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Abstract

A grid is a two-dimensional permutation: an m × n-grid of size mn is an
m × n-matrix where the entries run through the elements {1, 2, . . . , mn}.
We prove that if δ1 and δ2 are any two linear orders on {1, 2, . . . , N}, then
they can be simultaneously embedded (in a well defined sense) into a unique
grid having the smallest size.
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1 Introduction

Let D be a finite set of cardinality n. A linear order (or a permutation) on
D is a sequence δ = (x1, x2, . . . , xn) such that each element x ∈ D occurs
exactly once in δ. Also, if δ1 and δ2 are two linear orders on a common set
D = {1, 2, . . . , N} for some N ≥ 1, then the pair τ = (δ1, δ2) is called a
biorder (on D).

We shall study the problem of representing biorders in the form of grids,
i.e., matrices that have all entries different from each other. We show that
each biorder τ has a unique (in a well defined sense) grid of the smallest size
representing it.

A biorder (δ1, δ2) can be regarded as a partial order ρ = δ1 ∩ δ2 of
dimension two; see Trotter [5] for the results on the dimensions of partially
ordered sets. A theorem of Dushnik and Miller states that a partially ordered
set P has dimension at most two if and only if the incomparability graph of
P is also a comparability graph. It is shown by Pnueli, Lempel and Even
[4] that the partially ordered sets of dimension two are closely related to
permutation graphs. Indeed, for a permutation graph G = (D, E) one can
find a biorder (δ1, δ2) on D such that ab ∈ E if and only if (a, b) ∈ δ1 ∩ δ2.

Another graph theoretical application of biorders is given in [3], see also
[1, 2], where the notion of a text is introduced as an ordered triple τ =
(λ, δ1, δ2) consisting of a function λ : D → S from the finite domain D into
another set S (say, a word semigroup A∗) and of a biorder (δ1, δ2) on D. In
a sense a text is a structured word.

2 Preliminaries

We denote by [n, m] the interval {n, n + 1, . . . , m} of integers. For pairs of
integers, (m, n) < (p, q) means that m ≤ p, n ≤ q and (m, n) 6= (p, q).

We shall often identify a singleton set {x} with its element x.

Let ρ be a partial order on a finite set D, called the domain of ρ and
denoted by dom(ρ). All domains in this paper will be finite, and without
loss of generality we shall consider domains consisting of positive integers.
The dual order of ρ is the partial order ρ−1 = {(x, y) | (y, x) ∈ ρ}.

The structure preserving functions, i.e., embeddings, considered in this
paper preserve partial orders. To be more precise, let ρ1 and ρ2 be partial
orders on the domains D1 and D2, respectively. A mapping ϕ : D1 → D2 is
order preserving, if ϕ(ρ1) ⊆ ρ2, where ϕ maps the relation ρ1 pointwise, i.e.,

ϕ(ρ1) = {(ϕ(x), ϕ(y)) | (x, y) ∈ ρ1} .

An injective order preserving function ϕ is an order embedding.

Let ρ1 and ρ2 be disjoint partial orders, i.e., dom(ρ1) ∩ dom(ρ2) = ∅.
Then their (directed) sum is the partial order

ρ1 ⊕ ρ2 = ρ1 ∪ ρ2 ∪ {(x, y) | x ∈ D1 and y ∈ D2} .
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Also, we adopt the convention that ρ⊕∅ = ρ = ∅⊕ρ. Clearly, the operation
⊕ is associative on disjoint partial orders, and therefore we can write

n
∑

i=1

ρi = ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρn

for the unique sum ρ1 ⊕ (ρ2 ⊕ (· · · ⊕ (ρn−1 ⊕ ρn))) of pairwise disjoint par-
tial orders ρi, i = 1, 2, . . . , n. Note, however, that the operation ⊕ is not
commutative.

3 Grid biorders

Let δ1 and δ2 be linear orders on a common domain [1, N ] for some N ≥ 1.
Recall that the pair τ = (δ1, δ2) is a biorder. The domain of τ is the common
domain of its components, dom(τ) = [1, N ].

If τ = (δ1, δ2) is a biorder, and δ′1 and δ′2 are two linear orders with
dom(δ′1) = dom(δ′2) such that δ′1 ⊆ δ1 and δ′2 ⊆ δ2, then we write (δ′1, δ

′

2) ⊆ τ .

Let τ = (δ1, δ2) and τ ′ = (δ′1, δ
′

2) be two biorders (with dom(τ) = [1, N ]
and dom(τ ′) = [1, N ′]). Then τ ′ is embeddable in τ , if there is a mapping
ϕ : dom(τ ′) → dom(τ) such that ϕ is an order embedding simultaneously
from δ′1 into δ1 and from δ′2 into δ2.

Example 3.1. Let τ = (δ1, δ2) be a biorder such that δ1 = (2, 4, 1, 3) and
δ2 = (3, 1, 2, 4). Also, let τ ′ = (δ′1, δ

′

2) be a biorder with δ′1 = (3, 1, 2) and
δ′2 = (2, 1, 3). Then τ ′ is embeddable in τ . Indeed, the mapping ϕ : [1, 3] →
[1, 4] given by ϕ(1) = 1, ϕ(2) = 3, and ϕ(3) = 4 is an order embedding from
δ′1 into δ1 and from δ′2 into δ2.

Let D be a set and m, n ≥ 1 be integers. The set of all m × n matrices
with entries in D is denoted by Dm×n. For a matrix M ∈ Dm×n, its entries
are denoted by M(i,j) for i ∈ [1, m] and j ∈ [1, n]. Let size(M) = (m, n)
denote the size of the matrix M . Also, let Mi = (M(i,1), . . . , M(i,n)) be the

ith row vector and MT
j = (M(1,j), . . . , M(m,j)) the jth column vector of M .

Here the matrix MT is the transpose of M and thus the jth column vector
of M equals the jth row vector of MT .

A matrix M ∈ Dm×n is called an m × n-grid, if D = [1, mn] and the
entries of M are all distinct, that is, {M(i,j) | i ∈ [1, m], j ∈ [1, n]} = [1, mn].
Hence a grid is a generalization of a permutation to two dimensions.

We shall study biorders (δ1, δ2) that can be represented by grids in such
a way that both linear orders can be read from the representing grid. In
the following we choose a basic way of reading a grid to produce a biorder.
In order not to loose any biorders, such a way of reading must be carefully
chosen.

Let M be an m×n-grid. We note first that the row and column vectors
Mi and MT

i can be interpreted as linear orders in a natural way. Then
(MT

i )−1 is the dual order corresponding to the ith column of M , and we
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denote this also by M−T
i . We define the linear orders α(M) and β(M) as

follows:

α(M) =

m
∑

i=1

Mi and β(M) =

n
∑

i=1

M−T
i .

The grid biorder of M is the biorder Bi(M) = (α(M), β(M)); see Fig. 1. It
is easy to see that, for each row Mi and for each column MT

j of M ,

α(M) ∩ Mi = β(M) ∩ Mi and α(M) ∩ MT
j = β(M)−1 ∩ MT

j . (1)

Figure 1: Reading orders of a grid: α(M) and β(M).

Example 3.2. (1) Consider the following grid

M =





4 7 2 11
5 8 6 9
3 10 1 12





of size (3, 4). Then the grid biorder Bi(M) = (δ1, δ2) of M consists of
the following linear orders: δ1 = (4, 7, 2, 11, 5, 8, 6, 9, 3, 10, 1, 12) and δ2 =
(3, 5, 4, 10, 8, 7, 1, 6, 2, 12, 9, 11).

(2) The grid biorder of a row vector M = (x1, x2, . . . , xn) is simply
Bi(M) = (M, M), and for a column vector M = (x1, x2, . . . , xn)T , we have
Bi(M) = (M, M−1).

4 Embedding biorders into grids

Grids produce rather special biorders Bi(M) in the sense that the second
linear order of Bi(M) is almost redundant – it is uniquely determined by
the first linear order and the size of the grid M . Nevertheless, as we shall
see, all biorders can be embedded into grid biorders.

Let τ = (δ1, δ2) be a biorder. We say that a sequence (σ1, σ2, . . . , σk) of
partial orders is a left partition of τ (with k components), if δ1 =

∑k
i=1 σi

and σi ⊆ δ2 for all i ∈ [1, k]. Similarly, a sequence (κ1, κ2, . . . , κt) is a
right partition of τ (with t components), if δ2 =

∑t
i=1 κi and κi ⊆ δ−1

1 for
all i ∈ [1, t]. Moreover, a left (right) partition is said to be maximal if it
has the smallest number of components among the left (right, respectively)
partitions of τ .
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Example 4.1. Let τ = (δ1, δ2) be the biorder where δ1 = (1, 5, 3, 4, 2) and
δ2 = (3, 2, 1, 4, 5), and set σ1 = (1, 5), σ2 = (3, 4), and σ3 = (2). Then
δ1 = σ1 ⊕ σ2 ⊕ σ3 and σi ⊆ δ2 for each i. Therefore (σ1, σ2, σ3) is a left
partition of τ . Similarly, (κ1, κ2, κ3) is a right partition of τ , when κ1 =
(3), κ2 = (2, 1), κ3 = (4, 5).

We begin with a lemma concerning pairs of orders contained in grid
biorders.

Lemma 4.2. Let τ ′ = Bi(M) for an m × n-grid M and let τ be a biorder
such that τ = (δ1, δ2) ⊆ τ ′. For each i ∈ [1, m] and j ∈ [1, n], let σi = δ1∩Mi

and κj = δ2 ∩ M−T
j . Then (σ1, . . . , σm) is a left partition and (κ1, . . . , κn)

is a right partition of τ .

Proof. It is clear that δ1 =
∑m

i=1 σi and δ2 =
∑n

j=1 κj . Since τ ⊆ τ ′ and

σi ⊆ Mi, it follows by (1) that σi ⊆ δ2 for each i. Similarly, κj ⊆ δ−1
1 for

each j. The claim follows from these observations.

Each biorder τ = (δ1, δ2) does have a left and a right partition. Indeed,
if δ1 = (a1, a2, . . . , an) and δ2 = (b1, b2, . . . , bn), then these are trivial left
and right partitions: δ1 =

∑n
i=1(ai) and δ2 =

∑n
i=1(bj) where each (ai) and

(bj) is a one element linear order. We shall prove in the following that the
maximal left and right partitions of a biorder τ are unique.

Lemma 4.3. Let τ be a biorder and let (σ1, . . . , σk) and (κ1, . . . , κt) be a
left and a right partition of τ , respectively. Then dom(σi ∩ κj) has at most
one element for each i ∈ [1, k] and j ∈ [1, t].

Proof. Let τ = (δ1, δ2). Suppose that there are elements a, b ∈ dom(τ) such
that (a, b) ∈ σi and {a, b} ⊆ dom(κj) for some i ∈ [1, k] and j ∈ [1, t]. Since
σi ⊆ δ1, also (a, b) ∈ δ1. On the other hand, σi ⊆ δ2 and κj ⊆ δ2, and
therefore (a, b) ∈ κj . However, by definition, κj ⊆ δ−1

1 and thus (b, a) ∈ δ1,
which implies that a = b proving the claim.

Let σ = (σ1, . . . , σk) and κ = (κ1, . . . , κt) be left and right partitions of
a biorder τ . If dom(σi ∩ κj) 6= ∅, then, by Lemma 4.3, the intersection has
exactly one element. In this case, we say that the pair (i, j) is compatible
in (σ, κ). Trivially, every element x ∈ dom(τ) belongs to exactly one set
dom(σi ∩ κj). Therefore we can define χτ : dom(τ) → [1, k] × [1, t] by

χτ (x) = (i, j) if x = σi ∩ κj .

We now give necessary and sufficient conditions for a biorder τ to be
embeddable into a given grid biorder.

Theorem 4.4. Let τ = (δ1, δ2) be a biorder and let τ ′ = Bi(M) be a grid
biorder for an m × n-grid M . The following two conditions are equivalent
for each function ϕ : dom(τ) → dom(τ ′).

(i) ϕ is an embedding of τ into τ ′.
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(ii) There are integers k and t, and left and right partitions σ = (σ1, . . . , σk)
and κ = (κ1, . . . , κt) of τ , and order embeddings π1 : [1, k] → [1, m] and
π2 : [1, t] → [1, n] such that for all compatible pairs (i, j) of (σ, κ),

ϕ(σi ∩ κj) = M(π1(i),π2(j)) .

Proof. Let τ ′ = (δ′1, δ
′

2).

(1) Assume first that ϕ is an embedding. Let, for each i ∈ [1, m] and
j ∈ [1, n],

σ′

i = ϕ(δ1) ∩ Mi and κ′

j = ϕ(δ2) ∩ M−T
j .

Moreover, let d1 < d2 < · · · < dk be the increasing sequence of all indices
such that σ′

d1
, . . . , σ′

dk
6= ∅, and let e1 < e2 < · · · < et be the increasing

sequence of all indices such that κ′

e1
, . . . , κ′

et
6= ∅. By Lemma 4.2, σ =

(σd1
, . . . , σdk

) is a left partition and κ = (κe1
, . . . , κet) is a right partition of

ϕ(τ). It is immediate that M(di,ej) = dom(σ′

di
∩κ′

ej
) for all compatible pairs

(di, ej) (where i ∈ [1, k] and j ∈ [1, t]).

Let π1 : [1, k] → [1, m] and π2 : [1, t] → [1, n] be defined by π1(i) = di and
π2(j) = ej , respectively. Obviously, π1 and π2 are order embeddings. Let
σi = ϕ−1(σ′

di
) and κj = ϕ−1(κ′

ej
) for i ∈ [1, k] and j ∈ [1, t]. Because ϕ is

an embedding of τ onto ϕ(τ), (σ1, . . . , σk) is a left partition and (κ1, . . . , κt)
is a right partition of τ . Now, if x ∈ dom(σi ∩ κj), then we have ϕ(x) ∈
dom(σ′

π1(i) ∩ κ′

π2(j)). Hence, by the above, ϕ(x) = M(π1(i),π2(j)) for each

compatible pair (i, j) with i ∈ [1, k] and j ∈ [1, t] as required.

(2) Suppose now that (ii) is satisfied. (Note that ϕ is well defined by
Lemma 4.3.) The injectivity of ϕ follows directly from its definition and
from Lemma 4.3. We need only to show that ϕ is order preserving for both
linear orders of τ .

Let x, y ∈ dom(τ), and let i, p ∈ [1, k] and j, q ∈ [1, t] be such that
x = dom(σi ∩ κj) and y = dom(σp ∩ κq). If (x, y) ∈ δ1 then i ≤ p, and
therefore π1(i) ≤ π1(p), since π1 is order preserving. Moreover, if i = p,
then also (x, y) ∈ δ2, since σi ⊆ δ2. Hence in this case, q ≤ j and also
π2(q) ≤ π2(j), since π2 is order preserving. It follows then that

ϕ(x, y) = (ϕ(x), ϕ(y)) = (M(π1(i),π2(j)), M(π1(p),π2(q))) ∈ δ′1 .

Similarly, if (x, y) ∈ δ2, then j ≤ q and thus π2(j) ≤ π2(q). Moreover,
if q = j, then (x, y) ∈ δ−1

1 , since κj ⊆ δ−1
1 . In this case, i ≤ p and also

π1(i) ≤ π1(p). As in the above we have now that ϕ(x, y) ∈ δ′2. We conclude
that ϕ is an embedding from τ into τ ′.

We note that, in the notations of the previous theorem, the grid biorder
Bi(M) into which the given biorder τ is embeddable, has the size at least
(k, t) where k and t are the numbers of the components of the left and right
partitions, respectively.
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Example 4.5. Consider the grid

M =

(

3 5 1
4 2 6

)

for which we have Bi(M) = ((3, 5, 1, 4, 2, 6), (4, 3, 2, 5, 6, 1)). Let also τ =
((3, 2, 1), (3, 1, 2)). Then τ has a left partition ((3, 2), (1)) and a right parti-
tion ((3), (1), (2)). Now τ can be embedded into Bi(M) by the embedding
ϕ defined by ϕ(1) = 2, ϕ(2) = 1 and ϕ(3) = 3. Indeed, ϕ(3, 2, 1) = (3, 1, 2)
is a suborder of (3, 5, 1, 4, 2, 6) and ϕ(3, 1, 2) = (3, 2, 1) is a suborder of
(4, 3, 2, 5, 6, 1). In this case, the order embeddings π1 : [1, 2] → [1, 2] and
π2 : [1, 3] → [1, 3] of Theorem 4.4 are both identity functions. For instance,
we have that σ1 = (3, 2) and κ3 = (2), and therefore

M(1,3) = 1 = ϕ(2) = ϕ(σ1 ∩ κ3) = M(π1(1),π2(3)) ,

and hence π1(1) = 1 and π2(3) = 3.
The grid biorder Bi(M) is not the smallest one into which τ can be

embedded. It is easy to verify that τ can be embedded into Bi(M ′) where
the grid M ′ has size (2, 2):

M ′ =

(

3 2
4 1

)

.

Here Bi(M ′) = ((3, 2, 4, 1), (4, 3, 1, 2)). The embedding ϕ′ is the identity
function in this case.

The following result proves that every left (right) partition of a biorder
τ can be extended to a unique maximum left (right, respectively) partition.

Lemma 4.6. Each biorder τ possesses a unique maximal left partition and
a unique maximal right partition.

Proof. Let τ = (δ1, δ2). We prove the claim for left partitions; for right
partitions the proof is similar and omitted here. Now there exists at least
one left partition for τ ; namely the trivial left partition. Let then (σ1, . . . , σk)
be any left partition of τ . If for some i ∈ [1, k − 1], σi ⊕ σi+1 ⊆ δ2, then
σi ⊕σi+1 ⊆ δ1, and hence also (σ1, . . . , (σi ⊕σi+1), . . . , σk) is a left partition
of τ , and it has k − 1 components. We may thus assume that in the chosen
left partition there are no indices i ∈ [1, k − 1] such that σi ⊕ σi+1 ⊆ δ2.
Let (σ′

1, . . . , σ
′

p) be another left partition of τ . If for some i ∈ [1, p] and
j ∈ [1, k − 1], dom(σ′

i) ∩ dom(σj) 6= ∅ and dom(σ′

i) ∩ dom(σj+1) 6= ∅, then
(a, b) ∈ σ′

i for the maximal element a of σj and the minimal element b of
σj+1. Since σj ⊆ δ2, σj+1 ⊆ δ2 and (a, b) ∈ δ2, evidently also σj ⊕σj+1 ⊆ δ2,
contradicting our assumption. Consequently, for each i ∈ [1, p], we have
σ′

i ⊆ σj for some j ∈ [1, k]. Thus (σ1, . . . , σk) is a maximal left partition and
it is unique as such a partition.

Let (σ1, . . . , σk) and (κ1, . . . , κt) be the maximal left and right partitions
of a biorder τ , respectively. Then sizeP (τ) = (k, t) is called the partitive size
of τ . By Lemma 4.6, this notion is well defined for each biorder τ .

From Theorem 4.4 we deduce the following estimation on the size for the
grid biorders into which a given biorder τ can be embedded.
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Lemma 4.7. Let τ be a biorder τ that is embeddable into a grid biorder
Bi(M) for a grid M . Then sizeP (τ) ≤ size(M).

Proof. The existence of the injective functions π1 and π2 in Theorem 4.4
implies that size(M) ≥ (k, t) where k and t equal the number of components
in the left and right partitions given by Theorem 4.4. Since the maximal
left and right partitions of τ have the least number of components, we have
size(M) ≥ (k, t) ≥ sizeP (τ).

We are going to show now that each biorder can be embedded into a
unique grid biorder ‘modulo τ ’. First we define the meaning of ‘modulo τ ’.

Let τ be a biorder on [1, N ], and let M ′ and M ′′ be two m × n-grids.
Then Bi(M ′) and Bi(M ′′) are said to be congruent modulo τ , if τ ⊆ Bi(M ′)
and τ ⊆ Bi(M ′′), and the elements of [1, N ] are in the same places in the
grids M ′ and M ′′, i.e., if M ′

(i,j) = M ′′

(i,j) for each M ′

(i,j) ∈ [1, N ] with (i, j) ∈

[1, m] × [1, n].

Example 4.8. Let τ ′ = Bi(M ′) and τ ′′ = Bi(M ′′) be grid biorders where

M ′ =

(

1 2 5
4 3 6

)

and M ′′ =

(

5 1 2
4 6 3

)

.

For the biorder τ = ((1, 2, 3), (1, 3, 2)), we have τ ⊆ τ ′ and τ ⊆ τ ′′. However,
τ ′ and τ ′′ are not congruent modulo τ , because M ′

(1,1) = 1 ∈ [1, 3], but

M ′

(1,1) 6= M ′′

(1,1). (Indeed, we have even that M ′′

(1,1) /∈ [1, 3].)

We are now ready to express our main embedding theorem which states
that every biorder can be embedded into a unique smallest grid biorder
where uniqueness is taken up to congruence of biorders.

Theorem 4.9. Let τ be a biorder on D = [1, N ] with sizeP (τ) = (k, t).
There exists a k × t-grid M ′ such that

(i) τ ⊆ Bi(M ′), and

(ii) if τ ⊆ Bi(M ′′) for a grid M ′′, then either Bi(M ′′) and Bi(M ′) are
equivalent modulo τ or size(M ′′) > sizeP (τ).

Proof. Let τ = (δ1, δ2) and let (σ1, . . . , σk) and (κ1, . . . , κt) be the maximal
left and right partitions of τ , respectively. Moreover, we let D′ = [N +1, kt].
For each pair (i, j) ∈ [1, k] × [1, t], let µ(i, j) be the number of pairs (r, s)
such that (r, s) ≤ (i, j) and dom(σr ∩κs) = ∅, i.e., for which χ−1

τ (r, s) is not
defined. By Lemma 4.3, χ−1

τ (r, s) is undefined for exactly |D′| = kt − N
pairs (r, s).

Define a k × t-grid M ′ as follows: for each pair (i, j) ∈ [1, k] × [1, t],

M ′

(i,j) =

{

χ−1
τ (i, j), if σi ∩ κj 6= ∅ ,

N + µ(i, j), if σi ∩ κj = ∅ .

Denote τ ′ = Bi(M ′).
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We apply Theorem 4.4 for the case where π1(i) = i and π2(i) = i for
each i, and accordingly we define ϕ(x) = M ′

(π1(i),π2(j)) where (i, j) = χτ (x).

By Theorem 4.4, ϕ is an embedding of τ into τ ′. Now, ϕ is the identity
function on dom(τ), and thus τ ⊆ τ ′.

Suppose then that τ is contained in another grid biorder τ ′′ = Bi(M ′′)
for a p × q-grid M ′′. By Lemma 4.7, we have that (k, t) ≤ (p, q).

Suppose now that (k, t) = (p, q). By applying Theorem 4.4 to the iden-
tity function ϕ as an embedding of τ into τ ′′, we have that the left and right
partitions in this case are necessarily the maximal left and right partitions
of τ , because there are exactly k and t components, respectively. Moreover,
necessarily π1(i) = i and π2(i) = i for all i, that is, M ′′

(i,j) = χ−1
τ (i, j) for

each compatible pair (i, j). Hence M ′

(i,j) = M ′′

(i,j) for all compatible pairs

(i, j), which proves the claim.

The next example illustrates the construction given in Theorem 4.9.

Example 4.10. Let τ = (δ1, δ2) be a biorder with δ1 = (3, 5, 1, 6, 2, 4)
and δ2 = (2, 1, 3, 4, 6, 5). Then the maximal left and right partitions of τ
are (σ1, σ2, σ3) and (κ1, κ2), where σ1 = (3, 5), σ2 = (1, 6), σ3 = (2, 4),
and κ1 = (2, 1, 3), κ2 = (4, 6, 5). Hence sizeP (τ) = (3, 2) and the entries
M(i,j) = dom(σi ∩ κj) in the grid obtained in the proof of Theorem 4.9 are:
M(1,1) = 3, M(1,2) = 5, M(2,1) = 1, M(2,2) = 6, M(3,1) = 2, M(3,2) = 4. Hence
τ = Bi(M) for the grid

M =





3 5
1 6
2 4



 .

The previous result states that the size of the smallest grid biorder, which
contains a given biorder τ , is unique, and the grid biorder itself is ‘unique
modulo τ ’. We shall now ‘forget’ the elements from the grids that will not
be in the domain of τ by introducing a special free symbol ?. Let S be any
set excluding the free symbol ?, and let A ⊆ S. Define a general purpose
function ΛA : S → S ∪ {?} by

ΛA(s) =

{

s if s ∈ A ,

? if a /∈ A .

Given a biorder τ = (δ1, δ2) and a subset A ⊆ dom(τ), a pair ΛA(τ) =
(ΛA(δ1), ΛA(δ2)) is called a biorder with free symbols obtained from τ by A.
Similarly, for a grid M the matrix ΛA(M) is a matrix with free symbols.

Example 4.11. Let τ = ((1, 2, 3, 4), (2, 4, 1, 3)) be a biorder and choose
A = {1, 4}. Then ΛA(τ) = ((1, ?, ?, 4), (?, 4, 1, ?)). The biorder τ is a grid
biorder and the corresponding grid M together with the matrix ΛA(M) are
given below:

M =

(

1 2
3 4

)

and ΛA(M) =

(

1 ?
? 4

)

.
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Using the notation of a free symbol, if two grid biorders τ ′ and τ ′′ are
congruent modulo a biorder τ with a domain D, then ΛD(τ ′) = ΛD(τ ′′).

Let τ ⊆ τ ′ for a biorder τ ′ and let dom(τ) = D. The biorder ΛD(τ ′) with
free symbols is called a cover of τ . Furthermore, if τ ′ is a grid biorder, then
ΛD(τ ′) is said to be a matrix cover of τ . A matrix cover of τ is a minimal
matrix cover, if τ ′ has minimal size.

Theorem 4.9 can now be restated as follows.

Theorem 4.12. For each biorder there exists a unique minimal matrix
cover.

Proof. The claim is obvious by Theorem 4.9 and the above definitions.

Example 4.13. Let τ = (δ1, δ2) be a biorder with δ1 = (4, 5, 3, 1, 2, 6) and
δ2 = (2, 3, 1, 6, 4, 5). Then the maximal left and right partitions of τ are
(σ1, σ2, σ3) and (κ1, κ2, κ3, κ4), where σ1 = (4, 5), σ2 = (3, 1), σ3 = (2, 6),
and κ1 = (2, 3), κ2 = (1), κ3 = (6, 4), κ4 = (5). Now sizeP (τ) = (3, 4) and
the entries in the matrix given by Theorem 4.9 are M(1,3) = 4, M(1,4) = 5,
M(2,1) = 3, M(2,2) = 1, M(3,1) = 2, M(3,3) = 6. The rest of the entries are
filled with the free symbol ?. Hence the minimal matrix cover of τ is the
grid biorder Bi(M) for the grid

M =





? ? 4 5
3 1 ? ?
2 ? 6 ?



 .
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parenthesis words, and Schröder numbers, Discrete Math. 190 (1998),
259 – 264.

[3] A. Ehrenfeucht and G. Rozenberg, T-structures, T-functions, and texts,
Theoret. Comput. Sci. 116 (1993), 227 – 290.

[4] A. Pnueli, A. Lempel and S. Even, Transitive orientation of graphs and
identification of permutation graphs, Canad. J. Math. 23 (1971), 160 –
175.

[5] W. T. Trotter, Combinatorics and Partially Ordered Sets. Dimension

Theory, The Johns Hopkins Univ. Press, Baltimore, 1992.

9
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