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On the tree-transformation power of XSLT

Wim Janssen Alexandr Korlyukovd Jan Van den Bussche∗

Abstract

XSLT is a standard rule-based programming language for express-
ing transformations of XML data. The language is currently in tran-
sition from version 1.0 to 2.0. In order to understand the computa-
tional consequences of this transition, we restrict XSLT to its pure
tree-transformation capabilities. Under this focus, we observe that
XSLT 1.0 was not yet a computationally complete tree-transformation
language: every 1.0 program can be implemented in exponential time.
A crucial new feature of version 2.0, however, which allows node sets
over temporary trees, yields completeness. We provide a formal opera-
tional semantics for XSLT programs, and establish confluence for this
semantics.

1 Introduction

XSLT is a powerful rule-based programming language, relatively widely
used, for expressing transformations of XML data, and is developed by the
W3C (World Wide Web Consortium) [2, 8, 17]. An XSLT program is run
on an XML document as input, and produces another XML document as
output. (XSLT programs are actually called “stylesheets”, as one of their
main uses is to produce stylised renderings of the input data, but we will
continue to call them programs here.)

The language is actually in a transition period: the current standard,
version 1.0, is being replaced by version 2.0. It is important to understand
what the new features of 2.0 really add. In the present paper, we focus on
the tree-transformation capabilities of XSLT. Indeed, XML documents are
essentially ordered, node-labeled trees.
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From the perspective of tree-transformation capabilities, the most im-
portant new feature is that of “node sets over temporary trees”. We will
show that this feature turns XSLT into a computationally complete tree-
transformation language. Indeed, as we will also show, XSLT 1.0 was not

yet complete in this sense. Specifically, any 1.0 program can be implemented
within exponential time in the worst case. Some programs actually express
PSPACE-complete problems, because we will show that any linear-space
turing machine can be simulated by an XSLT 1.0 program.

To put our results in context, we note that the designers of XSLT will
most probably regard the incompleteness of their language as a feature,
rather than a defect. Indeed, in the requirements document for 2.0, turning
XSLT into a general-purpose programming language is explicitly stated as a
“non-goal” [3]. In that respect, our result on the completeness of 2.0 exposes
(albeit in a narrow sense) a failure to meet the requirements!

At this point we should be a little clearer on what we mean by “focusing
on the tree-transformation capabilities of XSLT”. As already mentioned,
XML documents are essentially trees where the nodes are labeled by ar-
bitrary strings. We make abstraction of this string content by regarding
the node labels as coming from some finite alphabet. Accordingly, we strip
XSLT of its string-manipulation functions, and restrict its arithmetic to
arbitrary polynomial-time functions on counters, i.e., integers in the range
{1, 2, . . . , n} with n the number of nodes in the input tree. It is, incidentally,
quite easy to see that XSLT 1.0 without these restrictions can express all
computable functions on strings (or integers). Indeed, rules in XSLT can be
called recursively, and we all know that arbitrary recursion over the strings
or the integers gives us completeness.

We will provide a formal operational semantics for the substantial frag-
ment of XSLT discussed in this paper. A formal semantics has not been
available, although the W3C specifications represent a fine effort in defining
it informally. Of course we have tried to make our formalisation faithful to
those specifications. Our semantics does not impose an order on operations
when there is no need to, and as a result the resulting transition relation
is non-deterministic. We establish, however, a confluence property, so that
any two terminating runs on the same input yield the same final result.
Confluence was not yet proven rigorously for XSLT, and can help in pro-
viding a formal justification for alternative processing strategies that XSLT
implementations may follow for the sake of optimisation.
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Figure 1: A data tree.

2 Data model

2.1 Data trees

Let Σ be a finite alphabet, including the special label doc. By a data tree

we simply mean a finite ordered tree, in which the nodes are labeled by
elements of Σ. Up to isomorphism, we can describe a data tree t by a string
string(t) over the alphabet Σ extended with the two symbols { and }: if the
root of t is labeled a and its sequence of top-level subtrees is t1, . . . , tk, then

string(t) = a{string(t1) . . . string(tk)}

Thus, for the data tree shown in Figure 1, the string representation equals

a{b{}c{a{}b{}}c{}}.

A data forest is a finite sequence of data trees. Forests arise naturally
in XSLT, and for uniformity reasons we need to be able to present them as
data trees. This can easily be done as follows:

Definition 1 (maketree). Let F be a data forest. Then maketree(F ) is
the data tree obtained by affixing a root node on top of F , and labeling this
root node with doc.1

2.2 Stores and values

Let T be a supply of tree variables, including the special tree variable Input.
We define:

1The root node added by maketree models what is called the “document root” in the
XPath data model [6], although we do not model it entirely faithfully, as we do not formally
distinguish “document nodes” from “element nodes”. This is only for simplicity; it is no
problem to incorporate this distinction in our formalism, and our technical results do not
depend on our simplification.
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Definition 2. A store is a finite set S of pairs of the form (x, t), where
x ∈ T and t is a data tree, such that (1) Input occurs in S; (2) no tree
variable occurs twice in S; and (3) all data trees occurring in S have disjoint
sets of nodes.

The tree assigned to Input is called the input tree; the other trees are
called the temporary trees.

Definition 3. A value over S is a finite sequence consisting of nodes from
trees in S, and counters over S. Here, a counter over S is an integer in the
range {1, 2, . . . , n}, where n is the total number of nodes in S.

Values as defined above formalise the kind of values that can be returned
by XPath expressions. XPath [1, 5] is a language that is used as a sublan-
guage in XSLT for the purpose of selecting nodes from trees. But XPath
expressions can also return numbers, which is useful as an aid in making
node selections (e.g., the i-th child of a node, or the i-th node of the tree in
preorder). We limit these numbers to counters, in order to concentrate on
pure tree transformations.

3 XPath abstraction

Since the language XPath is already well understood [27, 13, 7, 14], and
its study in itself is not our focus, we will work with an abstraction of
XPath, which we denote by X . For our purposes it will suffice to divide the
X -expressions in only two different types, which we denote by nodes and
mixed. A value is of type nodes if it consists exclusively of nodes; otherwise
it is of type mixed.

In order to define the semantics of X , we need some definitions, which
reflect those from the XPath specification. Let V be a supply of value

variables, disjoint from T .

Definition 4. An environment over S is a finite set E of pairs of the form
(x, v), where x ∈ V and v is a value over S, such that no value variable
occurs twice in E.

Definition 5. A context triple over S is a triple (z, i, k) where z is a node
from S or a counter over S, and i and k are counters over S such that i 6 k.
We call z the context item, i the context position, and k the context size.

Definition 6. A context is a triple (S,E, c) where S is a store, E is an
environment over S, and c is a context triple over S.

4



If we denote the universe of all possible contexts by Contexts, the se-
mantics of X is now given by a partial function eval on X ×Contexts , such
that whenever defined, eval(e, C) is a value over C’s store, and this value
has the same type as e.

Remark 3.1. A static type system, based on XML Schema [4, 25], can be
put on contexts to ensure definedness of expressions [7], but we omit that
as safety is not the focus of the present paper.

In general we do not assume much from X , except for the availability of
the following basic expressions, also present in real XPath:

� An expression ‘/*’, such that eval(/*, C) equals the root node of the
input tree in C’s store.

� An expression ‘child::*’, such that eval(child::*, C) is defined when-
ever C’s context item is a node n, and then equals the list of children
of n.

4 Syntax

In this section, we define the syntax of a sizeable fragment of XSLT 2.0. The
reader familiar with XSLT will notice that we have simplified and cleaned
up the language in a few places. These modifications are only for the sake
of simplicity of exposition, and our technical results do not depend on them.
We discuss our deviations from the real language further in Section 5.5.

Also, the concrete syntax of real XSLT is XML-based and rather un-
wieldy. For the sake of presentation, we therefore give a syntax of our own,
which is non-XML, but otherwise follows the same lines as the real syntax.

The grammar is shown in Figure 2. The only typing condition we need
is that in an apply-statement or in a vcopy-statement, expr must be of type
nodes. Also, no two different rules can have the same name, and the name

in a call-statement must be the name of some rule.
We will often identify a template M with its syntax tree. This tree con-

sists of all occurrences of statements in M and represents how they follow
each other and how they are nested in each other; we omit the formal defi-
nition. Observe that only cons-, foreach-, tree-, and if-statements can have
children. Note also that, since a template is a sequence of statements, the
syntax “tree” is actually a forest, i.e., a sequence of trees, but we will still
call it a tree.

5



Program → Rule*
Rule → template name match expr (mode name)? { Template }
Template → Statement*
Statement → cons label { Template }

| apply expr (mode name)?
| call name

| foreach expr { Template }

| val value variable expr

| tree tree variable { Template }

| vcopy expr

| tcopy tree variable

| if expr { Template } else { Template }

Figure 2: Our syntax. The terminal symbol expr stands for an X -
expression; label stands for an element of our alphabet Σ; value variable

and tree variable stand for elements of V and T , respectively; and name

is self-explanatory. As usual we use * to denote repetition, ? to denote
optionality, and use ( and ) for lexical grouping.

Variable definitions happen through val- and tree-statements. We will
need the notion of a statement being in the scope of some variable definition;
this is defined in the standard way as follows.

Definition 7. Let M be a template, and let S1 and S2 be two statements
occurring in M . We say that S2 is in the scope of S1 if S2 is a right sibling
of S1 in the syntax tree of M , or a descendant of such a right sibling. An
illustration is in Figure 3.

One final definition:

Definition 8. Template M ′ is called a subtemplate of template M if M ′

consists of a sequence of consecutive sibling statements occurring in M .

5 Operational semantics

Fix a program P and a data tree t. We will describe the semantics of P on
input t as a rewrite relation ⇒ among configurations.

Definition 9. A configuration consists of a template M together with a
partial function that assigns a context to some of the statements ofM (more

6



Figure 3: Depiction of a syntax tree. The nodes in the scope of the black
node are those that are striped.

precisely, the nodes of its syntax tree). The statements that have a context
are called active; we require that the descendants of an inactive node are
inactive too. Cons-statements are never active.

We use the following notation concerning configurations:

� S ✁ γ denotes that S is a statement occurring in the template of
configuration γ.

� If S ✁ γ, then γ(S) = C denotes that S is active in γ, having context
C.

� If M is a subtemplate of a configuration γ, then M itself can be taken
as a configuration by inheriting all the context assignments done by
γ. We call such a configuration a subconfiguration.

� If M is a subconfiguration of γ, and γ′ is another configuration, then
γ(M ← γ′) denotes the configuration obtained from γ by replacing M
by γ′.

The initial configuration is defined as follows.

Definition 10. 1. The initial context equals

(

{(Input, t)}, ∅, (r, 1, 1)
)

where r is the root of t.

2. The initial template equals the single statement ‘apply /*’.

3. The initial configuration consists of the initial template, whose single
statement is assigned the initial context.

7



� S = if e { Mtrue } else { Mfalse }✁ γ
γ(S) = C
eval(e, C) 6= ∅

γ
if
⇒ γ(S ←Mtrue)

� S = if e { Mtrue } else { Mfalse }✁ γ
γ(S) = C
eval(e, C) = ∅

γ
if
⇒ γ(S ←Mfalse)

Figure 4: Semantics of if-statements; ∅ denotes the empty sequence.

The goal will be to rewrite the initial configuration into a terminal tem-

plate; this is a configuration consisting exclusively of cons-statements. Ob-
serve that terminal templates can be viewed as data forests; indeed, simply
by removing the cons’s from a terminal template, we obtain the string rep-
resentation of a data forest.

For the rewrite relation⇒ we are going to define, terminal configurations
will be normal forms, i.e., cannot be rewritten further. If, for two configura-
tions γ0 and γ1, we have γ0 ⇒ · · · ⇒ γ1 and γ1 is a normal form, we denote
that by γ0 ⇒

! γ1. The relation ⇒ will be defined in such a way that if γ0 is
the initial configuration and γ0 ⇒

! γ1, then γ1 will be terminal. Moreover,
we will prove in Theorem 1 that each configuration γ0 has at most one such
normal form γ1. We thus define:

Definition 11. Given P and t, let γ0 be the initial configuration and let
γ0 ⇒

! γ1. Then the final result tree of applying P to t is defined to be
maketree(γ1).

In the above definition, we can indeed apply maketree , defined on data
forests (Definition 1), to γ1, since γ1 is terminal and we just observed that
terminal templates describe forests. Note that the final result tree is only
determined up to isomorphism.

5.1 If-statements

If-statements are the only ones that generate control flow, so we treat them

by a separate rewrite relation
if
⇒, defined by the semantic rules shown in

Figure 4.
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It is not difficult to show that
if
⇒ is terminating and locally confluent,

whence confluent, so that every configuration has a unique normal form

w.r.t.
if
⇒ [26]. This normal form no longer contains any active if-statements.

(Quite obviously, the most efficient way to get to this normal form is to work

out the if-statements top-down.) We write γ
if
⇒ ! γ′ to denote that γ′ is the

normal form of γ w.r.t.
if
⇒.

Remark 5.1. Our main rewrite relation ⇒ is not terminating in general.
The reason why we treat if-statements separately is to avoid nonsensical
rewritings such as where we execute a non-terminating statement in the
else-branch of an if-statement whose test evaluates to true.

5.2 Apply-, call-, and foreach-statements

For the semantics of apply-statements, we need the following definitions.

Definition 12 (ruletoapply). Let C be a context, let n be a node, and let
m be a name. Then ruletoapply (C,n) (respectively, ruletoapply (C,n,m))
equals the template belonging to the first rule in P (respectively, with mode
name equal to m) whose expr satisfies n ∈ eval(expr, C).

If no such rule exists, both ruletoapply (C,n) and ruletoapply (C,n,m)
default to the single-statement template ‘apply child::*’.

Definition 13 (init). Let M be a template, and let C be a context. Then
init(M,C) equals the configuration obtained from M by assigning context
C to every statement in M , except for all statements in the scope of any
variable definition, and all statements that are below a foreach-statement;
all those statements remain inactive.

We are now ready for the semantic rule for apply-statements, shown in
Figure 5. We omit the rule for an apply-statement with a mode m: the only
difference with the rule shown is that we use ruletoapply (ni, C,m).

The semantic rule for foreach-statements is very similar to that for apply-
statements, and is also shown in Figure 5.

For call-statements, we need the following definition.

Definition 14 (rulewithname). For any name, let rulewithname(name)
denote the template of the rule in P with that name.

The semantic rule for a call-statement is then again shown in Figure 5.
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� S = apply e✁ γ
γ(S) = C = (S,E, c)
eval(e, C) = (n1, . . . ,nk)
ruletoapply (ni, C) =Mi for i = 1, . . . , k
init(Mi, (S,E, (ni, i, k))) = γi for i = 1, . . . , k

γ(S ← γ1 . . . γk)
if
⇒ ! γ′

γ ⇒ γ′

� S = foreach e { M }✁ γ
γ(S) = C = (S,E, c)
eval(e, C) = (z1, . . . , zk)
init(M, (S,E, (zi, i, k))) = γi for i = 1, . . . , k

γ(S ← γ1 . . . γk)
if
⇒ ! γ′

γ ⇒ γ′

� S = call name ✁ γ
γ(S) = C
rulewithname(name) =M
init(M,C) = γ1

γ(S ← γ1)
if
⇒ ! γ′

γ ⇒ γ′

Figure 5: Semantics of apply-, call-, and foreach-statements.
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� S = val x e✁ γ
γ(S) = C
C(x : eval(e, C)) = C ′

updateset(γ, S) =M
init(M,C ′) = γ1

γ(SM ← γ1)
if
⇒ ! γ′

γ ⇒ γ′

� S = tree y { M }✁ γ
M is terminal
γ(S) = C
C(y : maketree(M)) = C ′

updateset(γ, S) =M ′

init(M ′, C ′) = γ3

γ(SM ′ ← γ3)
if
⇒ ! γ′

γ ⇒ γ′

Figure 6: Semantics of variable definitions.

5.3 Variable definitions

For a context C = (S,E, c), a value variable x, a value v, a tree variable y,
and a data tree t, we denote by

� C(x : v) the context obtained from C by updating E with the pair
(x, v); and by

� C(y : t) the context obtained from C by updating S with the pair
(y, t).

We also define:

Definition 15 (updateset). Let γ be a configuration and let S ✁ γ. Let
M be the template underlying γ. Let S1, . . . , Sk be the right siblings of S
in M , in that order. Let j be the smallest index for which Sj is active in
γ; if all the Si are inactive, put j = k + 1. Then the template S1 . . . Sj−1 is
denoted by updateset(γ, S). If j = 1 then this is the empty template.

We are now ready for the semantic rules for variable definitions, shown
in Figure 6.
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b n1 c n2

a n3 b

c

c n4

a b

ttemp
(

forest((n4,n1,n2,n3,n1),S)
)

= cons c { cons a {} cons b {} }

cons b {}

cons c { cons a {} cons b {} }

cons a {}

cons b {}

Figure 7: Illustration of Definitions 16 and 17.

5.4 Copy-statements

The following definitions are illustrated in Figure 7.

Definition 16 (forest). Let S be a store, and let (n1, . . . ,nk) be a sequence
of nodes from S. For i = 1, . . . , k, let ti be the data subtree rooted at ni.
Then forest((n1, . . . ,nk),S) equals the data forest (t1, . . . , tn).

Definition 17 (ttemp). Let F be a data forest. Then ttemp(F ) equals
the terminal template describing F .

We also need:

Definition 18 (choproot). Let t be a data tree with top-level subtrees
t1, . . . , tk, in that order. Then choproot (t) equals the data forest (t1, . . . , tk).

The semantic rules for copy-statements are now shown in Figure 8.

5.5 Discussion

The final result of applying P to t (Definition 11) may be undefined for two
very different reasons. The first, fundamental, reason is that the rewriting
may be nonterminating. The second reason is that the rewriting may abort
because the evaluation of an X -expression is undefined, or the tree variable in
a tcopy-statement is not defined in the store. This second reason can easily
be avoided by a type system on X , as already mentioned in Remark 3.1,
together with scoping rules to keep track of which variables are visible in
the XSLT program and which variables are used in the X -expressions. Such

12



� S = vcopy e✁ γ
γ(S) = C = (S,E, c)
eval(e, C) = (n1, . . . ,nk)
ttemp

(

forest((n1, . . . ,nk),S)
)

=M

γ ⇒ γ(S ←M)

� S = tcopy y ✁ γ
γ(S) = (S,E, c)
(y, t) ∈ S
ttemp(choproot (t)) =M

γ ⇒ γ(S ←M)

Figure 8: Semantics of copy-statements.

scoping rules are entirely standard, and indeed are implemented in the XSLT
processor SAXON [16].

In the same vein, we have simplified the parameter passing mechanism
of XSLT, and have omitted the feature of global variables. On the other
hand, our mechanism for choosing the rule to apply (Definition 12) is more
powerful than the one provided by XSLT, as ours is context-dependent. It
is actually easier to define that way. As already mentioned at the beginning
of Section 4, none of our technical results depend on the modifications we
have made.

Finally, we note that the XSLT processor SAXON evaluates variable
definitions lazily, whereas we simply evaluate them eagerly. Again, lazy
evaluation could have been easily incorporated in our formalism. Some
programs may terminate on some inputs lazily, while they do not terminate
eagerly, but for programs that use all the variables they define there is no
difference.

5.6 Confluence

Recall that we call a rewrite relation confluent if, whenever we can rewrite
a configuration γ1 to γ2 as well as to γ3, then there exists γ4 such that
we can further rewrite both γ2 and γ3 into γ4. Confluence guarantees that
all terminating runs from a common configuration also end in a common
configuration [26]. Since, for our rewrite relation ⇒, either all runs on some
input are nonterminating, or none is, the following theorem implies that the
same final result of a program P on an input t, if defined at all, will be

13



obtained regardless of the order in which we process active statements.

Theorem 1. Our rewrite relation ⇒ is confluent.

Proof. The proof is a very easy application of a basic theorem of Rosen
about subtree replacement systems [24]. A subtree replacement system R
is a (typically infinite) set of pairs of the form φ → ψ, where φ and ψ
are descriptions up to isomorphism of ordered, node-labeled trees, where
the node labels come from some (again typically infinite) set V . Let us
refer to such trees as V -trees. Such a system R naturally induces a rewrite
system ⇒R on V -trees: we have t ⇒R t′ if there exists a node n of t
and a pair φ → ψ in R such that the subtree t/n is isomorphic to φ, and
t′ = t(n← ψ). Here, we use the notation t/n for the subtree of t rooted at
n, and the notation t(n← ψ) for the tree obtained from t by replacing t/n
by a fresh copy of ψ. Rosen’s theorem states that if R is “unequivocal” and
“closed”, then ⇒R is confluent.

“Unequivocal” means that for each φ there is at most one ψ such that
φ→ ψ is in R. The definition of R being “closed” is a bit more complicated.
To state it, we need the notion of a residue map from φ to ψ. This is a
mapping r from the nonroot nodes of φ to sets of nonroot nodes of ψ, such
that for m ∈ r(n) the subtrees φ/n and ψ/m are isomorphic. Moreover, if
n1 and n2 are independent (no descendants of each other), then all nodes in
r(n1) must also be independent of all nodes in r(n2).

Now R being closed means that we can assign a residue map r[φ,ψ]
to every φ → ψ in R in such a way that for any φ0 → ψ0 in R, and
any node n of φ0, if there exists a pair φ0/n → ψ in R, then the pair
φ0(n← ψ)→ ψ0(r[φ0, ψ0](n)← ψ) is also in R. Denoting the latter pair by
φ1 → ψ1, we must moreover have for each node p of φ0 that is independent
of n, that r[φ1, ψ1](p) = r[φ0, ψ0](p).

To apply Rosen’s theorem, we view configurations (Definition 9) as V -
trees, where V = Statements ∪ (Statements × Contexts). Here, Statements

is the set of all possible syntactic forms of statements. So, given a configu-
ration, we take the syntax tree of the underlying template, and label every
inactive node by its corresponding statement, and every active node by its
corresponding statement and its context in the configuration. (Since tem-
plates are sequences, we actually get V -forests rather than V -trees, but that
is a minor fuss.)

Now consider the subtree replacement system R consisting of all pairs
γ → γ′ for which γ ⇒ γ′ as defined by our semantics, where γ consists
of a single statement S0, and the active statement being processed to get
γ′ is a direct child of S0. Since our semantics always substitutes siblings

14



for siblings, it is clear that ⇒R then coincides with our rewrite relation ⇒.
Since the processing of every individual statement is always deterministic
(up to isomorphism of trees), R as just defined is clearly unequivocal.

We want to show that R is closed. Thereto, we define residue maps
r[γ, γ′] as follows.

The case where γ → γ′ is the processing of an apply- or call-statement,
is depicted in Figure 9 (top). The node being processed is shown in black.
The subtemplates to the left and right are left untouched. Referring to the
notation used in Figure 5, the newly substituted subtemplate γnew is such

that γ1 . . . γk
if
⇒ ! γnew (for apply) or γ1

if
⇒ ! γnew (for call). Indeed, since we

apply
if
⇒ ! at the end of every processing step, γ itself does not contain any

active if-statements. We define r = r[γ, γ′] as follows:

� For nodes n in γleft or γright, we put r(n) := {n′}, where n′ is the
corresponding node in γ′.

� For the black node b, we put r(b) := ∅.

The main condition for closedness is clearly satisfied, because statements
can be processed independently. Note that the black node has no children,
let alone active children, which allows us to put r(b) = ∅. The condition on
p’s is also satisfied, because both r[φ0, ψ0] and r[φ1, ψ1] will set r(p) to {p

′}.
The case where γ → γ′ is the processing of a foreach-statement is de-

picted in Figure 9 (middle). This case is analogous to the previous one.
The only difference is that the black node now has descendants (M in the
figure). Because the init function (Definition 13) always leaves descendants
of a foreach node inactive, however, the nodes inM are inactive at this time,
and we can put r(n) := ∅ for all of them.

The case where γ → γ′ is the processing of a val-statement is depicted
in Figure 9 (bottom). Since all nodes in the update set are inactive by
definition (Definition 15), we can again put r(n) := ∅ for all nodes in the
update set. The case of a tree-statement is similar; now the black node
again has descendants, but again these are all inactive (they are all cons-
statements). The case where γ → γ′ is the processing of a copy-statement,
finally, is again analogous.

6 Computational completeness

As defined in Definition 11, an XSLT program P expresses a partial function
from data trees to data forests, where the output forest is represented by a

15



γ

γleft

apply/call

γright

→

γ′

γleft γnew γright

γ

γleft foreach

M

γright

→

γ′

γleft γnew γright

γ

γleft

val

updateset γright

→

γ′

γleft γnew γright

Figure 9: Illustration to the proof of Theorem 1.

tree by affixing a root node labeled doc on top (Definition 1). The output
is defined up to isomorphism only, and P does not distinguish between
isomorphic inputs. This leads us to the following definition:

Definition 19. A tree transformation is a partial function from data trees
to data trees with root labeled doc, mapping isomorphic trees to isomorphic
trees.

Using the string representation of data trees defined in Section 2.1, we
further define:

Definition 20. A tree transformation f is called computable if the string
function f̃ : string(t) 7→ string(f(t)) is computable in the classical sense.

Up to now, we have assumed from our XPath abstraction X only the
availability of the expressions ‘/*’ and ‘child::*’. For our proof of the
following theorem, we need to assume the availability of a few more very
simple expressions, also present in real XPath:

� y/*, for any tree variable y, evaluates to the root of the tree assigned
to y.
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� //* evaluates to the sequence of all nodes in the store (it does not
matter in which order).

� child::*[1] evaluates to the first child of the context item (which
should be a node).

� following-sibling::*[1] evaluates to the immediate right sibling
of the context node, or the empty sequence if the context node has no
right siblings.

� Increment, decrement, and test on counters: the constant expression
‘1’, and the expressions ‘x+1’, ‘x-1’, and ‘x=1’ for any value variable x,
which should consist of a single counter. If x has the maximal counter
value, then x+1 need not be defined, and if x has value 1, then x-1
need not be defined. The test x=1 yields any nonempty sequence for
true and the empty sequence for false.

� name()=’a’, for any a ∈ Σ, returning any nonempty sequence if the
label of the context node is a, and the empty sequence otherwise.

� () evaluates to the empty sequence.

We establish:

Theorem 2. Every computable tree transformation f can be realised by a

program.

Proof. We can naturally represent any string s over some finite alphabet as a
flat data tree over the same alphabet. We denote this flat tree by flattree(s).
Its root is labeled doc, and has k children, where k is the length of s, such
that the labels of the children spell out the string s. There are no other
nodes.

The proof now consists of three parts:

1. Program the transformation t 7→ flattree(string(t)).

2. Show that every turing machine (working on strings) can be simulated
by some program working on the flattree representation of strings.

3. Program the transformation flattree(string(t)) 7→ t.

The theorem then follows by composing these three steps, where we simu-
late a turing machine for f̃ in step 2. Note that the composition of three
programs can be written as a single program, using a temporary tree to
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template tree2string match (//*)
{

cons a { }

cons lbrace { }

apply (child::*)
cons rbrace { }

}

Figure 10: From t to flattree(string(t)).

pass the intermediate results, and using modes to keep the rules from the
different programs separate.

The programs for steps 1 and 3 are shown in Figures 10 and 11. For
simplicity, they are for an alphabet consisting of a single letter a, but it is
obvious how to generalise the programs. The real XSLT versions are given in
the Appendix. We point out that these programs are actually 1.0 programs,
so it is only for step 2 of the proof that we need XSLT 2.0.

For step 2, we can represent a configuration of a turing machine A by two
temporary trees left and right. At each step, variable right holds (as a
flat tree) the content of the tape starting at the head position and ending in
the last tape cell; variable left holds the reverse of the tape portion left of
the head position. To keep track of the current state of the machine, we use
value variables q for each state q of A, such that at each step precisely one
of these is nonempty. (This is why we need the X -expression ().) Changing
the symbol under the head to an a amounts to assigning a new content
to right by putting in cons a {}, followed by copies of the nodes in the
current content of right, where we skip the first one. Moving the head a
cell to the right amounts to assigning a new content to left by putting in a
node labeled with the current symbol, followed by copies of the nodes in the
current content of left. We also assign a new content to right in the now
obvious way; if we were at the end of the tape we add a new node labeled
blank. Moving the head a cell to the left is simulated analogously. The only
X -expressions we need here are the ones we have assumed to be available.

The simulation thus consists of repeatedly calling a big if-then-else that
tests for the transition to be performed, and performs that transition. We
may assume A is programmed in such a way that the final output is produced
starting from a designated state. In this way we can build up the final output
string in a fresh temporary tree and pass it to step 3.
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template doc match (/*)
{

apply (child::*[1])
}

template string2tree match (//*)
{

cons a
{ apply (following-sibling::*[1]) mode dochildren }

val counter (1)
call searchnextsibling

}

template dochildren match (//*) mode dochildren
{

if name()=’lbrace’
{ apply (following-sibling::*[1]) mode dochildren }

else {
if name()=’a’
{ call string2tree }

else { }

}

}

template searchnextsibling match (//*) mode search

{

if name()=’lbrace’ {
val counter (counter + 1)
apply (following-sibling::*[1]) mode search

}

else {
if name()=’a’
{ apply (following-sibling::*[1]) mode search }

else {
val counter (counter - 1)
if counter = 1

{ apply (following-sibling::*[1])
mode dochildren }

else
{ apply (following-sibling::*[1]) mode search }

}

}

}

Figure 11: From flattree(string(t)) to t.
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7 XSLT 1.0

In this section we will show that every XSLT 1.0 program can be imple-
mented in exponential time, in sharp contrast to the computational com-
pleteness result of the previous section.

A fundamental difference between XSLT 1.0 and 2.0 is that in 1.0, X -
expressions are “input-only”, defined as follows.

Definition 21. 1. Let C = (S,E, (z, i, k)) be a context. Let the input
tree in S be t. Then we call C input-only if every value appearing in
E is already a value over the store {(Input, t)}, and also (z, i, k) is like
that.

2. By Ĉ, we mean the context ({(Input, t)},E, (z, i, k)). So, Ĉ equals C
where we have removed all temporary trees.

3. Now an X -expression e is called input-only if for any input-only context
C for which eval(e, C) is defined, we have eval(e, C) = eval(e, Ĉ), and
this must be a value over C’s input tree only.

In other words, input-only expressions are oblivious to the temporary
trees in the store; they only see the input tree.

We further define:

Definition 22. An input-only X -expression e is called polynomial if for
each input-only context C, the computation of eval(e, C) can be done in
time polynomial in the size of C’s input tree.

We now define:

Definition 23. A program is called 1.0 if it only uses input-only, polynomial
X -expressions.

Essentially, 1.0 programs cannot do anything with temporary trees ex-
cept copy them using tcopy statements. We note that real XPath 1.0 ex-
pressions are indeed input-only and polynomial; actually, real XPath 1.0
is much more restricted than that, but for our purpose we do not need to
assume anything more.

In order to establish an exponential upper bound on the time-complexity
of 1.0 programs, we cannot use an explicit representation of the output tree.
Indeed, 1.0 programs can produce result trees of size doubly exponential
in the size of the input tree. For example, using subsets of input nodes,
ordered lexicographically, as depth counters, we can produce a full binary
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Figure 12: Left, a data tree, and right, a DAG representation of it.

tree of depth 2n from an input tree with n nodes. Obviously a doubly
exponentially long output could never be computed in singly exponential
time.

We therefore use a DAG representation of trees: an old and well-known
trick [22] that is also used in tree transduction [18], and that has recently
found new applications in XML [10]. Formally, a DAG representation is a
collection G of trees, where trees in G can have special leafs which are not
labeled, and from which a pointer departs to the root of another tree in
G. On condition that the resulting pointer graph is acyclic, starting from
a designated “root tree” in G we can naturally obtain a tree by unfolding
along the pointers. An illustration is shown in Figure 12.

We establish:

Theorem 3. Let P be an 1.0 program. Then the following problem is solv-

able in exponential, i.e., 2n
O(1)

time:

Input: a data tree t

Output: a DAG representation of the final result tree of applying P to t,
or a message signaling non-termination if P does not terminate on t.

Proof. We will generate a DAG representation G by applying modified ver-
sions of the semantic rules from Section 5. We initialise G with all the
subtrees of t. These trees have no pointers. Each tree that will be added
to G will be a configuration, which still has to be developed further into a
final data tree with pointers, using the same modified rules. Because we
will have to point to the newly added configurations later, we identify each
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added configuration by a pair (name , C) where name is the name of a tem-
plate rule in P and C is a context. In the description below, whenever we
say that we “add” a configuration to G, identified by some pair (name , C),
we really mean that we add it unless a configuration identified by that same
pair already exists in G.

The modifications are now the following.

1. When executing an apply-statement, we do not directly insert copies
of the templates belonging to the rules that must be applied (the γi’s
in Figure 5). Rather, we add, for i = 1, . . . , k, the configuration γ′i to

G, where γi
if
⇒ ! γ′i. We identify γ′i by the pair (name i, Ci), with name i

the name of the rule γi comes from, and Ci = (S,E, (ni, i, k)) using
the notation of Figure 5. Moreover, in place of the apply-statement
we insert a sequence of k pointer nodes pointing to (name1, C1), . . . ,
(namek, Ck), respectively.

2. When executing a call-statement call name under context C, we again
do not insert γ1 (compare Figure 5), but add the configuration γ′1 to

G, where γ1
if
⇒ ! γ′1, and identify it by the pair (name , C). We then

replace the statement by a pointer node pointing to that pair.

3. By making template rules from the bodies of all foreach-statements in
P , we may assume without loss of generality that the body of every
foreach-statement is a single call-statement. A foreach-statement is
then processed analogously to apply- and call-statements.

4. As we did with foreach-statements, we may assume that the body of
each tree-statement is a single call-statement. When executing a tree-
statement, we may assume that the call-statement has already been
turned into a pointer to some pair (name0, C0). We then assign that
pair directly to y in the new context C ′ (compare Figure 6); we no
longer apply maketree .

So, in the modified kind of store we use, we assign name–context pairs,
rather than fully specified temporary trees, to tree variables.

5. Correspondingly, when executing a statement tcopy y, we now directly
turn it into a pointer to the pair assigned to y.

6. Finally, when executing a vcopy-statement, we do not insert the whole
forest generated by (n1, . . . ,nk) in the configuration (compare Fig-
ure 8), but merely insert a sequence of k pointers to the input subtrees
rooted at n1, . . . , nk, respectively.
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We initiate the generation of G by starting with the initial configuration
as always. Processing that configuration will add the first tree to G, which
serves as the root tree of the DAG representation. When all trees in G
have been fully developed into data trees with pointer nodes, the algorithm
terminates. In case P does not terminate on t, however, that will never
happen, and we need a way to detect nontermination.

Thereto, recall that every context consists of an environment E and a
context triple c on the one hand, and a store S on the other hand. Since
all X -expressions used are input-only, and thus oblivious to the store-part
of a context (except for the input tree, which does not change), we are
in an infinite loop from the moment that there is a cycle in G’s pointer
graph where we ignore the store-part of the contexts. More precisely, this
happens when from a pointer node in a tree identified by (name , C1) we
can follow pointers and reach a pointer to a pair (name , C2) with the same
name and where C1 and C2 are equal in their (E, c)-parts. As soon as we
detect such a cycle, we terminate the algorithm and signal nontermination.
Note that thus the algorithm always terminates. Indeed, since only input-
only X -expressions are used, all contexts that appear in the computation
are input-only, and there are only a finite number of possible (E, c)-parts of
input-only configuration over a fixed input tree.

Let us analyse the complexity of this algorithm. Since all X -expressions
used are polynomial, there is a natural number K such that each value that
appears in a context is at most nK long, where n equals the number of nodes
in t. Each element of such a length-nK sequence is a node or a counter over t,
so there are at most (2n)n

K

different values. There are a constant c1 number

of different value variables in P , so there are at most ((2n)n
K

)c1 different
environments. Likewise, the number of different context triples is (2n)3,

so, ignoring the stores, there are in total at most (2n)3 · (2n)c1n
K

6 2n
K

′

different contexts, for some natural number K ′ > K. With a constant c2
number of different template names in P , we get a maximal number of

c22
nK

′

different configurations that can be added to G before the algorithm
will surely terminate.

It remains to see how long it takes to fully rewrite each of those configu-
rations into a data tree with pointers. A configuration initially consists of at
most a constant c3 number of statements. The evaluation of X -expressions,
which are polynomial, takes at most c3n

K time in total. Processing an
apply- or a foreach-statement takes at most c3n

K modifications to the con-
figuration and to G; for the other statements this takes at most c3 such
operations. Each such operation, however, involves the handling of con-
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texts, whose stores can become quite large if treated naively. Indeed, tree-
statements assign a context to a tree variable, yielding a new context which
may then again be assigned to a tree variable, and so on. To keep this
under control, we do not copy the contexts literally, but number them con-
secutively in the order they are introduced in G. A map data structure keeps
track of this numbering. The stores then consist of an at most constant c4
number of assignments of pairs (name, context number) to tree variables.

As there are at most 2n
K

′

different contexts, each number is at most nK
′

bits long. Looking up whether a given context is already in G, and if so,

finding its number, takes O(log 2n
K

′

) = O(nK
′

) time using a suitable map
data structure.

We conclude that the processing of G takes a total time of c22
nK

′

·
O(nK

′

) = 2n
O(1)

, as had to be proven.

A legitimate question is whether the complexity bound given by Theo-
rem 3 can still be improved. In this respect we can show that, even within
the limits of real XSLT 1.0, any linear-space turing machine can be simu-
lated by a 1.0 program. Note that some PSPACE-complete problems, such
as QBF-SAT [21], are solvable in linear space. This shows that the time
complexity upper bound of Theorem 3 cannot be improved without showing
that PSPACE is properly included in EXPTIME (a famous open problem).

The simulation gets as input a flat tree representing an input string, and
uses the n child nodes to simulate the n tape cells. For each letter a of the
tape alphabet, a value variable cella holds the nodes representing the tape
cells that have an a. A value variable head holds the node representing the
cell seen by the machine’s head. The machine’s state is kept by additional
value variables stateq for each state q, such that stateq is nonempty iff the
machine is in state q. Writing a letter in a cell, moving the head left or right,
or changing state, are accomplished by easy updates on the value-variables,
which can be expressed by real XPath 1.0 expressions. Choosing the right
transition is done by a big if-then-else statement. Successive transitions
are performed by recursively applying the simulating template rule until a
halting state is reached.

Remark 7.1. A final remark is that our results imply that XSLT 1.0 is not
closed under composition. Indeed, building up a tree of doubly exponen-
tial size (as we already remarked is possible in XSLT 1.0), followed by the
building up of a tree of exponential size, amounts to building up a tree of
triply exponential size. If that would be possible by a single program, then
a DAG representation of a triply exponentially large tree would be com-
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putable in singly exponential time. It is well known, however, that a DAG
representation cannot be more than singly exponentially smaller than the
tree it represents. Closure under composition is another sharp contrast be-
tween XSLT 1.0 and 2.0, as the latter is indeed closed under composition as
already noted in the proof of Theorem 2.

8 Conclusions

W3C recommendations such as the XSLT specifications are no Holy scrip-
tures. Theoretical scrutinising of W3C work, which is what we have done
here, can help in better understanding the possibilities and limitations of
various newly proposed programming languages related to the Web, even-
tually leading to better proposals.

A formalisation of the full XSLT 2.0 language, with all the dirty details
both concerning the language itself as concerning the XPath 2.0 data model,
is probably something that should be done. We believe our work gives a clear
direction how this could be done.

Note also that XSLT contains a lot of redundancies. For example,
foreach-statements are eliminable, as are call-statements, and the match
attribute of template rules. A formalisation such as ours can provide a
rigorous foundation to prove such redundancies, or to prove correct various
processing strategies or optimisation techniques XSLT implementations may
use.

A formal tree transformation model denoted by TL, in part inspired by
XSLT, but still omitting many of its features, has already been studied by
Maneth and his collaborators [9, 19]. The TL model can be compiled into
the earlier formalism of “macro tree transducers” [12, 23]. It is certainly
an interesting topic for further research to similarly translate our XSLT for-
malisation (even partially) into macro tree transducers, so that techniques
already developed for these transducers can be applied. For example, un-
der regular expression types [15] (known much earlier under the name of
“recognisable tree languages”), exact automated typechecking is possible
for compositions of macro tree transducers, using the method of “inverse
type inference” [20]. This method has various other applications, such as
deciding termination on all possible inputs [19]. Being able to apply this
method to our XSLT 1.0 formalism would improve the analysis techniques
of Dong and Bailey [11], which are not complete.
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A Real XSLT programs

A.1 Figure 10 in real XSLT

<xsl:transform

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template name="tree2string" match="//*">

<a/>

<lbrace/>

<xsl:apply-templates select="child::*"/>

<rbrace/>

</xsl:template>

</xsl:transform>

A.2 Figure 11 in real XSLT

<xsl:transform

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="/doc">

<xsl:apply-templates select="child::*[1]"/>

</xsl:template>

<xsl:template name="string2tree" match="/doc//*">

<a>

<xsl:apply-templates select="following-sibling::*[1]" mode="dochildren"/>

</a>

<xsl:call-template name="searchnextsibling">

<xsl:with-param name="counter" select="1"/>

</xsl:call-template>

</xsl:template>

<xsl:template match="//*" mode="dochildren">
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<xsl:if test="name()=’lbrace’">

<xsl:apply-templates select="following-sibling::*[1]" mode="dochildren"/>

</xsl:if>

<xsl:if test="name()=’a’">

<xsl:call-template name="string2tree"/>

</xsl:if>

</xsl:template>

<xsl:template name="searchnextsibling" match="//*" mode="search">

<xsl:param name="counter"/>

<xsl:if test="name()=’lbrace’">

<xsl:apply-templates select="following-sibling::*[1]" mode="search">

<xsl:with-param name="counter" select="$counter + 1"/>

</xsl:apply-templates>

</xsl:if>

<xsl:if test="name()=’a’">

<xsl:apply-templates select="following-sibling::*[1]" mode="search">

<xsl:with-param name="counter" select="$counter"/>

</xsl:apply-templates>

</xsl:if>

<xsl:if test="name()=’rbrace’">

<xsl:if test="$counter=2">

<xsl:apply-templates select="following-sibling::*[1]" mode="dochildren"/>

</xsl:if>

<xsl:if test="$counter>2">

<xsl:apply-templates select="following-sibling::*[1]" mode="search">

<xsl:with-param name="counter" select="$counter - 1"/>

</xsl:apply-templates>

</xsl:if>

</xsl:if>

</xsl:template>

</xsl:transform>
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