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Abstract

This paper presents a new theoretical result concerning Hoare Logic.
It is shown here that the verification conditions which support a Hoare
Logic program derivation are themselves sufficient to construct a correct
implementation of the given pre-, post- condition specification. This prop-
erty is mainly of theoretical interest, though it is possible that it may have
some practical use, for example if predicative programming methodology
is adopted. The result is shown to hold for both the original, partial cor-
rectness, Hoare logic, and also a variant for total correctness derivations.

1 Introduction

1.1 Background and Motivation

Hoare logic, and variants thereof, have been in use since Hoare’s original paper
[20]. In this formal system, a correctness proof typically depends on some
verification conditions of the form A = B. These must themselves be proved,
using some system of predicate calculus, in order to show that the Hoare logic
derivation is correct. The result here concerns the verification conditions that
support a given Hoare logic derivation. Surprisingly, these alone (together with
the final pre- and post-condition) are sufficient to allow a proof of a correct
implementation to be constructed.
Let us motivate this result by giving an example. Consider the following

program [27] to calculate the integer square root of a natural number s.

{s >0}

q,r:=s5+1,0

while r +1 # ¢ do

pi=(q+r)+2
if s < p? then ¢ :=p else r := p fi

end

{r?<s<(r+1)?%
The correctness of this program depends on four verification conditions

s>0=02<s<(s+1)2

P <s<@ZANr+1#£q =r*<s<(r+1)>

rP<s<@Ar+l#£qg<s<p?=1r2<s<p?

P <s<@Ar+1#qgA(s<p?)=p?><s<q®



Given these conditions, the assignment statements can be derived by finding
substitutions that convert one clause to another. These can be written as Hoare
triples such as

{02°<s<(s+1)?} qr:=5+1,0{r* <s<q?}
and

{rrP<s<p?lq=p{r*<s<dqg*}
These Hoare triples can then be combined using the laws of Hoare logic to
construct the correctness argument, and hence the original program itself. Thus
the verification conditions can be said to contain the essence of the correctness
argument.

The main result of this paper will be to show that there is an algorithm
to construct this program and its proof given as input the pre-, post-, and
verification conditions. Alternatively, if the given conditions do not form the
basis of a Hoare Logic derivation, the algorithm will terminate and report that
no such program exists. That is to say, it is a decision procedure.

Of course, there are other partially correct programs also based on the same
verification conditions. In particular

{s <0}

q,r:=s5+1,0

while r +1 # ¢ do

if s < p? then ¢ :=p else r := p fi

end

{r?<s<(r+1)?%
is a valid Hoare triple. That is to say, the assignment to p is redundant when
considering only partial correctness.

The algorithm described here will search for an implementation that is in
some sense minimal, using only necessary assignments. There is also a variant
of the algorithm deals that with total correctness.

A particular appeal of Hoare Logic is its simplicity. Systems with few rules
are most amenable to proof theoretic approaches, which typically require struc-
tural induction (or equivalent) with at least one case per axiom or rule. The
system studied here is the original Hoare logic [20]. Various extensions of this
have been published to cover programming language features such as procedures
[21] and also including an axiomatic semantics for the Pascal programming lan-
guage [22].

More recently, formal methods researchers have developed refinement calculi
[4, 28, 27]. These are more suitable for top-down program derivation, with more
laws so that derivations can be abbreviated, which means they are not as well
suited to the proof theoretic methods used here. In general, also, refinement
calculus researchers [5] have adopted a model-theoretic approach, focussing on
semantics, not axioms. The relationship between Hoare Logic and refinement
calculus is explained by [1], and a unifying framework for both these systems
(and others) is presented by [24].

Note that as this paper is concerned with Hoare Logic, the word “proof”
usually refers to a Hoare logic derivation of a valid Hoare triple.



1.2 Notation and Definitions

For simplicity, it is assumed here that all programming language tests used in if
and while statements are (syntactically identical to) logical predicates (though
not necessarily vice versa). Similarly, no distinction is made between assign-
ments statements and substitutions. Issues such as undefined expressions and
type correctness are not considered here. To avoid syntactic ambiguities such as
the dangling else, the keyword fi is hereafter used to terminate each if statement,
and end to terminate each while statement.

Other notations and notational conventions used in this paper are:

a,B3,v,a’ assignment statements
A B, C, A’ predicates/assertions/conditions
a(A) syntactic substitution
P, Q, R, P’ programs and sub-programs
APB,CQD Hoare triples (cf. the conventional {A} P {B} etc.)
V, V', W sets of conditions
Note that since sets of conditions are not typically nested it is convenient to
omit the usual braces. For example if V.= A B and V' = V,C then V' = A B,C.
Finally note that, although unconventional, omitting the braces from Hoare
triples simplifies and abbreviates the later presentation.

In this paper it is assumed that substitutions can be multiple (also known
as parallel assignments) [15]. For example z,y := y,z is a classic multiple
assignment that swaps the values of variables x and y.

The classical form of Hoare logic, using these notational conventions, is given
in Figure 1.

Fa(A) aA assignment introduction

A=B,BPCFHAPC consequence: pre-condition

APB,B=CFAPC consequence: post-condition

APB,BQCHFAPQC sequence

ANB P C, AA-B QCHF Aif BthenPelse QfiC
selection

AANB P A+ A while Bdo P end AN B

iteration

Figure 1: Classical Hoare Logic

1.3 Basic Properties of Classical Hoare Logic

Some basic properties of classical Hoare logic are now presented.

Lemma 1 For any programs P, Q, R, conditions A, B, the Hoare triple A
P;(Q;R) B is valid if and only if A (P;Q);R B is.

Proof



A P;(Q;R) B is valid iff

A P C and C Q;R B for some condition C, iff

AP Cand CQDandD R B for some conditions C, D, iff

A P;Q D and D R B for some condition D, iff

A (P:Q;R B
O
Note that this property is very familiar from the study of program semantics,
for example in the theory of predicate transformers, where this result would
follow directly from the associativity of function composition. Working directly
with program semantics is a model-theoretic approach, however, in contrast
to the proof-theoretic approach adopted here. Where a property such as the
one above can be expressed both model- and proof-theoretically, it is typically
the case that the property can be established more easily using model-theoretic
techniques. The main theorem presented here, however, concerns verification
conditions, which have no equivalent in standard program semantics, so the
proof-theoretic approach is more natural.

An important property of Hoare Logic is the substitution principle. This is
also well-known in programming logics and semantics.

Lemma 2 (Substitutability) Suppose programs P and Q are such that for
any conditions A and B, A P B is a valid Hoare triple whenever if A Q B is.
Then program P can validly replace program Q in any Hoare proof.

Proof The Hoare triple A Q B must appear in the Hoare proof at some point.
The Hoare triple A P B must also be valid by the hypothesis. Thereafter,
any proof steps that involve the use of Q as a sub-program (via the use of the
sequence, conditional or iteration law) can be replaced by the equivalent proof
step, but with P replacing Q. This follows from the fact that the sequence,
conditional, and iteration laws constrain only the conditions occurring as their
hypotheses, not the programs. [

The model-theoretic equivalent of this substitution principle is classically
called monotonicity of program refinement. For example, combining lemmas
1 and 2, the programs (P;Q);R and P;(Q;R) can freely replace each other in
any Hoare logic derivation. Given this result, and the conventions given above,
it is therefore safe to omit semi-colons altogether. For example, P Q is an
abbreviation for the sequence P;Q. Similarly, P Q R abbreviates the program
(P:Q);R which as noted above is essentially equivalent to P;(Q;R).

Definition: a (Hoare) proof is based on a set of predicates V if and only if every
instance of the rules of consequence (e.g. A = B, BP C+ A P C) in the proof
uses a predicate (here A = B) that is a member of V.

Definition: if P can replace Q and Q can replace P in any proof, and both
are based on the same verification conditions, then P and Q are said to be
proof-equivalent.

Lemma 3 if C then P else Q fi R is proof equivalent to if C then P R else Q R
fi

Proof Any Hoare proof of the former must have steps such as



DRB
ANC P D
ANC QD
A if Cthen Pelse QfiD
if Cthen P else Q fi R B
The final two inferences can equivalently be replaced by
ANCPRD
ANCQRD
A if Cthen P Relse QR fi D
The converse implication is shown similarly. [

1.4 Standard Proof-Theoretic Definitions

Some standard proof-theoretic phrases are now defined.
Definition: a sub-formula of a predicate A is any (well-formed) formula obtained
by any number of applications of the following transformations: 1) replace —=A
by A; 2) replace A op B by A, for any binary boolean operator op (V, A, =, and
so on); or 3) replace A op B by B, for any binary boolean operator op as above.
Thus the four sub-formulas of CA=D are CAD, C, =D, and D, assuming
both C and D are atomic formulas. Note that being a sub-formula is a transitive
relation.
Definition: the logical matriz of a predicate A is the syntax tree showing the
structure of its Boolean operators, but ignoring the atomic formulas at the
leaves. For example both B A (CV D) and z =y A (2 > 2V Vtez(t) > 0) have
the same logical matrix, - A (- V _).
Definition: suppose A = «(B) for some substitution «. Then A is said to be
an instance or a specialisation of B. B is a generalisation of or more general
than A. Note that being an instance is a transitive relation. Also note that the
sub-formula and instance relations commute (an instance of a sub-formula is a
sub-formula of an instance, and vice versa).
Definition: also, a renaming is an invertible substitution, or one that maps
variables to variables.

2 Equalisation

Our basic strategy is to search for programs which use sub-formulas of the given
verification conditions as the conditional or loop tests. There are, of course, only
finitely many sub-formulas of a given formula. There are, however, infinitely
many instances. To limit the search space, we need a way to limit the amount
of substitution required.

Let us assume therefore that predicates are ordered by i) the substitution
ordering (A < «(A)) or else ii) lexicographically in the case of predicates which
differ only by a renaming. Note that this ordering is well-founded, so that no
decreasing chain of predicates can exist.



2.1 Equalising Substitutions

Definition: mgci(V) gives the most general common instance of a set of condi-
tions V, where such an instance exists. Thus A < mgci(A,B), B < mgci(A,B),
and mgci(A,B) < C for any C such that A < C and B < C.

Definition: mges(A, B) gives the most general equalising substitutions to apply
to a pair of conditions A, B which result in mgci(A, B) where this exists. For
example if mges(A, B) = (a, §) then «(A) = G(B) = mgci(A, B).

These definitions are closely related to the notion of unifiers and unification
in logic programming. The main difference is that unification applies a single
substitution to a set of conditions (or more typically terms) to give a single
common instance. A single substitution is a natural notion in the context of
declarative programming languages, which are referentially transparent. Im-
perative languages are not referentially transparent, so it is not surprising that
multiple equalising substitutions are required.

The relationship between these notions is as follows. To find the most general
common instance of a set of conditions V, first rename the variables in each
condition that is a member of V so that each has a disjoint set of free variables,
then unify. That is to say, suppose rename(V) is a function that systematically
applies renaming substitutions to elements of V, and returns the resulting, name-
clash-free, conditions. Then mgci(V) = mgu(rename(V)). We can therefore
deduce that a most general common instance exists if and only if some common
instance does, and that there is an algorithm (based on Robinsons unification
algorithm [29]) to find the most general common instance together with the
associated substitutions.

Definition: cms(V) is the set of conditions arising from V through a finite
number of applications of the mgci function and the sub-formula relation, i.e.
the closure of mgci and sub-formula. That is to say, cms(V) is the least condition
set W such that a) V.C W, b) if W C W, then mgci(W') € W, and ¢) if A €
W and B is a sub-formula of A, then B € W.

Lemma 4 (cms) Given a finite condition set V, cms(V) is also finite. Alterna-
tively, cms is finitary. Remark: Individually, mgci and the sub-formula relation
are both finitary. It is not immediately obvious that their union is also.

Proof Tt is well known that a closure such as cms can be constructed by iterating
an appropriate set of generating operations. In this case, appropriate generators
are M and S where M(V) = {mgci(W) | {} # W C V} and S(V) = {A | A sub-
formula B for some B € V}. Both M and S are idempotent (so that, for example,
M(M(V)) = M(V)) thanks to related properties of sub-formula and mgci so we
need only consider alternating sequences of the M and S generators. Finally note
that, taking a sub-formula reduces the boolean matrix of the original formula,
whereas any instance, and in particular any mgci, has the same matrix, and thus
the same number of boolean operators, as the original formula(s). The closure
cms(V) is therefore constructed by alternating sequences of M and S generators
at most #V long, where #V is the maximum boolean operator count of any
formula in V. Since mgci and sub-formula are both finitary, and the union of a
finite number of finite sets is finite, this proves cms is finitary. [J



2.2 Equalising Programs

We now come to the important idea of an equalising program, or EP for short.
This, simplistically, is one in which the only assignments are ones which equalise
their post-condition with that of some other assignment. A precise definition
follows below.

It is convenient at this point to introduce the idea of assertions and asserted
programs.

Fa(A) aA assignment introduction

A=B,BPCFABPC consequence: pre-condition

APB,B=CFAPBC consequence: post-condition

APB,BQCHFAPBQC sequence

ANB P C, AA-B QCF A if Bthen AABP Celse AA-B Q C fi C
selection

AAB P A+ A while Bdo AAB P A end AA- B

iteration
Figure 2: Asserted Hoare Logic

Definition: A fully asserted program is one which is generated by the following
axiom and inference rules, which are the same as in traditional Hoare logic, but
incorporating an extra assertion or assertions in the consequent of each law.

Figure 2 (overleaf) presents asserted Hoare logic as a formal inference system.
Definition: an asserted program (a.k.a. a partially asserted program) is one
which can be obtained from a fully asserted program by deleting some of the
assertions.

In what follows, asserted programs will be used to simplify the presentation.
Observe that a fully asserted program is in some sense equivalent to a Hoare
proof. In particular, every Hoare proof can be converted to a fully asserted
program and vice versa [31] (chapter 15).

Definition: an equalising proof is a Hoare proof, of a triple A P B say and
based on verification conditions V, in which every assignment introduction is of
the form C o D where either C € ecms(V,B) or C = C;ACq, where C;ACy €
cms(V,B) and similarly for D.

Definition: an equalising triple is one which has an equalising proof, and simi-
larly an equalising program.

Here is a contrived example to show why the post-condition B is required as
an argument to cms in the definition above:

C(f(x)) if D(g(y)) then y := g(y) else z := f(x) end C(f(z)) A D(y)

with verification condition C(z) A D(g(y)) = C(f(x)) / D(y)
The condition D(g(y)) arises through equalising the post-condition C(f(z)) A
D(y) with the antecedent of the verification condition C(z) A D(g(y)) and taking
the final sub-formula.
Lemma 4 (corollary) It follows from lemmas 4 and this definition that it
is decidable whether an equalising program P exists, based on a given set of
verification conditions V, satisfying given pre- and post-conditions A and B.



A simple algorithm would be to search through the space of all proofs up to
certain length. This is sufficient as cms(V,B) is finite by lemma 4, and by
lemma 2 (substitutability) at most one sub-program satisfying each pair of pre-
and post-conditions C, D € cms(V,B) is required. Only proofs of length up to N2
need be considered, therefore, where N = #cms(V,B). More efficient algorithms
than this can no doubt be devised, but this paper is concerend with existence,
not efficiency.

A useful property of equalising programs is given in the following lemma.
Lemma 5 If A P B and B Q C are both equalising triples, so too is A P Q C.
Proof Combining the proofs of the two given equalising triples with a final
inference using the law of sequence gives a proof of A P Q C. In this proof,
every conclusion has pre- and post-conditions occurring in, or constructed from,
cms(V,B) or cms(V,C). Moreover B, which is the initial pre-condition of B Q
C, must occur in or be constructed from cms(V,C). By closure therefore, the
pre- and post-conditions of every conclusion occur in or are constructed from
cms(V,C) as required. O
Definition: an «-equalising proof is the proof corresponding the asserted pro-
gram a(A) o A P B for some assignment statement . That is to say, it consists
of an equalising proof, of A P B say, followed by two further steps of the form

a(A) a A assignment axiom
a(A) a P C  sequence
Similarly for a-equalising triples and a-equalising programs.

The decision procedure for the existence of an equalising program can easily
be extended to a-equalising programs by checking which, if any, conditions in
cms(V,B) are generalisations of the given pre-condition A, and determining if
it is possible to establish post-condition B from any of these.

In the following a-equalising programs provide a “normal form” for Hoare
proofs.

3 The Main Theorem

3.1 Inductive Lemmas

This leads us to our main result: if A P B is a valid Hoare triple based on veri-
fication conditions V, then for o and P’, A « P’ B is a a-equalising Hoare triple
based on V. The proof of this is by induction, and to simplify the presentation,
the main steps are given in the following lemmas, which demonstrate the ability
to transform an equalising program following by an assignment statement into
an assignment following by an equalising program, i.e. an a-equalising program.
The induction is on the depth and size of the program P. Note that the more
elegant technique of structural induction cannot be applied here because of the
transformations used to prove lemma 8 below.

Definition: the depth of a program P is the greatest level of nesting of any
statement in P. To be precise



depth(a) = 0 assignment
depth(P Q) = max(depth(P), depth(Q))  sequence
depth(while A do P end ) = depth(P) + 1 iteration

(

depth(if A then P else Q fi) = max(depth(P), depth(Q)) + 1

conditional
Definition: The size of a program is found by counting the number of leaves in
its syntax tree, i.e. the number of assignment statements it contains.
Lemma 6 (base case) Suppose A P « B is a valid Hoare triple based on
verification conditions V where program P has depth 0, then there exist o/, P’
such that A o/ P’ B is a valid a-equalising triple also based on V.
Proof Note that a program of depth 0 can have no conditionals nor loops. The
derivation of P « therefore can involve only the assignment axiom and the laws
of sequence and consequence. Any sequence of assignments without intervening
consequence can be merged into a single multiple assignment [23] so P « can
equivalently be presented in a form whereby every pre-condition, except possibly
the first, is the antecedent of a verification condition, and similarly every post-
condition, except possibly the last, is the consequent of a verification condition.
This, by definition, is an a-equalising proof. [

The following two lemmas both include as one of their assumptions the in-
duction hypothesis used in the proof of the main theorem below. This hypothesis
states that given any program @ such that depth(Q) < depth(P), or with the
same depth as P but smaller in size, and conditions A, B such that A Q B is a
valid Hoare triple based on verification conditions V, then there exist 3, R such
that A 8 R B is a valid a-equalising triple also based on V, and with the same
depth as Q.

Lemma 7 (conditional) Suppose A P « B is a valid Hoare triple based on
verification conditions V where P is a conditional, and the induction hypothesis
holds. Then there exist o/, P’ where P’ has the same depth as P such that A
o' P’ B is a valid a-equalising triple also based on V.

Proof By lemma 3, the trailing assignment « can be moved into the two legs of
the conditional statement. This does not affect their depth. The induction hy-
pothesis therefore applies to both the then- and the else-parts of the conditional,
which therefore have equivalent a-equalising forms. This leads to a valid Hoare
triple of the form A if B then AAB a7 A1AB7 Py C else AA—B as AsA—Bs Ps
C fi C, based on V, where A;AB; P; C and AsABy P C are equalising. Now
let A’/AB’ = mgci(A1AB1,A2AB2), (o),04) = mges(A1AB1,A2ABs), and 8 be
such that AAB = 3(A’AB’). Now A § A’ if B’ then A’AB’ o} A;AB; Py C else
A'A-B’ afy A3A—-By P2 C fi C is an a-equalising triple as required. O
Lemma 8 (loop) Suppose A P « B is a valid Hoare triple based on verification
conditions V where P is a loop, and the induction hypothesis holds. Then there
exist o/, P’ where P’ has the same depth as P such that A o’ P’ B is a valid
a-equalising triple also based on V.

Proof The given Hoare triple can be assumed to of the form A while B do AAB 3
Ai;AB; P A end AA—-B a AA—Ba, say. (There is no loss of generality here since
3 could be the empty assignment, skip.) Now let A’AB’ = mgci(A1AB1,A2ABs),
(8',0') = mges(A1AB1,A2AB3), and 1 be such that AAB = ~1(A’AB’). Now



A ~v; A’ while B' do A’AB’ 3 A{AB; P A ~; A’ end A/A-B’ o AyA—By is
a valid Hoare triple. By the induction hypothesis, the valid triple A;AB; P
A v A’ has an a-equalising form, AjAB; § Py A’ say. Substituting this in
the previous triple gives A 71 A’ while B’ do A’AB’ 8/ A1AB; 6 P; A’ end
A'A-B’ o A;A—-Bs. The sequence of assignments 3’ § can be merged to a
single assignment (1 say (dropping the intermediate assertion A1AB;). Finally,
therefore, we have the valid triple A 73 A’ while B’ do A’AB’ 81 P; A’ end
A'A-B’ o’ A3A—B,, which is in the same form as the original program. The
same sequence of steps can therefore be applied repeatedly to give a sequence
of such programs. Note that in this sequence of programs, the pre-condition of
the loop body is in each case a generalisation of the previous pre- condition.
The sequence of these pre-conditions, AAB, A’AB’, A”’AB’’, and so on cannot
continue forever strictly decreasing, by well-foundedness of the generalisation
relation. This means that at some point the pre-condition will be the most
common instance of the post-conditions, making the loop body equalising, and
the whole program a-equalising as required (the leading assignments 1, v2,73,
... having been merged into a single assignment). O

3.2 Proof of the Main Theorem

Theorem 1 Suppose A P B is a valid Hoare triple based on verification condi-
tions V. Then for some o and P/, A « P’ B is a valid a-equalising triple based
on V.

Proof By induction the depth and size of P.

Base case (depth(P) = 0): the theorem follows from lemma 6.

Induction step (depth(P) > 0): the induction hypothesis is that the theorem
holds for any program Q whose depth is strictly less than that of P, or any
program @ whose depth is the same as that of P but whose size is small than
that of P. To prove the induction step, consider the structure of P.

Case 1 (P is a conditional)

The theorem follows from the induction hypothesis and lemma 7.

Case 2 (P is a loop)

The theorem follows from the induction hypothesis and lemma 8.

Case 3 (P is a sequential composition)

By the induction hypothesis, the theorem holds for both sub-programs of P,
which gives rise to the triple A a; P1 as P2 B, where each a; P; is a-equalising.
This sequence can be re-associated using lemma 1 to give A a7 (P ag) P2 B
where P; is equalising. Without loss of generality P; is either an assignment,
a conditional, or a loop. By lemmas 6, 7 and 8, and since P; «ag) is smaller in
size and no deeper then the original program, there is an a-equalising as Ps,
say, with the same pre- and post-condition that can be substituted in to give
the valid triple A a1 as P3 P2 B. The leading assignments here, o1 a3, can be
merged to give the required a-equalising triple. [J

10



3.3 Total Correctness Logic and the Main Theorem

Next we briefly show the same result holds for a total correctness Hoare Logic.
Consider a Hoare logic for total correctness, with an iteration law that ensures
termination and not just preservation of the invariant. For example, the classic
iteration law

AAB P A+ A while Bdo P end AA- B
could be replaced by an extended law

AANBAX=FE P ANO<SE<X I A while B do P end AA—-B

where X is a logical constant that does not occur free in A, nor in B, and E
is an integer-valued expression. (There are of course many possible loop laws.
This particularly simple formulation, which is inspired by that of Morgan [27],
is amenable to proof-theoretic techniques. Of course, any well-founded relation
could occur here, not just natural number ordering.)

A logical constant is a special kind of variable. As with other kinds, it is
assumed an infinite number are available for use traditionally these are rep-
resented by giving them upper case names, or zero-subscripting. It is allowed
to occur in logical conditions, but not in the program text. This fact has im-
portant consequences. Firstly, X can never be the target of an assignment, so
it cannot be replaced via the assignment axiom. Secondly, X can never occur
in the condition of a loop or conditional statement, so it cannot disappear as a
result of applying the laws of iteration or selection.

Lemma 9 In a total correctness proof, any intermediate Hoare triples ending
with the loop post- condition AAO<SE<X, and proved using the assignment
axiom, and laws of sequence, selection, and iteration, must have as its pre-
condition a(A) N0<a(E)<X.

Proof By induction on the (size of the) proof. O

A similar result holds for the loop pre-condition.

Lemma 10 In a total correctness proof, any intermediate Hoare triples ending
in the loop pre- condition AABAX=F, and proved using assignment axiom,
and laws of sequence, selection, and iteration, must have as its post-condition
B7HA)AX=B"1(E), for some assignment 3. (Note that the use of the inverse
substitution 3~! means that the post-condition here is a generalisation of the
pre-condition.)

Proof By induction on the (size of the) proof. O

Combining these two results, we see that conditions a(A)A0<a(E)<X and
B~HA)AX=B"1(E) must occur as the consequence and antecedent in some
verification condition, before the hypothesis AABAX=F P AAO<E<X of the
new loop law can be derived.

Matching «(E) and 87 1(E) gives a finite number of possibilities for expres-
sion E, up to renaming. Cycling through all possible variables (the ones that
occur in the closure cms(V,B)) gives a finite number of possibilities for expres-
sion E. Combining this with the techniques used for the partial correctness
theorem gives an equivalent decision procedure for the total correctness variant
of Hoare logic presented here — since the new iteration law contains the origi-
nal one as a sub-formula, the technique of equalising still applies, although the

11



actual definitions and lemmas used must change to match the form of the new
iteration law.

4 Discussion

4.1 Verification Conditions for Total Correctness

In this section, the integer square root case study introduce earlier is considered
again, with a view to indicating how verification conditions can be discovered
without first having to write the code. Also, the conditions given here are for
total correctness.

Following Gries’ strategy for developing a loop [16]: “first develop the guard
B so that AAB = C” it is clear to see how the invariant and guard can be
determined from the following theorem:

P <s<@A-(r+1#£q¢ =1r><s<(r+1)>
The following condition indicates how this invariant can be established:
s>0=02<s<(s+1)2
Now consider a possible variant: ¢ —r. One way to decrease this quantity is by
finding a value between ¢ and r. The feasibility of doing so is confirmed by the
following theorem:
P <s<@PAr+l#£qg=r<(qg+r)+2<gq
Finally note that a value between r and q can be used to re-establish the invari-
ant and decrease the variant:
P <s<@PAr<p<gAs<p’?=>0<p—r<gq-—r
P <s<@PAr<p<qA-(s<p’)=0<qg-p<q-—r
For book-keeping reasons these last three conditions must in fact be recorded
more verbosely. The first one, for example, should not be
P <s<@PAr+l#4qg=>r<(qg+r)+2<gq
but rather
rP<s<@Ar+1l1#£gAX=q—1r=
rP<s<@PAr<(g+r)+2<qgAX=q—r
The second one should not be
rP<s<@PAr<p<gAs<p’=>0<p—r<q—r
but rather
rP<s<@PAr<p<qgANX=qg—rAs<p®=
r?<s<p’A0<p-r<X
and similarly for the third condition.

Adding the extra constraints such as X = ¢ — r means these conditions
syntactically match the inference laws of Hoare logic, even though the extra
clauses add no logical content.

This case study is based on Chapter 8 of Morgan’s textbook on refinement
[27] (see also the second edition, 1994). The development presented in that
book (figure 19.2) has 11 refinement steps which use 7 different refinement laws
and depend on 5 verification conditions, which are essentially the same as the
ones given here. Morgan does not explicitly list these conditions, but notes
that the initial development contained two errors, one a transcription error, the
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other a logical error. He then makes the observation that “mathematical rigour
cannot eliminate mistakes entirely: nevertheless it does reduce their likelihood
dramatically”.

Gries [16] gives as one of his main principles: “a program and its proof should
be developed hand-in-hand, with the proof usually leading the way”. Gries also
has other useful heuristics, such as “four ways of weakening a predicate”, by
“deleting a conjunct, replacing a constant by a variable, enlarging the range of a
variable, or by adding a disjunct”. Other heuristics however are oriented toward
programs, not predicates. (For example, “develop one leg of a conditional by
finding program P such that A = wp(P,B)”.)

For a development methodology focussed exclusively on predicates, see work
of Hehner [17, 18, 19].

4.2 Formal Verification Tools

Early criticism of formal program verification focussed on the likelihood of hu-
man errors, and the fallibility of social processes such as peer review [12], [13].
It is clear that to increase confidence in programs (cf. algorithms), high quality
automated tool support is required for processes such as theorem proving, proof
checking, and code generation.

Broadly speaking, three kinds of formal verification tools have been pro-
posed.

Firstly there are mathematically-based toolkits, such as GYPSY [2], Atelier
B [6] and Perfect Developer [11]. Programs are written using mathematically
defined programming notations and formal specifications or annotations. Con-
ditions are generated from this input, which are must then be verified using
interactive or automated theorem proving systems. Similar verification condi-
tion generation (VCG) systems have also been implemented that use conven-
tional programming languages but with formal annotations, for example the
Java Modelling Language JML [26], and Spec# [30]

A second approach is represented by the refinement calculator [7]: a fine-
grained interactive system for program refinement. Some of these refinement
steps will generate verification conditions that must be discharged by a theorem
prover.

Finally, the logic compiler: Hehners vision is of “compilers, with built-in
theorem provers” which will be able to “point out the location of a logic error
the same way as they do now with a syntax error” [18]. To date this vision has
not been realised.

It is worthwhile comparing the VCG approach with the logic compiler ap-
proach. The latter has the advantage of being proof-driven, whereby developers
verify theorems before the code is developed. Indeed, since code is generated
from the theorems, development is necessarily verification first. With the VCG
approach, errors may discovered days or weeks after they are introduced, when
it is finally realised that some verification condition cannot be proved because
it is in fact false. A proof-driven approach would discover this fact sooner. A

13



collection of theorems is built up, then fed to an executable code generator, for
example a more efficient version of the algorithm described in this paper.

The problem that can now arise is that the supplied theorems are insufficient,
preventing the derivation and output of a (correct-by-construction) program.
It is crucial that in this case the “logic compiler” does not simply fail, but
provides helpful diagnostics so that the developer can decide what additional
theorems must be proved and supplied as additional input to the compiler. More
useful than this, in fact, would be for the compiler itself to postulate these
additional theorems and pass them directly to the automated proof system:
rather than requiring a complete set of verification conditions, just a partial set
should suffice, or conditions that are logically equivalent but not necessarily in
the exact syntactic form. As a trivial example of this, it would be helpful if
the logic compiler would accept a logically equivalent formulation, for example
BAA = C instead of AAB = C, but also including more sophisticated logical
transformations, as well as addition of the “book-keeping” constraints noted
above.

A further point is that there is typically a certain amount of redundancy
in the verification conditions required by Hoare logic. In the case study above,
for example, each clause occurs on average about twice, ignoring renaming.
This redundancy could be avoided by introducing local definitions, or by careful
insertion of additional clauses by the logic compiler using appropriate heuristics.

Clearly, these extra features of the logic compiler would evolve through prac-
tice and experience of actual use of such a tool.

4.3 Related and Future Work

Hoare logic has been extensively studied since it was first published [20]. Com-
pleteness [9] and incompleteness [8] results have been published, as has an ex-
tensive survey [3].

An earlier version of the main result given here was presented at a workshop
[14]. This was based on a specially constructed program logic, not classical
Hoare Logic.

The work here differs from previous approaches to predicative programming
[17, 19, 24] in that the latter give a first order or predicative semantics to
programs, with < as program refinement. Although predicative semantics is
quite natural for finite programs, but special care is needed with iteration and
recursion to give satisfactory results. The approach presented here is neutral
with respect to semantics, since it is proof-theoretic. As with any axiomatic
approach, no model for iteration is provided, only an inference law.

Constructive, or intuitionist, logic provides an alternative way to generat-
ing programs from proofs [25] which has been implemented in systems such as
NUPRL [10] among others. The approach presented here is neutral with respect
to the underlying logic, which can be either classical or constructive. A further
difference is that here programs are generated from the verification conditions,
not their proofs.
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The result given here has been shown to apply to two versions of Hoare logic.
It would be interesting to know whether it holds for larger, more realistic systems
such as the Hoare Logic for Pascal [22] or the Refinement Calculus [27]. The
preceding section described automated support for predicative programming
based on this result, which has yet to be implemented.
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