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SYMBOLIC MODELS FOR CONTROL SYSTEMS

PAULO TABUADA

Abstract. In this paper we provide a bridge between the infinite state models used in control theory to
describe the evolution of continuous physical processes and the finite state models used in computer science

to describe software. We identify classes of control systems for which it is possible to construct equivalent

(bisimilar) finite state models. These constructions are based on finite, but otherwise arbitrary, partitions of
the set of inputs or outputs of a control system.

1. Introduction

1.1. Motivation. The formal specification, design and analysis of software systems is usually based on the
use of finite state models such as transition systems, Buchi automata, etc. This fact creates a real challenge
for embedded systems in which continuous components described by infinite state models, such as differential
equations, interact with software modules. Although much is known about these hybrid systems, as can be
seen from the proceedings of the latest workshops on the subject [HSC02, HSC03, HSC04, HSC05, HSC06],
systematic design methodologies are still lacking. In this paper we propose an important step towards a
”correct by design” synthesis theory for embedded systems by replacing infinite state models of physical
systems with equivalent finite state models. The possibility of expressing the dynamics of control systems
through finite state models offers great promises for new design techniques addressing the requirements of
both continuous and discrete components. Not only these finite state models offer a common framework
bridging control theory and computer science but they also enable the use of algorithmic synthesis techniques
that are traditionally not considered in control theory.

1.2. Contributions. The existence of finite state models is addressed through two different perspectives: an
input and an output perspective. The input perspective is based on the specification of a desired input set
as a finite partition of the existing infinite input set. Each element of this partition can be identified with a
symbol and the objective is to construct an equivalent control system having these symbols as inputs. This
symbolic view of inputs is natural since embedded software/hardware can only influence the dynamics of the
physical world through a finite set of inputs. We show that these control systems with symbolic inputs always
exist and that under suitable assumptions (linearity and controllability for example) they have a finite number
of states. The output perspective is identical to the input perspective except that the starting point is a finite
partition of the infinite output set of a control system. This is also a natural starting point since embedded
software/hardware can only react to the physical environment through a finite description of its state. Starting
from such symbolic description of the output of a control system the objective is to construct the simplest
equivalent control system generating the same symbolic outputs. Under the relevant technical assumptions
(linearity and controllability for example) we show existence and finiteness of these models. These finiteness
results encompass existing results by the author and coworkers [TP03b, TP03a, TP06] and also provide new
examples of systems which were previously not known to admit symbolic models.

1.3. Related work. The idea of using symbolic models for the control of continuous systems is not new and
motivated much research in the area of hybrid systems [NK93, ASL93, Lun94, SKHP97, CW98, RO98, VSS+01,
MRO02, DMN02, KA03, TMD04]. Even though the use of symbolic models was advocated by these and many
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2 PAULO TABUADA

other researchers, the applicability of the proposed methods has always remained an open problem due to the
lack of results ensuring existence of symbolic models for control systems. Initial attempts to the construction
of symbolic models for control systems were based on integrals of motion [SKA01, Bro99]. Integrals or
constants of motion are a quite natural way of defining state space partitions compatible with the continuous
dynamics. The results in this paper, however, apply to classes of systems for which constants of motion
do not necessarily exist and can therefore be seen as complementary to existing work, especially to [Bro99].
Another line of inquiry also related to the work presented in this paper is the study of quantized control
systems [BMP02, PLPB02]. Symbolic models based on input quantization represent a different approach to
symbolic control. Quantized input models are obtained by selecting a countable subset of the input space
contrasting with finite bisimulations which are obtained by selecting a finite partition of the state or input and
state space. Even though this observation seems to suggest a certain duality between these approaches, further
research is still required to attest and formalize such duality. A different but related line of research consists on
the study of bisimulations of purely continuous [vdS04, Pap03, TP04] or hybrid systems [PvdSdB04, HTP05].
The work described in these references represents another approach to complexity reduction through the use
of bisimulation based abstractions.

In the case of dynamical systems the situation is much better understood. Starting with Alur and Dill’s work
on timed automata [AD94], a fair amount of work was done to push the boundaries of the class of systems
admitting finite bisimulations. This work culminated with the papers [PV94, ACH+95, HKPV98, HM00]
introducing the decidable classes of multi-rate and rectangular hybrid automata. On the purely continuous
side, we mention the work of Lafferriere and co-workers [LPS00] which used o-minimality to ensure existence of
symbolic models. See also [BMRT04] for a simpler and more insightful proof of the same results. Unfortunately
the techniques based on o-minimality do not extend to control systems since the space of inputs is usually
infinite dimensional (for example the space of piece-wise constant functions) and thus fails to be captured by
o-minimal structures.

1.4. Organization. The results presented in this paper were developed in the setting of category the-
ory [Lan71] and in a framework very similar to the one used in [WN94] to compare different models for
concurrency. However, for the sake of readability, we limited the use of category theory to the notion of
morphism, essential for the results to be presented, and to the notions of completion. In particular, all the
proofs are explicit and involve no category theoretic concepts. The readers averse to abstract constructions
are invited to use the concrete results presented in Corollaries 4.9 and 5.6 as motivation for the abstract
perspective taken in this paper

The paper is organized as follows. The class of control systems considered in this paper and the corresponding
morphisms are introduced in Section 2 while the notion of bisimulation is discussed in Section 3. Input
induced bisimulations are the topic of Section 4 where their existence is proved. Finite bisimulations induced
by inputs are also discussed and conditions for their existence established. Section 5 focuses on output
induced bisimulations. Existence conditions are provided in this section for infinite and finite output induced
bisimulations. The paper finishes with some discussion of the presented results in Section 6. For completeness,
some results on equivalence relations are collected in an Appendix at the end of the paper.

2. Control systems and their morphisms

Control systems are usually defined by a differential equation:

d

dt
x = F (x, u)

where x ∈ Rn denotes the state and u ∈ Rm denotes the input. Consider for example a block of mass m
attached to a wall through a spring as displayed in Figure 1. From basic physics we know that the sum of
the forces acting on the block is given by ma where a is the acceleration of the block. The spring induces a
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d

u

0

Figure 1. Block attached to a wall through a spring.

force −Kd proportional to the displacement d of the block and where K models the physical properties of the
spring. If u is an external force also acting on the block we have:

ma = −Kd + u

Noting that acceleration is the time derivative of velocity v and that velocity is the time derivative of the
displacement d we arrive at the following differential equation describing the evolution of the block:

d

dt
v = −Kd + u

d

dt
d = v

We can thus regard this systems as a control system with F and state x given by:

F (x, u) =
[
−Kx + u

v

]
, x =

[
v
d

]
∈ R2

and where u ∈ R is the input.

Under standard regularity conditions (see for example [Son98]) on the map F : Rn×Rm → Rn and on a curve
u : [0, τ ] → Rm with τ > 0, there exists a curve x : [0, τ ] → Rn satisfying:

d

dt
x(t) = F (x(t),u(t))

for almost all t ∈ [0, τ ]. The curve u is considered an input trajectory and it is chosen in order to ensure
that the resulting state trajectory x satisfies certain desirable properties. We may be interested, for example,
in choosing u in order to guarantee that the block in Figure 1 moves from d = 0 to some other desired
displacement. If we denote the set of all such input trajectories by U and if we denote by f the map sending
the pair (x(0),u) to x(τ) we can regard a control system simply as a map:

f : M × U → M

where M = Rn is the state set and U the input set. When U only contains input trajectories defined on
intervals of fixed length τ > 0, we shall regard f : M × U → M as a discrete-time control system since,
starting at time 0, the map f only describes the evolution of the continuous system for the discrete-time
instants 0, τ, 2τ, 3τ, . . .. This is the most common situation in applications where the input trajectory is the
outcome of a periodically executed task with period τ . When U contains trajectories defined on intervals of
all lengths τ ∈ R, then we regard f : M × U → M as a continuous-time control system as it describes the
evolution of the continuous system for every τ ∈ R. We shall not be too concerned with the distinction between
discrete-time and continuous-time when developing our results. We note, however, that independently on time
being treated as discrete or continuous, the set of states remains infinite (R2 in the block example). Given the
above discussion we shall model control systems as a map:

(2.1) f : M × U → M
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describing the state f(x, u) ∈ M resulting from applying input u ∈ U at the state x ∈ M . In many situations
the resulting state f(x, u) cannot be observed directly but rather through an output map:

(2.2) r : M → P

transforming states x ∈ M into outputs r(x) ∈ P . This is the case in our block example if we only have a
sensor measuring the displacement of the block. Although we regard the state as an element (v, d) ∈ R2, we
only have access to sensor measurements providing the displacement r(v, d) = d ∈ R.

We will usually denote a control system by the pair (f, r) or by M × U
f- M

r- P when we want to
emphasize the input, state and output sets. When P = M and r = 1M (1M is the identity function on M) we
will simply denote a control system by M ×U

f- M . Since our ultimate objective is to obtain finite models
for (2.1) we shall not require any additional structure on the sets M , U and P or on the maps f and r.

Recall that in [WN94] a transition system is defined as a quadruple (S, i, L, Tran) where S is a set of states,
i ∈ S is a distinguished state, L is a set of labels and Tran ⊆ S × L × S is a transition relation. A control
system M × U

f- M also defines a transition relation given by the graph of f , that is, Γ(f) = {(x, u, y) ∈
M × U × M | f(x, u) = y} ⊂ M × U × M . We thus conclude that both models are very close in the way
they capture the dynamics. However, control systems are not equipped with a distinguished initial state
but they are equipped with an observation map r : M → P . This distinguishes the models with respect to
observations. For control systems, observations are obtained through the map r acting on the state while for
transition systems observations are directly available as the labels l ∈ L of transitions in Tran.

The notion of morphism between control systems will be instrumental for the results developed in this paper.
Intuitively, a morphism between control systems is a triple of maps describing how inputs, states and outputs
of one system are related to inputs, states and outputs of another system.

Definition 2.1. Let M × U
f- M

r- P and N × V
g- N

s- Q be control systems. A morphism
α : (f, r) → (g, s) from (f, r) to (g, s) is given by a triple of maps α = (α1, α2, α3) : M ×U ×P → N × V ×Q
with α1 : M → N , α2 : M × U → V and α3 : P → Q, making the following diagram commutative:

(2.3)

M × U
f - M

r - P

N × V

α1 × α2

? g - N

α1

? s - Q

α3

?

that is, satisfying the following equalities:

α1 ◦ f(x, u) = g(α1(x), α2(x, u))(2.4)
α3 ◦ r = s ◦ α1(2.5)

When P = M , Q = N , r = 1M and s = 1N we shall denote a morphism α simply as a pair α = (α1, α2) :
M × U → N × V .

The introduced notion of morphism is also very close to the notion of morphism between transition systems
in [WN94]. The important difference is that we work with totally defined maps and that the map α2 : M×U →
V mapping inputs (or labels) to inputs (or labels) is state dependent. It is easy to show that in both cases
morphisms carry trajectories or traces of one system into trajectories or traces of another system.

In a morphism α = (α1, α2) : f → g, map α2 can be many times determined from map α1 as the next result
shows.

Proposition 2.2. Let M ×U
f- M and N × V

g- N be control systems and let α1 : M → N be a map.
If the following inclusion holds:

α1 ◦ f(x, U) ⊆ g(α1(x), V )
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there exists a map α2 : M×U → V such that (α1, α2) is a morphism from f to g. Furthermore, if gy : V → N
is injective for every y ∈ α1(M), then α is unique.

Proof. Assume that α1◦f(x,U) ⊆ g(α1(x), V ) holds. Then, for every (x, u) ∈ M×U , α1◦f(x, u) ∈ g(α1(x), V )
so that we can define α2 at (x, u) to be any v ∈ V satisfying:

(2.6) α1 ◦ f(x, u) = g(α1(x), v)

This construction immediately provides a map α2 : M × U → V making (α1, α2) a morphism from f to g.
Assume now that gy is injective for every y ∈ α1(M). Then, the choice of v ∈ V satisfying (2.6) is unique
thus defining α2 uniquely. �

We will also need to analyze the behavior of f in several steps and the following notation will be very useful
in that regard. We denote by U∗ the monoid freely generated by U , that is, the set of all finite length
strings obtained by concatenating elements in U . Note that the string of zero length, denoted by ε, also
belongs to U∗. We will also have the opportunity to use U≤k to denote the set of all strings of length
smaller or equal than k ∈ N. If u = u1u2 . . . un ∈ U∗, we will use u(i) to denote the ith element of the
string u, that is, u(i) = ui with the convention that u(0) = ε and we will use u[i] to denote the first i
elements of u, that is, u[i] = u1u2 . . . ui. Several maps extend in a unique way to the sets U∗ and U≤k. Map
f∗ : M × U∗ → M is defined by f∗(x, ε) = x and by the recursion f∗(x, u) = f∗(f(x, u(1)), u(2)u(3) . . . u(n))
for any string u of length n. Map f≤k : M ×U≤k → M is the restriction of f∗ to M ×U≤k. We will also use
α∗2 : M × U∗ → V ∗ to denote the extension of α2 : M × U → V defined by α∗2(x, ε) = x and by the recursion
α∗2(x, u) = α2(x, u(1))α∗2(f(x, u(1)), u(2) . . . u(n)) for any string u of length n. The notation fx and α2x will be
used to denote the functions defined by fx(u) = f(x, u) and α2x(u) = α2(x, u), respectively. Other notational
conventions used through the paper are as follows. For a map φ : A → B we will denote by φ(A), φ−1(b) and
φ−1(C) with b ∈ B and C ⊆ B, the sets ∪a∈A{φ(a)}, {a ∈ A | φ(a) = b} and ∪c∈Cφ−1(c), respectively, and
|A| will denote the cardinality of set A.

3. Morphisms and bisimulations

The notion of bisimulation [Par81, Mil89] is usually defined by resorting to transition systems as operational
models. Although control systems also define transition relations we shall define bisimulation relations directly
for control systems:

Definition 3.1. Let M × U
f- M

r- O and N × V
g- N

s- O be control systems with the same
output set O. A relation R ⊆ M ×N is said to be a bisimulation relation between (f, r) and (g, s) if for every
(x1, y1) ∈ R the following holds:

(1) r(x1) = s(y1);
(2) for any u ∈ U , f(x1, u) = x2 implies the existence of v ∈ V such that g(y1, v) = y2 and (x2, y2) ∈ R;
(3) for any v ∈ V , g(y1, v) = y2 implies the existence of u ∈ U such that f(x1, u) = x2 and (x2, y2) ∈ R.

There is an important difference between this notion and the one introduced in [Par81, Mil89]. We require
related states to match on outputs but we do not require transitions to match on labels. This modeling
choice is motivated by control applications where the state carries important physical information about the
system and the desired behavior is described in terms of the state evolution. The input, however, is a signal
that we can arbitrarily manipulate in order to enforce the desired output behavior. It is not difficult to see
that bisimilar control systems exhibit the same output behavior and that this notion of bisimulation is still a
congruence with respect to parallel composition1.

1The relevant notion of parallel composition forces the intervening control systems to synchronize on outputs rather than on
transition labels.
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Instead of working with Definition 3.1 it will be more convenient, at the technical level, to work with the
following class of morphisms.

Definition 3.2. A morphism α : (f, r) → (g, s) from control system M×U
f- M

r- P to control system
N ×V

g- N
s- Q is said to be fiber surjective if α2 : M ×U → V is fiber surjective, that is, α2x : U → V

is surjective for every x ∈ M . Morphism α is said to be surjective if it is fiber surjective and both α1 : M → N
and α3 : P → Q are surjective maps.

The choice of fiber-surjective morphisms is justified by the following result.

Proposition 3.3. Let α : (f, r) → (g, s) be a fiber surjective morphism from control system M×U
f- M

r- P

to control system N × V
g- N

s- Q. The graph of the map α1, defined by Γ(α1) = {(x, y) ∈
M × N | α1(x) = y}, is a bisimulation relation between control system M × U

f- M
α3◦r- Q and control

system N × V
g- N

s- Q.

Proof. Let (x, y) ∈ Γ(α1). Then α1(x) = y and it follows from (2.5) that α3 ◦ r(x1) = s ◦ α1(x) = s(y) thus
showing that requirement (1) in Definition 3.1 is satisfied.

Assume now that f(x1, u) = x2 and α1(x1) = y1. Then by (2.5) we have α1(x2) = α1 ◦ f(x1, u) =
g(α1(x1), α2(x2, u)) = g(y1, v) thus showing that requirement (2) in Definition 3.1 also holds with v =
α2(x1, u).

Finally we prove requirement (3). Let α1(x1) = y1 and g(y1, v) = y2. Since α is fiber surjective, there
exists u ∈ U satisfying α2(x1, u) = v. If we denote by x2 the state f(x1, u), it follows from (2.4) that
α1(x2) = α1 ◦ f(x1, u) = g(α1(x1), α2(x1, u)) = g(y1, v) = y2 which concludes the proof. �

Note that not every bisimulation can be obtained as the graph of a fiber-surjective morphism. However, this
kind of bisimulation will suffice for the results presented in this paper.

4. Input induced bisimulations

In this section we discuss the construction of bisimilar control systems induced by inputs. Consider the block
example described in the previous section and assume we want to develop a controller, to be implemented in
embedded hardware/software, whose objective is to force the block to a desired displacement different from
zero. This controller will change the displacement of the block through an actuator exerting a force u on the
block. However, the actuator can only enforce2 a finite number of force values. Let us assume that these
values are −1, 0 and 1 and that the actuator transforms requests into forces according to the following map:

(4.1) α2(x, u) =

 −1 if u ≤ −1
0 if −1 < u < 1
1 if u ≥ 1

It is therefore natural to construct a bisimilar control system with input set V = {−1, 0, 1} describing the
dynamics of the original control system under these new inputs.

4.1. Existence of input induced bisimulations. Starting from a control system M×U
f- M

r- P and
a map α2 : M×U → V there may exist several possible ways to obtain a control system N×V

g- N
s- Q

and a morphism α : (f, r) → (g, s). To make the problem well defined we shall require a unique factorization
property.

2Alternatively we can assume that although the actuator can generate a force with an infinite number of intensities, it can
only receive finitely many different requests from the software implementation of a controller.
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Definition 4.1. Let M × U
f- M

r- P be a control system and α2 : M × U → V a map. The α2-
completion of (f, r) is a triple ((g, s), α1, α3) where N × V

g- N
s- Q is a control system, α1 : M → N

and α3 : P → Q are maps making α = (α1, α2, α3) : M × U × P → N × V × Q a morphism from (f, r) to
(g, s) with the following property:

for any control system N ′× V
g′- N ′ s′- Q′ and morphism α′ = (α′1, α2, α

′
3) : (f, r) → (g′, s′) there exists

a unique morphism β = (β1, 1V , β3) : (g, s) → (g′, s′) satisfying α′ = β ◦ α.

Note that bisimilarity between f and its α2-completion now follows trivially if one choses α2 to be fiber
surjective. However, we shall study α2-completions for maps α2 that are not necessarily fiber-surjective since
this extra generality adds no additional complications.

To understand the unique factorization property required by Definition 4.1 let us consider a control system
M × U

f- M with M = {x1, x2, x3}, U = {u1, u2, u3} and f defined on Table 1 and also represented in
Figure 2. If the map α2 : M × U → V is defined by α2(x, u1) = v1 = α2(x, u2) and α2(x, u3) = v2 for every
x ∈ M and if V = {v1, v2}, then control systems N × V

g- N and O × V
h- O defined on Table 2 and

represented in Figure 3 can be equipped with morphisms α = (α1, α2) : f → g and γ = (γ1, α2) : f → h also
defined on Table 2.

x u f(x, u)
x1 u1 x1

x1 u2 x3

x1 u3 x2

x2 u1 x2

x2 u2 x2

x2 u3 x2

x3 u1 x1

x3 u2 x1

x3 u3 x2

Table 1. Definition of control system f .

x1
x2

x3

u3 u1,u2

u3 u3

u1

u1,u2

u2

Figure 2. Graphical representation of control system f : M × U → M .

y1
y2

v2 v1
v1 v2

o1
v1 ,v2

Figure 3. Graphical representation of control systems g : N × V → N and h : O × V → O.

Among all the possible control systems equipped with a morphism from f , of which N × V
g- N and O ×

V
h- O are two examples, the unique factorization property in Definition 4.1 isolates the ”least constrained”
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x y o v g(y, v) h(o, v) α1 γ1

y1 v1 y1

y1 v2 y2

y2 v1 y2

y2 v2 y1

o1 v1 o1

o2 v2 o2

x1 y1

x2 y2

x3 y1

x1 o1

x2 o1

x3 o1

Table 2. Definition of control systems g and h, and of maps α1 and γ1.

solution. To illustrate this point, let us assume that O×V
h- O satisfies the unique factorization property.

Then, there must exist a unique morphism β = (β1, 1V ) : h → g satisfying β ◦ γ = α. However, no such
morphism exists since if β1(o1) = y1, then β1 ◦ h(o1, v2) = β1(o1) = y1 6= y2 = g(β1(o1), v2). Similarly, if
β1(o1) = y2 we have β1 ◦ h(o1, v2) = β1(o1) = y1 6= y2 = g(β1(o1), v2). On the other hand it is not difficult to
see that there exists a unique morphism β from g to h given by β1(y1) = o1 = β1(y2). Control system h is
thus over-constrained in the sense that too many states are mapped by the map γ1 into the same state. It is
in this sense that we can see the unique factorization requirement in Definition 4.1 as the specification of the
least constrained control system equipped with a morphism from (f, r).

The following result shows that output maps have no contribution for the existence of α2-completions. We
shall therefore assume throughout this section that output sets equal the state sets and that output maps are
the identity.

Proposition 4.2. Consider control system M × U
f- M

1M- M and the map α2 : M × U → V . If the
α2-completion of (f, 1M ) exists, then the α2-completion of M × U

f- M
r- P also exists for any output

map r : M → P .

Proof. Let N × V
g- N

s- Q be the α2-completion of (f, 1M ). We shall construct the α2-completion of
(f, r) from g. Consider the maps r : M → P and α1 : M → N . There is a unique3, up to isomorphism, way
of constructing α3 : P → R and t : N → R satisfying α3 ◦ r = t ◦ α1. Let X = P + N (+ denotes disjoint
union) and let S be the equivalence relation on X generated by the pairs (α1(x), r(x)) for every x ∈ M . Define
R = X/S, α3 = πS ◦ iP and t = πR ◦ iN where iP : P → X and iN : N → X are the natural inclusions and
πS : X → R = X/S is the natural projection. The equality α3 ◦ r = t◦α1 follows immediately by construction
of R, α3 and t. Furthermore, maps α3 and t have the following property. For any other maps a : P → T and
b : N → T there exists one and only one map:

(4.2) c : R → T

satisfying:

a = c ◦ α3(4.3)
b = c ◦ t(4.4)

We leave to the reader to verify that the desired unique map c is given by c([p]) = a(p) and c([n]) = b(n) for
any p ∈ P and n ∈ N .

3What we are about to construct is the push-out of r : M → P and α1 : M → N .
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We now claim that ((g, t), α1, α3) is the α2-completion of (f, r). It is obvious that α is a morphism from (f, r)
to (g, t) since (α1, α2) satisfy (2.4) and α3 satisfies (2.5). Let now (g′, s′) be any other control system equipped
with a morphism (α′1, α2, α

′
3) : (f, r) → (g′, s′). Since (g, s) is the α2-completion of (f, r) there exists one and

only one map β1 : N → N ′ making (β1, 1V ) a morphism from g to g′ and satisfying (β1, 1V )◦(α1, α2) = (α′1, α2).
To conclude the proof we only need to show existence and uniqueness of β3 : R → P ′ satisfying β3 ◦ t = s′ ◦β1

and β3 ◦ α3 = α′3. But this follows at once by taking a = α′3, b = s′ ◦ β1 in (4.3) and (4.4), and β3 = c. �

We now arrive at one of the main contributions of this section.

Theorem 4.3. The α2-completion of a control system M × U
f- M exists for any map α2 : M × U → V .

Theorem 4.3 shows that bisimilar control systems induced by α2 maps always exist in the class of control
systems considered in this paper. Furthermore, when α2 is fiber-surjective, the resulting α2-completion is
guaranteed to be bisimilar to (f, r).

Proof. The proof of Theorem 4.3 makes essential use of the following lemma which essentially states that
the forgetful functor mapping control systems M × U

f- M to the state set M and morphisms (α1, α2) :
M×U → N×U to α1 : M → N has a left-adjoint on the subcategory of control systems with a fixed input set
U . The existence of such adjoint underlies many of the generalizations of realization theory to more abstract
contexts [Gog73, AM74].

Lemma 4.4. Let κ : (M × V ∗) × V → (M × V ∗) be the control system defined by κ((x, v1), v2) = (x, v1v2).
For any map γ : M → N and for any control system N × V

g- N there exists a unique morphism
δ = (δ1, 1V ) : κ → g such that δ1(x, ε) = γ(x).

Proof of Lemma 4.4. Map δ1 is defined by δ1(x, v) = g∗(γ(x), v). This choice results in a morphism since:

δ1 ◦ κ((x, v1), v2) = δ1(x, v1v2) by definition of κ
= g∗(γ(x), v1v2) by definition of δ1

= g(g∗(γ(x), v1), v2) by definition of g∗

= g(δ1(x, v1), 1V (v2)) by definition of δ1

Furthermore δ1(x, ε) = g∗(γ(x), ε) = γ(x). To show uniqueness consider any other morphism (δ′1, 1V ) : κ → g.
We immediately have δ′1(x, ε) = γ(x) = δ1(x, ε). For any (x, v) ∈ M × V ∗ equality between δ′1 and δ1 follows
from:

δ′1(x, v) = δ′1 ◦ κ((x, ε), v) by definition of κ
= g(δ′1(x, ε), 1V (v)) since (δ′1, 1V ) is a morphism

= g(γ(x), v) since δ′1(x, ε) = γ(x)
= g(δ1(x, ε), 1V (v)) since δ1(x, ε) = γ(x)

= δ1 ◦ κ((x, ε), v) since (δ1, 1V ) is a morphism
= δ1(x, v) by definition of κ

�

We now return to the proof of Theorem 4.3

The desired completion N × V
g- N will be obtained from control system κ defined in Lemma 4.4. The

state set N is defined as the quotient of M × V ∗ by the equivalence relation R generated by the pairs:

(4.5)
(
(f(x, u), ε), (x, α2(x, u))

)
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and invariant under the family of maps maps {κv}v∈V (invariant under κ for short). Map α1 is the composition
πR ◦ i where i : M → M × V ∗ is the inclusion i(x) = (x, ε). Finally, we define control system g by:

(4.6) g([(x, v1)], v2) = [(x, v1v2)] = [κ((x, v1), v2)]

It follows from invariance of R under h that g is well defined. To show that α is indeed a morphism consider
any (x, u) ∈ M × U . The following sequence of identities:

α1 ◦ f(x, u) = πR ◦ i ◦ f(x, u)
= πR(f(x, u), ε) by definition of i

= [(f(x, u), ε)] by definition of πR

= [(x, α2(x, u))] by (4.5)
= [κ((x, ε), α2(x, u))] by definition of κ
= g([(x, ε)], α2(x, u)) by definition of g

= g(πR ◦ i(x), α2(x, u)) by definition of i and πR

= g(α1(x), α2(x, u)) by definition of α1

shows that α is a valid morphism.

Consider now any other control system g′ : N ′×V → N ′ and any other map α′1 : M → N ′ making α′ = (α′1, α2)
a morphism from f to g′. Map α′1 factors as α′1 = δ1 ◦ i where i : M → M × V ∗ is the inclusion i(x) = (x, ε)
and δ1 the unique map δ1 : M × V ∗ → N ′ whose existence is asserted by Lemma 4.4. Map α1 : M → N also
factors as α1 = πR ◦ i. Provided that we can show that:

(4.7) πR(x1, v1) = πR(x2, v2) ⇒ δ1(x1, v1) = δ1(x2, v2)

we can define β : N → N ′ by β([(x, v)]) = δ1(x, v). This is what we will now show by proving that the
equivalence relation S on M × V ∗ defined by ((x1, v1), (x2, v2)) ∈ S when δ1(x1, v1) = δ1(x2, v2) is invariant
under κ and contains the pairs: (

(f(x, u), ε), (x, α2(x, u))
)

Invariance under κ follows immediately from the fact that (δ1, 1V ) is a morphism from κ to g′. Consider now
an arbitrary point (x, u) ∈ M × U . From the fact that α′ : f → g′ is a morphism we have:

α′1 ◦ f(x, u) = g′(α′1(x), α2(x, u))

Since α′ factors as α′ = (δ1, 1V ) ◦ (i, α2):

δ1 ◦ i ◦ f(x, u) = g′(δ1 ◦ i(x), α2(x, u))

We now use the fact that (δ1, 1V ) is a morphism from h to g′ to conclude:

δ1(f(x, u), ε) = δ1 ◦ i ◦ f(x, u) by definition of i

= g′(δ1 ◦ i(x), 1V ◦ α2(x, u)) since (δ1, 1V ) ◦ (i, α2) = α′ is a morphism from f to g′

= g′(δ1(x, ε), α2(x, u)) by definition of i

= δ1 ◦ κ((x, ε), α2(x, u)) since (δ1, 1V ) is a morphism from κ to g′

= δ1(x, α2(x, u)) by definition of κ
We thus conclude that S is invariant under κ and contains the pairs:(

(f(x, u), ε), (x, α2(x, u))
)

Since R is the coarsest equivalence relation satisfying these two properties it follows that (4.7) holds and
β1 : N → N ′ is well defined. The fact that (β1, 1V ) is a morphism and unique is inherited from the same
properties of (δ1, 1V ) proved in Lemma 4.4. The proof is therefore complete. �

Throughout the remaining paper we will be especially interested in α2-completions for fiber surjective maps
α2. In this case, α2-completions admit the following simplified description that will later be used to establish
existence of symbolic completions.
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Proposition 4.5. The α2-completion of control system M × U
f- M for a fiber surjective map α2 :

M × U → V admits the following description:

(1) N = M/S where S is the coarsest equivalence relation on M satisfying for any x ∈ M :

α∗2(x, u1) = α∗2(x, u2) ⇒
(
f∗(x, u1), f∗(x, u2)

)
∈ S

(2) α1 = πS : M → M/S = N ;
(3) g is defined by g(y, v) = α1 ◦ f(x, u) for any (x, u) ∈ M × U such that α(x, u) = (y, v).

Proof. Consider the equivalence relation R on M × V ∗ defined by (4.5) in the proof of Theorem 4.3. The
proof will consist in showing that every (x, v) ∈ M × V ∗ is equivalent under R to (f∗(x, u), ε) for any u ∈ U
such that α∗2(x, u) = v. This equivalence allows to identify each equivalence class of R with an element of the
form (f∗(x, u), ε) thus showing that we can equivalently describe R by equivalence relation S. The proof will
be done by induction on the length of v.

For |v| = 1 the result follows from (4.5).

Let now |v| = l + 1 and assume the result holds for all v′ ∈ V l. We will show that (x, v) is equivalent under
R to (f∗(x, u), ε). Consider (x, v[l]). Since v[l] ∈ V l we know that ((x, v[l]), (f∗(x, u′), ε)) ∈ R for any u′ ∈ U l

such that α∗2(x, u′) = v[l]. We also know that S is invariant under h so that:

(4.8)
(
(x, v[l]v(l + 1)), (f∗(x, u′), v(l + 1))

)
∈ R

Since |v(l + 1)| = 1 it follows from (4.5) that:

(4.9)
(
(f∗(x, u′), v(l + 1)), (f∗(x, u′u′′), ε)

)
∈ R

for any u′′ ∈ U such that α2(f∗(x, u), u′′) = v(l + 1). Transitivity of R applied to (4.8) and (4.9) now implies
that (x, v) = (x, v[l]v(l + 1)) is equivalent under R to (f∗(x, u), ε) where u = u′u′′ ∈ U l+1 is any element
satisfying α∗2(x, u) = v. �

4.2. Existence of input induced symbolic bisimulations. In this section we characterize which α2-
completions result in control systems with finite state set. The finiteness results developed in this section will
require the notion of reachable control system.

Definition 4.6. A control system M × U
f- M is said to be reachable from x0 ∈ M if f∗x0

: U∗ → M is
surjective.

We will restrict our attention to maps α2 : M × U → V that are fiber surjective onto a finite set V . Fiber
surjectivity will imply bisimilarity while finiteness of V can be assumed without loss of generality since if
N × V

g- N is a control system with finite state set, then we need an input set V with no more than |N |
elements as there are no more than |N | states that can be reached from any state in N .

Theorem 4.7. Let M ×U
f- M be a control system reachable from x0 ∈ M and let α2 : M ×U → V be a

fiber surjective map onto a finite set V . The α2-completion of f has finite state set iff there exists k ∈ N such
that α1 ◦ f≤k

x0
: U≤k → N is surjective.

Proof. Consider the family of sets {Ev}v∈V ≤k where each set Ev is defined by the points x ∈ M for which the
following conditions are satisfied:

(1) there exists a u ∈ U≤k such that f≤k(x0, u) = x;
(2) α∗2(x0, u) = v.

We first note that by Proposition 4.5 each set Ev is totally contained in an equivalence class of S. We now
claim that S has no more than

∑k
i=1 |V |i equivalence classes. This follows from the surjectivity assumption
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on α1 ◦ f≤k
x0

: U≤k → N which implies that cardinality of N equals the cardinality of the image of α1 ◦ f≤k
x0

which, in view of α1 ◦ f≤k
x0

= g≤k
α1(x0)

◦ α2(x0, ·), is bounded by
∑k

i=1 |V |i.

Assume now that the α2-completion g of f has finite state set, let y0 = α1(x0) and let y ∈ gn
y0

(V n) for any
n ∈ N. Fiber surjectivity of α2 implies fiber surjectivity of αn

2 from which we conclude existence of u ∈ Un

satisfying αn
2 (x0, u) = v for any v ∈ V n satisfying gn

y0
(v) = y. We now use the fact that α : f → g is a morphism

to conclude α1 ◦ fn(x0, u) = gn(y0, v) = gn(α1(x0), α2(x0, u)) which shows that α1 ◦ fn
x0

(Un) = gn
y0

(V n). To
conclude the proof it suffices to show that gn

y0
(V n) = g≤k

y0

(
V ≤k

)
for some fixed k ∈ N. But this follows at once

from the observation that finiteness of the state set of g implies that y can be reached from y0 in no more
than k = |N | − 1 steps. �

Even though Theorem 4.7 provides us with a necessary and sufficient condition for finiteness of input com-
pletions, we cannot test surjectivity of α1 ◦ f≤k

x0
without determining α1. The following corollary strengths

surjectivity of α1 ◦ f≤k
x0

to a condition not requiring a priori knowledge of α1.

Corollary 4.8. Let M × U
f- M be a control system reachable from x0 ∈ M and let α2 : M × U → V be

a fiber surjective map onto a finite set V . If there exists k ∈ N such that f≤k
x0

: U≤k → M is surjective then
the α2-completion of f has finite state set

We can use Corollary 4.8 to identify concrete classes of control systems admitting finite bisimulations.

Corollary 4.9. Let M × U
f- M be a control system satisfying any of the following properties:

(1) f is induced by a discrete-time controllable linear system, that is, f(x, u) = Ax + Bu with x ∈ Rn,
u ∈ Rm, A and B matrices of appropriate dimensions and the matrix [An−1B|An−2B| . . . |B] has rank
n;

(2) f is induced by a continuous-time controllable linear system, that is, f(x,u) = x(τ) where τ > 0, x
is the solution of the differential equation d

dtx = Ax + Bu with x(0) = x ∈ Rn, u : [0, τ ] → Rm is an
element of the set U of all functions for which x is uniquely defined on the interval [0, τ ], A and B
are matrices of appropriate dimensions, and the matrix [An−1B|An−2B| . . . |B] has rank n;

(3) f is induced by a controllable nonlinear system generating a constant dimensional Lie algebra on a
compact manifold, that is, f(x,u) = x(τ) where τ > 0, x is the solution of the differential equation
d
dtx = F (x,u) with F : M × Rm → TM a smooth map such that the smallest Lie algebra containing
the vector fields {F (x, u)}u∈Rm has the same rank at every x ∈ M , M is a compact smooth manifold,
u : [0, τ ] → Rm is an element of the set U of all functions for which x is uniquely defined on the
interval [0, τ ] and f is reachable for every x ∈ M .

then, for any fiber surjective map α2 : M ×U → V onto a finite set V , the α2-completion of f has finite state
set.

Proof. All the three cases follow from Corollary 4.8 once we establish the existence of x0 ∈ M and k ∈ N
making f≤k

x0
: U≤k → Rn surjective.

Standard results in linear systems theory [Son98, AM97] guarantee that under the assumptions listed in (1)
the map f≤k

x0
: U≤k → Rn is surjective for any x0 ∈ Rn and k = n.

Standard results in linear systems theory [Son98, AM97] guarantee that we can find a τ > 0 such that by
restricting attention to constant input trajectories defined on intervals of duration τ > 0 we obtain a discrete-
time linear control system satisfying all the assumptions of (1).

Regarding (3) we only provide a sketch of the proof since it involves mathematical tools very different from
those used in this paper. It follows from standard results in geometric control theory [Jur97] that under the
assumptions of (3) if f∗(x1, u) = x2 with u ∈ U l then there is an open set O(x2) containing x2 such that for
every x′2 ∈ O(x2) there exists a u′ ∈ U l satisfying f(x1, u

′) = x′2. Fix now a point x ∈ M , let C = {O(x′)}x′∈M
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and note that C is an open cover of M . Since M is compact there exists a finite subcover C′ of C. If we now
define η to be maximum of the length of the inputs taking x to points in the (finitely many) open sets in C′,
we see that f≤k

x is surjective for k = η.

�

We now illustrate Corollary 4.9 in the simplest discrete-time controllable linear system:

x1(t + τ) = x2(t)
x2(t + τ) = u(t)

where x = (x1, x2) ∈ R2 is the state, u ∈ R is the input and τ > 0. Let α2 be defined as in (4.1):

(4.10) α2(x, u) =

 −1 if u ≤ −1
0 if −1 < u < 1
1 if u ≥ 1

For simplicity we will identify −1, 0, 1 with the symbols −, 0,+, respectively and we introduce the sets U− =
{u ∈ R | α2(u, x) = −1}, U0 = {u ∈ R | α2(u, x) = 0} and U+ = {u ∈ R | α2(u, x) = 1}. Starting at the
origin and applying the inputs in the symbolic set V = {−, 0,+} we construct the following sets:

(4.11) Sj = {(x1, x2) ∈ R2 | x1 = 0 ∧ x2 ∈ Uj}, j ∈ {−, 0,+}

representing points that are identified under equivalence relation S defined in Proposition 4.5. Applying inputs
again we obtain a complete description of S given by the following sets defining its equivalence classes:

(4.12) Si
j = {(x1, x2) ∈ R2 | x1 ∈ Ui ∧ x2 ∈ Uj}, i, j ∈ {−, 0,+}

The resulting control system N × V
g- N is defined by:

g(Si
j ,−) = Sj

− g(Si
j , 0) = Sj

0 g(Si
j ,+) = Sj

+, i, j ∈ {−, 0,+}

where N is identified with ∪i,j∈{−,0,+}{Si
j} which has 9 elements.

5. Output induced bisimulations

A different kind of completion can be obtained by specifying a map redefining the output rather than redefining
the input. This motivates the study of symbolic models induced by outputs. We can use again the block
example to illustrate the need for this kind of construction. Recall that we are interested in developing
a controller to be implemented in embedded hardware/software in order to force the block to a non-zero
displacement. Since we do not know the initial displacement of the block, this controller will change the
applied force u based on measurements of the block displacement. However, we only have a sensor providing
displacement measurements and furthermore the controller implementation can only deal with finitely many
values. We can thus assume, for example, that the state (v, d) is transformed into symbols to be used by the
controller software/hardware according to the following rule:

(5.1) α3(v, d) =

 −1 if d ≤ −1
0 if −1 < d < 1
1 if d ≥ 1

It is therefore natural to ask for the existence of an equivalent but simpler model of the continuous dynamics
describing the evolution of the symbols −1, 0 and 1 defining the new output set Q.



DR
AF
T:

Ma
rc
h
24
,
20
06

14 PAULO TABUADA

5.1. Existence of output induced bisimulations. In this section we consider output completions induced
by a map α3 : P → Q and defined as follows:

Definition 5.1. Let M × U
f- M

r- P be a control system and let α3 : P → Q be a surjective map.
The α3-completion of (f, r) is a triple ((g, s), α1, α2) where N × V

g- N
s- Q is a control system and

α1 : M → N and α2 : M × U → V are maps making α = (α1, α2, α3) : M × U × P → N × V ×Q a surjective
morphism from (f, r) to (g, s) with the following property:

For any control system N ′ × V ′ g′- N ′ s′- Q and surjective morphism α′ = (α′1, α
′
2, α3) : (f, r) → (g′, s′)

there exists a unique surjective morphism β = (β1, β2, 1Q) : (g′, s′) → (g, s) satisfying α = β ◦ α′.

Note that although the definition of α3-completion is very similar to the definition of α2-completion, there is
an important difference between the two: the direction of morphism β. Requiring existence of a morphism
β : (g, s) → (g′, s′) would lead to the trivial solution (g, s) = (f, r) and α = 1(f,r). However, this reversal
in the direction of morphism β will require additional assumptions to guarantee existence of α3-completions.
Part of these assumptions have already been built in the definition of α3-completion through the use of the
adjective surjective. In particular, requiring α to be surjective guarantees that α3-completions are bisimilar
to (f, r). The remaining assumptions require the following notion of indistinguishability.

Definition 5.2. Let M × U
f- M

r- P be a control system and let α3 : P → Q be a map. The
indistinguishability relations {[[α3]]i}i∈N induced by α3 are recursively defined by:

[[α3]]0 =
{
(x1, x2) ∈ M ×M | α3 ◦ r(x1) = α3 ◦ r(x2)

}
[[α3]]i+1 =

{
(x1, x2) ∈ [[α3]]0 | ∀u1 ∈ U ∃u2 ∈ U ∧ ∀u2 ∈ U ∃u1 ∈ U(

f(x1, u1), f(x2, u2)
)
∈ [[α3]]i

}
Two states x1, x2 ∈ M are said to be distinguishable by α3 in n ∈ N steps if (x1, x2) /∈ [[α3]]n and they are
said to be distinguishable if there exists n ∈ N such that they are distinguishable in n steps. Two states that
are not distinguishable are said to be indistinguishable.

The indistinguishability relations introduced in Definition 5.2 are no more than a variation of the sequence of
relations leading to the coarsest relation compatible with the transition relation defined by f [Fer90, PT87].
The only difference is the fact that we allow the pairs (f(x1, u1), f(x2, u2)) ∈ [[α3]]i to have different inputs u1

and u2. This difference is a natural consequence of Definition 3.1 requiring matching of the outputs instead
of matching of the labels.

Note that it follows from the definition of indistinguishability relation that if there exists a k ∈ N such that
[[α3]]k = [[α3]]k+1 then [[α3]]k = [[α3]]i for all i ≥ k. In general, the sequence of indistinguishability relations
need not stabilize after a finite number of steps. In this case we shall work with the limit relation (see the
Appendix for several notions related to relations):

[[α3]] = lim
i→∞

[[α3]]i

which is in fact a bisimulation relation between (f, r) and (f, r). Since [[α3]]i+1 refines [[α3]]i and π[[α3]]0 =
α3 ◦ r, the map π[[α3]][[α3]]0 : M/[[α3]] → Q satisfies:

(5.2) π[[α3]][[α3]]0 ◦ π[[α3]] = α3 ◦ r

Existence of α3-completions can now be characterized by resorting to [[α3]].

Theorem 5.3. Let M×U
f- M

r- P be a control system with a surjective output map and let α3 : P → Q
be a surjective map. If for any (x1, x2) /∈ [[α3]] the following equality holds:

(5.3)
∣∣∣π[[α3]] ◦ f(x1, U)

∣∣∣ =
∣∣∣π[[α3]] ◦ f(x2, U)

∣∣∣
then, the α3-completion of (f, r) exists.



DR
AF
T:

Ma
rc
h
24
,
20
06

SYMBOLIC MODELS FOR CONTROL SYSTEMS 15

Proof. We construct control system N × V
g- N with N = M/[[α3]] and V any set of cardinality |π[[α3]] ◦

f(x, U)|. Set V is independent of the point x ∈ M since by assumption (x1, x2) /∈ [[α3]] implies |π[[α3]] ◦
f(x1, U)| = |π[[α3]] ◦ f(x2, U)| and for (x1, x2) ∈ [[α3]] it follows from the definition of [[α3]] that |π[[α3]] ◦
f(x1, U)| = |π[[α3]] ◦f(x2, U)|. Control system g is defined by letting gy : V → N be any isomorphism between
V and π[[α3]] ◦ f(x, U) where x is any point satisfying π[[α3]](x) = y. By definition of [[α3]], for any x1 and x2

such that π[[α3]](x1) = y = π[[α3]](x2) we have π[[α3]] ◦ f(x1, U) = π[[α3]] ◦ f(x2, U) thus showing that gy does
not depend on the choice of x. Furthermore, an isomorphism between V and π[[α3]] ◦ f(x,U) always exists
since these sets have the same cardinality. If we now denote π[[α3]] by α1 it follows by construction of g that
α1 ◦ f(x, U) ⊆ g(α1(x), V ) and that gy is injective. Therefore, by Proposition 2.2 there exists a unique map
α2 making (α1, α2) a morphism from f to g. Note that α2 is necessarily fiber surjective since α1 ◦ f(x, U) =
g(α1(x), V ) and gα1(x) is a bijection between V and g(α1(x), V ). In view of (5.2) we equip g with the output
map s = π[[α3]][[α3]]0 . This results in the desired surjective morphism α = (α1, α2, α3) : (f, r) → (g, s) where
surjectivity of s follows from surjectivity of r and α3.

Let now N ′ × V ′ g′- N ′ s′- Q be any other control system equipped with a surjective morphism α′ =
(α′1, α

′
2, α3) : (f, r) → (g′, s′). Since α′2 is fiber surjective and α1 surjective, the equivalence relation S ⊆ M×M

defined by (x1, x2) ∈ S if α′1(x1) = α′1(x2) is a bisimulation relation. Furthermore, α3 ◦ r factors through
πS = α′1 since α3 ◦ r = s′ ◦ α′1. However, [[α3]] is the coarsest equivalence relation satisfying these properties
which implies existence of a surjective map πS[[α3]] = β1 : N ′ → N satisfying β1 ◦ πS = π[[α3]]. We also have:

β1 ◦ πS ◦ f(x, u) = π[[α3]] ◦ f(x, u)

⇒ β1 ◦ g′(α′1(x), α′2(x, u)) = g(α1(x), α2(x, v)) since α1 and α′1 are morphisms
⇒ β1 ◦ g′(α′1(x), V ′) ⊆ g(α1(x), V ) = g(β1 ◦ α′1(x), V ) since S refines [[α3]]

It now follows from injectivity of gy and Proposition 2.2 the existence of a unique map β2 making (β1, β2)
a morphism from g′ to g. Fiber surjectivity of β2 can be shown by the same argument used to show fiber
surjectivity of α2 in the first part of the proof and it follows from β1◦α′1 = α1 that (β1, β2)◦(α′1, α′2) = (α1, α2).
Furthermore, (β1, β2) is unique, up to isomorphism, since β1 is uniquely determined by α1 and α′1 while β2

is uniquely determined by β1 and g, and g is unique up to the isomorphisms gy : V → N . To conclude
the proof we only need to show that (2.5) is satisfied, that is, that s′ = s ◦ β1 holds. But this follows from
s ◦ α1 = α3 ◦ r = s′ ◦ α′1 combined with: β1 ◦ α′1 = α1 which results in s ◦ β1 ◦ α′1 = s′ ◦ α′1. Surjectivity of α′1
allows to simplify the previous expression and to obtain the desired equality s′ = s ◦ β1. �

The assumption expressed by equality (5.3) cannot be dropped since this can prevent the unique factorization
property enjoyed by α3-completions. This fact is illustrated in the following example. Consider control system
M ×U

f- M with M = {x1, x2, x3, x3}, U = {u1, u2}, Q = {q1, q2} and defined in Table 3. In this case we

x u f(x, u) α3(x)
x1 u1 x1 q1

x1 u2 x3 q1

x2 u1 x2 q1

x2 u2 x4 q1

x3 u1 x3 q2

x3 u2 x4 q2

x4 u1 x4 q2

x4 u2 x4 q2

Table 3. Definition of control system f and map α3.

have [[α3]]0 = [[α3]]1 = [[α3]]. In particular π[[α3]] = α3. Condition (5.3) is violated since:∣∣α3 ◦ f(x1, U)
∣∣ = 2 6= 1 =

∣∣α3 ◦ f(x3, U)
∣∣
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Furthermore, the cardinality of the input set V of g has to be 2 since |α3 ◦ f(x1, U)| = 2 and for simplicity
we will take V = U . We will now show that no control system with state set N = M/[[α3]] and input set U
satisfies the conclusions of Theorem 5.3. Existence of a morphism from f to g, implies that g satisfies:

α3 ◦ f(x1, U) = {[x1], [x3]} ⊆ g([x1], V ), α3 ◦ f(x3, U) = {[x3]} ⊆ g([x3], V )

At state [x1], g is uniquely determined (up to isomorphism) by the fact that α3 ◦ f(x1, u1) = α3 ◦ f(x2, u1)
and α3 ◦ f(x1, u2) = α3 ◦ f(x2, u2). We can thus define g([x1], u1) = [x1] = α3 ◦ f(x1, u1) = α3 ◦ f(x2, u1) and
g([x1], u2) = [x3] = α3 ◦ f(x1, u2) = α3 ◦ f(x2, u2). At state [x3] we must have g([x3], u1) = g([x3], u2) = [x3].
We will now show that there exists no fiber surjective map α2 : M × U → V making α = (α1, α2) : f → g a
morphism such that for any other morphism α′ : f → g′ there exists a unique morphism β : g′ → g satisfying
β ◦ α′ = α. For any fiber surjective map α2 we must have α2(x3, u1) 6= α2(x3, u2). Let us assume that
α2(x3, u1) = u1 and α2(x3, u2) = u2 since the same argument works for α2(x3, u1) = u2 and α2(x3, u2) = u1.
Consider now control system g′ = g and map α′2 : M × U → V defined by:

α′2(x3, u1) = u1, α′2(x3, u2) = u2, α′2(x4, u1) = α2(x4, u2), α′2(x4, u2) = α2(x4, u1)

and inducing morphism α′ = (α1, α
′
2) : f → g′. Existence of a morphism β : g′ → g satisfying β ◦ α′ = α

implies that:

β2([x3], a) = β2 ◦ (α1, α
′
2)(x3, a) = α2(x3, a) = a(5.4)

β2([x3], u2) = β2 ◦ (α1, α
′
2)(x3, u2) = α2(x3, u2) = u2(5.5)

However, at x4 we have:

β2([x4], α′2(x4, a)) = β2([x3], α′2(x4, a)) since α3(x4) = α3(x3)
= β2([x3], α2(x4, u2)) by definition of α′2

= α2(x4, u2) since by (5.4) and (5.5), β2[x3] = 1U

We thus see that β2([x4], α′2(x4, a)) = α2(x4, u2) 6= α2(x4, a) thus violating the desired equality β ◦ α′ = α.
Therefore, no fiber surjective morphism β : g′ → g satisfying β ◦ α′ = α can exist. Furthermore, the unique
factorization property of α3-completions is violated even if we try to define g on a larger set N since in this
case there would be several choices of maps β1 : M/[[α3]] → N that could be completed to a morphism from
g′ to g.

5.2. Existence of output induced symbolic α2-completions. We now turn our attention to existence
of symbolic α3-completions. Since [[α3]] is the coarsest bisimulation relation between (f, r) and (f, r) satisfy-
ing (5.2) the following corollary of Theorem 5.3 is immediate:

Corollary 5.4. Let M×U
f- M

r- P be a control system with surjective output map and let α3 : P → Q
be a surjective map onto a finite set Q for which the α3-completion (g, s) of (f, r) exists. Control system (g, s)
has finite state set iff there exists a k ∈ N such that any pair of distinguishable states by α3 is distinguishable
in k steps.

Corollary 5.4, by equating finiteness of α3-completions to finite distinguishability, suggest that we should
identify the class of control systems generating the same outputs after a certain finite number of steps since
this guarantees stabilization of the indistinguishability relations after a finite number of steps. We formalize
this notion in the next result.

Corollary 5.5. Let M×U
f- M

r- P be a control system with surjective output map and let α3 : P → Q
be a surjective map onto a finite set Q. If [[α3]] satisfies (5.3) and for any x1, x2 ∈ M and u ∈ U∗ the following
holds:

r ◦ f∗(x1, u[i]) = r ◦ f∗(x2, u[i]) ∀i ≥ k

then the α3-completion of (f, r) exists and has finite state set.

We can use Corollary 5.5 to identify concrete classes of control systems admitting finite bisimulations.
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Corollary 5.6. Let M × U
f- M

r- P be a control system and let α3 : P → Q be a surjective map
satisfying any of the following assumptions:

(1) f is a discrete-time controllable linear system, that is, f(x, u) = Ax + Bu with x ∈ Rn, u ∈ Rm, A
and B are matrices of appropriate dimensions and the matrix [An−1B|An−2B| . . . |B] has rank n;

(2) f is a discrete-time linear system, α3 is a linear map and (f, α3) is output-controllable, that is,
f(x, u) = Ax + Bu with x ∈ Rn, u ∈ Rm, A and B matrices of appropriate dimensions, α3(x) =
Cx ∈ Ro with C a matrix of appropriate dimensions, and the matrix [CAn−1B|CAn−2B| . . . |CB] has
rank o.

If [[α3]] satisfies (5.3) then the α3-completion of f exists and has finite state set.

Note that even if [[α3]] fails to satisfy (5.3) a finite state bisimilar control system still exists and this is sufficient
for most of the applications.

Proof. Let us first assume that f(x, u) = Ax + Bu is in Brunovsky normal form. For m = 1 this normal form
is given by:

y1(t + τ) = y2(t)
y2(t + τ) = y3(t)

...
yn(t + τ) = v(t)(5.6)

By inspecting (5.6) we immediately conclude that f j+n(y, v) = (v(j), v(j + 1), . . . , v(j + n)) for j ≥ 0 which
implies r ◦f∗(y, v[i]) = r ◦f∗(y′, v[i]) for i ≥ n and for any map r : Rn → P . The assumptions of Corollary 5.5
are thus satisfied. For m > 1 a similar argument applies since in this case the Brunovsky normal form is
given by several blocks of the form (5.6). For general controllable linear systems the result follows from the
previous argument and from the fact [Son98, AM97] that any controllable linear system is isomorphic to a
linear system in Brunovsky normal form.

By Kalman’s decomposition Theorem [Son98, AM97] any linear control system can be decomposed as:

(5.7)
[
x1(t + 1)
x2(t + 1)

]
=

[
A11 A12

0 A22

] [
x1(t)
x2(t)

]
+

[
B1

0

]
u(t)

where x1(t+1) = A11x1(t)+A12x2(t)+B1u(t) is controllable. It then follows from the previous argument that
any linear control system equipped with an output map r : M = Rn → P admits a finite bisimulation provided
that r factors as r = s ◦ π for any map s : Ro → P and for the projection π(x) = x1. This factorization
condition can be checked by determining if the matrix [CB|CAC| . . . |CAn−1B] defines a surjective linear
transformation when r is a linear transformation and C is its matrix representation. �

Let us consider again the simplest discrete-time controllable linear system:

x1(t + τ) = x2(t)
x2(t + τ) = u(t)

with r(x1, x2) = (x1, x2) and let α3 be given by:

(5.8) α3(x) =

 −1 if x1 ≤ −1
0 if −1 < x1 < 1
1 if x1 ≥ 1

The relation [[α3]]0 is defined the following three equivalence classes:

Sj = {(x1, x2) ∈ R2 | x1 ∈ Xj}, j ∈ {−, 0,+}
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where X− =]−∞,−1], X0 =]− 1, 1[ and X+ = [1,∞[. Relation [[α3]]1 satisfies [[α3]]1 = [[α3]]2 and is defined
by the equivalence classes:

Si
j = {(x1, x2) ∈ R2 | x1 ∈ Xi ∧ x2 ∈ Xj}, j ∈ {−, 0,+}

The α3-completion is now given by:

g(Si
j , X−) = Sj

− g(Si
j , X0) = Sj

0 g(Si
j , X+) = Sj

+, i, j ∈ {−, 0,+}

where V is identified with ∪i∈{−,0,+}{Xi} and N identified with ∪i,j∈{−,0,+}{Si
j}. The fact that the α3

completion is the same as the α2-completion presented in Section 4 for the same control system is due to
the fact that we have chosen a control system of a very special form (Brunovsky normal form). In general,
α2-completions and α3-completions are not isomorphic.

6. Discussion

In this paper we have presented two very general constructions on the class of control systems: α2-completions
and α3-completions. The first class of completions is mathematically very natural since no conditions are
necessary for its existence. This implies that Theorem 4.3 is valid in a variety of different contexts obtained
by imposing different structure on control systems (linearity, smoothness, analyticity, etc). This is in sharp
contrast with α3-completions which exist under stricter conditions. One of those conditions is surjectivity of
the involved morphisms which has to be considerably strengthened when more structure is imposed such as
smoothness for example. This is a consequence of Theorem 5.3 being based on the fact that every surjective
map φ : A → B can be seen as the projection from A to A/S where S is the equivalence relation on A
identifying points a1 and a2 when φ(a1) = φ(a2).

A third type of completion could also be considered if one starts with a control system and a map α1 : M → N
between state sets. However, since our objective is to obtain bisimilar models, either the graph of α1 already
defines a bisimulation or there is no possibility of obtaining a bisimilar model by constructing a control system
with state set N . This fact justifies why α1-completions have not been considered in this paper.

Even though we make a distinction between inputs and outputs this distinction is not natural in many systems
and it would be interesting to extend the results of this paper by dropping this distinction. Such behavioral
approach [PW97] could help understand how to relate the sufficient conditions for the existence of symbolic
models provided by Corollaires 4.8 and 5.5 and lead to a deeper understanding of which control systems are
essentially finite.

On going research is focusing on extending and characterizing new classes of systems satisfying the sufficient
conditions for the existence of finite completions. While Corollary 4.8 requires reachability in a finite number
of steps, Corollary 5.5 requires a finite output controllability or tracking assumption ensuring that the effect of
the initial state will only influence the output in a finite number of steps. Even though the conditions required
by Corollary 5.5 appear to be stronger than those required by Corollary 4.8, the possibility of choosing the
output map appears to provide greater flexibility in the use of Corollary 5.5.

Appendix

Recall that an equivalence relation R on a set A is a subset R ⊆ A×A satisfying:

(1) Reflexivity: ∀a ∈ M , (a, a) ∈ R;
(2) Symmetry: ∀a1, a2 ∈ M , (a1, a2) ∈ R implies (a2, a1) ∈ R;
(3) Transitivity: (a1, a2) ∈ R and (a2, a3) ∈ R implies (a1, a3) ∈ R.

Given an equivalence relation R ⊆ A × A, we denote by [a] the equivalence class containing a ∈ A and by
πR : A → A/R the (surjective) natural projection map taking each point a ∈ A to its equivalence class [a].
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Conversely, any surjective map φ : A → B defines an equivalence relation on A whose equivalence classes are
given by φ−1(b) for each b ∈ B.

An equivalence relation R2 ⊆ A×A is said to refine equivalence relation R1 ⊆ A×A if for every equivalence
class E2 of R2 there is an equivalence class E1 of R1 such that E2 ⊆ E1. Equivalently, R2 refines R1 if there
exists a map πR2R1 : A/R2 → A/R1 satisfying πR2R1 ◦ πR2 = πR1 . Map πR2R1 takes an equivalence class E2

of R2 into the unique equivalence class πR2R1(E2) of R1 containing E2.

Any arbitrary relation R ⊆ A×A can be completed to an equivalence relation by adding the identity relation
I = {(a1, a2) ∈ A × A | a1 = a2} to R, resulting in R ∪ I, and by closing R ∪ I under reflexivity and
transitivity. This closure R is called the equivalence relation generated by R and it is the coarsest equivalence
relation containing the pairs (a1, a2) ∈ R in the sense that any other equivalence relation containing the pairs
(a1, a2) ∈ R is a refinement of R.

Consider now an equivalence relation R ⊆ A × A and a map f : A → A. Relation R is said to be invariant
under map f when (a1, a2) ∈ R implies (f(a1), f(a2)) ∈ R. In this case f induces a map f/R : A/R → A/R
defined by

(
f/R

)
([a]) = [f(a)]. Map f/R is well define since for any a2, a3 ∈ [a1] we have (f(a2), f(a1)) ∈ R

and (f(a3), f(a1)) ∈ R. Consequently, [f(a2)] = [f(a3)] = [f(a1)] =
(
f/R

)
([a1]). If an equivalence relation

R is not invariant under a map f , we can close it under f resulting in the coarsest equivalence relation R
containing the pairs (a1, a2) ∈ R and invariant under f , that is, any other equivalence relation containing the
pairs (a1, a2) ∈ R and invariant under f is a refinement of R.

Consider now a sequence of equivalence relations {Ri}i∈N on a set A where for each i ∈ N, Ri+1 is a refinement
of Ri. The limit of this sequence is an equivalence relation R = limi→∞ Ri refining every equivalence relation
Ri and such that for any other equivalence relation S refining every equivalence relation Ri, S is a refinement
of R.
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