
Acta Informatica (2007) 44:525–569
DOI 10.1007/s00236-007-0057-9

ORIGINAL ARTICLE

Synchronous cooperation for explicit multi-threading

J. A. Bergstra · C. A. Middelburg

Received: 24 October 2006 / Accepted: 3 August 2007 / Published online: 22 September 2007
© Springer-Verlag 2007

Abstract We develop an algebraic theory of threads, synchronous cooperation of threads
and interaction of threads with Maurer machines, and investigate program parallelization
using the resulting theory. Program parallelization underlies techniques for speeding up
instruction processing on a computer that make use of the abilities of the computer to process
instructions simultaneously in cases where the state changes involved do no influence each
other. One of our findings is that a strong induction principle is needed when proving theorems
about sufficient conditions for the correctness of program parallelizations. The induction
principle introduced has brought us to construct a projective limit model for the theory
developed.

1 Introduction

Thread algebra originates from the form of process algebra introduced in [6] under the
name basic polarized process algebra. A thread is the behaviour of a deterministic sequen-
tial program under execution. In earlier work, see e.g. [7,13,14], we have elaborated forms
of concurrency where the actions to be performed by the different threads involved are

The work presented in this paper has been partly carried out while C.A. Middelburg was also at Eindhoven
University of Technology, Department of Mathematics and Computer Science.
The work presented in this paper has been carried out as part of the GLANCE-project MICROGRIDS, which
is funded by the Netherlands Organisation for Scientific Research (NWO).

J. A. Bergstra · C. A. Middelburg (B)
Programming Research Group, University of Amsterdam, P. O. Box 41882,
1009 DB, Amsterdam, The Netherlands
e-mail: C.A.Middelburg@uva.nl

J. A. Bergstra
e-mail: J.A.Bergstra@uva.nl

J. A. Bergstra
Department of Philosophy, Utrecht University, P. O. Box 80126,
3508 TC, Utrecht, The Netherlands

123

526 J. A. Bergstra, C. A. Middelburg

interleaved according to some deterministic interleaving strategy. Synchronous cooperation
is the form of concurrency where at each stage the actions to be performed by the different
threads involved are all performed simultaneously. In the current paper, we develop an alge-
braic theory of threads, synchronous cooperation of threads and interaction of threads with
Maurer machines. We call the resulting theory a thread algebra for synchronous cooperation.

Threads can be used to direct a Maurer machine in performing operations on its state.
Maurer machines are based on a model for computers proposed by Maurer in [23]. Maurer’s
model for computers is quite different from the well-known models for computers in theore-
tical computer science such as register machines, multi-stack machines and Turing machines
(see e.g. [20]). The strength of Maurer’s model is that it is close to real computers. Maurer’s
model is based on the view that a computer has a memory, the contents of all memory elements
make up the state of the computer, the computer processes instructions, and the processing of
an instruction amounts to performing an operation on the state of the computer which results
in changes of the contents of certain memory elements.

Explicit multi-threading is a basic technique to speed up instruction processing by a
machine (see e.g. [29]). Explicit multi-threading techniques require that programs are paral-
lelized by judicious use of forking. In this paper, we investigate program parallelization for
simple programs without test and jump instructions using the thread algebra for synchronous
cooperation developed and program algebra.

Program algebra is introduced in [5,6]. In program algebra, not the behaviour of deter-
ministic sequential programs under execution is considered, but the programs themselves.
A program is viewed as an instruction sequence. The behaviour of a program is taken for a
thread of the kind considered in thread algebra. Program algebra provides a program notation
which is close to existing assembly languages.

By employing the thread algebra for synchronous cooperation developed to investigate
program parallelization, we demonstrate that this thread algebra has at least one interesting
application. On the other hand, setting up a framework in which program parallelization can
be investigated, is one of the objectives with which we have developed a thread algebra for
synchronous cooperation. For that very reason, we have chosen to use Maurer’s model for
computers. Unlike this relatively unknown model, the well-known models for computers
in theoretical computer science have little in common with real computers. They abstract
from many aspects of real computers which must be taken into account when investigating
program parallelization.

In earlier work on thread algebra, synchronous cooperation was not considered. To deal
with synchronous cooperation in thread algebra, we introduce in the thread algebra for syn-
chronous cooperation a special action (δ) which blocks threads. This feature was not present
in earlier work on thread algebra. We also introduce another feature that was not present in
earlier work on thread algebra, namely conditional action repetition. In modelling instruction
processing, this feature is convenient to deal with instructions of which the processing on a
computer takes more than one step. Typical examples of such instructions are load instruc-
tions, which may even take many steps in case of cache misses. Moreover, we introduce the
notions of state transformer equivalence and computation. Both notions are relevant to pro-
gram parallelization: if two threads are state transformer equivalent, then the computations
directed by those threads beginning in the same initial state terminate in the same final state,
but they may have different lengths.

One of the findings of our investigation of program parallelization is that a strong induc-
tion principle is needed when proving theorems about sufficient conditions for the correct-
ness of program parallelizations. Therefore, we introduce an induction principle to establish
state transformer equivalence of infinite threads. This induction principle is based on the

123

Synchronous cooperation for explicit multi-threading 527

view that any infinite thread is fully characterized by the infinite sequence of all its finite
approximations. The model that we construct for the thread algebra for synchronous coope-
ration, including the above-mentioned induction principle, is a projective limit model (see
e.g. [4,22]) because such a model fits in very well with this view.

In addition to the thread algebra for synchronous cooperation, we use a simple variant
of the program algebra from [6] to investigate program parallelization. This simple variant
offers a convenient notation for studying program parallelization: the programs concerned
permit a direct analysis of semantic issues involved. It covers only simple programs without
test and jump instructions. This is a drastic simplification. Because of the complexity of
program parallelization, we consider a simplification like this one desirable to start with.

We regard the work presented in this paper, like the preceding work presented in [8–10],
as a preparatory step in developing, as part of a project investigating micro-threading [16,21],
a formal approach to design new micro-architectures. That approach should allow for the
correctness of new micro-architectures and their anticipated speed-up results to be verified.

The structure of this paper is as follows. First, we develop most of the thread algebra for
synchronous cooperation (Sect. 2). Next, we present a projective limit model for the thread
algebra developed so far (Sect. 3). Then, we complete the thread algebra developed so far with
an operator for applying a thread to a Maurer machine from one of its states and introduce
the notion of computation in the resulting setting (Sect. 4). Following this, we introduce the
notion of state transformer equivalence of threads and give some state transformer properties
of threads (Sect. 5). After that, we present the simple variant of program algebra and intro-
duce classes of program relevant to the investigation of program parallelization (Sect. 6).
Next, we investigate program parallelization, focused on finding sufficient conditions for the
correctness of program parallelizations (Sect. 7). Finally, we make some concluding remarks
(Sect. 8). Appendix B contains a glossary of symbols used in this paper.

In Sect. 3, some familiarity with metric spaces is assumed. The definitions of all notions
concerning metric spaces that are assumed known in those sections can be found in most
introductory textbooks on topology. We mention [17] as an example of an introductory
textbook in which those notions are introduced in an intuitively appealing way.

2 Thread algebra for synchronous cooperation

In this section, we develop most of the thread algebra for synchronous cooperation used in the
investigation of program parallelization later on. First, we treat the kernel of the thread algebra
in question. Next, we add step by step several features, including synchronous cooperation
and conditional action repetition, to the kernel. Finally, we present a structural operational
semantics for the thread algebra developed in this section.

2.1 Basic thread algebra with blocking

Basic thread algebra with blocking (BTAδ) is a form of process algebra which is tailored to
the description of the behaviour of deterministic sequential programs under execution. The
behaviours concerned are called threads.

In BTAδ , it is assumed that there is a fixed but arbitrary set of basic actions BA with
tau, δ �∈BA. We write A for BA∪{tau} and Aδ for A∪{δ}. BTAδ has the following constants
and operators:

– the deadlock constant D;
– the termination constant S;
– for each a ∈ Aδ , a binary postconditional composition operator _ � a � _ .

123

528 J. A. Bergstra, C. A. Middelburg

We use infix notation for postconditional composition. We introduce action prefixing as an
abbreviation: a ◦ p, where p is a term over the signature of BTAδ , abbreviates p � a � p.

The intuition is that each basic action performed by a thread is taken as a command to be
processed by the execution environment of the thread. The processing of a command may
involve a change of state of the execution environment. At completion of the processing of
the command, the execution environment produces a reply value. This reply is either T or
F and is returned to the thread concerned. Let p and q be closed terms over the signature
of BTAδ and a ∈ A. Then p � a � q will perform action a, and after that proceed as p
if the processing of a leads to the reply T (called a positive reply) and proceed as q if the
processing of a leads to the reply F (called a negative reply). The action tau plays a special
role: its processing will never change any state and always lead to a positive reply. The action
δ blocks a thread: the execution environment cannot process it and consequently a reply value
is never returned. Hence, p � δ � q cannot but become inactive, just as D.

Example 1 Consider the term inc ◦ (S � dec � D) and an execution environment in which
processing of basic actions inc and dec amounts to incrementing and decrementing a counter
by one. Suppose that the counter concerned can take only non-negative values. Furthermore,
suppose that the processing of inc leads always to a positive reply and the processing of
dec leads to a positive reply if the value of the counter is not zero and to a negative reply
otherwise. In this execution environment, inc ◦ (S � dec � D) will first perform inc, next
perform dec, and then terminate. It will not deadlock instead of terminate because the value
of the counter will be greater than zero when dec is performed.

The axioms of BTAδ are given in Table 1. Using the abbreviation introduced above, axiom
T1 can be written as follows: x � tau � y = tau ◦ x .

2.2 Synchronous cooperation of threads

We extend BTAδ with a form of synchronous cooperation that supports thread forking. The
result is called TAsc. Synchronous cooperation requires the introduction of atomic actions
and concurrent actions.

In TAsc, it is assumed that there are a fixed but arbitrary set CAδ of concurrent actions, a
fixed but arbitrary finite set AA ⊆ CAδ of atomic actions and a fixed but arbitrary synchro-
nization function & : CAδ × CAδ → CAδ such that:

– tau ∈ AA and δ �∈ AA;
– ξ ∈ CAδ iff ξ = δ or ξ ∈ AA or there exist ξ ′, ξ ′′ ∈ CAδ such that ξ = ξ ′ & ξ ′′;
– for all ξ, ξ ′, ξ ′′ ∈ CAδ , the equations given in Table 2 are satisfied.

It is further assumed that Aδ = CAδ . We write CA for CAδ \ {δ}.
A concurrent action ξ & ξ ′, where ξ, ξ ′ ∈ CA, represents the act of simultaneously per-

forming ξ and ξ ′ unless ξ & ξ ′ = δ. Concurrent actions ξ and ξ ′ for which ξ & ξ ′ = δ are
regarded to be actions for which the act of simultaneously performing them is impossible.

It is not assumed that & satisfies ξ & ξ ′ = ξ ′ & ξ , for all ξ, ξ ′ ∈ CAδ , because one of
the axioms of TAsc introduced below (axiom RC2) entails that ξ & ξ ′ and ξ ′ & ξ can lead
to different replies. The assumption that AA is finite has a technical background. Only the
results presented in Appendix A depend on it.

Table 1 Axioms of BTAδ
x � tau � y = x � tau � x T1

x �δ � y = D T2

123

Synchronous cooperation for explicit multi-threading 529

Table 2 Conditions on the
synchronization function (ξ & ξ ′) & ξ ′′ = ξ & (ξ ′ & ξ ′′)

(ξ & ξ ′) & ξ ′′ = (ξ ′ & ξ) & ξ ′′

tau & ξ = ξ

δ & ξ = δ

ξ & δ = δ

Using the equations of Table 2, each concurrent action can be reduced to one of the
following three forms:

– δ;
– a with a ∈ AA;
– a1 & . . . & an with a1, . . . , an ∈ AA (n > 1).

The concurrent action a1 & . . . & an , where a1, . . . , an ∈ AA, represents the act of simulta-
neously performing the atomic actions a1, . . . , an .

A collection of threads that proceed concurrently is assumed to take the form of a sequence,
called a thread vector. Synchronous cooperation is the form of concurrency where at each
stage the actions to be performed by the different threads in the thread vector are all performed
simultaneously. In earlier work, see e.g. [7,13,14], we have elaborated forms of concurrency
where the actions to be performed by the different threads involved are interleaved according
to some deterministic interleaving strategy. In that work, we have also elaborated several
interleaving strategies that support thread forking. All of them deal with imperfect forking,
i.e. forking off a thread may be blocked and/or may fail. In this paper, we cover only perfect
forking. We believe that perfect forking is a suitable abstraction when studying program
parallelization. Unless capacity problems arise with regard to forking, it needs not block or
fail. We believe that software tools responsible for program parallelization should see to it
that such capacity problems will never arise.

TAsc has the constants and operators of BTAδ and in addition the following operators:

– the unary synchronous cooperation operator ‖s;
– the ternary forking postconditional composition operator _ � nt(_) � _;
– for each ξ ∈ CAδ , a binary reply conditional operator _ � yξ � _.

The synchronous cooperation operator is a unary operator of which the operand denotes a
sequence of threads. Like action prefixing, we introduce forking prefixing as an abbreviation:
nt(p) ◦ q , where p and q are terms over the signature of TAsc, abbreviates q � nt(p) � q .
Henceforth, the postconditional composition operators introduced in Sect. 2.1 will be called
non-forking postconditional composition operators.

The forking postconditional composition operator has the same shape as non-forking post-
conditional composition operators. Formally, no action is involved in forking postconditional
composition. However, for an operational intuition, in p � nt(r) �q , nt(r) can be considered
a thread forking action. It represents the act of forking off thread r . Like with real actions,
a reply is produced. We consider the case where forking off a thread will never be blocked
or fail. In that case, it always produces a positive reply. The action tau arises as a residue
in both the thread forking off a thread and the thread being forked off. In that way, those
threads keep pace with the other threads that proceed concurrently. In [7], nt(r) was formally
considered a thread forking action. We experienced afterwards that this leads to unnecessary
complications in expressing definitions and results concerning the projective limit model for
the thread algebra developed in this paper (see Sect. 3).

123

530 J. A. Bergstra, C. A. Middelburg

Table 3 Axioms for synchronous cooperation with perfect forking

‖s(〈 〉) = S SCf1

‖s(α � 〈S〉� β) = ‖s(α � β) SCf2

‖s(α � 〈D〉� β) = D SCf3

‖s(〈x1 �ξ1 � y1〉� . . . � 〈xn �ξn � yn〉) =
ξ1 & . . . & ξn ◦ ‖s(〈x1 �yξ1 � y1〉� . . . � 〈xn �yξn � yn〉) SCf4

‖s(α � 〈x �nt(z) � y〉� β) = ‖s(α � 〈tau ◦ x〉� 〈tau ◦ z〉� β) SCf5

‖s(α � 〈x �yξ � y〉� β) = ‖s(α � 〈x〉� β) �yξ � ‖s(α � 〈y〉� β) SCf6

Table 4 Axioms for reply
conditionals x �ξ � y = ξ ◦ (x �yξ � y) RC1

ξ & ξ ′ �= δ⇒ x �yξ&ξ ′ � y = x �yξ ′ � y RC2

x �ytau � y = x RC3

x �yδ � y = x RC4

x �ya � x = x RC5

(x �ya � y) �ya � z = x �ya � z RC6

x �ya � (y �ya � z) = x �ya � z RC7

(x �ya � y) �yb � z = (x �yb � z) �ya � (y �yb � z) RC8

x �ya � (y �yb � z) = (x �ya � y) �yb � (x �ya � z) RC9

The reply conditional operators _ � yξ �_ are auxiliary operators needed to deal properly
with the replies produced for actions that are performed simultaneously on account of syn-
chronous cooperation of threads. Suppose that ξ1 & . . . & ξn is the last action performed. Let
p and q be closed terms over the signature of TAsc, and let ξ ∈ {ξ1, . . . , ξn}. Then p � yξ �q
behaves as p if processing of ξ alone would have led to the reply T and it behaves as q if
processing of ξ alone would have led to the reply F. The case where ξ �∈ {ξ1, . . . , ξn} is irre-
levant to synchronous cooperation. Nothing is stipulated about the behaviour of p � yξ � q
in this case. In fact, it may differ from one execution environment to another.

The axioms for synchronous cooperation with perfect forking are given in Table 3.1 In this
table, ξ1, . . . , ξn and ξ stand for arbitrary members of CAδ . The axioms for reply conditionals
are given in Table 4. In this table, ξ and ξ ′ stand for arbitrary members of CAδ and a and b
stand for arbitrary members of AA.

The crucial axioms for synchronous cooperation with perfect forking are axioms SCf4
and SCf5. Axiom SCf4 expresses that, in the case where each thread in the thread vector
can perform an action, first the actions to be performed by the different threads are all
performed simultaneously and after that the synchronous cooperation proceeds as if the
actions performed by the different threads were performed alone. Axiom SCf5 expresses
that, in the case where some threads in the thread vector can fork off a thread, forking off
threads takes place such that the threads forking off a thread and the threads being forked off
keep pace with the other threads in the thread vector. The crucial axiom for reply conditionals

1 We write 〈 〉 for the empty sequence, 〈d〉 for the sequence having d as sole element, and α � β for the
concatenation of finite sequences α and β. We assume the usual laws for concatenation of finite sequences.

123

Synchronous cooperation for explicit multi-threading 531

is axiom RC1. This axiom expresses that the behaviour of a reply conditional for the last
action performed is determined by the reply to which the processing of that action has led.

Axiom RC2 reflects that, for ξ and ξ ′ such that ξ &ξ ′ �= δ, the reply to which the processing
of ξ &ξ ′ leads is the reply to which the processing of ξ ′ leads. An alternative to axiom RC2 is

ξ & ξ ′ �= δ⇒ x � yξ&ξ ′ � y = (x � yξ � y) � yξ ′ � y,

which reflects that, for ξ and ξ ′ such that ξ & ξ ′ �= δ, the reply to which the processing of
ξ & ξ ′ leads is the conjunction of the reply to which the processing of ξ leads and the reply to
which the processing of ξ ′ leads. This alternative would result in a slightly different theory.
Both axiom RC2 and the alternative are plausible, but we believe that the alternative would
complicate the investigation of program parallelization slightly.

Axiom RC4 looks odd: δ blocks a thread because it does not lead to any reply. Axiom
RC4 stipulates that a reply conditional for δ behaves as if blocking of a thread leads to a
positive reply. An alternative to axiom RC4 is

x � yδ � y = y,

which stipulates that a reply conditional for δ behaves as if blocking of a thread leads to a
negative reply. The choice between axiom RC4 and this alternative makes little difference:
each occurrence of a reply conditional for δ introduced by applying axioms of TAsc is always
a subterm of a term that is derivably equal to D.

Example 2 Consider the term ‖s(〈inc1 ◦S〉� 〈inc2 ◦S〉), which according to the axioms of
TAsc equals inc1 & inc2 ◦S. Take the synchronization function & such that inc1 & inc2 �= δ,
which amounts to assuming that each execution environment can process inc1 and inc2 at the
same time. Then, in any execution environment, ‖s(〈inc1 ◦S〉� 〈inc2 ◦S〉) will first perform
inc1 and inc2 simultaneously and then terminate. In an execution environment as described
in Example 1, but now with two counters, simultaneously performing inc1 and inc2 results
in incrementing two counters at once. Notice that the term ‖s(〈nt(inc2 ◦ S) ◦ (inc1 ◦ S)〉),
which involves thread forking, equals tau ◦ ‖s(〈inc1 ◦ S〉� 〈inc2 ◦ S〉).

Henceforth, we write TTAsc for the set of all closed terms over the signature of TAsc.
The set B of basic terms is inductively defined by the following rules:

– S, D ∈ B;
– if p ∈ B, then tau ◦ p ∈ B;
– if ξ ∈ BA and p, q ∈ B, then p � ξ � q ∈ B;
– if p, q, r ∈ B, then p � nt(r) � q ∈ B;
– if ξ ∈ BA and p, q ∈ B, then p � yξ � q ∈ B.

We write B0 for the set of all terms from B in which no subterm of the form p � nt(r) � q
occurs. Clearly, B is a subset of TTAsc . Each term from TTAsc can be reduced to a term from B.

Theorem 1 (Elimination) For all p ∈ TTAsc , there exists a term q ∈ B such that p = q is
derivable from the axioms of TAsc.

Proof The proof follows a similar line as the proof of Theorem 2 from [14]. This means that
it is a proof by induction on the structure of p in which some cases boil down to proving a
lemma by some form of induction or another, mostly again structural induction. Here, we
have to consider the additional case p ≡ p′� yξ � p′′, where we can restrict ourselves to basic
terms p′ and p′′. This case is easily proved using axioms RC3 and RC4. Moreover, the case

123

532 J. A. Bergstra, C. A. Middelburg

p ≡ ‖s(〈p′1〉� . . .�〈p′n〉), where we can restrict ourselves to basic terms p′1, . . . , p′n , cannot
be proved by induction on the sum of the depths plus one of p′1, . . . , p′n and case distinction
on the structure of p′1. Instead, it is proved by induction on ν(p), where ν : TTAsc → N is
defined by

ν(S) = 1,

ν(D) = 1,

ν(tau ◦ p) = ν(p)+ 1,

ν(p � ξ � q) = ν(p)+ ν(q)+ 1 if ξ �= tau,

ν(p � nt(r) � q) = ν(p)+ ν(r)+ 3,

ν(p � yξ � q) = ν(p)+ ν(q),

ν(‖s(〈p1〉� . . . � 〈pn〉)) = ν(p1)+ · · · + ν(pn)+ 1,

and case distinction according to the left-hand sides of the axioms for synchronous coopera-
tion, which yields an exhaustive case distinction. The proofs for the different cases go similar.
We sketch here the proof for the case corresponding to the left-hand side of axiom SCf5. It is
the case where p′i ≡ p′′� nt(r ′′) �q ′′ for some i ∈ [1, n]. In this case, if follows from axiom
SCf5 and the definition of ν that there exists a term p′ such that p = p′ is derivable from
the axioms of TAsc and ν(p) = ν(p′) + 1. Because p = p′ and ν(p) > ν(p′), it follows
immediately from the induction hypothesis that there exists a term q ∈ B such that p = q is
derivable from the axioms of TAsc. �

The function ν defined in the proof of Theorem 1 is used in coming proofs as well. The
following is a useful corollary from the proof of Theorem 1.

Corollary 1 For all p1, . . . , pn ∈ B, there exists a term q ∈ B0 such that ‖s(〈p1〉� . . . �

〈pn〉) = q is derivable from the axioms of TAsc.

This corollary implies that each closed term from TTAsc in which all subterms of the form
p � nt(r) � q occur in a subterm of the form ‖s(〈p1〉� . . . � 〈pn〉), can be reduced to a term
from B in which no subterm of the form p � nt(r) � q occurs.

The following lemma will be used in the proof of Proposition 13.

Lemma 1 Let p0 ∈ B0, and let p1, . . . , pn ∈ B. Then ‖s(〈p0〉� . . . � 〈pn〉) = ‖s(〈p0〉�

〈‖s(〈p1〉� . . . � 〈pn〉)〉).

Proof This is straightforwardly proved by induction on the structure of p0, and in the case
p0 ≡ p′� ξ � p′′ by induction on ν(p1)+ · · ·+ ν(pn) and case distinction according to the
left-hand side of the axioms for synchronous cooperation. Moreover, in the case p0 ≡ S, it
has to be proved that ‖s(〈p1〉� . . . � 〈pn〉) = ‖s(〈‖s(〈p1〉� . . . � 〈pn〉)〉). This is proved
similarly. �

We have taken the operator ‖s for a unary operator of which the operand denotes a sequence
of threads. This matches well with the intuition that synchronous cooperation operates on
a thread vector. We can look upon the operator ‖s as if there is actually an n-ary operator,
of which the operands denote threads, for every n ∈ N. In Sect. 3, we will look upon the
operator ‖s in this way for the purpose of more concise expression of definitions and results
concerning the projective limit model for the thread algebra developed in this paper.

123

Synchronous cooperation for explicit multi-threading 533

2.3 Conditional action repetition

We extend TAsc with conditional action repetition. The result is called TA∗sc.
We add, for each ξ ∈ Aδ and b ∈ {T, F}, a unary conditional action repetition operator

ξ ∗b _ to TAsc. Let p be a closed term over the signature of TA∗sc. Then ξ ∗T p performs ξ

as many times as needed for a positive reply, and then proceeds as p. In the case of ξ ∗F p,
the role of the reply is reversed. The axioms for conditional action repetition are given in
Table 5. In this table, ξ stands for an arbitrary member of Aδ .

Example 3 Consider the term dec ∗F (inc ◦ S) and an execution environment as described
in Example 1. In this execution environment, dec ∗F (inc ◦S) will first perform dec as many
times as needed for a negative reply, next perform inc, and then terminate. At the moment of
termination, the value of the counter will be one because the processing of dec will lead to a
negative reply only when the counter is zero.

We introduce split-action prefixing as an abbreviation: ξ/ξ ′ ◦ p, where p is a term over
the signature of TA∗sc and ξ, ξ ′ ∈ Aδ , abbreviates p � ξ � (ξ ′ ∗T p). This means that ξ/ξ ′ ◦ p
performs ξ once and next ξ ′ as many times as needed for a positive reply, and then proceeds
as p. If the processing of ξ produces a positive reply, then ξ ′ is not at all performed.

Henceforth, we write TTA∗sc
for the set of all closed terms over the signature of TA∗sc.

Below, we introduce a subset C of TTA∗sc
which is reminiscent of B. The significance of C

is that several properties that need to be proved for all terms from some subset of C can be
proved for all terms from C by structural induction in a straightforward manner.

The set C of semi-basic terms is inductively defined by the following rules:

– S, D ∈ C;
– if p ∈ C, then tau ◦ p ∈ C;
– if ξ ∈ BA and p, q ∈ C, then p � ξ � q ∈ C;
– if p, q, r ∈ C, then p � nt(r) � q ∈ C;
– if ξ ∈ BA and p, q ∈ C, then p � yξ � q ∈ C;
– if ξ ∈ BA and p ∈ C, then ξ ∗T p ∈ C and ξ ∗F p ∈ C.

We write C0 for the set of all terms from C in which no subterm of the form p � nt(r) � q
occurs. Clearly, B is a subset of C and C is a subset of TTA∗sc

. Terms from C with a subterm

of the form ξ ∗T p or the form ξ ∗F p cannot be reduced to terms from B. The projection
operators introduced in Sect. 2.4 enable a kind of approximate reduction for terms from C.

We write p · q , where p ∈ C0 and q ∈ TTA∗sc
, for p with each occurrence of S replaced

by q . On purpose, this notation is suggestive of sequential composition. However, we use ·
to denote a syntactic operation, i.e. an operation on terms. This notation will turn out to be
convenient when formulating properties relevant to program parallelization.

2.4 Approximation induction principle

Each closed term over the signature of TAsc denotes a finite thread, i.e. a thread of which the
length of the sequences of actions that it can perform is bounded. However, not each closed
term over the signature of TA∗sc denotes a finite thread: conditional action repetition gives

Table 5 Axioms for conditional
action repetition ξ ∗T x = x �ξ � (ξ ∗T x) CAR1

ξ ∗F x = (ξ ∗F x) �ξ � x CAR2

123

534 J. A. Bergstra, C. A. Middelburg

rise to infinite threads. Closed terms over the signature of TA∗sc that denote the same infinite
thread cannot always be proved equal by means of the axioms of TA∗sc. We introduce the
approximation induction principle to reason about infinite threads.

The approximation induction principle, AIP in short, is based on the view that two threads
are identical if their approximations up to any finite depth are identical. The approximation
up to depth n of a thread is obtained by cutting it off after performing a sequence of actions
of length n.

AIP is the infinitary conditional equation given in Table 6. Here, following [6], approxi-
mation of depth n is phrased in terms of a unary projection operator πn . The projection
operators are defined inductively by means of the axioms given in Table 7. In this table, ξ

stands for an arbitrary member of A.
Let p ∈ TTA∗sc

. Then it follows from AIP that:

x = p � ξ � x ⇒ x = ξ ∗T p,

x = x � ξ � p⇒ x = ξ ∗F p.

Hence, the solutions of the recursion equations x = p � ξ � x and x = x � ξ � p denoted
by the closed terms ξ ∗T p and ξ ∗F p, respectively, are unique solutions of those equations
in models for TA∗sc in which AIP holds. In Sect. 3, we will construct models for TAsc and
TA∗sc, in which AIP holds.

The properties of the projection operators stated in the following two lemmas are used in
coming proofs.

Lemma 2 For all p ∈ TTA∗sc
and n, m ∈ N, πn(πm(p)) = πmin(n,m)(p) is derivable from

the axioms of TA∗sc and axioms P0–P5.

Proof This is easily proved by induction on min(n, m), and in the inductive case by induction
on the structure of p. �

Lemma 3 For all p1, . . . , pm ∈ TTA∗sc
and n ∈ N, πn(‖s(〈p1〉� . . .�〈pm〉)) = ‖s(〈πn(p1)〉

� . . . � 〈πn(pm)〉) is derivable from the axioms of TA∗sc and axioms P0–P5.

Proof This is straightforwardly proved by induction on n, and in the inductive case by
induction on ν(p1)+ · · · + ν(pm) and case distinction according to the left-hand side of the
axioms for synchronous cooperation. �

Table 6 Approximation
induction principle

∧
n≥0 πn(x) = πn(y)⇒ x = y AIP

Table 7 Axioms for projection
π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(x �ξ � y) = πn(x) �ξ �πn(y) P3

πn+1(x �nt(z) � y) = πn(x) �nt(πn(z)) �πn(y) P4

πn+1(x �yξ � y) = πn+1(x) �yξ �πn+1(y) P5

123

Synchronous cooperation for explicit multi-threading 535

The projection operators enable a kind of approximate reduction for each term from C.
This is stated in the following proposition.

Proposition 1 For all p ∈ C and n ∈ N, there exists a term q ∈ B such that πn(p) = q is
derivable from the axioms of TA∗sc and axioms P0–P5.

Proof This is easily proved by induction on n, and in the inductive case by induction on the
structure of p. �

Proposition 1 can be generalized from C to TTA∗sc
, but first we consider a much smaller

generalization.

Proposition 2 For all p1, . . . , pm ∈ C and n ∈ N, there exists a term q ∈ B0 such that
πn(‖s(〈p1〉� . . . � 〈pm〉)) = q is derivable from the axioms of TA∗sc and axioms P0–P5.

Proof This follows immediately from Lemma 3, Proposition 1 and Corollary 1. �

The following theorem generalizes Proposition 1 from C to TTA∗sc
.

Theorem 2 For all p ∈ TTA∗sc
and n ∈ N, there exists a term q ∈ B such that πn(p) = q is

derivable from the axioms of TA∗sc and axioms P0–P5.

Proof The proof follows the same line as the proof of Proposition 1. Here, we have to consider
the additional case p ≡ ‖s(〈p1〉� . . . � 〈pm〉), where p1, . . . , pm ∈ TTA∗sc

. By Lemma 3,
πn(‖s(〈p1〉� . . . � 〈pm〉)) = ‖s(〈πn(p1)〉� . . . � 〈πn(pm)〉). From this and the induction
hypothesis, it follows that πn(‖s(〈p1〉 � . . . � 〈pm〉)) = ‖s(〈p′1〉 � . . . � 〈p′m〉), for some
p′1, . . . , p′m ∈ B. From this and Proposition 2, it follows that πn(‖s(〈p1〉�. . .�〈pm〉)) = q ′,
for some q ′ ∈ B. �

The following proposition states a property of synchronous cooperation that cannot be
proved without AIP in the presence of conditional action repetition.

Proposition 3 For all p ∈ C0 and q ∈ TTA∗sc
, ‖s(p · q) = p · ‖s(q) is derivable from the

axioms of TA∗sc, axioms P0–P5 and AIP.

Proof We begin by proving that for all n ∈ N, πn(‖s(p · q)) = πn(p · ‖s(q)). This is easily
proved by induction on n and in the inductive case by induction on the structure of p, using
Lemma 3. The result then follows by applying AIP. �

This proposition will be used in the proof of Lemma 9.

2.5 Alphabets

To meet in the need for alphabet extraction, we introduce the unary alphabet operator α. Let
p ∈ TTA∗sc

. Then α(p) is the set of all actions from AA that may be performed by p at some
stage. The alphabet axioms are given in Table 8. In this table, p1, . . . , pm , p, q and r stand
for arbitrary members of TTA∗sc

, ξ stands for an arbitrary member of CAδ , a1, . . . , an stand
for arbitrary members of AA, and b stands for an arbitrary member of {T, F}.

123

536 J. A. Bergstra, C. A. Middelburg

Table 8 Alphabet axioms
α(S) = ∅
α(D) = ∅
α(p �ξ � q) = α(p) ∪ α(q) ∪ α(ξ)

α(p �nt(r) � q) = α(p) ∪ α(q) ∪ α(r)

α(p �yξ � q) = α(p) ∪ α(q)

α(ξ ∗b p) = α(ξ) ∪ α(p)

α(‖s(〈 〉)) = ∅
α(‖s(〈p1〉� . . . � 〈pm 〉)) = α(p1) ∪ . . . ∪ α(pm)

α(δ) = ∅
α(a1 & . . . & an) = {a1, . . . , an}

The following proposition concerns the alphabet of projections.

Proposition 4 For all p ∈ TTA∗sc
and n ∈ N, we have α(πn(p)) ⊆ α(p).

Proof This is straightforwardly proved by induction on n, and in the inductive case by
induction on the structure of p. �

The alphabets of threads play a part in the properties of threads that will be given in
Sect. 5.2.

2.6 Structural operational semantics of TA∗sc

We present a structural operational semantics for TA∗sc. This structural operational semantics
is intended to give an operational intuition of the constants and operators of TA∗sc. We do not
construct a model for TA∗sc based on the structural operational semantics and an appropriate
version of bisimilarity. In Sect. 3.1, an alternative model for TA∗sc is constructed.

In the structural operational semantics, we represent an execution environment by a func-
tion ρ : CA∗ → (CA → {T, F}) that satisfies the following conditions:2

– if α ∈ CA∗, a1, . . . , an+1 ∈ AA are such that a1 & . . . & an+1 �= δ, and α′ ∈ perm(〈a1〉�

. . . � 〈an〉), then ρ(〈a1 & . . . & an+1〉� α) = ρ(α′ � 〈an+1〉� α);
– if α ∈ CA∗, then ρ(〈tau〉� α) = ρ(α);
– if α ∈ CA∗ and ξ, ξ ′ ∈ CA are such that ξ & ξ ′ �= δ, then ρ(α)(ξ & ξ ′) = ρ(α)(ξ ′);
– if α ∈ CA∗, then ρ(α)(tau) = T;
– ifα ∈ CA∗ and ξ, ξ ′ ∈ CA are such that ξ&ξ ′ �= δ, thenρ(α�〈ξ&ξ ′〉)(ξ) = ρ(α�〈ξ 〉)(ξ)

and ρ(α � 〈ξ & ξ ′〉)(ξ ′) = ρ(α � 〈ξ ′〉)(ξ ′).
We write E for the set of all those functions. Let ρ ∈ E , and let ξ ∈ CA. Then the derived

execution environment ∂
∂ξ

ρ is defined by ∂
∂ξ

ρ(α) = ρ(〈ξ 〉� α).
The chosen representation of execution environments is based on the assumption that it

depends at any stage only on the history, i.e. the sequence of actions processed before, and the
action being processed whether the reply produced is positive or negative. This is a realistic

2 We write D∗ for the set of all finite sequences with elements from set D, and perm(α) for the set of all
permutations of finite sequence α.

123

Synchronous cooperation for explicit multi-threading 537

assumption for deterministic execution environments. If the processing of an action amounts
to the simultaneous processing of two or more other actions, then the replies produced for each
of those actions are considered to be available at completion of the processing as well. For that
reason, execution environments cannot simply be represented by functions ρ :CA∗ → {T, F}.

We write Ant for the set A ∪ {nt(p) | p ∈ TTA∗sc
}.

The following transition relations on closed terms are used in the structural operational
semantics of TA∗sc:

– a unary relation 〈_, ρ〉↓ for each ρ ∈ E ;
– a unary relation 〈_, ρ〉↑ for each ρ ∈ E ;

– a binary relation 〈_, ρ〉 ζ−→〈_, ρ′〉 for each ζ ∈ Ant and ρ, ρ′ ∈ E .

These transition relations can be explained as follows:

– 〈p, ρ〉↓: in execution environment ρ, thread p cannot but terminate successfully;
– 〈p, ρ〉↑: in execution environment ρ, thread p cannot but become inactive;

– 〈p, ρ〉 ξ−→〈p′, ρ′〉, where ξ ∈ A: in execution environment ρ, thread p can perform action
ξ and after that proceed as thread p′ in execution environment ρ′;

– 〈p, ρ〉 nt(p′′)−−−→ 〈p′, ρ′〉: in execution environment ρ, thread p can fork off thread p′′ and
after that proceed as thread p′ in execution environment ρ′.

The structural operational semantics of TA∗sc is described by the transition rules given in
Tables 9, 10 and 11. In these tables, k ≥ l > 0, ξ and ξ ′ stand for arbitrary actions from A,
and ζi (i ∈ I) stands for an arbitrary element from Ant. Moreover, b stands for an arbitrary
bijective function from [1, |I |] to I such that, for all n ∈ [1, |I |], b(n) ≤ b(|I |).

The third transition rule from Table 10 looks more complicated than it actually is. It can be
explained as follows: if the threads in a thread vector can be divided into active threads that can
make a step by performing an action or forking off a thread and threads that can terminate
successfully, and it is possible that all steps concerned are made simultaneously, then the
synchronous cooperation of the threads in the thread vector can make all steps concerned
simultaneously and after that proceed as the synchronous cooperation of what is left of the
active threads in the thread vector, where each thread that forked off a thread gives rise to an
additional thread next to it. The threads in the resulting thread vector may also be permuted,
with the exception of the thread or threads resulting from the last active thread in the original
thread vector. The execution environment changes in accordance with the steps made.

Example 4 Consider the term ‖s(〈a ◦ (a′ ◦S)〉� 〈nt(b◦S)◦ (b′ ◦S)〉� 〈c◦ (c′ ◦S)〉), where
a, a′, b, b′, c, c′ ∈ AA. Suppose that a & c �= δ. Applying the fourth and fifth transition rules

Table 9 Transition rules of BTAδ

〈S, ρ〉↓ 〈D, ρ〉↑

〈x �δ � y, ρ〉↑
ρ(〈ξ〉)(ξ) = T

〈x �ξ � y, ρ〉 ξ−→ 〈x, ∂
∂ξ

ρ〉
ρ(〈ξ〉)(ξ) = F

〈x �ξ � y, ρ〉 ξ−→ 〈y, ∂
∂ξ

ρ〉

123

538 J. A. Bergstra, C. A. Middelburg

Table 10 Additional transition rules for TAsc

〈x1, ρ〉↓, . . . , 〈xk , ρ〉↓
〈‖s(〈x1〉� . . . � 〈xk 〉), ρ〉↓

〈xl , ρ〉↑
〈‖s(〈x1〉� . . . � 〈xk 〉), ρ〉↑

{〈xi , ρ〉 ζi−→ 〈x ′i , ρ′i 〉 | i ∈ I }, {〈x j , ρ〉↓ | j ∈ J }, ζ ′b(1)
& . . . & ζ ′b(|I |) �= δ,

I �= ∅, I ∩ J = ∅, I ∪ J = [1, k]
〈‖s(〈x1〉� . . . � 〈xk 〉), ρ〉

ζ ′b(1)
&...&ζ ′b(|I |)−−−−−−−−−−→ 〈‖s(α′b(1)

� . . . � α′b(|I |)),
∂

∂ζ ′b(1)
&...&ζ ′b(|I |)

ρ〉
whereα′i ≡ 〈x ′i 〉 and ζ ′i = ζi if ζi ∈ CA,

α′i ≡ 〈xi 〉� 〈p〉and ζ ′i = tau if ζi = nt(p)

〈x �nt(z) � y, ρ〉 nt(z)−−−→ 〈x, ρ〉
〈x, ρ〉↓

〈x �yδ � y, ρ〉↓
〈x, ρ〉↑

〈x �yδ � y, ρ〉↑
〈x, ρ〉 ξ ′−→ 〈x ′, ρ′〉

〈x �yδ � y, ρ〉 ξ ′−→ 〈x ′, ρ′〉
〈x, ρ〉↓, ρ(〈 〉)(ξ) = T

〈x �yξ � y, ρ〉↓
〈x, ρ〉↑, ρ(〈 〉)(ξ) = T

〈x �yξ � y, ρ〉↑
〈x, ρ〉 ξ ′−→ 〈x ′, ρ′〉, ρ(〈 〉)(ξ) = T

〈x �yξ � y, ρ〉 ξ ′−→ 〈x ′, ρ′〉
〈y, ρ〉↓, ρ(〈 〉)(ξ) = F

〈x �yξ � y, ρ〉↓
〈y, ρ〉↑, ρ(〈 〉)(ξ) = F

〈x �yξ � y, ρ〉↑
〈y, ρ〉 ξ ′−→ 〈y′, ρ′〉, ρ(〈 〉)(ξ) = F

〈x �yξ � y, ρ〉 ξ ′−→ 〈y′, ρ′〉

Table 11 Additional transition rules for TA∗sc

〈δ ∗T x, ρ〉↑
ρ(〈ξ〉)(ξ) = T

〈ξ ∗T x, ρ〉 ξ−→ 〈x, ∂
∂ξ

ρ〉
ρ(〈ξ〉)(ξ) = F

〈ξ ∗T x, ρ〉 ξ−→ 〈ξ ∗T x, ∂
∂ξ

ρ〉

〈δ ∗F x, ρ〉↑
ρ(〈ξ〉)(ξ) = T

〈ξ ∗F x, ρ〉 ξ−→ 〈ξ ∗F x, ∂
∂ξ

ρ〉
ρ(〈ξ〉)(ξ) = F

〈ξ ∗F x, ρ〉 ξ−→ 〈x, ∂
∂ξ

ρ〉

in Table 9, we obtain:

〈a ◦ (a′ ◦ S), ρ〉 a−→〈a′ ◦ S, ∂
∂a ρ〉,

〈nt(b ◦ S) ◦ (b′ ◦ S), ρ〉 nt(b◦S)−−−−→ 〈b′ ◦ S, ρ〉,
〈c ◦ (c′ ◦ S), ρ〉 c−→〈c′ ◦ S, ∂

∂c ρ〉.
Next, applying the third transition rule in Table 10, we obtain

〈‖s(〈a ◦ (a′ ◦ S)〉� 〈nt(b ◦ S) ◦ (b′ ◦ S)〉� 〈c ◦ (c′ ◦ S)〉), ρ〉
a&tau&c−−−−−→ 〈‖s(〈a′ ◦ S〉� 〈b′ ◦ S〉� 〈b ◦ S〉� 〈c′ ◦ S〉), ∂

∂a&tau&c ρ〉,
because a & c �= δ.

Construction of a model for TA∗sc based on the structural operational semantics of TA∗sc
and an appropriate version of bisimilarity is feasible only if that version of bisimilarity is a
congruence with respect to the operators of TA∗sc. To our knowledge, this cannot be established

123

Synchronous cooperation for explicit multi-threading 539

by means of results from the theory of structural operational semantics concerning transition
rule formats guaranteeing that some version of bisimilarity is a congruence. It appears that
some results from [25,26] are the nearest obtainable, but there are still difficult issues that
must be dealt with. One of those issues is that Theorem 34 from [26] is not applicable for
the following reason: in the third transition rule from Table 10, ρ′i �= ∂

∂ζ ′b(1)
&...&ζ ′b(|I |)

ρ for all

i ∈ I . We believe that this point does not mean that the version of bisimilarity concerned is
not a congruence, but that sufficient conditions for it that are weaker than the ones from the
above-mentioned theorem must be found. Another issue is that transition labels containing
terms are found in the structural operational semantics of TA∗sc: this is not covered in [26]. We
believe that adaptation on the lines of [25] is possible, but it is not a trivial matter. Exploring
all this is considered outside the scope of this paper. Because a projective limit model for
TA∗sc is most appropriate to the justification of the induction principle that is introduced in
Sect. 5.1, we decided to construct a projective limit model instead of a model based on the
structural operational semantics.

3 Projective limit model for TA∗
sc

In this section, we construct the projective limit model for TA∗sc. First, we construct the
projective limit model for TAsc. Next, we make the domain of this model into a metric space
and show that every guarded recursion equation has a unique solution in this domain using
Banach’s fixed point theorem. Finally, we expand the projective limit model for TAsc to a
model for TA∗sc using this uniqueness result.

3.1 Projective limit model for TAsc

We construct the projective limit model for TAsc. In this model infinite threads are represented
by infinite sequences of finite approximations.

To express definitions more concisely, the interpretations of the constants and operators
from the signature of TAsc in the initial model for TAsc and the projective limit model for
TAsc are denoted by the constants and operators themselves. The ambiguity thus introduced
could be obviated by decorating the symbols, with different decorations for different models,
when they are used to denote their interpretation in a model. However, in this paper, it is
always immediately clear from the context how the symbols are used. Moreover, we believe
that the decorations are more often than not distracting. Therefore, we leave it to the reader
to mentally decorate the symbols wherever appropriate.

The projective limit construction is known as the inverse limit construction in domain
theory, the theory underlying the approach of denotational semantics for programming lan-
guages (see e.g. [27]). In process algebra, this construction has been applied for the first time
by Bergstra and Klop [4].

We will write Aω for the domain of the initial model for TAsc. Aω consists of the equiva-
lence classes of basic terms with respect to the equivalence induced by the axioms of TAsc.
In other words, modulo equivalence, Aω is B. Henceforth, we will identify basic terms with
their equivalence class.

Each element of Aω represents a finite thread, i.e. a thread of which the length of the
sequences of actions that it can perform is bounded. Below, we will construct a model that
covers infinite threads as well. In preparation for that, we define for all n a function that cuts
off finite threads from Aω after performing a sequence of actions of length n.

123

540 J. A. Bergstra, C. A. Middelburg

For all n ∈ N, we have the projection operation πn : Aω → Aω, inductively defined by

π0(p) = D,

πn+1(S) = S,

πn+1(D) = D,

πn+1(p � ξ � q) = πn(p) � ξ � πn(q),

πn+1(p � nt(r) � q) = πn(p) � nt(πn(r)) � πn(q),

πn+1(p � yξ � q) = πn+1(p) � yξ � πn+1(q).

For p ∈ Aω, πn(p) is called the n-th projection of p. It can be thought of as an approximation
of p. If πn(p) �= p, then πn+1(p) can be thought of as the closest better approximation of p. If
πn(p) = p, then πn+1(p) = p as well. For all n ∈ N, we will write An for {πn(p) | p ∈ Aω}.

The semantic equations given above to define the projection operations have the same
shape as the axioms for the projection operators introduced in Sect. 2.4. We will come back
to the definition of the projection operations at the end of Sect. 3.3.

The properties of the projection operations stated in the following two lemmas will be
used frequently in the sequel.

Lemma 4 For all p ∈ Aω and n, m ∈ N, we have πn(πm(p)) = πmin(n,m)(p).

Proof This is easily proved by induction on the structure of p. �
Lemma 5 For all p1, . . . , pm ∈ Aω and n ∈ N, we have πn(‖s(〈p1〉 � . . . � 〈pm〉)) =
‖s(〈πn(p1)〉� . . . � 〈πn(pm)〉).
Proof This is straightforwardly proved by induction on ν(p1) + · · · + ν(pm) and case dis-
tinction according to the left-hand sides of the axioms for synchronous cooperation. �

In the projective limit model, which covers finite and infinite threads, threads are repre-
sented by projective sequences, i.e. infinite sequences (pn)n∈N

of elements of Aω such that
pn ∈ An and pn = πn(pn+1) for all n ∈ N. In other words, a projective sequence is a
sequence of which successive components are successive projections of the same thread.
The idea is that any infinite thread is fully characterized by the infinite sequence of all its
finite approximations. We will write A∞ for {(pn)n∈N

|∧n∈N
(pn ∈ An∧ pn = πn(pn+1))}.

The projective limit model for TAsc consists of the following:

– the set A∞, the domain of the projective limit model;
– an element of A∞ for each constant of TAsc;
– an operation on A∞ for each operator of TAsc;

where those elements of A∞ and operations on A∞ are defined as follows:

S = (πn(S))n∈N
,

D = (πn(D))n∈N
,

(pn)n∈N
� ξ � (qn)n∈N

= (πn(pn � ξ � qn))n∈N
,

(pn)n∈N
� nt((rn)n∈N

) � (qn)n∈N
= (πn(pn � nt(rn) � qn))n∈N

,

(pn)n∈N
� yξ � (qn)n∈N

= (πn(pn � yξ � qn))n∈N
,

‖s(〈(p1n)n∈N
〉� . . . � 〈(pm n)n∈N

〉) = (πn(‖s(〈p1n〉� . . . � 〈pm n〉)))n∈N
.

Using Lemmas 4 and 5, we easily prove for (pn)n∈N
, (qn)n∈N

, (rn)n∈N
∈ A∞ and

(p1n)n∈N
, . . . , (pm n)n∈N

∈ A∞:

123

Synchronous cooperation for explicit multi-threading 541

– πn(πn+1(pn+1 � ξ � qn+1)) = πn(pn � ξ � qn);
– πn(πn+1(pn+1 � nt(rn+1) � qn+1)) = πn(pn � nt(rn) � qn);
– πn(πn+1(pn+1 � yξ � qn+1)) = πn(pn � yξ � qn);
– πn(πn+1(‖s(〈p1n+1〉� . . . � 〈pm n+1〉))) = πn(‖s(〈p1n〉� . . . � 〈pm n〉)).
From this and the definition of An , it follows immediately that the operations defined above
are well-defined, i.e. they always yield elements of A∞.

The initial model can be embedded in a natural way in the projective limit model: each
p ∈ Aω corresponds to (πn(p))n∈N

∈ A∞. We extend projection to an operation on
A∞ by defining πm((pn)n∈N

) = (p′n)n∈N
, where p′n = pn if n < m and p′n = pm if

n ≥ m. That is, πm((pn)n∈N
) is pm embedded in A∞ as described above. Henceforth,

we will identify elements of Aω with their embedding in A∞ where elements of A∞ are
concerned.

For each ξ ∈ Aδ , the operations corresponding to the conditional action repetition opera-
tors ξ ∗T _ and ξ ∗F _ of TA∗sc can be thought of as solutions in A∞ of parametrized equations
suggested by axioms CAR1 and CAR2. That is, for all p ∈ A∞, ξ∗T p is thought of as a
solution in A∞ of the equation x = p � ξ � x and ξ∗F p is thought of as a solution in A∞ of
the equation x = x � ξ � p. The question is whether these equations have unique solutions
in A∞. This question can be answered in the affirmative by mean of a result that will be
established in Sect. 3.3.

3.2 Metric space structure for projective limit model

In Sect. 3.3, we will introduce the notion of guarded recursion equation and show that every
guarded recursion equation has a unique solution in A∞. Following [22] to some extent, we
make A∞ into a metric space to establish the uniqueness of solutions of guarded recursion
equations using Banach’s fixed point theorem.

Supplementary, in Appendix A, we make A∞ into a complete partial ordered set and
show, using Tarski’s fixed point theorem, that every recursion equation has a least solution
in A∞ with respect to the partial order relation concerned.

We remark that metric spaces have also been applied in concurrency theory by de Bakker
and others to solve domain equations for process domains [2] and to establish uniqueness
results for recursion equations [1].

In the remainder of this subsection, as well as in Sect. 3.3, we assume known the notions
of metric space, completion of a metric space, dense subset in a metric space, continuous
function on a metric space, limit in a metric space and contracting function on a metric space,
and Banach’s fixed point theorem. The definitions of the above-mentioned notions concerning
metric spaces and Banach’s fixed point theorem can, for example, be found in [17]. In this
paper, we will consider only ultrametric spaces. A metric space (M, d) is an ultrametric
space if for all p, p′, p′′ ∈ M , d(p, p′) ≤ max{d(p, p′′), d(p′′, p′)}.

We define a distance function d : A∞ × A∞ → R by

d(p, p′) = 2−min{n∈N|πn(p)�=πn(p′)} if p �= p′,
d(p, p′) = 0 if p = p′.

It is easy to verify that (A∞, d) is a metric space. The following theorem summarizes the
basic properties of this metric space.

123

542 J. A. Bergstra, C. A. Middelburg

Theorem 3

1. (A∞, d) is an ultrametric space;
2. (A∞, d) is the metric completion of the metric space (Aω, d ′), where d ′ is the restriction

of d to Aω;
3. Aω is dense in A∞;
4. the operations πn : A∞ → An are continuous;
5. for all p ∈ A∞ and n ∈ N, d(πn(p), p) < 2−n, hence limn→∞ πn(p) = p.

Proof These properties are general properties of metric spaces constructed in the way pursued
here. Proofs of the first three properties can be found in [28]. A proof of the fourth property
can be found in [18]. The fifth property is proved as follows. It follows from Lemma 4,
by passing to the limit and using that the projection operations are continuous and Aω is
dense in A∞, that πn(πm(p)) = πmin(n,m)(p) for p ∈ A∞ as well. Hence, min{m ∈ N |
πm(πn(p)) �= πm(p)} > n, and consequently d(πn(p), p) < 2−n . �
The basic properties given above are used in coming proofs.

The properties of the projection operations stated in the following lemma will be used in
the proof of Theorem 4 given below.

Lemma 6 For all p1, . . . , pm ∈ A∞ and n ∈ N:

πn(p1 � ξ � p2) = πn(πn(p1) � ξ � πn(p2)),

πn(p1 � nt(p3) � p2) = πn(πn(p1) � nt(πn(p3)) � πn(p2)),

πn(p1 � yξ � p2) = πn(πn(p1) � yξ � πn(p2)),

πn(‖s(〈p1〉� . . . � 〈pm〉)) = πn(‖s(〈πn(p1)〉� . . . � 〈πn(pm)〉)).
Proof It is enough to prove these equalities for p1, . . . , pm ∈ Aω. The lemma will then
follow by passing to the limit and using that πn is continuous and Aω is dense in A∞.
For p1, . . . , pm ∈ Aω, the first three equalities follow immediately from Lemma 4 and the
definition of πn and the fourth equality follows immediately from Lemmas 4 and 5. �

In the terminology of metric topology, the following theorem states that all operations in
the projective limit model for TAsc are non-expansive. This implies that they are continuous,
with respect to the metric topology induced by d , in all arguments.

Theorem 4 For all p1, . . . , pm, p′1, . . . , p′m ∈ A∞:

d(p1 � ξ � p2, p′1 � ξ � p′2) ≤ max(d(p1, p′1), d(p2, p′2)),
d(p1 � nt(p3) � p2, p′1 � nt(p′3) � p′2) ≤ max(d(p1, p′1), d(p2, p′2), d(p3, p′3)),
d(p1 � yξ � p2, p′1 � yξ � p′2) ≤ max(d(p1, p′1), d(p2, p′2)),
d(‖s(〈p1〉� . . . � 〈pm〉), ‖s(〈p′1〉� . . . � 〈p′m〉))
≤ max(d(p1, p′1), . . . , d(pm, p′m)).

Proof Let ki = min{n ∈ N | πn(pi) �= πn(p′i)} for i = 1, 2, and let k = min(k1, k2). Then
for all n ∈ N, n < k iff πn(p1) = πn(p′1) and πn(p2) = πn(p′2). From this and the first
equality from Lemma 6, it follows immediately that πk−1(p1� ξ � p2) = πk−1(p′1� ξ � p′2).
Hence, k ≤ min{n ∈ N | πn(p1 � ξ � p2) �= πn(p′1 � ξ � p′2)}, which completes the proof
for the first inequality. The proofs for the other inequalities go analogously. �

123

Synchronous cooperation for explicit multi-threading 543

3.3 Guarded recursion equations

We introduce the notion of guarded recursion equation and show that each guarded recursion
equation has a unique solution in A∞. Before we introduce the notion of guarded recursion
equation, we introduce several other notions relevant to the issue of unique solutions of
recursion equations.

We assume that there is a fixed but arbitrary set of variables X . We will write TP , where
P ⊆ A∞, for the set of all terms over the signature of TAsc with parameters from P; and
T X

P , where P ⊆ A∞ and X ⊆ X , for the set of all terms from TP in which no other variables
than the ones in X have free occurrences.3 The interpretation function [[_]] : TP → ((X →
A∞)→ A∞) of terms with parameters from P ⊆ A∞ is defined as usual for terms without
parameters, but with the additional defining equation [[p]](ρ) = p for parameters p.

Let x1, . . . , xn ∈ X , let X ⊆ {x1, . . . , xn}, let P ⊆ A∞, and let t ∈ T X
P . Moreover, let

ρ : X → A∞. Then the interpretation of t with respect to x1, . . . , xn , written [[t]]x1,...,xn , is
the unique function φ : A∞n → A∞ such that for all p1, . . . , pn ∈ A∞, φ(p1, . . . , pn) =
[[t]](ρ ⊕ [x1 �→ p1] ⊕ · · · ⊕ [xn �→ pn]).4

The interpretation of t with respect to x1, . . . , xn is well-defined because it is independent
of the choice of ρ.

An m-ary operation φ on A∞ is a guarded operation if for all p1, . . . , pm , p′1, . . . , p′m ∈
A∞ and n ∈ N:

πn(p1) = πn(p′1) ∧ · · · ∧ πn(pm) = πn(p′m)

⇒ πn+1(φ(p1, . . . , pm)) = πn+1(φ(p′1, . . . , p′m)).

We say that φ is an unguarded operation if φ is not a guarded operation.
The notion of guarded operation, which originates from [28], supersedes the notion of

guard used in [22].
The notion of guarded operation is defined without reference to metric properties. Howe-

ver, being a guarded operation coincides with having a metric property that is highly relevant
to the issue of unique solutions of recursion equations: an operation on A∞ is a guarded
operation iff it is contracting. This is stated in the following lemma.

Lemma 7 An m-ary operation φ on A∞ is a guarded operation iff for all p1, . . . ,

pm, p′1, . . . , p′m ∈ A∞:

d(φ(p1, . . . , pm), φ(p′1, . . . , p′m)) ≤ 1
2 ·max(d(p1, p′1), . . . , d(pm, p′m)).

Proof Let ki =min{n∈N | πn(pi) �=πn(p′i)} for i=1, . . . , m, and let k=min{k1, . . . , km}.
Then for all n ∈ N, n < k iff πn(p1) = πn(p′1) and … and πn(pm) = πn(p′m). From this, the
definition of a guarded operation and the definition of π0, it follows immediately that φ is a
guarded operation iff for all n < k+1, πn(φ(p1, . . . , pm)) = πn(φ(p′1, . . . , p′m)). Hence, φ
is a guarded operation iff k + 1 ≤ min{n ∈ N | πn(φ(p1, . . . , pm)) �= πn(φ(p′1, . . . , p′m))},
which completes the proof. �

3 A term with parameters is a term in which elements of the domain of a model are used as constants
naming themselves. For a justification of this mix-up of syntax and semantics in case only one model is under
consideration, see e.g. [19].
4 We write [d �→ r] for the function f with dom(f) = {d} such that f (d) = r , and f ⊕ g for the function h
with dom(h) = dom(f)∪dom(g) such that for all d ∈ dom(h), h(d) = f (d) if d �∈ dom(g) and h(d) = g(d)

otherwise.

123

544 J. A. Bergstra, C. A. Middelburg

The notion of guarded term defined below is suggested by the fact, stated in Lemma 7
above, that an operation on A∞ is a guarded operation iff it is contracting. The only guarded
operations, and consequently contracting operations, in the projective limit model for TAsc

are the non-forking and forking postconditional composition operations. Based upon this,
we define the notion of guarded term as follows.

Let P ⊆ A∞. Then the set GP of guarded terms with parameters from P is inductively
defined as follows:

– if p ∈ P , then p ∈ GP ;
– S, D ∈ GP ;
– if ξ ∈ Aδ and t1, t2 ∈ TP , then t1 � ξ � t2 ∈ GP ;
– if t1, t2, t3 ∈ TP , then t1 � nt(t3) � t2 ∈ GP ;
– if ξ ∈ Aδ and t1, t2 ∈ GP , then t1 � yξ � t2 ∈ GP ;
– if t1, . . . , tl ∈ GP , then ‖s(〈t1〉� . . . � 〈tl〉) ∈ GP .

The following lemma states that guarded terms represent operations on A∞ that are
contracting.

Lemma 8 Let x1, . . . , xn ∈ X , let X ⊆ {x1, . . . , xn}, let P ⊆ A∞, and let t ∈ T X
P . Then

t ∈ GP only if for all p1, . . . , pn, p′1, . . . , p′n ∈ A∞:

d([[t]]x1,...,xn (p1, . . . , pn), [[t]]x1,...,xn (p′1, . . . , p′n))

≤ 1
2 ·max{d(p1, p′1), . . . , d(pn, p′n)}.

Proof This is easily proved by induction on the structure of t using Theorem 4, Lemma 7,
and the fact that the non-forking and forking postconditional composition operations are
guarded operations. �

A recursion equation is an equation x = t , where x ∈ X and t ∈ T {x}P for some P ⊆ A∞.
A recursion equation x = t is a guarded recursion equation if t ∈ GP for some P ⊆ A∞.
Let x = t be a recursion equation. Then p ∈ A∞ is a solution of x = t if [[t]]x (p) = p.

Every guarded recursion equation has a unique solution in the projective limit model for
TAsc. This is stated in the following theorem.

Theorem 5 Let x ∈ X , let P ⊆ A∞, and let t ∈ T {x}P be such that t ∈ GP . Then the guarded
recursion equation x = t has a unique solution in the projective limit model for TAsc.

Proof We have from Theorem 3 that (A∞, d) is a complete metric space and from Lemma 8
that [[t]]x is contracting. From this, we conclude by Banach’s fixed point theorem that there
exists a unique p ∈ A∞ such that [[t]]x (p) = p. Hence, the guarded recursion equation
x = t has a unique solution. �

For completeness, we mention how the unique solution of a guarded recursion equation
x = t can be constructed. Define the iterates φn of a unary operation φ on A∞ by induction
on n as follows: φ0(p) = p and φn+1(p) = φ(φn(p)). The unique solution of x = t in A∞
is (πn(([[t]]x)n(D)))n∈N

.

Example 5 The equation x = x � ξ � S, where ξ ∈ A, is a guarded recursion equation. The
unique solution of this recursion equation is the projective sequence (pn)n∈N

, where:

123

Synchronous cooperation for explicit multi-threading 545

p0 = D,

p1 = D � ξ � D,

p2 = (D � ξ � D) � ξ � S,

p3 = ((D � ξ � D) � ξ � S) � ξ � S,

...

Theorem 5 is a considerable generalization of a result on unique solutions of recursion
equations given in [30]. That result can be rephased as follows: every guarded recursion
equation with a right-hand side that contains no other constants and operators than S, D and
_ � ξ � _ (for ξ ∈ Aδ) has a unique solution in the projective limit model for BTAδ .

The projection operations and the distance function as defined in this paper match well
with our intuitive ideas about finite approximations of threads and closeness of threads,
respectively. The suitability of the definitions given in this paper is supported by the fact
that guarded operations coincide with contracting operations. However, it is not at all clear
whether adaptations of the definitions are feasible and will lead to different uniqueness results.

3.4 Expansion of projective limit model for TAsc to model for TA∗sc

The expansion of the projective limit model for TAsc to a model for TA∗sc rests heavily upon
Sects. 3.2 and 3.3.

The projective limit model for TA∗sc is the expansion of the projective limit model for TAsc

with:

– an operation for each conditional action repetition operator;

where those additional operations are defined as follows:

ξ∗T p is the unique solution of x = p � ξ � x,

ξ∗F p is the unique solution of x = x � ξ � p.

Because the equations x = p � ξ � x and x = x � ξ � p are guarded recursion equations,
they have unique solutions in A∞ by Theorem 5. Moreover, those solutions are the intended
ones: axioms CAR1 and CAR2 hold in the model expanded in this way.

The definitions of the operations for conditional action repetition clarify why we decided
on considering terms with parameters in Sect. 3.3. We would have been able to carry on with
terms without parameters, but that would have been a needless burden.

Notice that Theorem 5 justifies an extension of TAsc or TA∗sc with guarded recursion. We
will not work out the details of such an extension in this paper.

4 Threads and Maurer machines

In this section, we introduce Maurer machines and add application of a thread to a Maurer
machine from one of its state to the thread algebra developed so far. We also introduce the
notion of computation in the resulting setting. However, we start with a brief review of Maurer
computers.

123

546 J. A. Bergstra, C. A. Middelburg

4.1 Maurer computers

Maurer computers are computers as defined by Maurer in [23].
A Maurer computer C consists of the following components:

– a non-empty set M ;
– a set B with card(B) ≥ 2;
– a set S of functions S : M → B;
– a set O of functions O : S → S;

and satisfies the following conditions:

– if S1, S2 ∈ S, M ′ ⊆ M and S3 : M → B is such that S3(x) = S1(x) if x ∈ M ′ and
S3(x) = S2(x) if x �∈ M ′, then S3 ∈ S;

– if S1, S2 ∈ S, then the set {x ∈ M | S1(x) �= S2(x)} is finite.

M is called the memory, B is called the base set, the members of S are called the states, and
the members of O are called the operations. It is obvious that the first condition is satisfied
if C is complete, i.e. if S is the set of all functions S :M → B, and that the second condition
is satisfied if C is finite, i.e. if M and B are finite sets.

In [23], operations are called instructions. In the current paper, the term operation is used
because of the confusion that would otherwise arise with the instructions of which program
algebra programs are made up.

The memory of a Maurer computer consists of memory elements which have as contents
an element from the base set of the Maurer computer. The contents of all memory elements
together make up a state of the Maurer computer. The operations of the Maurer computer
transform states in certain ways and thus change the contents of certain memory elements.
We return to the conditions on the states of a Maurer computer after the introduction of the
input region and output region of an operation.

Let (M, B, S, O) be a Maurer computer, and let O : S → S. Then the input region of O ,
written IR(O), and the output region of O , written OR(O), are the subsets of M defined as
follows:5

IR(O) = {u ∈ M | ∃S1, S2 ∈ S • (∀w ∈ M \ {u} • S1(w) = S2(w) ∧
∃v ∈ OR(O) • O(S1)(v) �= O(S2)(v))},

OR(O) = {u ∈ M | ∃S ∈ S • S(u) �= O(S)(u)}.
OR(O) is the set of all memory elements that are possibly affected by O; and IR(O) is the
set of all memory elements that possibly affect elements of OR(O) under O .

Let (M, B, S, O) be a Maurer computer, let S1, S2 ∈ S, and let O ∈ O. Then S1�IR(O) =
S2 � IR(O) implies O(S1) � OR(O) = O(S2) � OR(O).6 The conditions on the states of a
Maurer computer are necessary for this desirable property to hold.

Let (M, B, S, O) be a Maurer computer, let O ∈ O, let M ′ ⊆ OR(O), and let M ′′ ⊆
IR(O). Then the region affecting M ′ under O , written RA(M ′, O), and the region affected
by M ′′ under O , written AR(M ′′, O), are the subsets of M defined as follows:

5 The following precedence conventions are used in logical formulas. Operators bind stronger than predicate
symbols, and predicate symbols bind stronger than logical connectives and quantifiers. Moreover, ¬ binds
stronger than ∧ and ∨, and ∧ and ∨ bind stronger than⇒ and⇔. Quantifiers are given the smallest possible
scope.
6 In this paper, we use the notation f � D, where f is a function and D ⊆ dom(f), for the function g with
dom(g) = D such that for all d ∈ dom(g), g(d) = f (d).

123

Synchronous cooperation for explicit multi-threading 547

RA(M ′, O) = {u ∈ IR(O) | AR({u}, O) ∩ M ′ �= ∅},

AR(M ′′, O) =

{u ∈ OR(O) | ∃S1, S2 ∈ S • (∀w ∈ IR(O) \ M ′′ • S1(w) = S2(w)∧

O(S1)(u) �= O(S2)(u))}.

AR(M ′′, O) is the set of all elements of OR(O) that are possibly affected by the elements of
M ′′ under O; and RA(M ′, O) is the set of all elements of IR(O) that possibly affect elements
of M ′ under O .

In [23], Maurer gives many results about the relation between the input region and output
region of operations, the composition of operations, the decomposition of operations and
the existence of operations. In [8], we summarize the main results given in [23]. Recently, a
revised and expanded version of [23], which includes all the proofs, has appeared in [24].

4.2 Applying threads to Maurer machines

We introduce Maurer machines and add for a fixed but arbitrary Maurer machine a binary
apply operator _ •_ to TA∗sc, resulting in TA∗•sc . This operator is related to the apply operators
introduced in [15].

Below, we expand Maurer computers (M, B, S, O) with a set A, a function [[_]] : A →
(O × M) and a relation C ⊆ A × A to obtain Maurer machines. For each a ∈ A, we will
write Oa and ma for the unique O ∈ O and m ∈ M , respectively, such that [[a]] = (O, m).

A Maurer machine is a tuple H = (M, B, S, O, A, [[_]], C), where:

– (M, B, S, O) is a Maurer computer;
– A is a set with tau ∈ A and δ �∈ A;
– [[_]] : A → (O × M) is such that:

– for all a ∈ A: ∀S ∈ S • S(ma) ∈ {T, F};
– ∀S ∈ S • (Otau(S) = S ∧ S(mtau) = T);

– C ⊆ A × A is such that for all a, b ∈ A:

C(a, b)⇒
∀S ∈ S • (Oa(Ob(S)) = Ob(Oa(S)) ∧

Oa(Ob(S))(mb) = Ob(S)(mb) ∧
Ob(Oa(S))(ma) = Oa(S)(ma)).

The members of A are called the atomic actions of H , and [[_]] is called the atomic action
interpretation function of H . C is called the atomic action concurrency relation of H .

Let H = (M, B, S, O, A, [[_]], C) be a Maurer machine. A, [[_]] and C constitute the
interface between the Maurer machine and its environment. The interface can be explained
as follows:

– a ∈ A means that H is capable of processing atomic action a;
– for a ∈ A, [[a]] = (O, m) means that:

– the processing of atomic action a by H amounts to performing operation O ,
– after that the reply produced by H is contained in memory element m;

– for a, b ∈ A, C(a, b) means that the atomic actions a and b can be processed concurrently.

123

548 J. A. Bergstra, C. A. Middelburg

The condition imposed on C sees to it that atomic actions a and b can be processed concur-
rently only if in the case where a and b are processed by H one after another:

– the ultimate effect on the contents of memory elements never depends on the order in
which the actions are processed;

– the contents of the memory cell containing the reply produced in processing the first
action remains unchanged when the other action is processed.

This condition concerns aspects of real computers which are relevant to program paralleli-
zation, but from which the well-known models for computers abstract.

In [8–10], the interface of a Maurer machine did not include an atomic action concurrency
relation. Its inclusion is needed to be able to determine the correctness of any program
parallelization statically.

Let H = (M, B, S, O, A, [[_]], C) be a Maurer machine. A condition that is stronger
than the condition imposed on C can be expressed in terms of the input regions and output
regions of operations:

C(a, b)⇒
OR(Oa) ∩ IR(Ob) = IR(Oa) ∩ OR(Ob) = OR(Oa) ∩ OR(Ob) = ∅ ∧
ma �∈ OR(Ob) ∧mb �∈ OR(Oa)

for all a, b ∈ A. This stronger condition may be useful in establishing that the intended
atomic action concurrency relation of a Maurer machine under construction is really the
atomic action concurrency relation of the Maurer machine according to the definition of the
notion of Maurer machine given above.

In TA∗•sc , it is assumed that a fixed but arbitrary Maurer machine H=(M, B, S, O, A, [[_]],
C) has been given that satisfies the following conditions:

– AA = A;
– for all a1, . . . , an ∈ A: a1 & . . . & an �= δ iff

∧
1≤i<n

∧
i< j≤n C(ai , a j);

– for all a1, . . . , am ∈ A and a′1, . . . , a′n ∈ A: a1 & . . . & am = a′1 & . . . & a′n iff
Oam (. . . Oa1(S) . . .) = Oa′n (. . . Oa′1(S) . . .) for all S ∈ S;

– for all a, b ∈ A with a �= b: ∀S ∈ S • Oa(S)(mb) = S(mb).

Wherever this assumption is made, the notations Oa and ma introduced above will be
used. The following notations will also be used. Let ξ = a1 & . . . & an with a1, . . . , an ∈ A
and ξ �= δ. Then we write Oξ for the unique O ∈ O such that O(S) = Oan (. . . Oa1(S) . . .)

for all S ∈ S, and we write mξ for man .
The apply operator _ • _ allows for threads to transform states of the Maurer machine H

by means of its operations. Such state transformations produce either a state of the associated
Maurer machine or the undefined state ↑. It is assumed that ↑ is not a state of any Maurer
machine. We extend function restriction to ↑ by stipulating that ↑ � M = ↑ for any set M .
The first operand of the apply operator must be a term from TTA∗sc

and its second operand
must be a state from S ∪{↑}. Let p ∈ TTA∗sc

, and let S ∈ S. Then p • S is the state from S that
results if all actions from CA performed by thread p are processed by the Maurer machine H
from initial state S. The processing of an action ξ from CA by H amounts to a state change
according to the operation Oξ . In the resulting state the reply produced by H is contained in
memory element mξ . If p is S, then there will be no state change. If p is D, then the result is↑.

The axioms for apply are given in Tables 12 and 13. In these tables, ξ stands for an
arbitrary member of CA and S stands for an arbitrary member of S. The reason for the
equation (x � nt(z) � y) • S = ↑ is that no actions will become available for processing

123

Synchronous cooperation for explicit multi-threading 549

Table 12 Axioms for apply
x • ↑ = ↑
S • S = S

D • S = ↑
(x �ξ � y) • S = x • Oξ (S) if Oξ (S)(mξ) = T

(x �ξ � y) • S = y • Oξ (S) if Oξ (S)(mξ) = F

(x �nt(z) � y) • S = ↑
(x �yξ � y) • S = x • S if S(mξ) = T

(x �yξ � y) • S = y • S if S(mξ) = F

Table 13 Rule for divergence ∧
n≥0 πn(x) • S = ↑⇒ x • S = ↑

by the Maurer machine because thread forking is carried into effect only if it is put in the
context of synchronous cooperation.

Let p ∈ TTA∗sc
and S ∈ S. Then p converges from S if there exists an n ∈ N such that

πn(p) • S �= ↑. We say that p diverges from S if it does not converge from S. The rule for
divergence from Table 13 can be read as follows: if x diverges from S, then x • S equals ↑.

4.3 Computations

We introduce the notion of computation and related notions in the current setting.
The step relation _ � _ ⊆ (TTA∗sc

× S)× (TTA∗sc
× S) is inductively defined as follows:

– if p = tau ◦ p′, then (p, S) � (p′, S);
– if ξ �= δ, Oξ (S)(mξ) = T and p = p′ � ξ � p′′, then (p, S) � (p′, Oξ (S));
– if ξ �= δ, Oξ (S)(mξ) = F and p = p′ � ξ � p′′, then (p, S) � (p′′, Oξ (S));
– if ξ �= δ, Oξ (S)(mξ) = T, p = q � yξ � r , and (q, S) � (q ′, S′), then (p, S) � (q ′, S′);
– if ξ �= δ, Oξ (S)(mξ) = F, p = q � yξ � r , and (r, S) � (r ′, S′), then (p, S) � (r ′, S′).
A full path in _ � _ is one of the following:

– a finite path 〈(p0, S0), . . . , (pn, Sn)〉 in _ � _ such that there does not exist a (pn+1, Sn+1)

∈ TTA∗sc
× S with (pn, Sn) � (pn+1, Sn+1);

– an infinite path 〈(p0, S0), (p1, S1), . . .〉 in _ � _.

Let p ∈ TTA∗sc
, and let S ∈ S. Then the full path of (p, S) is the unique full path in _ � _

from (p, S). The computation of (p, S) is the full path of (p, S) if p converges from S and
undefined otherwise.

Let p ∈ TTA∗sc
and S ∈ S be such that p converges from S. Then we write ||(p, S)|| for

the length of the computation of (p, S).
It is easy to see that (p0, S0) � (p1, S1) only if p0 • S0 = p1 • S1 and that 〈(p0, S0), . . . ,

(pn, Sn)〉 is the computation of (p0, S0) only if pn = S and Sn = p0 • S0. It is also easy to
see that, if p0 converges from S0, ||(p0, S0)|| is the least n ∈ N such that πn(p0) • S0 �= ↑.

Notice that, because (p � nt(r) � q) • S = ↑ for all p, q, r ∈ TTA∗sc
and S ∈ S, there are

no computations for threads involving thread forking.
Program instructions whose processing takes one step can be looked upon as atomic

actions of a Maurer machine. A program instruction whose processing takes more than one

123

550 J. A. Bergstra, C. A. Middelburg

step can be handled by means of split-action prefixing (see Sect. 2.3) with two atomic actions,
say a and b, using some memory element as a counter:

– in the case where the instruction takes n steps (n > 1):
– operation Oa sets a counter to n − 1 and sets ma to F,
– operation Ob decrements the counter by one and sets mb to T if the value of the

decremented counter is zero and to F otherwise;
– in the case where the instruction takes n to m steps (m > n > 1):

– operation Oa sets a counter to a value in the interval [n − 1, m − 1] depending upon
the contents of certain memory elements and sets ma to F,

– operation Ob decrements the counter by one and sets mb to T if the value of the
decremented counter is zero and to F otherwise.

Both cases can occur, for example, with load instructions—the second case due to the pos-
sibility of cache misses. In the second case, the value to which the counter is set depends on
the contents of memory elements that are related to the origin of the varying number of steps.
For example, a varying number of steps due to the possibility of cache misses means that the
value to which the counter is set depends on the contents of memory elements that model
the mechanism of the cache. For each individual computer architecture, it is reasonable to
assume that a lower bound and upper bound on the number of steps taken by each instruction
can be given.

5 Threads as state transformers

In this section, we introduce the notion of state transformer equivalence of threads and present
some state transformer properties of threads.

5.1 State transformer equivalence

We introduce state transformer equivalence of threads. This equivalence identifies threads if
they are the same as transformers of the states of the Maurer machine H . An interesting point
of state transformer equivalence is the following: if p and q are state transformer equivalent,
then the computations of (p, S) and (q, S) have the same final state, but they may have
different lengths.

State transformer equivalence, written≈, is defined by the formula given in Table 14. The
following proposition states some basic properties of state transformer equivalence.

Proposition 5 For all ξ, ξ ′ ∈ CAδ:

ξ ◦ D ≈ D, (1)

tau ◦ x ≈ x, (2)

ξ & ξ ′ �= δ⇒ x � ξ & ξ ′� y ≈ ξ ◦ (x � ξ ′� y), (3)

ξ & ξ ′ �= δ

⇒ (x � ξ ′� y) � ξ � (z � ξ ′� w) ≈ (x � ξ � z) � ξ ′� (y � ξ � w),
(4)

(x � yξ ′ � y) � ξ � (z � yξ ′ � w) ≈ (x � ξ � z) � yξ ′ � (y � ξ � w), (5)

(x � yξ ′ � y) � yξ � (z � yξ ′ � w) ≈ (x � yξ � z) � yξ ′ � (y � yξ � w). (6)

Table 14 Defining formula for
state transformer equivalence x ≈ y ⇔∀S ∈ S • (x • S = y • S)

123

Synchronous cooperation for explicit multi-threading 551

Proof These properties follow easily from the defining formula for state transformer equi-
valence, the defining equations for the apply operator, the definition of a Maurer machine,
and the assumptions made about the Maurer machine H . �

The laws of state transformer equivalence given above are used in coming proofs.
All threads represented by closed terms over the signature of TAsc are finite threads. The

length of the sequences of actions that a finite thread can perform is bounded. This has the
effect that, if two threads represented by closed terms over the signature of TAsc are state
transformer equivalent, then this can be proved from the axioms of TAsc and the defining
equations of the apply operator. However, all threads represented by closed terms over the
signature of TA∗sc other than closed terms over the signature of TAsc are infinite threads.
As a result of that, the axioms of TA∗sc and the defining equations of the apply operator are
not sufficient to prove state transformer equivalence.

This calls for a proof rule to deal with infinite threads. A complication that must be dealt
with is the following: different threads can effect the same state transformation by performing
different sequences of actions. This leads us to the introduction of state transformer inclusion
of threads. Intuitively, one thread includes another thread as state transformer if each state
transformation that can be effected by the former thread can be effected by the latter thread
as well.

State transformer inclusion, written �∼, is defined by the formula given in Table 15. The
following proposition states basic properties of state transformer inclusion.

Proposition 6 For all ξ ∈ CAδ:

x �∼ x, (1)

x �∼ y ∧ y �∼ z ⇒ x �∼ z, (2)

x �∼ y ∧ y �∼ x ⇔ x ≈ y, (3)

x �∼ z ∧ y �∼ u ⇒ x � ξ � y �∼ z � ξ � u, (4)

x �∼ z ∧ y �∼ u ⇒ x � yξ � y �∼ z � yξ � u. (5)

Proof These properties follow easily from the defining formula for state transformer inclu-
sion, the defining formula for state transformer equivalence, and the defining equations for
the apply operator. �

Now we are ready to introduce a rule to prove that one infinite thread includes another
infinite thread as state transformer. The rule concerned, called the state transformer inclusion
principle, is given in Table 16. To prove that two infinite threads p and q are state transformer
equivalent, the intended approach is to prove p �∼ q and q �∼ p using the state transformer
inclusion principle. That is sufficient by Property 3 from Proposition 6.

The following proposition states some basic properties of state transformer equivalence
that can be proved following this approach.

Table 15 Defining formula for
state transformer inclusion x �∼ y ⇔∀S ∈ S • (x • S �= ↑⇒ x • S = y • S)

Table 16 State transformer
inclusion principle

∀n ∈ N • ∃m ∈ N • πn(x) �∼ πm (y)⇒ x �∼ y

123

552 J. A. Bergstra, C. A. Middelburg

Proposition 7 For all ξ, ξ ′ ∈ CAδ and b ∈ {T, F}:

ξ & ξ ′ �= δ⇒ (ξ ′ ∗b x) � ξ � (ξ ′ ∗b y) ≈ ξ ′ ∗b (x � ξ � y),

ξ & ξ ′ �= δ⇒ ξ ∗b (ξ ′ ∗b x) ≈ ξ ′ ∗b (ξ ∗b x).

Proof Assume that ξ & ξ ′ �= δ. Then it is easily proved by induction on n, using Property 4
from Proposition 5, that πn((ξ ′ ∗b x) � ξ � (ξ ′ ∗b y)) ≈ πn(ξ ′ ∗b (x � ξ � y)) for all n ∈ N.
From this and Property 3 from Proposition 6, the first property follows immediately by the
state transformer inclusion principle. The proof for the second property goes similarly, and
makes use of the first property. �

We have the following corollary from Property 4 from Propositions 5 and 7.

Corollary 2 For all ξ, ζ, ξ ′, ζ ′ ∈ CAδ:

ξ & ξ ′ �= δ ∧ ξ & ζ ′ �= δ ∧ ζ & ξ ′ �= δ ∧ ζ & ζ ′ �= δ

⇒ ξ/ζ ◦ (ξ ′/ζ ′ ◦ x) ≈ ξ ′/ζ ′ ◦ (ξ/ζ ◦ x).

The following proposition states a useful property of state transformer inclusion that can
be proved by means of the state transformer inclusion principle.

Proposition 8 For all p ∈ TTA∗sc
and n ∈ N, πn(p) �∼ πn+1(p).

Proof Take n, n′ ∈ N. If n′ ≤ n, then πn′(πn(p)) = πn′(πn+1(p)) by Lemma 2. If n′ > n,
then πn′(πn(p)) = πn(πn+1(p)) by Lemma 2. This means that for all n′ ∈ N there exists
an m′ ∈ N such that πn′(πn(p)) = πm′(πn+1(p)). Because x = y implies x ≈ y, it follows
immediately by the state transformer inclusion principle that πn(p) �∼ πn+1(p). �

We also introduce the state transformer inclusion principle in the reverse direction, called
the backwards state transformer inclusion principle. It is given in Table 17.

The following proposition states a basic property of state transformer inclusion that can
be proved using the forward and backward state transformer inclusion principles.

Proposition 9 For all p, q ∈ TTA∗sc
, ξ ∈ CAδ and b ∈ {T, F}:

p �∼ q ⇒ ξ ∗b p �∼ ξ ∗b q.

Proof Assume that for all n ∈ N, there exists an m ∈ N such that πn(p) �∼ πm(q). Then it
is easily proved by induction on n, using Property 4 from Propositions 6 and 8, that for all
n ∈ N, there exists an m ∈ N such that πn(ξ ∗b p) �∼ πm(ξ ∗b q). From this and the forward

and backward state transformer inclusion principles, it follows that p �∼ q⇒ ξ ∗b p �∼ ξ ∗b q .
�

In Appendix A, we introduce behavioural approximation of threads and relate it to state
transformer inclusion.

Table 17 Backwards state
transformer inclusion principle

x �∼ y ⇒∀n ∈ N • ∃m ∈ N • πn(x) �∼ πm (y)

123

Synchronous cooperation for explicit multi-threading 553

As a preparation to the expansion of the projective limit model for TA∗sc with relations
for the predicate symbols �∼ and ≈, we introduce a state transformer extraction function
sttrf : A∞ → S × S. This function is defined as follows:

sttrf((pn)n∈N
) =⋃

n∈N
{(S, S′) ∈ S × S | pn • S = S′}.

The relations �∼ and ≈ on A∞ associated with the predicate symbols �∼ and ≈, respectively,
are defined as follows (p, q ∈ A∞):

p �∼ q ⇔ sttrf(p) ⊆ sttrf(q),

p ≈ q ⇔ sttrf(p) = sttrf(q).

It is easy to verify that the formulas in Tables 14–17 are sound with respect to the expansion
of the projective limit model for TA∗sc defined above.

5.2 State transformer properties of threads

We present some state transformer properties of threads which can be useful when investi-
gating program parallelization. The notation p · q , which is mainly used in this subsection,
was introduced at the end of Sect. 2.3.

The following proposition concerns the preservation of state transformer inclusion.

Proposition 10 Let p ∈ C0 and q, q ′ ∈ TTA∗sc
. Then q �∼ q ′ implies p · q �∼ p · q ′.

Proof This is easily proved by induction on the structure of p, using Propositions 6 and 9.
�

The following proposition concerns re-ordering of threads.

Proposition 11 Let p, q ∈ C0 be such that a & a′ �= δ for all a ∈ α(p) and a′ ∈ α(q). Then
p · q ≈ q · p.

Proof This is proved by induction on the structure of p and in the cases p ≡ p′ � ξ � p′′,
p ≡ p′ � yξ � p′′, p ≡ ξ ∗T p′, and p ≡ ξ ∗F p′ by induction on the structure of q , using
Propositions 5, 6, 7 and 9. The proof is straightforward given the properties stated in those
propositions. �

The following proposition concerns parallelization of threads.

Proposition 12 Let p, q ∈ C0 be such that a & a′ �= δ for all a ∈ α(p) and a′ ∈ α(q). Then
p · q ≈ ‖s(〈p〉� 〈q〉).

Proof This is proved by induction on the structure of p and in the cases p ≡ p′ � ξ � p′′,
p ≡ p′ � yξ � p′′, p ≡ ξ ∗T p′, and p ≡ ξ ∗F p′ by case distinction on the structure of q ,
using Propositions 5, 6 and 11. The proof is tedious, but straightforward given the properties
stated in those propositions. We outline the case where p ≡ p′ � ξ � p′′ and q ≡ ζ ∗T q ′:

123

554 J. A. Bergstra, C. A. Middelburg

(p′ � ξ � p′′) · (ζ ∗T q ′)
≈ (p′ · (ζ ∗T q ′)) � ξ � (p′′ · (ζ ∗T q ′))
≈ ((ζ ∗T q ′) · p′) � ξ � ((ζ ∗T q ′) · p′′)
≈ ((q ′ � ζ � (ζ ∗T q ′)) · p′) � ξ � ((q ′ � ζ � (ζ ∗T q ′)) · p′′)
≈ ((q ′ · p′) � ζ � ((ζ ∗T q ′) · p′)) � ξ � ((q ′ · p′′) � ζ � ((ζ ∗T q ′) · p′′))
≈ ((p′ · q ′) � ζ � (p′ · (ζ ∗T q ′))) � ξ � ((p′′ · q ′) � ζ � (p′′ · (ζ ∗T q ′)))
≈ ξ ◦ ((ζ ◦ ((p′ · q ′) � yζ � (p′ · (ζ ∗T q ′)))) � yξ �

(ζ ◦ ((p′′ · q ′) � yζ � (p′′ · (ζ ∗T q ′)))))
≈ ξ ◦ (ζ ◦ (((p′ · q ′) � yζ � (p′ · (ζ ∗T q ′))) � yξ �

((p′′ · q ′) � yζ � (p′′ · (ζ ∗T q ′)))))
≈ ξ & ζ ◦ (((p′ · q ′) � yζ � (p′ · (ζ ∗T q ′))) � yξ �

((p′′ · q ′) � yζ � (p′′ · (ζ ∗T q ′))))
≈ ξ & ζ ◦ ((‖s(〈p′〉� 〈q ′〉) � yζ � ‖s(〈p′〉� 〈ζ ∗T q ′〉)) � yξ �

(‖s(〈p′′〉� 〈q ′〉) � yζ � ‖s(〈p′′〉� 〈ζ ∗T q ′〉)))
≈ ξ & ζ ◦ ‖s(〈p′ � yξ � p′′〉� 〈q ′ � yζ � (ζ ∗T q ′)〉)
≈ ‖s(〈p′ � ξ � p′′〉� 〈q ′ � ζ � (ζ ∗T q ′)〉)
≈ ‖s(〈p′ � ξ � p′′〉� 〈ζ ∗T q ′〉).

�
Like Proposition 10, the following proposition concerns the preservation of state transformer
equivalence.

Proposition 13 Let p, q, q ′ ∈ TTA∗sc
be such that a & a′ �= δ for all a ∈ α(p) and a′ ∈

α(q) ∪ α(q ′). Then ‖s(〈q〉) ≈ ‖s(〈q ′〉) implies ‖s(〈p〉� 〈q〉) ≈ ‖s(〈p〉� 〈q ′〉).
Proof Let n, m ∈ N be such that n ≤ m. Then πn(p) �∼ πm(p) by Proposition 8. From this,
Theorem 2, and Propositions 2, 4, 10, 11 and 12, it follows that ‖s(〈πn(q)〉) �∼ ‖s(〈πm(q ′)〉)
implies ‖s(〈πn(p)〉� 〈‖s(〈πn(q)〉)〉) �∼ ‖s(〈πm(p)〉� 〈‖s(〈πm(q ′)〉)〉). From this and Lem-
mas 1 and 3, it follows that πn(‖s(〈q〉)) �∼ πm(‖s(〈q ′〉)) implies πn(‖s(〈p〉 � 〈q〉)) �∼
πm(‖s(〈p〉�〈q ′〉)). From this, Proposition 8 and the forward and backward state transformer
inclusion principles, it follows that ‖s(〈q〉) �∼ ‖s(〈q ′〉) implies ‖s(〈p〉�〈q〉) �∼ ‖s(〈p〉�〈q ′〉).
It follows by symmetry that also ‖s(〈q ′〉) �∼ ‖s(〈q〉) implies ‖s(〈p〉� 〈q ′〉) �∼ ‖s(〈p〉� 〈q〉).
Hence, ‖s(〈q〉) ≈ ‖s(〈q ′〉) implies ‖s(〈p〉� 〈q〉) ≈ ‖s(〈p〉� 〈q ′〉). �

6 Programs

In this section, we introduce the classes of programs that are considered in our study of
program parallelization in Sect. 7. All programs concerned are considered closed terms of
a program algebra, which is introduced in this section as well. In this program algebra, the
behaviour of a program under execution is taken for a thread. For a clear picture of the
threads that are involved, we start with introducing the classes of threads that correspond to
the classes of programs that are considered in the study of program parallelization.

123

Synchronous cooperation for explicit multi-threading 555

6.1 Relevant classes of threads

The classes of programs that are considered in the study of program parallelization are in
essence sequences of instructions in which test, jump and fork instructions do not occur and
sequences of instructions in which test and jump instructions do not occur. In this section, we
introduce straight-line threads with split actions and straight-line threads with split actions
and thread forking. These two classes of threads correspond to the two classes of programs:
a straight-line thread with split actions is the behaviour of a program of the former class and
a straight-line thread with split actions and thread forking is the behaviour of a program of
the latter class. For completeness, we introduce straight-line threads as well.

The set SLT of straight-line threads is the subset of TTA∗sc
inductively defined as follows:

– if a ∈ AA, then a ◦ D ∈ SLT and a ◦ S ∈ SLT ;
– if a ∈ AA and p ∈ SLT , then a ◦ p ∈ SLT .

The set SLT s of straight-line threads with split actions is the subset of TTA∗sc
inductively

defined as follows:

– if a ∈ AA, then a ◦ D ∈ SLT s and a ◦ S ∈ SLT s;
– if a, b ∈ AA, then a/b ◦ D ∈ SLT s and a/b ◦ S ∈ SLT s;
– if a ∈ AA and p ∈ SLT s, then a ◦ p ∈ SLT s;
– if a, b ∈ AA and p ∈ SLT s, then a/b ◦ p ∈ SLT s.

The set SLT sf of straight-line threads with split actions and thread forking is the subset of
TTA∗sc

inductively defined as follows:

– if a ∈ AA, then a ◦ D ∈ SLT sf and a ◦ S ∈ SLT sf ;
– if a, b ∈ AA, then a/b ◦ D ∈ SLT sf and a/b ◦ S ∈ SLT sf ;
– if p ∈ SLT sf , then nt(p) ◦ D ∈ SLT sf and nt(p) ◦ S ∈ SLT sf ;
– if a ∈ AA and p ∈ SLT sf , then a ◦ p ∈ SLT sf ;
– if a, b ∈ AA and p ∈ SLT sf , then a/b ◦ p ∈ SLT sf ;
– if p, q ∈ SLT sf , then nt(p) ◦ q ∈ SLT sf .

We have the following inclusions: SLT ⊂ SLT s ⊂ SLT sf , SLT s ⊂ C0 and SLT sf ⊂ C.
Straight-line threads can be described using D, S and action prefixing with atomic actions. For
straight-line threads with split actions, split-action prefixing may be used in addition to action
prefixing. Split action prefixing is needed to handle program instructions whose processing
takes more than one step. For straight-line threads with split actions and thread forking,
forking prefixing may be used in addition to action prefixing and split-action prefixing.
Forking prefixing is needed to deal with programs that result from parallelization of straight-
line programs by use of program forking.

6.2 Algebra of straight-line program with split instructions and forking

We introduce ProGram Algebra for Straight-Line programs with Split instructions and For-
king (PGAsl,sf). PGAsl,sf is a variant of PGA, an algebra of sequential programs based on
the idea that sequential programs are in essence sequences of instructions. PGA provides
a program notation for threads. A hierarchy of program notations that provide increasingly
sophisticated programming features are rooted in PGA (see [6]).

In PGAsl,sf , it is assumed that there is a fixed but arbitrary set A of basic instructions. The
following primitive instructions are taken as constants in PGAsl,sf :

123

556 J. A. Bergstra, C. A. Middelburg

– for each a ∈ A, a void basic instruction a;
– for each a, b ∈ A, a split basic instruction a/b;
– for each closed term P over the signature of PGAsl,sf , a fork instruction fork(P);
– a termination instruction !.
We write I for the set of all primitive instructions.

In PGAsl,sf , the test and jump instructions of PGA are absent. This means that, after a
primitive instruction of a program other than the termination instruction has been executed,
execution of the program always proceeds with the next instruction. After a fork instruction
has been executed, in addition, the parallel execution of another program starts up.

The intuition is that the execution of a basic instruction a may modify a state and produces
T or F at its completion. In the case of a split basic instruction a/b, a is executed once and next
b repeatedly until T is produced. If the execution of a produces T, then b is not at all executed.
In the case of a void basic instruction a, simply a is executed once and the value produced is
disregarded. The execution of a fork instruction fork(P) leads to the start-up of the parallel
execution of P , and produces the reply T. Execution of the current program proceeds with
the next instruction, just like any primitive instruction other than the termination instruction,
but it may be affected by the parallel execution of P . The effect of the termination instruction
! is that execution terminates.

Qua behaviour, the execution of different programs in parallel that arises from the exe-
cution of fork instructions corresponds to synchronous cooperation. This is made precise
below by means of a thread extraction operator. The choice for synchronous cooperation
is dictated by the intended use of PGAsl,sf for investigating program parallelization. In a
different context, some kind of interleaving may be chosen instead.

The thread extraction operator defined below, together with the apply operator defined in
Sect. 4.2 make it possible to associate operations of a Maurer machine with basic instructions
of PGAsl,sf .

PGAsl,sf has the following constants and operators:

– for each u ∈ I, an instruction constant u ;
– the binary concatenation operator _ ; _ .

Closed terms over the signature of PGAsl,sf are considered to denote finite programs
without test and jump instructions. The intuition is that a finite program is in essence a finite
non-empty sequence of primitive instructions. That is, programs are considered to be equal
if they represent the same finite sequence of primitive instructions. Therefore, the only one
axiom of PGAsl,sf is the one given in Table 18.

Each closed term over the signature of PGAsl,sf is considered to denote a program of
which the behaviour can be described in TA∗sc, taking the set A of basic instructions for the
set AA. We define that behaviour by means of the thread extraction operation |_|, which
assigns a thread to each program. The thread extraction operation is defined by the equations
given in Table 19 (for a, b ∈ A).

Let P be a closed term over the signature of PGAsl,sf . The behaviour of P , written [[P]],
is defined by [[P]] = ‖s(〈|P|〉).

Henceforth, we write As for the set A ∪ {a/b | a, b ∈ A}. When investigating program
parallelization, it is useful to know the alphabet of a program, i.e. the set of instructions from
As that occur in the program. For that reason, we introduce the alphabet operator αslp. The

Table 18 Axiom of PGAsl,sf
(X ; Y) ; Z = X ; (Y ; Z) PGA1

123

Synchronous cooperation for explicit multi-threading 557

alphabet axioms for straight-line programs with split instructions and forking are given in
Table 20.

When investigating program parallelization, it is convenient to use the following extension
of the concurrency relation of a Maurer machine.

Given a Maurer machine H = (M, B, S, O, A, [[_]], C), we extend C to As as follows
(a, a′, b, b′ ∈ A):

C(a/a′, b) ⇔ C(a, b) ∧ C(a′, b),

C(a, b/b′) ⇔ C(a, b) ∧ C(a, b′),
C(a/a′, b/b′)⇔ C(a/a′, b) ∧ C(a/a′, b′).

Henceforth, we write TPGAsl,sf for the set of all closed terms over the signature of PGAsl,sf .

6.3 Relevant classes of programs

In Sect. 6.1, we have introduced straight-line threads, straight-line threads with split actions,
and straight-line threads with split actions and thread forking. Here, we introduce the corres-
ponding classes for programs, viz. straight-line programs, straight-line programs with split
instructions, and straight-line programs with split instructions and program forking. The last
two classes are considered in our study of program parallelization in Sect. 7.

The set SLP of straight-line programs is the subset of TPGAsl,sf inductively defined as
follows:

– ! ∈ SLP;
– if a ∈ A, then a ∈ SLP;
– if a ∈ A and P ∈ SLP , then a ; P ∈ SLP .

The set SLPs of straight-line programs with split instructions is the subset of TPGAsl,sf induc-
tively defined as follows:

– ! ∈ SLPs;
– if a ∈ A, then a ∈ SLPs;
– if a, b ∈ A, then a/b ∈ SLPs;
– if a ∈ A and P ∈ SLPs, then a ; P ∈ SLPs;
– if a, b ∈ A and P ∈ SLPs, then a/b ; P ∈ SLPs.

The set SLPsf of straight-line programs with split instructions and program forking is the
subset of TPGAsl,sf inductively defined as follows:

Table 19 Defining equations for
thread extraction operation |a| = a ◦ D

|a/b| = a/b ◦ D

|fork(X)| = nt(|X |) ◦ D

|!| = S

a ; X	= a ◦	X		
a/b ; X	= a/b ◦	X		
fork(X) ; Y	= nt(X) ◦	Y
! ; X	= S			

Table 20 Alphabet axioms for
straight-line programs αslp(a) = {a}

αslp(a/b) = {a/b}
αslp(fork(X)) = αslp(X)

αslp(!) = ∅

αslp(a ; X) = {a} ∪ αslp(X)

αslp(a/b ; X) = {a/b} ∪ αslp(X)

αslp(fork(X) ; Y) = αslp(X) ∪ αslp(Y)

αslp(! ; X) = ∅

123

558 J. A. Bergstra, C. A. Middelburg

– ! ∈ SLPsf ;
– if a ∈ A, then a ∈ SLPsf ;
– if a, b ∈ A, then a/b ∈ SLPsf ;
– if P ∈ SLPsf , then fork(P) ∈ SLPsf ;
– if a ∈ A and P ∈ SLPsf , then a ; P ∈ SLPsf ;
– if a, b ∈ A and P ∈ SLPsf , then a/b ; P ∈ SLPsf ;
– if P, Q ∈ SLPsf , then fork(P) ; Q ∈ SLPsf .

We have the following inclusions: SLP ⊂ SLPs ⊂ SLPsf . The connection between SLP ,
SLPs, SLPsf and SLT , SLT s, SLT sf is as follows:

– if P ∈ SLP then |P| ∈ SLT , if P ∈ SLPs then |P| ∈ SLT s, if P ∈ SLPsf then
|P| ∈ SLT sf ;

– if p ∈ SLT then p = |P| for some P ∈ SLP , if p ∈ SLT s then p = |P| for some
P ∈ SLPs, if p ∈ SLT sf then p = |P| for some P ∈ SLPsf .

SLPsf consists of all P and P ; ! from TPGAsl,sf where ! does not occur in P . For all P ∈
TPGAsl,sf , there exists a P ′ ∈ SLPsf such that |P| = |P ′|.
Example 6 Suppose that the basic instructions include LOAD:R1:A, LOAD:R2:B,
ADD:R2:R2:R1 and STORE:R3:C. Then the following is a straight-line program:

LOAD:R1:A ; LOAD:R2:B ; ADD:R2:R2:R1 ; STORE:R2:C ; !
Take the view is that this straight-line program is intended for calculating the sum of the
contents of two memory elements and leaving the result of the calculation behind in a third
memory element. That is, suppose that the above-mentioned basic instructions correspond to
atomic actions of which the processing amounts to loading the contents of memory element
A in register R1, loading the contents of memory element B in register R2, adding the
contents of register R1 to the contents of register R2, and storing the contents of register
R2 in memory element C. An adaptation of the straight-line program given above, to model
that the processing of load instructions takes more than one step, could be the following
straight-line program with split instructions:

LOADI:R1:A/LOADC:R1:A ; LOADI:R2:B/LOADC:R2:B ;
ADD:R2:R2:R1 ; STORE:R2:C ; !

A parallellization of this straight-line program with split instructions could be the following
straight-line program with split instructions and program forking:

fork(LOADI:R2:B/LOADC:R2:B ; ADD:R2:R2:R1 ; STORE:R2:C ; !) ;
LOADI:R1:A/LOADC:R1:A ; !

Getting ahead of our study of program parallelization in Sect. 7, we mention that this paralleli-
zation is not correct if the processing of the split instructions LOADI:R1:A/LOADC:R1:A
and LOADI:R2:B/LOADC:R2:B may take different numbers of steps.

In our study of program parallelization, we make the drastic simplification to consider
only the parallelization of straight-line programs with split instructions. The reason for that
is simply that program parallelization is a complicated matter, which makes it practically
necessary to start its study with a drastic simplification. As a case in point, we mention that
jump instructions would complicate proving a theorem like Theorem 6, our main theorem
about program parallelization, very much.

123

Synchronous cooperation for explicit multi-threading 559

7 Program parallelization

In this section, we investigate program parallelization. Our investigation is focused on finding
sufficient conditions for the correctness of program parallelizations. We start with presenting
some state transformer properties of programs.

7.1 State transformer properties of programs

We present some state transformer properties of straight-line programs with split instructions
and program forking which can be useful when investigating program parallelization.

Henceforth, we write SLP wt
s for the set {P ∈ SLPs | ∃P ′ ∈ SLPs • P ′ = P ; !} and SLP wt

sf
for the set {P ∈ SLPsf | ∃P ′ ∈ SLPsf • P ′ = P ; !}. The superscript wt stands for “without
termination”.

First, we present a lemma used without mention below in the proofs of Propositions 14,
15 and 16.

Lemma 9

1. for all P ∈ SLPs, [[P]] = |P|;
2. for all P ∈ SLPs, there exists a p ∈ C0 such that |P| = p;
3. for all P ∈ SLP wt

s and P ′ ∈ SLPsf , [[P ; P ′]] = [[P ; !]] · [[P ′]].
Proof The first two properties are easily proved by induction on the structure of P . The third
property is easily proved by induction on the structure of P , using the first two properties
and Proposition 3. �

The following proposition states that state transformer equivalence of the behaviour of
programs from SLPsf is preserved by prefixing with any program from SLPs.

Proposition 14 Let P1 ∈ SLPs and P2, P ′2 ∈ SLPsf . Then [[P2]] ≈ [[P ′2]] implies [[P1 ; P2]]
≈ [[P1 ; P ′2]].
Proof This follows immediately from Proposition 10. �
The following proposition states that, in every terminating program from SLPs, a new place
can be given to a suffix if each instruction occurring in the suffix can be executed concurrently
with each of the instructions occurring between the old place and the new place.

Proposition 15 Let P1, P2, P3 ∈ SLP wt
s be such that C(u2, u3) for all u2 ∈ αslp(P2)

and u3 ∈ αslp(P3). Then [[P2 ; P3 ; !]] ≈ [[P3 ; P2 ; !]] and also [[P1 ; P2 ; P3 ; !]] ≈
[[P1 ; P3 ; P2 ; !]].
Proof This follows immediately from Propositions 10 and 11. �
The following proposition states that, in every terminating program from SLPs, the place
of a suffix can be taken by a fork instruction for the suffix that is placed before preceding
instructions if those instructions can be executed concurrently with each of the instructions
occurring in the suffix.

Proposition 16 Let P1, P2, P3 ∈ SLP wt
s be such that C(u2, u3) for all u2 ∈ αslp(P2) and

u3 ∈ αslp(P3). Then [[P2 ; P3 ; !]] ≈ [[fork(P3 ; !) ; P2 ; !]] and also [[P1 ; P2 ; P3 ; !]] ≈
[[P1 ; fork(P3 ; !) ; P2 ; !]].

123

560 J. A. Bergstra, C. A. Middelburg

Proof By the axioms for synchronous cooperation, we have [[P2 ; P3 ; !]]≈ [[fork(P3 ; !) ;
P2 ; !]] iff [[P2 ; P3 ; !]] ≈ ‖s(〈[[P2 ; !]]〉� 〈[[P3 ; !]]〉). The latter follows immediately from
Proposition 12. From this result and Proposition 10, [[P1 ; P2 ; P3 ; !]] ≈ [[P1 ; fork(P3 ; !) ;
P2 ; !]] follows immediately. �
The following proposition states that, for every terminating program from SLPsf in which a
fork instruction occurs, that fork instruction can be replaced by one for a state transformer
equivalent forked program if the instructions occurring in both forked programs can be
executed concurrently with each of the instructions occurring after the fork instruction.

Proposition 17 Let P1, P3 ∈ SLP wt
s and P2, P ′2 ∈ SLP wt

sf be such that C(u2, u3) for all u2 ∈
αslp(P2)∪αslp(P ′2) and u3∈αslp(P3). Then [[P2 ; !]]≈[[P ′2 ; !]] implies [[fork(P2 ; !) ; P3 ; !]]
≈ [[fork(P ′2 ; !) ; P3 ; !]] and also [[P1 ; fork(P2 ; !) ; P3 ; !]] ≈ [[P1 ; fork(P ′2 ; !) ; P3 ; !]].
Proof By the axioms for synchronous cooperation, we have [[fork(P2 ; !) ; P3 ; !]] ≈
[[fork(P ′2 ; !) ; P3 ; !]] iff ‖s(〈[[P3 ; !]]〉�〈|P2;!|〉) ≈ ‖s(〈[[P3 ; !]]〉�〈|P ′2;!|〉). The latter fol-
lows immediately from Proposition 13. From this result and Proposition 10, [[P1; fork(P2 ; !);
P3 ; !]] ≈ [[P1 ; fork(P ′2 ; !) ; P3 ; !]] follows immediately. �
7.2 Program partitioning, annotation and parallelization

Program parallelization is studied here in the setting of TA∗•sc and consequently in the
scope of the assumption from Sect. 4.2 that a fixed but arbitrary Maurer machine H =
(M, B, S, O, A, [[_]], C) has been given that satisfies certain conditions.

We also use PGAsl,sf , which offers a convenient program notation for studying program
parallelization: the programs of PGAsl,sf permit a very direct analysis of semantic issues
involved.

We introduce the notion of a partition of a straight-line program, the notion of an anno-
tated partition of a straight-line program, and the notion of the parallelization of a straight-
line program induced by an annotated partition of the straight-line program. A straight-line
program is a member of SLPs, whereas a parallelization of a straight-line program is a
member of SLPsf\SLPs. Moreover, we introduce a notion of correctness for parallelizations
of straight-line programs. The behaviour of a straight-line program and the behaviour of
a correct parallelization of that straight-line program are threads that are the same as state
transformers.

Let P ∈ SLPs and P1, . . . , Pm ∈ SLP wt
s . Then (P1, . . . , Pm) is a partition of P if

P = P1 ; . . . ; Pm ; !.
Let P = u1 ; . . . ; un with u1, . . . , un ∈ As and let (P1, . . . , Pm) be a partition of P .

Moreover, let n0, . . . , nm ∈ N be such that P1 = un0+1 ; . . . ; un1 , P2 = un1+1 ; . . . ; un2 ,
…, Pm = unm−1+1 ; . . . ; unm . Let l1, . . . , lm−1 ∈ N. Then ((P1, . . . , Pm), (l1, . . . , lm−1)) is
an annotated partition of P if n0 ≤ l1 < n1, …, nm−2 ≤ lm−1 < nm−1.

Let P = u1 ; . . . ; un with u1, . . . , un ∈ As, let ((P1, . . . , Pm), (l1, . . . , lm−1)) be an
annotated partition of P , and let n0, . . . , nm ∈ N be as in the definition of annotated partition
above. Let P ′m = Pm ; ! and, for each i ∈ [1, m−1], let P ′i = uni−1+1 ; . . . ;uli ; fork(P ′i+1) ;
uli+1 ; . . . ;uni ; ! if ni−1 < li and P ′i = fork(P ′i+1) ;uli+1 ; . . . ;uni ; ! if ni−1 = li . Then P ′1 is
the parallelization of P induced by the annotated partition ((P1, . . . , Pm), (l1, . . . , lm−1)).

Let P ∈ SLPs and P ′ ∈ SLPsf be such that P ′ is the parallelization of P induced by some
annotated partition. Then P ′ is a correct parallelization of P if [[P]] ≈ [[P ′]].

If P ′ is a correct parallelization of P , then [[P]] and [[P ′]] are the same as state transformers.
Moreover, the state transformations that [[P]] can accomplish, [[P ′]] can accomplish in less

123

Synchronous cooperation for explicit multi-threading 561

steps. That is, ||([[P ′]], S)|| < ||([[P]], S)|| for all S ∈ S. Notice that a reduction in number
of steps is not guaranteed if we replace n0 ≤ l1 < n1, …, nm−2 ≤ lm−1 < nm−1 by
n0 ≤ l1 ≤ n1, …, nm−2 ≤ lm−1 ≤ nm−1 in the definition of annotated partition.

Program parallelization concerns roughly the following:

– the partitions of a program with at least one annotated version that induces a parallelization
of which it can be determined statically that it is a correct one;

– for each such partition, an annotated version that induces a parallelization of which it can
be determined statically that it gives the largest reduction in number of steps.

The primary means to determine the above-mentioned correctness and speed-up properties
statically is the concurrency relation C .

A sufficient condition for correctness of a parallelization in terms of the concurrency
relation C can easily be given.

Theorem 6 Let m ≥ 2, and let P, P1, . . . , Pm, n0, . . . , nm, l1, . . . , lm−1 and P ′1, . . . , P ′m
be as in the definition of parallelization above. Then P ′1 is a correct parallelization of P if,
for all i ∈ [1, m − 1], li is such that for all j ∈ [li + 1, ni] and k ∈ [ni + 1, nm] we have
C(u j , uk).

Proof This is easily proved by induction on m, using Propositions 16 and 17. �
7.3 Weaker sufficient conditions for correctness of parallelizations

Unfortunately, the sufficient condition for correctness of parallelizations given in Theorem 6
is too strong to be useful. However, it can be weakened if there are bounds on the number of
steps that the processing of split basic instructions takes. The weakened sufficient condition
given in Claim 1 below is not too strong to be useful provided that the diversity of the greatest
number of steps that the processing of different instructions take is small.

In Claim 1 below, we use the following notation. Let P , P1, . . . , Pm , n0, . . . , nm , l1, . . . ,
lm−1 and P ′1, . . . , P ′m be as in the definition of parallelization above. Moreover, for each
u ∈ I, let ls(u) and gs(u) be the least and greatest number of steps that the processing of
u takes (if u is not a split basic instruction, then ls(u) = 1 and gs(u) = 1). Then, for each
i ∈ [1, m−1], we write n′i for the least n′ such that

∑
j∈[li+1,ni] gs(u j)≤∑

k∈[ni+1,n′] ls(uk)−∑
j ′∈[1,m′i]

∑
k′∈[li+ j ′+1,ni+ j ′] ls(uk′), where m′i is the greatest m′ ∈ [0, (m− i)−1] such that

∑
j∈[0,m′](li+ j − ni+ j−1) ≤ ni − ni−1.7

After the presentation of the claim, it will be explained that n′i is a conservative approxi-
mation of the position of the last instruction of P that is possibly executed in concurrency
with an instruction of P ′i after P ′i+1 is forked off, and also that m′i is one less than the number
of programs forked off while P ′i is executed.

Claim 1 Let m ≥ 2, and let P, P1, . . . , Pm, n0, . . . , nm, l1, . . . , lm−1 and P ′1, . . . , P ′m be as
in the definition of parallelization above. Then P ′1 is a correct parallelization of P if, for all
i ∈ [1, m − 1], li is such that for all j ∈ [li + 1, ni] and k ∈ [ni + 1, n′i] we have C(u j , uk).

It can be seen as follows that m′i (for i ∈ [1, m−1]) is one less than the number of programs
forked off while P ′i is executed: if i+1 ≤ m then P ′i+1 is forked off after li−ni−1 instructions,
if i+2 ≤ m then P ′i+2 is forked off after (li−ni−1)+(li+1−ni) instructions, and so on. In other
words, if i+m′+1 ≤ m then P ′i+m′+1 is forked off after

∑
j∈[0,m′](li+ j−ni+ j−1) instructions.

7 We use the conventions that [k, l] stands for ∅ if k > l and
∑

i∈I ki stands for 0 if I = ∅.

123

562 J. A. Bergstra, C. A. Middelburg

This means that, for m′ ∈ [0, (m − i) − 1], if
∑

j∈[0,m′](li+ j − ni+ j−1) ≤ ni − ni−1 then
P ′i+m′+1 is forked off while P ′i is executed.

It can be seen as follows that n′i (for i ∈ [1, m − 1]) is a conservative approxima-
tion of the position of the last instruction of P that is possibly executed in concurrency
with an instruction of P ′i after P ′i+1 is forked off:

∑
k∈[ni+1,n′] ls(uk) is the least num-

ber of steps that it takes to process the instructions of P from the first instruction of
Pi+1 up to and including the instruction with position n′ sequentially; and subtraction of∑

j ′∈[1,m′i]
∑

k′∈[li+ j ′+1,ni+ j ′] ls(uk′) compensates for the instructions of P ′i+1, …, P ′i+m′i
that

are possibly executed in concurrency with instructions of P ′i+2, …, P ′i+m′i+1, namely the ins-

tructions of P ′i+1 executed after P ′i+2 is forked off and … and the instructions of P ′i+m′i
that are executed after P ′i+m′i+1 is forked off. This means that if

∑
j∈[li+1,ni] gs(u j) ≤

∑
k∈[ni+1,n′] ls(uk) − ∑

j ′∈[1,m′i]
∑

k′∈[li+ j ′+1,ni+ j ′] ls(uk′) then n′ is greater than the posi-

tion of the last instruction of P that is possibly executed in concurrency with an instruction
of P ′i after P ′i+1 is forked off.

We believe that we can give a proof of Claim 1, but we refrain from giving a proof. Such
a proof would involve complicated variants of many of the preceding propositions to be
proved. The variants concerned would be attuned to the assumption that for each primitive
instruction the least and greatest number of steps that its processing takes are given. We do
not consider it realistic to give such a proof in the light of the fact that the weakened sufficient
condition is still too strong to be useful if the diversity of the greatest number of steps that
the processing of different instructions take is great. This means that the weakened sufficient
condition is still rather uninteresting in practice: parallelization is found in techniques for
speeding up instruction processing intended to deal with the presence of this diversity.

Given a partition of a straight-line program, we can determine statically which annotated
versions of the partition that induce a parallelization satisfying the sufficient condition from
Claim 1 give the largest reduction in number of steps. Let P , P1, . . . , Pm , n0, . . . , nm ,
l1, . . . , lm−1, P ′1, . . . , P ′m and n′1, . . . , n′m−1 be as in Claim 1. If, for all i ∈ [1, m − 1],
li is such that for all j ∈ [li + 1, ni] and k ∈ [ni + 1, n′i] we have C(u j , uk) and in addition
for all l ′ ∈ [ni−1, li − 1] there exist a j ∈ [l ′ + 1, li] and a k ∈ [ni + 1, n′i] such that not
C(u j , uk), then P ′1 is a correct parallelization of P such that for all correct parallelizations
P ′ of P induced by annotated versions of the partition (P1, . . . , Pm) that also satisfy the
sufficient condition from Claim 1 we have ||([[P ′1]], S)|| ≤ ||([[P ′]], S)|| for all S ∈ S.

Example 7 Consider the program P = P1 ; P2 ; !, where P1 and P2 are as follows:

P1 = LOAD:R1:A ;
MUL:R2:R1:R1

P2 = MOVE:R3:1 ;
MOVE:R4:2 ;
LOAD:R5:B ;
ADD:R5:R5:R3 ;
MUL:R6:R5:R5 ;
MUL:R6:R6:R4 ;
ADD:R6:R6:R2 ;
STORE:R6:C

writing LOAD:R:M for the split instruction LOADI:R:M/LOADC:R:M to increase the
resemblance with programs written in some assembly language. A, B and C are different
memory elements. If the contents of A and B are a and b, respectively, then P calculates
a2 + 2(b + 1)2 and stores the result of the calculation in C. It is clear that (P1,P2) is a

123

Synchronous cooperation for explicit multi-threading 563

partition of P. We suppose that each instruction of P1 may be executed in concurrency
with each instruction of P2 except the last but one. The execution of all instructions takes
one step, with the exception of the instructions of the form LOAD:R:M . We suppose that
the execution of the latter instructions takes between l and h steps. The annotated partition
((P1,P2), (0)) induces the parallelization P′ = fork(P2 ; !) ; P1 ; !. This parallelization
satisfies the sufficient condition for correctness from Claim 1 provided that h − l ≤ 4. It is
trivial to determine that ((P1,P2), (0)) is the annotated version of (P1,P2) that gives the
largest reduction in number of steps.

8 Conclusions

We have developed an algebraic theory of threads, synchronous cooperation of threads,
and interaction of threads with Maurer machines. Setting up a framework in which issues
concerning techniques for speeding up instruction processing that involve parallel processing
of instructions with diverse variable processing times can be investigated is one of the aims
with which we have developed this theory. As part of its development, we have constructed a
projective limit model for the theory. In addition to properties of the theory and its projective
limit model that are general in nature, we have established properties that are primarily
relevant when investigating the issues referred to above.

We have investigated program parallelization, which underlies all explicit multi-threading
techniques to speed up instruction processing, using the theory developed. Our finding is that
program parallelization, which is done on static grounds, tends to yield marginal speed-ups of
instruction processing unless the diversity of greatest processing times is small. The problem
is that for all instructions, including the ones with long greatest processing times, the worst
case must be taken into account. That leaves little room for provably correct parallelizations
that speed up instruction processing substantially.

An obvious idea to reduce the effects of a great diversity of greatest processing times is
to use optimistic estimations of processing times for the instructions that take long greatest
processing times and to suspend and resume forked-off programs dynamically to compensate
for too optimistic estimations of processing times. It is clear that the speed-ups yielded by
that highly depend upon the scheduling algorithm used for the resumption of suspended
programs and the particular estimations of processing times used. Even if an ideal scheduler
is assumed, i.e. one that maximizes simultaneity in the processing of instructions from all
programs involved, it appears that there is no clue to the parallelizations that could speed
up instruction processing substantially. In fact, the choice of a partition and the choice of
an annotated version thereof look to be arbitrary choices now: correctness of the induced
parallelizations is not relevant, because it is enforced dynamically, and whether one induced
parallelization gives a larger reduction in number of steps than another cannot be determined
statically.

We have found that an induction principle to establish state transformer equivalence of
infinite threads is material to proving theorems about sufficient conditions for the correctness
of program parallelizations. We have also found that, in spite of the drastic simplification
made by considering only programs without test and jump instructions, proving a theorem
about a very simple sufficient condition for the correctness of program parallelizations is
very difficult. We have not started proving a claim about a somewhat more involved sufficient
condition for the correctness of program parallelizations because proving that claim comes
very near the limit of what is feasible.

123

564 J. A. Bergstra, C. A. Middelburg

In the area of micro-processor design, explicit-multi-threading is claimed to be a basic
technique for speeding up instruction processing substantially. Our main reason to investigate
program parallelization was that the arguments that are given for this claim are not soundly
based by the standard of theoretical computer science. We also expected to be able to give
in the end heuristics for correct program partitioning that speeds up instruction processing
substantially. One of our conclusions from the results of the investigation of program paral-
lelization is that the justness of the claim is far less evident than it is generally assumed in
the area of micro-processor design. Another conclusion from the results of our investigation
is that the development of useful heuristics is as yet practically unfeasible.

In this paper, we have carried on the line of research that has already resulted in
[8–10]. We pursue with this line of research the object to develop an approach to design
new micro-architectures that allows for their correctness and anticipated speed-up results to
be verified. It emanates from the work presented in [3,6]. There is another related line of
research that emanates from that work. That line of research concerns the development of a
theory about threads, multi-threading and interaction of threads with services that is useful
for gaining insight into the semantic issues concerning the multi-threading related features
found in contemporary programming languages. It has already resulted in [7,11–14]. We
believe that the theory being developed may also be useful when developing paralleliza-
tion techniques for compilers that have to take care of program parallelization for programs
written in programming languages such as Java and C#.

Acknowledgements We thank two anonymous referees for suggesting improvements of the presentation of
the paper.

Appendix A: CPO structure for projective limit model

In this appendix, we make A∞ into a complete partial ordering (cpo) to establish the existence
of least solutions of recursion equations using Tarski’s fixed point theorem.

The approximation relation # ⊆ Aω × Aω is the smallest partial ordering such that for
all p, p′, q, q ′ ∈ Aω:

– D # p;
– p # p′ ⇒ tau ◦ p # tau ◦ p′;
– for all ξ ∈ BA, p # p′ ∧ q # q ′ ⇒ p � ξ � q # p′ � ξ � q ′;
– p # p′ ∧ q # q ′ ∧ r # r ′ ⇒ p � nt(r) � q # p′ � nt(r ′) � q ′;
– for all ξ ∈ BA, p # p′ ∧ q # q ′ ⇒ p � yξ � q # p′ � yξ � q ′.
The approximation relation # ⊆ A∞ × A∞ is defined component-wise:

(pn)n∈N
(qn)n∈N

⇔∀n ∈ N • pn # qn .

The approximation relation # on An is simply the restriction of # on Aω to An .
The following proposition states that any p ∈ Aω is finitely approximated by projection.

Proposition 18 For all p ∈ Aω:

∃n ∈ N • (∀k < n • πk(p) # πk+1(p) ∧ ∀l ≥ n • πl(p) = p).

Proof The proof follows the same line as the proof of Proposition 1 from [3]. This means
that it is a rather trivial proof by induction on the structure of p. Here, we have to consider the
additional cases p ≡ p′ � nt(p′′′) � p′′ and p ≡ p′ � yξ � p′′. These cases go analogously
to the case p ≡ p′ � ξ � p′′. �

123

Synchronous cooperation for explicit multi-threading 565

The properties stated in the following lemma will be used in the proof of Theorem 7 given
below.

Lemma 10 For all n ∈ N:

1. (An,#) is a cpo;
2. πn is continuous;
3. for all p ∈ Aω:

(a) πn(p) # p;
(b) πn(πn(p)) = πn(p);
(c) πn+1(πn(p)) = πn(p).

Proof The proof follows similar lines as the proof of Proposition 2 from [3]. Property 1
follows from the fact that every directed set P ⊆ An is finite. Like in [3], this fact is proved
by induction on n. Due to the presence of reply conditionals, the proof is more involved.
It is the only proof in this paper that makes use of the assumption that AA is a finite set.
For Property 2, we now have to use induction on the structure of the elements of Aω and
distinction between the cases n = 0 and n > 0 for non-forking and forking postconditional
compositions. Due to the presence of reply conditionals, we cannot use induction on n and
case distinction on the structure of the elements of Aω like in [3]. However, the crucial
details of the proof remain the same. Like in [3], Property 3a follows immediately from
Proposition 18. Properties 3b and 3c follow immediately from Lemma 4. �

The following theorem states some basic properties of the approximation relation #
on A∞.

Theorem 7 (A∞,#) is a cpo with
⊔

P = (
⊔{πn(p) | p ∈ P})n∈N

for all directed sets
P ⊆ A∞. Moreover, up to (order) isomorphism Aω ⊆ A∞.

Proof The proof follows the same line as the proof of Theorem 1 from [3]. That is, using
general properties of the projective limit construction on cpos, the first part follows imme-
diately from Properties 1 and 2 from Lemma 10, and the second part follows easily from
Proposition 18 and Property 3 from Lemma 10. �

Another important property of the approximation relation# on A∞ is stated in the follo-
wing theorem.

Theorem 8 The operations from the projective limit model for TA∗sc are continuous with
respect to #.

Proof With the exception of the conditional action repetition operations, the proof follows
the same line for all kinds of operations. It begins by establishing the monotonicity of the
operation on Aω. For the non-forking and forking postconditional composition operations
and the reply conditional operations, this follows immediately from the definition of # on
Aω. For the synchronous cooperation operation, it is straightforwardly proved by induction
on ν(p) and case distinction according to the left-hand sides of the axioms for synchronous
cooperation. Then the monotonicity of the operations on A∞ follows from their monotonicity
on Aω, the monotonicity of the projection operations and the definition of # on A∞.

For the conditional action repetition operations, the proof differs in that it begins with
establishing – with a proof by induction on n, using axioms for conditional action repetition
– that, for all p, q ∈ Aω, for all n ∈ N, p # q implies πn(ξ ∗b p) # πn(ξ ∗b q). From this and

123

566 J. A. Bergstra, C. A. Middelburg

the definition of # on A∞, the monotonicity of the conditional action repetition operations
on A∞ follows as well.

What remains to be proved is that least upper bounds of directed sets are preserved by the
operations. We will show how the proof goes for the non-forking postconditional composition
operations. The proofs for the other kinds of operations go similarly. Let P, Q ⊆ A∞ be
directed sets. Then, for all n ∈ N, {πn(p) | p ∈ P}, {πn(q) | q ∈ Q}, {πn(p) � ξ � πn(q) |
p ∈ P ∧ q ∈ Q} ⊆ An are directed sets by the monotonicity of πn . It is easily proved by
induction on n, using the definition of# on An , that these directed sets are finite. This implies
that they have maximal elements. From this, it follows by the monotonicity of _ � ξ � _ that,
for all n ∈ N, (

⊔{πn(p) | p ∈ P}) � ξ � (
⊔{πn(q) | q ∈ Q}) = ⊔{πn(p) � ξ �

πn(q) | p ∈ P ∧ q ∈ Q}. From this, it follows by the property of lubs of directed sets
stated in Theorem 7 and the definition of πn+1 that, for all n ∈ N, πn+1((

⊔
P) � ξ �

(
⊔

Q)) = πn+1(
⊔{p � ξ � q | p ∈ P ∧ q ∈ Q}). Because π0((

⊔
P) � ξ � (

⊔
Q)) =

D = π0(
⊔{p � ξ � q | p ∈ P ∧ q ∈ Q}), also for all n ∈ N, πn((

⊔
P) � ξ � (

⊔
Q)) =

πn(
⊔{p � ξ � q | p ∈ P ∧ q ∈ Q}). From this, it follows by the definition of# on A∞ that

(
⊔

P) � ξ � (
⊔

Q) =⊔{p � ξ � q | p ∈ P ∧ q ∈ Q}. �
We have the following important result about recursion equations.

Theorem 9 Let x ∈ X , let P ⊆ A∞, and let t ∈ T {x}P . Then the recursion equation x = t
has a least solution with respect to#, i.e. there exists a p ∈ A∞ such that [[t]]x (p) = p and,
for all q ∈ A∞, [[t]]x (q) = q implies p # q.

Proof We have from Theorem 7 that (A∞,#) is a cpo and, using Theorem 8, it is easily
proved by induction on the structure of t that [[t]]x is continuous. From this, we conclude
by Tarski’s fixed point theorem that there exists a p ∈ A∞ such that [[t]]x (p) = p and, for
all q ∈ A∞, [[t]]x (q) = q implies p # q . Hence, the recursion equation x = t has a least
solution with respect to #. �

The following proposition relates the ordering relation# introduced in this appendix with
the ordering relation �∼ introduced in Sect. 5.1.

Proposition 19 For all p, q ∈ A∞, p # q ⇒ p �∼ q.

Proof Let p, q ∈ A∞ be such that p # q . Then, for all n ∈ N, we have πn(p) # πn(q) by the
monotonicity of πn . It is easily proved by induction on the structure of p′ that p′ # q ′ implies
p′ �∼ q ′ for all p′, q ′ ∈ Aω. Hence, for all n ∈ N, we have πn(p) �∼ πn(q) as well. From this,
it follows immediately that, for all n ∈ N, there exists an m ∈ N such that πn(p) �∼ πm(q).
From this, it follows by the state transformer inclusion principle (see Table 16) that p �∼ q .

�
We have the following corollary concerning �∼ from Propositions 18 and 19.

Corollary 3 For all p ∈ Aω:

∃n ∈ N • (∀k < n • πk(p) �∼ πk+1(p) ∧ ∀l ≥ n • πl(p) ≈ p).

Appendix B: Glossary of symbols

In this appendix, we provide a glossary of symbols used in this paper.

123

Synchronous cooperation for explicit multi-threading 567

Notation Meaning

Thread algebras
BTAδ basic thread algebra with blocking
TAsc thread algebra with synchronous cooperation
TA∗sc TAsc with conditional action repetition
TA∗•sc TA∗sc with thread to Maurer machine application

Thread algebra notation
D deadlock
S termination
p � ξ � q non-forking postconditional composition
ξ ◦ p action prefixing
ξ & ξ ′ synchronization
‖s(〈p1〉� . . . � 〈pn〉) synchronous cooperation
p � nt(r) � q forking postconditional composition
p � yξ � q reply conditional
nt(p) ◦ q forking prefixing
ξ ∗b p conditional action repetition
ξ/ξ ′ ◦ p split-action prefixing
p · q p with all occurrences of S replaced by q
πn(p) projection
α(p) alphabet
p • S apply

Sets of actions

BA set of basic actions
A set of basic actions and tau
Aδ set of basic actions, tau and δ

AA set of atomic actions
CA set of concurrent actions
CAδ set of concurrent actions and δ

Sets of terms
TTAsc set of closed terms over signature of TAsc

B set of basic terms
B0 set of basic terms without forking
TTA∗sc

set of closed terms over signature of TA∗sc
C set of semi-basic terms
C0 set of semi-basic terms without forking
SLT set of straight-line threads
SLT s set of straight-line threads with split actions
SLT sf set of straight-line threads with split actions and

thread forking

Domains of models
Aω domain of initial model for TAsc

A∞ domain of projective limit model for TAsc

123

568 J. A. Bergstra, C. A. Middelburg

Maurer machines
M memory
B base set
S set of states
O set of operations
A set of atomic actions
[[_]] atomic action interpretation function
C atomic action concurrency relation
↑ undefined state
||(p, S)|| length of computation

State transformer equivalence

≈ state transformer equivalence
�∼ state transformer inclusion

Program algebra

PGAsl,sf straight-line program algebra with split instructions
and forking

A set of basic instructions
I set of primitive instructions
As set of void and split basic instructions
a void basic instruction
a/b split basic instruction
fork(P) fork instruction
! termination instruction
P ; Q concatenation
αslp(P) alphabet
|P| thread extraction
[[P]] program behaviour
TPGAsl,sf set of closed terms over signature of PGAsl,sf

SLP set of straight-line programs
SLPs set of straight-line programs with split instructions
SLPsf set of straight-line programs with split instructions

and forking

References

1. de Bakker, J.W., Bergstra, J.A., Klop, J.W., Meyer, J.J.C.: Linear time and branching time semantics for
recursion with merge. Theor. Comput. Sci. 34, 135–156 (1984)

2. de Bakker, J.W., Zucker, J.I.: Processes and the denotational semantics of concurrency. Inform.
Control 54(1/2), 70–120 (1982)

3. Bergstra, J.A., Bethke, I.: Polarized process algebra and program equivalence. In: Baeten, J.C.M., Lenstra,
J.K., Parrow, J., Woeginger, G.J. (eds.) Proceedings 30th ICALP, Lecture Notes in Computer Science,
vol. 2719, pp. 1–21. Springer, Heidelberg (2003)

4. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inform. Control 60(1/3), 109–
137 (1984)

5. Bergstra, J.A., Loots, M.E.: Program algebra for component code. Form. Asp. Comput. 12(1), 1–17 (2000)
6. Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. J. Logic Algebr. Program. 51(2), 125–

156 (2002)

123

Synchronous cooperation for explicit multi-threading 569

7. Bergstra, J.A., Middelburg, C.A.: Thread algebra for strategic interleaving. To appear in Form. Asp. Com-
put. Preliminary version: Computer Science Report 04-35, Department of Mathematics and Computer
Science, Eindhoven University of Technology (2004)

8. Bergstra, J.A., Middelburg, C.A.: Maurer computers with single-thread control. To appear in Fundam.
Inform. Preliminary version: Computer Science Report 05-17, Department of Mathematics and Computer
Science, Eindhoven University of Technology (2005)

9. Bergstra, J.A., Middelburg, C.A.: Simulating turing machines on Maurer machines. To appear in J. Appl.
Logic. Preliminary version: Computer Science Report 05-28, Department of Mathematics and Computer
Science, Eindhoven University of Technology (2005)

10. Bergstra, J.A., Middelburg, C.A.: Maurer computers for pipelined instruction processing. To appear
in Math. Struct. Comput. Sci. Preliminary version: Computer Science Report 06-12, Department of
Mathematics and Computer Science, Eindhoven University of Technology (2006)

11. Bergstra, J.A., Middelburg, C.A.: Thread algebra with multi-level strategies. Fundam. Inform.
71(2/3), 153–182 (2006)

12. Bergstra, J.A., Middelburg, C.A.: A thread calculus with molecular dynamics. Computer Science Report
06-24, Department of Mathematics and Computer Science, Eindhoven University of Technology (2006)

13. Bergstra, J.A., Middelburg, C.A.: Distributed strategic interleaving with load balancing. To appear in
Future Generation Computer Systems. Preliminary version: Computer Science Report 07-03, Department
of Mathematics and Computer Science, Eindhoven University of Technology (2007)

14. Bergstra, J.A., Middelburg, C.A.: A thread algebra with multi-level strategic interleaving. Theory Comput.
Syst. 41(1), 3–32 (2007)

15. Bergstra, J.A., Ponse, A.: Combining programs and state machines. J. Logic Algebr. Program. 51(2), 175–
192 (2002)

16. Bolychevsky, A., Jesshope, C.R., Muchnick, V.: Dynamic scheduling in RISC architectures. IEE Proc.
Comput. Digit. Tech. 143(5), 309–317 (1996)

17. Croom, F.H.: Principles of Topology. Saunders College Publishing, Philadelphia (1989)
18. Dugundji, J.: Topology. Allyn and Bacon, Boston (1966)
19. Hodges, W.A.: Model Theory, Encyclopedia of Mathematics and Its Applications, vol. 42. Cambridge

University Press, Cambridge (1993)
20. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation,

Second edn. Addison-Wesley, Reading, MA (2001)
21. Jesshope, C.R., Luo, B.: Micro-threading: a new approach to future RISC. In: ACAC 2000, pp. 34–41.

IEEE Computer Society Press (2000)
22. Kranakis, E.: Fixed point equations with parameters in the projective model. Inform. Comput. 75(3), 264–

288 (1987)
23. Maurer, W.D.: A theory of computer instructions. J. ACM 13(2), 226–235 (1966)
24. Maurer, W.D.: A theory of computer instructions. Sci. Comput. Program. 60, 244–273 (2006)
25. Mousavi, M.R., Gabbay, M.J., Reniers, M.A.: SOS for higher order processes. In: Abadi, M., de Alfaro, L.

(eds.) CONCUR 2005, Lecture Notes in Computer Science, vol. 3653, pp. 308–322. Springer, Heidelberg
(2005)

26. Mousavi, M.R., Reniers, M.A., Groote, J.F.: Notions of bisimulation and congruence formats for SOS
with data. Inform. Comput. 200, 107–147 (2005)

27. Schmidt, D.A.: Denotational Semantics: A Methodology for Language Development. Allyn and Bacon,
Boston (1986)

28. Stoltenberg-Hansen, V., Tucker, J.V.: Algebraic and fixed point equations over inverse limits of alge-
bras. Theor. Comput. Sci. 87, 1–24 (1991)

29. Ungerer, T., Robič, B., Šilc, J.: A survey of processors with explicit multithreading. ACM Comput.
Surv. 35(1), 29–63 (2003)

30. Vu, T.D.: Metric denotational semantics for BPPA. Report PRG0503, Programming Research Group,
University of Amsterdam (2005)

123

	Synchronous cooperation for explicit multi-threading
	Abstract
	Introduction
	Thread algebra for synchronous cooperation
	Basic thread algebra with blocking
	Synchronous cooperation of threads
	Conditional action repetition
	Approximation induction principle
	Alphabets
	Structural operational semantics of TA*sc
	Projective limit model for TA*sc
	Projective limit model for TAsc
	Metric space structure for projective limit model
	Guarded recursion equations
	Expansion of projective limit model for TAsc to model for TA*sc
	Threads and Maurer machines
	Maurer computers
	Applying threads to Maurer machines
	Computations
	Threads as state transformers
	State transformer equivalence
	State transformer properties of threads
	Programs
	Relevant classes of threads
	Algebra of straight-line program with split instructions and forking
	Relevant classes of programs
	Program parallelization
	State transformer properties of programs
	Program partitioning, annotation and parallelization
	Weaker sufficient conditions for correctness of parallelizations
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

