
On best transitive approximations to simple graphs

Steven Delvaux, Leon Horsten

University of Leuven, Department of Computer Science / Department of Philosophy,

3000 Leuven, Belgium

Abstract. In this paper, we investigate both combinatorial and complexity

aspects of the problem of finding best transitive approximations to simple

graphs. These problems are addressed in an interlocked way. We provide

new and simple proofs of known results and in addition prove some new

theorems.

1 Introduction

Given any finite graph, which transitive graphs approximate it most closely

and how fast can we find them?

The answer to this question depends on the concept of “closest approx-

imation” involved. In [8,9] a qualitative concept of best approximation is

formulated. Roughly, a qualitatively best transitive approximation of a graph

is a transitive graph which cannot be “improved” without also going against

the original graph. A quantitative concept of best approximation goes back

at least to [10]. A quantitatively best transitive approximation is a transitive

graph that makes the minimal number of mistakes against the original graph.

In other words, the sum of the edges that are removed from and are added

to the original graph is minimal.

On both the qualitative and the quantitative conception, there usually

exists more than one best transitive approximation. In [7], partial results are

obtained for the number of quantitatively best transitive approximations.

And in [5] it is shown that finding a best approximation in the quantitative

sense is an NP-complete problem.

In this paper, we investigate both combinatorial and complexity aspects

of the problem of finding best approximations, and we investigate these
Konstanzer Online-Publikations-System (KOPS)

URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-54lxjia8sox51

Erschienen in: Acta Informatica ; 40 (2004). - S. 637-655
 https://dx.doi.org/10.1007/s00236-004-0144-0

638

aspects in an interlocked way. We give a new and simpler proof of the

important NP-completeness result of [5], but also prove some additional

results. We also extend the combinatorial results of [7].

Unless explicitly mentioned otherwise, when in the sequel we say “for

any G,...”, we mean “for any reflexive symmetrical graph G,...”. For the rest,

our notation is fairly standard. The notation uv stands for the edge between

vertex u and vertex v; by G we denote the graph with same set vertex set as

G, but with the complementary set of edges; by #A we denote the cardinal

number of a set A.

The problem that is addressed in this paper has applications in all sit-

uations in which an interconnected structure must be partitioned in a way

which reflects the actual interconnections as well as possible.1 Concrete

applications then follow from the actual structures under investigation.

2 The difference between graphs and transitive graphs

The definition of best equivalence-approximation of a graph G can be ex-

pressed as follows.

Definition 1 Let G, H be graphs with the same set of vertices. We define

the difference graph D (G, H) of G and H as the graph consisting of those

edges uv such that either uv ∈ G and uv /∈ H , or uv ∈ H and uv /∈ G.

Definition 2 For any G, the collection BA (G) (the collection of best tran-

sitive approximations to G) consists of all transitive graphs H such that

#D(G, H) is minimal.

In words, the idea can be expressed as follows. We consider G as a fixed

graph and the transitive graph H as an approximation of G. We see then that

H is obtained from G by removing and adding edges to/from G (cutting

and pasting). Every action of adding and of removing an edge is counted as

a mistake by H . A best transitive approximation to G is an approximation

which makes a minimal number of mistakes.2 It is a quantitative definition

because the number of mistakes is counted.

Definition 3 For any G and H , we define the graph D−(G, H) to be the

graph consisting of those edges which are in G but not in H . Similarly we

define D+(G, H) to be the graph consisting of the edges which are not in

G but are in H .

Definition 4 For any G, the collection BA
− (G) (best transitive ap-

proximations from below) consists of all transitive graphs H such that

#D+(G, H) = 0 and #D−(G, H) is minimal.
1 See [10, p. 840], [2].
2 This definition goes back at least to [10, p. 840].

639

In other words, we say that the best transitive approximations from below

are best equivalence-approximations that only remove edges from G (but do

not add edges). Every action of removing an edge is counted as a mistake.

Of course we can also define the set BA
+ (G) consisting of the best

transitive approximations from above. But this is a rather trivial notion: for

any graph G, the set BA
+ (G) will only contain one element, and this is

the graph which is the transitive closure of G. In the sequel, this notion will

be disregarded.

We will now investigate some combinatorial properties of the quantitative

cut-and-paste approach. Some of these results will also be used later in our

complexity calculations.

A simple upper bound for the number of modifications that need to be

made in order to make a graph transitive is 1
2

(

n
2

)

.3 The reason is the following.

Either the graph has ≤ 1
2

(

n
2

)

edges and we remove them all, or it has > 1
2

(

n
2

)

edges and we complete the graph using < 1
2

(

n
2

)

edges. We will now give

the exact upper bound, and investigate when this boundary is reached.

First we introduce a systematic series of definitions that includes the

definition of transitive graphs.

Definition 5 A graph is transitive if and only if there is no triple of vertices

which are connected by means of exactly 2 edges, i.e. if and only if every

triple of vertices is connected by 0,1, or 3 edges. Such graphs can be called

013-graphs. Similarly, we define the class of 02-graphs, 012-graphs, and so

on.

We will now consider a subclass of the transitive graphs (or 013-graphs).

Namely, we focus on the 13-graphs.

Proposition 1 Let n vertices be given, on which a graph is defined in the

following way: (a) every vertex is given a sign + or −; (b) an edge is drawn

between two vertices if and only if they have the same sign. Then (1) the

result is always a 13-graph, and (2) every 13-graph can be so generated.

Proof. (1) This is immediate: to an arbitrary triple of vertices we have as-

signed either one sign only (this yields 3 edges) or two signs (this yields one

edge).

(2) Let a 13-graph G be given. We must find an assignment of signs that

yields G. A first vertex v0 is assigned +, and any other vertex v is assigned

+ if the edge v0v belongs to G, − otherwise. Let G′ be the 13-graph thus

generated. We claim that G = G′. This can be seen by considering an

arbitrary triple of vertices v0, v, w. We know that G and G′ agree on 2 of the

3 possible edges between v0, v, w, and since their number of edges is equal

modulo 2, they must also coincide on the third possible edge vw.

3 See [6].

640

Definition 6 If we have a 13-graph in which p nodes have been assigned

+, and q nodes have been assigned −, then we call p and q the structure

numbers of the 13-graph.

From Proposition 1, we see that a 13-graph is just a transitive graph where

the vertices are distributed over 2 cliques. The sizes of these two cliques

are the structure numbers p and q (one of which may be zero). By passing

to the complementary graph G, we see that a 02-graph is a bipartite graph

with p vertices on the left and q vertices on the right, such that every of the

p vertices is connected with every of the q vertices. Such a graph is usually

called a complete bipartite graph and denoted as Kp,q. In this case, we still

call p and q the structure numbers of G.

We will define now a function ϕ which will be important in the sequel.

Definition 7 Let n be a positive integer, then we define ϕ(n) to be

–
(n

2

2

)

+
(n

2

2

)

= n
2

(

n
2 − 1

)

for n even, and

–
(n−1

2

2

)

+
(n+1

2

2

)

= n+1
2 · n−1

2 for n odd.

A small calculation shows that ϕ(n) can also be written as

ϕ(n) =
1

2

((

n

2

)

−
⌊n

2

⌋

)

for every n. It is clear that, as n → ∞, the function ϕ (n) becomes asymp-

totically equivalent to 1
2

(

n
2

)

, i.e. to half of the possible edges on n points.

Now in order to gain information about the best transitive approxima-

tions of a graph G, we will first restrict ourselves to the best “13-graph”-

approximations of G. We first calculate the minimal number of edges that

need to be modified in order to transform a graph G of order n into a 13-

graph.

Lemma 2 The minimal number of edges that needs to be modified in order

to transform a graph G of order n into a 13-graph is

(a) at most equal to ϕ (n), and (b) exactly equal to ϕ (n) if and only if

G is a 02-graph.

Proof. First we will prove (a).

(a1) Suppose first that n is even. Let H be an arbitrary 13-graph and consider

the difference graph D (G, H). If u is a vertex which has at least ≥ n
2

neighbors in D(G, H), we can replace H by the graph H ′ which is obtained

by reversing the sign of u. We can iterate this operation until every point is

connected to ≤ n
2 − 1 edges in D (G, H). The number of mistakes of the

resulting 13-graph is then at most n
2

(

n
2 − 1

)

= ϕ (n).
(a2) Suppose that n is odd. We can then lower the degree of the vertices

in D(G, H) to n−1
2 , by using the same method. This does not yet suffice.

641

But suppose that there are two vertices which have both degree n−1
2 in

D (G, H) and which are not connected. Then if we reverse the sign of these

two vertices, the total number of edges in D(G, H) will decrease. (This is

not hard to see.) We see from this that all the vertices of degree n−1
2 must be

connected with each other. Hence there are at most n+1
2 vertices which have

degree n−1
2 , and other vertices have lower degrees. The number of edges in

D(G, H) is then at most

1

2

(

n + 1

2
·
n − 1

2
+

n − 1

2
·
n − 3

2

)

=
n − 1

2
·
n − 1

2
= ϕ(n)

Now we will prove (b).

(b1) First we do the ⇒-direction. (b1.1) Suppose that n is odd. From the

proof of (a), we see that the maximal number of mistakes can only be reached

when D (G, H) is the union of 2 disjoint cliques, of size n+1
2 , n−1

2 , respec-

tively. Such a D (G, H) is a 13-graph. The original graph G is then the

“superposition” of two 13-graphs, hence a 02-graph.

(b1.2) Suppose that n is even. In (a) we have lowered the degree to n
2 − 1.

Now we need the additional fact that if we have 3 vertices which are pairwise

unconnected in D(G, H) and all have degree n
2 − 1 in it, then changing the

sign of all these vertices will decrease the number of edges in D(G, H). This

implies that the maximum number ϕ (n) of mistakes is only reached when

D (G, H) consists of 2 cliques, both containing n
2 vertices, which leads to

the same situation as in (b1). (b2) Now we do the ⇐-direction.

If G is a 02-graph, then D (G, H) must be a superposition of a 02-graph

and a 13-graph and hence a 13-graph. The number of edges of such a graph

is at least
(n

2

2

)

+
(n

2

2

)

= ϕ (n) for n even and
(n+1

2

2

)

+
(n−1

2

2

)

= ϕ (n) for n
odd.

This proposition generalizes a result of [7], where it is shown that in order

to transform a graph of order n into a transitive graph with 2 components, at

most ϕ (n) mistakes have to be made, and this maximum value is reached

on a graph Kp,q.
We will now investigate the best transitive approximations of a graph G

which is a 012-graph (equivalently, a graph with maximum clique number at

most equal to 2). First we prove the following lemma for the complementary

graph G, which is a 123-graph.

Lemma 3 Let G be a 123-graph of order n. Then: 1. G contains at least

ϕ (n) edges and 2. This minimum value is reached when G consists of 2

disjoint but equally large cliques, i.e., when G is a 13-graph with structure

numbers
{

n
2 , n

2

}

(n is even) or
{

n−1
2 , n+1

2

}

(n is odd).

Proof. Let u be a vertex with a minimal number d − 1 of neighbors. There

must then be n − d vertices which are not connected with u (excluding u

642

itself). Since every triple of vertices in G must contain at least one edge

(by definition of 123-graph), these n − d vertices must form a clique. On

the other hand, by the minimality of d, we see that every vertex must have

degree at least d − 1. So the minimal number of edges is reached when:

a. there are no additional edges to the clique of n − d vertices, and

b. each of the d vertices has degree d − 1.

It is clear that there is exactly one way in which these conditions can be

satisfied, namely if G consists of 2 disjoint cliques. Therefore G must be a

13-graph. As in the proof of the previous lemma, we see that such a graph

has at least ϕ (n) edges, and that this minimum is reached when the structure

numbers of the graph differ by at most 1.

Incidentally, we note that this lemma can be generalized somewhat:

Lemma 4 Let G be a graph of order n, and µ an integer such that there

is at least one edge in every collection of µ + 1 vertices (or, equivalently,

that its complementary graph has maximum clique number at most µ). Then

the minimal number of edges of G approximately equals 1
µ

(

n
2

)

, and this

minimum is reached when G consists of µ disjoint, almost equally large

cliques.

Proof. Again let u be a vertex with a minimal number d − 1 of neighbors.

By assumption between every µ-tuple of vertices not connected with u there

has to be at least one edge. We then reason inductively: the number of edges

on these n − d vertices can only be minimal if they consist of µ− 1 disjoint

cliques. As in the previous lemma, the other d vertices must then also form

a clique in order to be minimal. So G consists of µ disjoint cliques, and it

is easy to see that the minimal number of edges of such a graph can only

be reached when the difference in size of each pair of cliques amounts to at

most 1.

Now we will prove that, for a 012-graph, we can always find a best

cut-and-paste-approximation that does not paste.

Theorem 5 Let G be a graph with maximum clique number 2. Then there

is an element H of BA (G) which belongs to BA
− (G).

Proof. Suppose k vertices, with k ≥ 3, which a best transitive approxima-

tion transforms into a clique. Let G′ be the graph G restricted to these k
vertices. By renaming, we take G to be the graph G′ (which is also a 012-

graph), and it will then suffice to show that there exists a best approximation

from below of G which does not make more mistakes than an approximation

which transforms whole of G into a clique.

643

(a.) First we assume that the number of disjoint edges δ of G is maximal,

i.e. δ =
⌊

n
2

⌋

. By the previous lemma, G can have at most
(

n
2

)

−ϕ(n) edges.

Therefore a best approximation from below of G will make at most

(

n

2

)

− ϕ(n) − δ = 2ϕ (n) − ϕ (n) = ϕ (n)

mistakes against G. On the other hand, the approximation which transforms

G into a clique will make at least ϕ(n) mistakes. This, then, is never more

profitable than the best approximations from below. So there indeed exists

a best cut-and-paste approximation which nowhere pastes.

(b.) Now let us assume that the maximal number δ of disjoint edges of G is

smaller than
⌊

n
2

⌋

. We choose a partition of the vertices of G into two equally

large sets G1 and G2, both containing n
2 vertices if n is even and containing

n−1
2 and n+1

2 vertices respectively if n is odd. We do this in such a way

that a maximum matching is reached between G1 and G2. Let A1 ⊆ G1

and A2 ⊆ G2 be the sets of end vertices of this matching, both containing

δ vertices. We will then remove all edges u1v1 from G1 in the following

manner:

First case: both end-vertices of u1v1 belong to A1. Remove this edge, and

also remove the “opposite” edge u2v2 if there is one. In their place we add

the “crossing” edges u1v2 and u2v1, which were not yet present since G
has clique number 2. In this way the total number of edges of G has not

diminished.

Second case: one of the end-vertices v1 does not belong to A1 but the other

one u1 does. Remove the edge u1u2 and replace it by the “crossing” edge

u2v1. Again the total number of edges cannot be diminished.

Third case: neither of the end-vertices belong to A1. This situation does not

occur, since it would contradict the maximality of δ.

In the same way, we can remove the remaining edges between vertices of

G2 (we have to consider only the second case). In all these operations the

total number of edges has not diminished. To conclude, we add all edges

running from one of the c1 vertices of G1 which do not belong to A1, to one

of the c2 vertices of G2 which do not belong to A2. This gives us c1c2 extra

edges.

Now by construction, the resulting graph is bipartite, therefore with max-

imum clique number 2, and it has the maximal number of disjoint edges

δ =
⌊

n
2

⌋

. So the inequalities in the proof of part (a) of this proof are valid

for this resulting graph. Also since 0 6= c1c2 ≥ max{c1, c2}, we have

added more edges to G than we have increased the number δ, and so these

inequalities are also valid for G itself.

644

Corollary 6 For every 02-graph G with structure numbers {p, q} (with

p ≤ q), the number of mistakes of every element of BA (G) is exactly

p (q − 1).

Proof. By the previous theorem we know that there exists a best cut-and-

paste approximation of G which does not paste. Since our 02-graph con-

tains pq edges and its maximal number of disjoint edges δ equals its small-

est structure number p, the total number of mistakes made by a best cut-

approximation is exactly pq − p = p (q − 1).

Corollary 7 For every 012-graph G, there exists a polynomial time algo-

rithm for finding an element of BA (G).

Proof. There exists a polynomial time algorithm which finds, given a graph

G, a maximum matching of G. See for instance [1], which describes an

algorithm to find a maximum matching, with running time equal to O(n3).
So in particular, given a graph G with maximum clique number 2, there

exists a polynomial time algorithm for finding an element of BA
− (G) and

hence, by Theorem 5, for finding an element of BA (G).

We can also obtain a characterization of the least transitive graphs:

Corollary 8 For every n there is a graph of order n which makes exactly

ϕ (n) mistakes. For n even these are the graphs Kn
2

, n
2

and Kn
2

−1, n
2
+1 and

for n odd this is the graph Kn−1

2
, n+1

2

.

Proof. By Lemma 2, we know that the value ϕ (n) can only be reached in a

02-graph. If we evaluate the expression p (q − 1) from the previous lemma

for (p, q) =
(

n
2 , n

2

)

and
(

n
2 − 1, n

2 + 1
)

for n even, we obtain

n

2

(n

2
− 1

)

=
(n

2
− 1

) n

2
= ϕ (n) .

If we evaluate p (q − 1) for (p, q) =
(

n−1
2 , n+1

2

)

for n odd, we obtain also

n − 1

2
·
n − 1

2
= ϕ (n) .

Other structure numbers yield smaller values.

3 Qualitative approximations

In this section, we will work with a qualitative notion of best approximation:

Definition 8 H is a qualitatively best transitive approximation of G (H ∈
BAQL (G)) if for every equivalence relation H ′, D(G, H ′) * D(G, H).
H is a qualitatively best transitive approximation from below of G (H ∈
BA

−

QL (G)) if H ⊆ G and H ∈ BAQL (G).

645

Thus H is a qualitatively best transitive approximation of G if and only

if progress can only be made (with respect to H) by also at some places

going against the original graph G, and H is a qualitatively best transitive

approximation from below of G if additionally H ⊆ G. 4 In fact, it is

easy to see that H ∈ BA
−

QL (G) is equivalent with H ⊆ G and for every

equivalence relation H ′, D−(G, H ′) * D−(G, H). Note that these notions

are qualitative because we do not count mistakes.

Proposition 9 There exists a polynomial-time algorithm for generating, for

any given G, elements of BA
−

QL (G).

Proof. It is not hard to verify that the algorithm below does the job.

Algorithm 1 1. Wellorder the domain of G.

2. Build the equivalence classes of G− in stages as follows:

(a) Start with the first element u1 in the wellordering. Assign to it an

equivalence class H1.

(b) Move on to the next element (u). If it can be added to one of the

already partially constructed equivalence classes Hi in such a way

that all elements of Hi ∪ {u} are G-related, do so. Otherwise, start

a new equivalence class containing u.

(c) Repeat step b. until the domain of G is exhausted.

In fact, it is not hard to see that all elements of BA
−

QL (G) are generated

by this algorithm.

Definition 9 An element of BA
−

QL (G) is said to meet the minimal cell

requirement 5 if there exists no best transitive approximation of G with

fewer cliques.

One can easily check that for elements of BA
−

QL (G), satisfying the

minimal cell requirement does not guarantee belonging to BA
− (G). We

have the following result.

Proposition 10 The problem of finding, for any given G, an element of

BA
−

QL (G) that meets the minimal cell requirement is NP -complete.6

Proof. Let G be given. Consider the complement G of G. A (minimal)

coloring of G corresponds to an equivalence relation H on the set of vertices

of G such that (i) H ⊆ G and (ii) H consists of a minimal number of cliques.

4 With a slightly other, but equivalent definition, this set BA
−

QL (G) has also been con-

sidered by Timothy Williamson in [8,9].
5 See also Williamson [9, p. 72–73]
6 Hannes Leitgeb pointed this out to us in private communication.

646

Fig. 1. Graph G of which the largest clique is split by best approximations

(i) is true because if two nodes are given the same color, then they cannot

be acquainted according to G, which means that they must be acquainted to

G. (ii) also holds: the chromatic number of G is identical to the number of

partition classes in optimal partitions of G. But generating optimal colorings

is NP -complete.7

4 Complexity questions

In the preceding section, we investigated some questions concerning the

complexity of best qualitative approximations. Now we return to the usual,

quantitatively best approximations of Sect. 2, and these problems will be

more difficult. We first look at approximations from below. Our strategy will

be to reduce the clique problem to the problem of finding a quantitatively

best transitive relation from below.8 This is not completely straightforward,

for there are graphs G such that every quantitatively best approximation

from below breaks the largest cliques in G. For instance, consider the graph

G in Fig. 1.

The transitive approximation H1 which consists of the four corner triangles

has #D(G, H1) = 6, whereas the transitive approximation H2 which con-

sists of the maximum clique, i.e. the middle square, plus 4 isolated edges has

#D(G, H2) = 8. Therefore, H1 is the (unique) best approximation from

below, and it breaks the maximum clique.

However, generalizing from Fig. 1, we see that this phenomenon is

bounded:

Proposition 11 Let µG be the maximum clique number of a given graph

G. Then the maximum clique number of every best transitive approximation

from below to G is at least
µG+1

2 .

7 See [4, p. 154].
8 The clique problem is known to be NP -complete. See [4, p. 155].

647

Proof. Let C be a subclique of G which reaches the maximal value of µG

vertices. Let H be a best transitive approximation to G, with maximum

clique number µH , and let e ≤
(

µG

2

)

be the number of edges between

vertices in C in this graph H . Now we can transform H into a new transitive

graph H ′, by removing all the edges joining a vertex of C with a vertex

outside of C, and then rejoining all the vertices of C with each other. This

yields a new transitive graph H ′. The number of removed edges is at most

equal to µG(µH −1)−2e. The number of added edges is equal to
(

µG

2

)

−e.

Because of our choice of H as a best transitive approximation to G, we

must then have that µG(µH − 1) − 2e ≥
(

µG

2

)

− e. It follows a fortiori that

µG(µH − 1) ≥
(

µG

2

)

, and hence µH − 1 ≥ µG−1
2 . So we conclude that

µH ≥ µG+1
2 .

This proposition shows that from the best transitive approximation, we

can deduce information about the maximum clique number of the graph.

In the next theorem we will deduce an even tighter connection, from which

we will be able to prove the NP-completeness of finding the best transitive

approximation from below to G. (Remark that it suffices to prove the NP-

hardness, because this problem obviously belongs to NP.)

The idea of the proof is illustrated in Fig. 2. The original graph G consists

of the thick solid lines and their endpoints; this is the graph of Fig. 1. The

thinner edges and vertices are added to G, thereby transforming it into a

graph G′. By adding one vertex to G, and connecting it with all the vertices

of G, one makes it slightly less profitable to split large cliques. So by adding

sufficiently many vertices to G and connecting them to each other and to

all of G, as in Fig. 2, one makes the resulting graph markedly unprofitable

to split all maximum cliques. So a maximum clique of G can be recovered

from every cut-approximation to G′. The precise calculation is given in the

proof of the theorem, to which we turn now.

Theorem 12 The problem of finding, for any given graph G, an element of

BA
− (G) is NP -complete.

Proof. Let G be given, and let n be the number of vertices of G. We now

construct a graph G′ as follows:

1. Add a clique C of n2 vertices to G;

2. Draw an edge from every vertex of C to every vertex of G. Now suppose

that there would be a polynomial time algorithm A for finding a quantita-

tively best cut-approximation, and let the resulting graph A (G) be called H .

Then we claim that (1) C remains intact in H , and (2) C will be connected

with a clique of maximal size of the graph G. We will now prove these two

assertions.

(1) Note that every clique of H is the union of a subclique of C with a clique

of G. Let C1 ∪ G1 and C2 ∪ G2 be two such cliques of H , and suppose

648

clique

Fig. 2. Modified graph G
′ in which it is no longer profitable to split largest cliques

that C1 6= C2. Assume also that n1, n2, c1, c2 are the number of elements of

G1, G2,C1, C2 respectively, and that n1 ≥ n2. Then we can reunite C1 and

C2 and join the resulting clique with G1. This yields

c1c2 + c2n1 − c2n2 > 0

edges, which is quantitatively better.

(2)Assume thatC ends up with a clique with< µ edges, withµ the maximum

clique number of G. Then this total clique contains at most
(

n2+µ−1
2

)

edges.

All other cliques of H together can contain at most
(

n
2

)

edges. However, a

calculation shows that
(

n2 + µ

2

)

−

(

n2 + µ − 1

2

)

= n2 + µ − 1 ≥ n2 >

(

n

2

)

,

whereby C must belong to a clique which reaches the maximum size µ.

Remark 13 Consider the problem of finding, for a given graph G, a coloring

of G such that

∑

i

(

number of vertices of color i

2

)

is maximal. This problem is equivalent to finding a best transitive approxi-

mation from below for the complementary graph G of G. Hence this problem

is also NP -complete. In fact, we did not have to use the binomial function

in stating this remark. By the same token, we can consider the problem of

finding a coloring of G such that

∑

i

f(number of vertices of color i)

649

⇒

Fig. 3. Graph G Fig. 4. Graph G
′

is maximal. Then if f is such that limn→∞ f(n + 1) − f(n) = ∞, this

problem will also be NP-complete.

We will now turn to the problem of the complexity of finding a best

cut-and-paste approximation to a given graph. In [5] it was shown that the

problem is NP -complete. Here a new and simpler proof of this theorem is

given. We will give a detailed description of a construction that can also be

used to prove the corollaries following our proof.

Theorem 14 The problem of finding, for any given graph G, an element of

BA (G) is NP -complete.

Proof. The main idea of the proof is the following. We suppose an arbitrary

algorithm A which, given a graph G, yields an element A (G) ∈ BA (G).
Then we construct a polynomial-time transformation of G into a graph

G′ such that, from the graph BA (G′), we are able to find a best cut-

approximation for our original graph G. But we know form the previous

theorem that this latter problem is NP -complete.

We will now describe this reduction. Suppose that a graph G of order n
is given. We then transform this graph into a graph G′ in the following way:

1. We replace every vertex u of G by a clique Cu consisting of a huge

number of vertices (say, 2n10 vertices).

2. We connect each pairCu,Cv by exactly half of the possible edges between

them (i.e., 2n20 edges). We do not do this in an arbitrary way, but in a

specific manner that we describe below.

3. Finally we introduce the information contained in the original graph G.

– If there was no connection between a pair of vertices u and v in the

original graph G, then we remove n2 edges from the connections

between Cu and Cv.

– If there was a connection between u and v in the original graph G,

then we add 1 more edge between Cu and Cv.

650

This completes the description of the transformed graph G′. As an illustra-

tion, consider the simple graph G in Figure 3, which is transformed into the

graph G′ in Figure 4.

Now we formulate the following claim:

Claim We can draw the edges in step 2 of this construction in such a way

that when the algorithm A (the cut-and-paste-algorithm) is applied to G′, it

leaves all the cliques Cu of G′ intact.

Suppose for a moment that this claim is true.Then it is clear that the algorithm

A, when applied to G′, will yield us a best approximation from below for

the original graph G. For if there is no edge between a pair of vertices u
and v in G, then pasting Cu and Cv in G′ gives us an extra cost of 2n2

edges, compared with non-pasting. Cutting an edge gives us an extra cost

of 2 edges, compared with non-cutting. So we see that the algorithm A will

nowhere paste an edge in G′, and that it will cut a minimal number of times.

The graph A(G′) yields us then a best approximation from below for the

original graph G. This ends the proof of the theorem. A.

The hard part in finishing the proof is then to prove the claim that we

made in the proof. To this end we must describe in which way we have to

draw the 2n20 edges between Cu and Cv in step 2 of the construction of

G′. First, we regard each clique Cu as consisting of an upper part C1
u and

a lower part C2
u, each containing n10 vertices. Then we connect each pair

Cu,Cv crosswise, i.e., we fully connect C1
u with C2

v and we fully connect C2
u

with C1
v . This construction is illustrated in Fugure 4. With this construction,

we will be able to prove the claim. We will do this in two steps. The first

step is as follows:

Lemma 15 Suppose for the moment that for the transitive graph A(G′),
each of the cliques Cu is either preserved or split into its two components

C1
u, C2

u. Then, neglecting the O(n2) changes in step 3 of the construction of

G′, splitting can never be more profitable than leaving each Cu intact.

Proof. Suppose that in the transitive graph A(G′), k of the cliques Cu are

split into their components C1
u, C2

u, and the other n − k cliques Cv are left

intact. We will try to find a reduction of the problem by gradually eliminating

edges in A(G′). First, remark that we may freely eliminate all the edges

between a split clique C1
u (say) and an entire clique Cv. Indeed, due to

the construction of G′ there were originally only half of the possible edges

between C1
u and Cv, so there will be no extra costs if we eliminate these

edges instead of completing them.

The same reasoning holds for the edges between two cliques Cu, Cv

which were left intact in A(G′): by construction only half of the possible

edges between these cliques were present in the graph G′, so for the costs it

does not matter whether we eliminate or complete them.

651

Then let us look at the mutual edges between the split cliques C1
u, C2

u,

C1
v , C2

v . Suppose l vertices ui with corresponding indices xi ∈ {1, 2} such

that the cliques Cxi
ui

form a big clique in A(G′). We want to measure how

much mistakes were necessary to create this clique. For this, we define an

auxiliary graph H on the l vertices ui: we draw an edge between ui, uj in

the graph H if and only if the cliques Cxi
ui

, C
xj
uj were originally connected

with each other in G′. Due to the construction of G′, this reduces to saying

that the corresponding indices xi, xj are different from each other. As a

consequence, using the terminology of Sect. 2 we can say that this graph H
must necessarily be a 02-graph (see Proposition 1), and so its complementary

graph H , which will be a 13-graph, has at least ϕ(l) edges.

Using this, we see that to transform the Cxi
ui

into a big clique in A(G′), we

needed to make at least ϕ(l)n20 mistakes, and the number of preserved edges

was at most (
(

l
2

)

− ϕ(l))n20. The difference between these two coefficients

is
(

l

2

)

− 2ϕ(l) =

⌊

l

2

⌋

.

In contrast with the previous cases, we see that this number can be different

from zero. So there may have been an effective profit induced by the splitting.

But this effect is bounded: since there are exactly 2k cliques Cxi
ui

in the graph

A(G′), summing over all the big cliques in A(G′) which are consisting of

these Cxi
ui

, we have that their sizes l must satisfy

∑

l,
∑

l=2k

⌊

l

2

⌋

≤ k.

So there will be at most a profit of kn20 in the splitting compared to the

non-splitting case. However, there is still a cost that we did not take into

consideration: of course the splitting itself of these k cliques Cu into C1
u,

C2
u will induce kn20 extra costs compared to non-splitting! So, globally, we

see that there can be no netto profit in the splitting case.

We see however that this lemma was very “close”, in the sense that it can

be exactly as profitable to split as not to split, and because we neglected the

O(n2) edges from step 3 of the construction of G′. Therefore we modify the

construction of G′ slightly, to make absolutely sure that it is not profitable

to split a clique in two. To this end, in the construction of G′ we remove

each time n5 (say) of the “crossed” edges between C1
u and C2

v and replace

them by “straight” edges, i.e., n5 edges between C1
u and C1

v . We modify the

connections between C2
u with C1

v in a similar way.

Note that after this modification there are still exactly2n20 edges between

each pair of cliques Cu and Cv, and all our previous results remain valid.

These modifications make it non-profitable to split because, in order to

652

make the splitting case as profitable as the non-splitting case, the number

of preserved edges between cliques Cxi
ui

, C
xj
uj must surely have been greater

then the number of them which is not preserved.

Now the second and final step in proving the claim will be the following,

technical lemma.

Lemma 16 In the transitive graph A(G′), each of the cliques Cu is either

preserved or split into its two components C1
u, C2

u.

Proof. Suppose some clique Cu0
which is divided into a number of sub-

cliques Di, i = 1, 2, . . . , N , where N is a certain integer. Define Dx
i =

Di ∩ Cx
u0

, x ∈ {1, 2}, and let dx
i be the number of vertices of Dx

i .

We define the profit W x
i ∈ Z which an “average” vertex w in Dx

i makes,

i.e., W x
i is the number of preserved edges starting from w, minus the number

of modified edges. Hereby we do not take into account the connections inside

the clique Cu0
itself, nor do we take into account the O(n5) “extra modified”

edges between each pair Cu0
, Cu, arising from the remark before this lemma.

(Remark that an analogous notion of profit already appeared in the proof of

the previous lemma). Also, let W x
max = max{W x

i }N
i=1, x ∈ {1, 2}.

Now consider the first scenario: we destroy all the Di and build up the

two subcliques C1
u0

, C2
u0

. For the connections with vertices in the other

cliques Cu, we first destroy all these edges and then rebuild them, following

the pattern encountered in W x
max. Then the cost of splitting the cliques Di

yields each time d1
i d

2
i mistakes. On the other hand, the profit inside D1

i of

reconnecting C1
u0

is 1
2d1

i

(

n10 − d1
i

)

. (The factor 1
2 is there because each of

these edges is counted for two i-values.) Moreover, the “better” connections

with the other cliques Cu yield also a profit of d1
i ∆W 1

i , where ∆W 1
i =

W 1
max − W 1

i ≥ 0 (neglecting the nO(n5) = O(n6) “modified” edges.) So

to be non-profitable, at least for one block Di we must have that

d1
i d

2
i ≥

1

2
d1

i

(

n10 − d1
i

)

+ d1
i ∆W 1

i (plus O(n6))

and thus

∆W 1
i ≤

1

2
d1

i + d2
i −

1

2
n10 (plus O(n6)) (1)

Now suppose that this inequality is satisfied for some block Di. Let us

then consider the second scenario: joining all of Cu0
, i.e., adding to Di all

of the n10 −d1
i other vertices in the upper part. (The adding of the lower part

can be handled separately, in exactly the same way). For the connections

with the other cliques Cu, we just choose the pattern that was present in Di.

Due to the reconnection of Di, we obtain a profit of
(

n10 − d1
i

) (

d1
i + d2

i

)

edges. On the other hand, the possible loss by a “worse” connection with

653

the other cliques Cu is at most
(

n10 − d1
i

)

∆W 1
i . So for this operation to be

non-profitable, we must have

∆W 1
i ≥ d1

i + d2
i (plus O(n6)) (2)

But then it is clear that (1) and (2) can not be satisfied simultaneously, because

this would imply that d1
i ≤ −n10 plus O(n6), which is a contradiction.

This establishes the claim. Therefore we have completed the proof of

Theorem 15. We will now list some corollaries of the construction that was

used in the proof of this theorem.

Corollary 17 The problem of finding, for any given G, a best transitive

approximation of G consisting of at most 3 components is NP -complete.

Proof. Suppose, for a reduction, that there exists a polynomial time algo-

rithm A which yields, for any G, such a transitive approximation A (G).
Using the same construction as in the main theorem, we can find in poly-

nomial time a best approximation which adds a minimal number of edges.

In particular, we will be able to know whether it is possible to find such a

transitive approximation without “pasting” edges. Equivalently, we would

know in polynomial time for every graph G whether its complement G al-

lows a 3-coloring. But the problem 3-color is known to be NP -complete,9

so we have reached the desired contradiction.

This corollary can easily be extended for a number of components k ≥ 3.

We use the following reduction: given a graph G, we construct a graph G′ by

addingk−3disjoint cliques toG (so that the resulting graph is disconnected).

Then an algorithm for finding a best transitive approximation consisting of

at most k components for the graph G′, would also yield us a best transitive

approximation for G consisting of at most 3 components.

We will now prove the corollary for the value k = 2.

Corollary 18 The problem of finding, for any given G, a best transitive

approximation of G consisting of at most 2 components (i.e., a best approx-

imating 13-graph) is NP -complete.

Proof. Suppose that there exists a polynomial algorithm A which yields,

for any G, such a best approximation A (G). Using the construction of the

proof of the main theorem again, we can give a huge relative “weight” to each

paste-operation. Thus we will be able to find a division of G into 2 disjoint

cliques, such that a minimal number of edges has to be added. Passing to the

complement G, this means that we have a partition of the vertex set into two

disjoint parts such that there is a minimal number of edges lying entirely in

9 See [4, p. 154].

654

one of them. Equivalently, we have a partition such that there is a maximal

number of edges running from the first to the second part. But it is known

that the latter problem is NP -complete.10

In our earlier applications of the best transitive approximations of a

graph, we assigned to both cutting and pasting a penalty of 1. But we can

also use weighted penalties. For every a, b ∈ R+, we can define the notion

of best a-b-approximation by stipulating that every paste-action carries a

cost of a and every cut-action carries a cost of b. The construction of our

main theorem then shows that these notions of best transitive approximation

also lead to NP -completeness, provided that b 6= 0. We will prove this in

the following corollary.

Corollary 19 Let a ∈ R+, b ∈ R+
0 . The problem of finding for any G a best

a-b-approximation is an NP -complete problem.

Proof. This follows by using the same construction as in the proof of the

main theorem. There are, however, some slight differences in the construc-

tion of G′. In step 3 of the construction, in the case where there is no edge

between u and v in the graph G, we must remove a
b
n2 more edges between

Cu and Cv, because of the weights. To be sure that this number a
b
n2 can

be neglected when compared with the number of vertices in each Cu, we

substitute in step 1 each point u by a clique Cu consisting of a
b
n10 vertices

and in the construction of step 2 we modify each time a
b
n5 “straight” edges.

(Of course the number a
b

does not have to be an integer, but it suffices to

round it up.)

We do not have to assign constant weighs to cutting and pasting edges.

We can allow each vertex u to have a different penalty a(u) for pasting

an edge and a penalty b(u) for cutting an edge. Consider the problem of

finding a best “weighted” transitive approximation for a graph G, using the

weights a(u) and b(u). When these weights are such that the quotient
a(u)
b(u)

of the largest value of a(u) by the smallest value of b(u) increases at most

as a polynomial function of n, this problem is NP-complete. This follows

immediately by using the same technique as in the previous corollary.

5 Conclusion

In this paper, we have investigated complexity and combinatorial questions

concerning best approximations to arbitrary graphs. From our research, a

fairly complete picture emerges.

10 See [3], where this problem is called Max Cut.

655

For different kinds of graphs, we have calculated the minimal number of

edges that need to be removed or added in order to obtain a transitive graph.

We have seen how this number can be expressed as a function of the order

of the graph and we have investigated the structure of the particular graphs

for which this minimal value is reached.

The combinatorial facts which were thus obtained were subsequently

used in complexity calculations. It was shown that there is a polynomial-

time algorithm for finding a best approximation for graphs with maximal

clique number 2. But most of the natural complexity problems that can be

posed turn out to be NP-complete. The task of finding a best transitive ap-

proximation which only removes edges is NP-complete. The task of finding

a best transitive cut-and-paste approximation is also NP-complete. Even

when we look for a best cut-and-paste approximation consisting of n com-

ponents (with n > 1), the task is NP-complete. And also when the cost of

removing and adding edges is (possibly non-uniformly) weighed, we face

an NP-complete task. For qualitative approximations, the task becomes NP-

complete when we look for an approximation with a minimal number of

equivalence-classes.

Acknowledgements. We are indebted to Rafael De Clercq, Hannes Leitgeb and Bruno

Leclerc for helpful discussions and suggestions. We have a second reason for being grateful

to Rafael De Clercq: he has generously assisted us with drawing the figures in Latex.

References

1. Blum, N. (1990) A new approach to maximum matchings in general graphs. In: Pa-

terson, M. (ed.) ICALP 90: Automata, Languages and Programming (LNCS 443) 17:

586–597

2. De Clercq, R., Horsten, L. Closer. Synthese (to appear)

3. Garey, M.R., Johnson, D.S., Stockmeyer, L. (1976) Some simplified NP-complete graph

problems. Theoretical Computer Science 1: 237–267

4. Krantz, S. (2002) Logic and proof techniques for computer science. Birkhäuser

5. Krivanek, M., Moravek, J. (1986) NP-hard problems in hierarchical tree-clustering.

Acta Informatica 23: 311–323

6. Moon, J.W. (1966) A note on approximating symmetric relations by equivalence

classes. SIAM Journal of Applied Mathematics 14: 226–227

7. Tomescu, I. (1974) La réduction minimale d’un graphe à une réunion de cliques. Dis-

crete Mathematics 10: 173–179

8. Williamson, T. (1986) Criteria of identity and the axiom of choice. Journal of Philosophy

83: 380–394

9. Williamson, T. (1990) Identity and discrimination. Blackwell

10. Zahn, C.T., Jr. (1964) Approximating symmetric relations by equivalence relations.

SIAM Journal of Applied Mathematics 12: 840–847

