1, and since f is increasing, we have f−1(iFψ1
) ≥ i.

· either j ≥ m + hp. In that case, lemma 2.4 ensures that there exists a
state k satisfying ψ1 s.t. k is between m+ (h− 1)p and m+ hp− 1. Then
k ≤ iFψ1

, and πL′, f−1(iFψ1
) |= ψ1. The remark above ensures that f−1(iFψ1

)
lies between m′ + (h − 1)p′ and m′ + hp′. Since lemma 2.4 also applies to
L′, we get that for all l ≥ 0, πL′, f−1(iFψ1

) + lp′ |= ψ1. Thus for all m,
πL′ ,m |= Fψ1, especially for m = i.

• if ψ = F
−1ψ1, the proof is similar. �

Lemma 2.10 Let φ ∈ L
+(F,F−1,X,X−1) be a satisfiable formula, and L a loop

s.t. πL, i |= φ for some integer i. Then there exists an acceptable subloop L′ of
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L, whose size is polynomial in |φ|, containing πi, and s.t. any loop L′′ for which
L′ 4 L′′ 4f L satisfies πL′′ , f−1(i) |= φ.

Proof

The proof is similar to the proof of Lemma 2.9: we first unwind the loop
hP (φ) times. Then, by induction on the structure of the formula, we build a set
S of “witness states”. At each step, we prove that

∀j ≤ m+ hP (φ) · p,∀ψ ∈ SubF(φ), (j, ψ) ∈ S ⇒ πL, j |= ψ (1)

• initially, S contains {(i, φ)}. The property (1) is satisfied by hypothesis;

• while S contains pairs of the form (j, ψ) where ψ is not (a negation of) an
atomic proposition, we remove (j, ψ) from S, put it in T and
· if ψ = α ∨ β, then either πL, j |= α or πL, j |= β. We add (j, α) or (j, β) to
S in order to keep (1) true;

· if ψ = α ∧ β, then add (j, α) and (j, β) to S;
· if ψ = Xα, then add (j + 1, α) (or (j + 1− p, α) if j + 1 > m+ hP (φ) · p) to
S;

· if ψ = X
−1α, then add (j − 1, α) to S. We know that j ≥ 1 since πL, j |=

X
−1α. Thus (1) still holds;

· if ψ = Fα, we know that α is true in some state k greater than j and smaller
than m+(h(φ)+1)p. If k is greater than m+h(φ)p+1, then we can substract
p in order to remains lower than m+h(φ)p+1 (thanks to lemma 2.4). Thus
we add (k, α) to S, so that (1) is still satisfied;

· if ψ = F
−1α, the argument is the same.

This process clearly ends, since the sum of sizes of formulas in S decreases at
each step. Moreover, |S ∪ T | ≤ |φ| at the end.

Now consider the acceptable subloop L′ of L containing the states we kept
in S ∪ T . We also possibly add some other states (this construction is the same
as the one shown in figure 1). We write f for the function s.t. πL′ 4f πL. The
remarks of the previous proof still apply. Then πL′, f−1(i) |= φ.

Therefore, we show that for any (j, ψ) ∈ T ∪ S, we have πL′, f−1(j) |= ψ:
clearly, for each (j, ψ) in S, we have πL′ , f−1(j) |= ψ since ψ is an atomic propo-
sition. For (j, ψ) ∈ T , several cases may arise:

• if ψ = α ∨ β, then either (j, α) or (j, β) is in T ∪ S, and the result comes by
ind. hyp.,

• if ψ = α∧β, then (j, α) and (j, β) are in T ∪S, and the result also comes from
the ind. hyp.,

• if ψ = Xα, then (j + 1, α) (or (j + 1− p, α)) is in T ∪ S. In the first case, the
result is immediate. In the second case, it comes from lemma 2.4,

• for the other modalities F,F−1 and X
−1, the argument is the same. �

Lemma 2.11 Let φ ∈ L
+(G,S) be a satisfiable formula, and L a loop s.t. πL, 0 |=

φ. Let π0 be the initial state of πL, and (ak)k=0..i−1 be any sequence of i states,
for an arbitrary natural i. We build the loop L′ = a0 · a1 · · · ai−1 · (π0)

ω. Then

11
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πL′ , i |= φ.

This lemma ensures that we can find a witness with only one state for the
satisfiable formula under study (by taking i = 0).

Proof The proof is by structural induction on φ:

• The result clearly holds for atomic propositions, and for conjunction and dis-
junction of smaller formulas;

• Assume that πL, 0 |= Gψ. Let (ak)k=0..i−1 be a sequence of i states. Then of
course πL, 0 |= ψ, and by induction hypothesis, for any integer j, we can build
the loop

Lj = a0 · a1 · · · ai−1 · π0 · · · π0
︸ ︷︷ ︸

j times

·(π0)
ω.

Then πLj
, i+ j |= ψ, by induction, for any natural j. Thus πL′, i |= Gψ.

• If πL, 0 |= ψ1Sψ2, then obviously πL, 0 |= ψ2. By induction, πL′ , i |= ψ2 for
any sequence of i states (ak)k=0..i−1. This clearly entails that πL′ , i |= ψ1Sψ2.

�

Theorem 2.12 Satisfiability and existential model-checking are np-complete for
L(X,X−1,S), L(F,F−1), L

+(F,F−1,X,X−1), and for their non-trivial frag-
ments. Satisfiability is np-complete for L

+(G,S) and its non-trivial fragments.

np-easiness is a direct consequence of the previous results. np-hardness was
proved in Section 2.1.

3 PSPACE-complete problems

In this section, we prove pspace-hardness of verification problems for several
fragments of pltl.

The proofs are reductions from a tiling problem. Let C be a finite set of
colors. A domino-type is a 4-tuple 〈dup , ddown , dleft , dright〉 of colors of C. Given
a set T ⊆ C4 of domino-types, and two integers m and n, tiling the m× n-grid
amounts to finding a function f : [1,m] × [1, n] → T s.t.

∀(i, j) ∈ [1,m− 1] × [1, n], f(i, j)right = f(i+ 1, j)left

∀(i, j) ∈ [1,m] × [1, n− 1], f(i, j)up = f(i, j + 1)down

We consider the following tiling problem, which is a slightly modified version
of [9, prob. B2]: given a set T of domino-types, a natural m (in unary), and two
colors c0 and c1 of C, does there exist a natural n s.t. the m × n-grid can be
tiled, with the additional conditions that f(1, 1)down = c0 and f(m,n)up = c1 ?
This problem is pspace-complete.

Let (C, T = {d1, . . . dp},m, c0, c1) be an instance of B2. W.l.o.g., we may
assume that the domino-types whose dup-color is c1 are numberred from 1 to q,
and the other ones from q + 1 to p.

We build the Kripke structure shown on figure 2. The set of atomic proposi-
tions is T ∪ {E} ∪ {i = k | k = 1, . . . ,m}. The initial states are those where the

12
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ddown -color is c0 and the value of i is 1. All the transitions from a state labeled
with i = k to a state labeled with i = k + 1 are enabled for k ≤ m − 1. For
i = m, if the dup-color is not c1, then it is only possible to go to states labeled
with i = 1, else it is only possible to go to state E.

i=1,d1

i=1,d2

...

i=1,dq

i=1,dq+1

...

i=1,dp

i=2,d1

i=2,d2

...

i=2,dq

i=2,dq+1

...

i=2,dp

· · ·

· · ·

...

· · ·

· · ·

...

· · ·

i=m,d1

i=m,d2

...

i=m,dq

i=m,dq+1

...

i=m,dp

E
i=1,d2 i=m,d2

Figure 2. The Kripke structure K associated with our tiling problem

We now have to write formulas stating that

• colors are respected from left to right (φhoriz );

• colors are respected from top to bottom (φvert).

The initial and final conditions are true whenever the path eventually arrives
in E.

3.1 The fragment L
+(U)

[22] proves that model-checking and satisfiability are pspace-complete for L(U).
The result here is a little stronger since we cannot, for instance, encode the G

modality in L
+(U).

Theorem 3.1 Existential model-checking for L
+(U) is pspace-hard.

Proof

We simply have to express the three properties stated before with L
+(U)

formulas:

• the “initial” and “final” conditions are satisfied: >UE

• the sequence of colors from left to right is correct:

(
m−1∧

k=1

∧

d∈T

(i = k ∧ d) ⇒
(
i = k U(i = k + 1 ∧

∨

d′∈T
d′left=dright

d′)
)

)

UE

13
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• the sequence is also correct from bottom to top:

(
m∧

k=1

∧

d∈T

(i = k ∧ d) ⇒

(

i = k U
(

¬i = k∧

(¬i = k)U
(
E ∨ (i = k ∧

∨

d′∈T
d′down=dup

d′)
))
))

UE

A path inK satisfying the conjunction of those formulas eventually reaches E,
after having run n times through a state where i = 1 holds. The path gives rise
to a function f : [1,m] × [1, n] → T in the obvious way. This function is a tiling
function since the path satisfies the φhoriz and φvert conditions. Thus the (pspace-
complete) problem B2 is (polynomialy) reducible to model-checking L

+(U), and
model-checking L

+(U) is pspace-hard. �

Corollary 3.2 Satisfiability for L
+(U) is pspace-hard.

Proof A classical method for such a proof is to reduce model-checking problem
to satisfiability problem. However, since we cannot use or express G in L

+(U),
we cannot encode the behaviour of a (general) Kripke structure. Thus we will
reduce our tiling problem to the satisfiability problem, by encoding the Kripke
structure of figure 2 into an L

+(U) formula.

We have to express that, until it reaches E, a path should meet the following
properties:

• there is exactly one value for i in each state, as well as exactly one d ∈ T ,
unless we are in the state E;

• any path starts in a i = 1 state, with ddown = c0;

• i increases from 1 to m, and then goes back to 1 unless dup = c1;

• we may go to the E state only from a i = m state;

We define
uniq(S)

def

= (
∨

s∈S

s) ∧ (
∧

s∈S

∧

s′∈Sr{s}

s⇒ ¬s′).

The first property thus writes

φuniq
def

= ¬E ⇔ (uniq({i = k} ∧ uniq(T )).

The third and fourth properties can be expressed through:

φincr
def

=
m−1∧

k=1

(i = k ⇒ (i = k U i = k + 1))∧

((i = m ∧
∨

d∈T
dup=c1

d) ⇒ (i = mU(E)))∧

((i = m ∧ ¬
∨

d∈T
dup=c1

d) ⇒ (i = mU i = 1))

14
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Thus the global reduction can be written as:

(i = 1 ∧ ddown = c0) ∧ (φuniq ∧ φincr ∧ φvert ∧ φhoriz )UE

�

Theorem 3.3 Universal model-checking is pspace-hard for L
+(U).

Proof This proof considers a slightly modified tiling problem: the input is the
same, but the question is whether all correct tilings having c0 as leftmost bottom
color will eventually have c1 as rightmost top color. Since pspace and co-pspace

coincide, this problem clearly is pspace-complete. We will write a formula ex-
pressing that each path either does not represent a correct tiling, or eventually
reaches the E state. Thus we write

φhoriz
def

=
m−1∨

k=1

∨

d∈T

>U(i = k ∧ d ∧ (i = k U(i = k + 1 ∧
∧

d′∈T
d′left=dright

¬d′)))

φvert
def

=
m∨

k=1

∨

d∈T

>U(i = k ∧ d ∧ (i = k U(¬i = k ∧

(¬i = k U(i = k ∧
∧

d′∈T
d′down=dup

¬d′)))))

A path satisfying those properties does not correspond to a correct tiling.
Thus checking that all the paths satisfy φhoriz ∨ φvert ∨>UE amounts to solving
our tiling problem. �

3.2 pspace-hardness for L
+(F,X), L

+(G,X) and L
+
s (G,X−1)

[22] shows that satisfiability and existential model-checking for L
+(F,X) are

np-complete. We show here that universal model-checking is harder for that
fragment.

Theorem 3.4 Universal model-checking for L
+(F,X) is pspace-hard.

Proof The reduction is similar to the previous one, and formulas are even easier
to write. �

By duality, we get

Corollary 3.5 Existential model-checking and satisfiability are pspace-hard for
L

+(G,X).

Proof For existential model-checking, the result comes by duality from the pre-
vious theorem. It was already proved in [4]. A reduction from existential model-
checking to satisfiability for L(F,X) is given in [22], and that reduction also
applies to L

+(G,X). �

Theorem 3.6 Existential model-checking and satisfiability for L
+
s (G,X−1) are

pspace-hard.
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Proof For existential model-checking, we consider the dual problem of the one
we used for the proof of Theorem 3.3: given the same input, the question is
whether there exists a correct tiling that never satisfies the “final” condition.
For this, we simply have to write that the considered path satisfies the tiling
conditions:

φhoriz
def

=
m∧

k=2

∧

d∈T

G(i = k ∧ d⇒
∨

d′∈T
d′right=dleft

X
−1d′)

φvert
def

=
m∧

k=1

∧

d∈T

G(i = k ∧ d⇒ (X−1k⊥ ∨
∨

d′∈T
d′up=ddown

X
−1nd′))

Checking that there exists a path satisfying φhoriz ∧ φvert ∧G¬E amounts to
solving the initial pspace-hard problem.

The reduction from existential model-checking to satisfiability given in [22]
for L(F,X) can easily be adapted for L

+
s (G,X−1). �

3.3 pspace-hardness for L
+
s (F,S) and L

+
s (G,S)

Theorem 3.7 Model-checking is pspace-hard for L
+
s (F,S) and L

+
s (G,S). Sat-

isfiability is pspace-hard for L
+
s (F,S).

Proof Those proofs are very similar to the previous ones:

• for existential model-checking of L
+
s (F,S) and L

+
s (G,S), the reduction is al-

most the same as in the proof of existential model-checking for L
+(U);

• for satisfiability, we simply encode the structure of figure 2 into L
+
s (F,S)

formulae;

• For universal model-checking, the reductions are similar to the one of Theo-
rem 3.3. �

Theorem 3.8 Model-checking and satisfiability problems for the fragments L
+(U),

L
+(G,X), L

+
s (G,X−1), L

+
s (F,S), and for fragments of pltl containing one of

them, are pspace-complete. Model-checking is pspace-complete for L
+
s (G,S).

Proof This is a direct consequence of [22, Theorem 4.1], and of Theorems in
this section. �

4 Concluding remarks

The results we got are sufficient to completely classify all the considered frag-
ments of pltl w.r.t. the complexity of (existential and universal) model-checking
and satisfiability problems.

This exhaustive case study led to several surprising results. We showed that
existential and universal model-checking might have the different complexity for
positive fragments (np vs. pspace). We found only one case where existential
model-checking and satisfiability have different theoretical complexity. On the
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other hand, we observe that using the symmetric past-time modalities of the al-
lowed future modalities does not increase the complexity of verification problems.
The same remark holds for the use of future modalities in the scope of past-time
modalities. This all boils down to the conclusion that past is really cheap.

After this study on the effect of adding past into fragments of ltl, it would
be interesting to look into when “past is for free” for extensions of that logic,
such as ctl

∗ (as far as we know, the complexity of model-checking for ctl
∗ with

linear past is still open [13]) or timed temporal logics ([2] proves that, for the
validity problem over timed state sequences, past can be added for free in the
Metric Temporal Logic from [12], but not in the Timed Propositional Temporal
Logic of [1]).
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