Skip to main content
Log in

Small universal accepting hybrid networks of evolutionary processors

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

In this paper, we improve some results regarding the size complexity of accepting hybrid networks of evolutionary processors (AHNEPs). We show that there are universal AHNEPs of size 6, by devising a method for simulating 2-tag systems. This result improves the best upper bound for the size of universal AHNEPs which was 7. We also propose a computationally and descriptionally efficient simulation of nondeterministic Turing machines with AHNEPs. More precisely, we prove that AHNEPs with ten nodes can simulate any nondeterministic Turing machine of time complexity f (n) in time O(f (n)). This result significantly improves the best known upper bound for the number of nodes in a network simulating in linear time an arbitrary Turing machine, namely 24.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alhazov A., Csuhaj-Varju E., Martin-Vide C., Rogozhin Y.: About universal hybrid networks of evolutionary processors of small size. Lect. Notes Comput. Sci. 5196, 28–39 (2008)

    Article  MathSciNet  Google Scholar 

  2. Alhazov A., Csuhaj-Varju E., Martin-Vide C., Rogozhin Y.: On the size of computationally complete hybrid networks of evolutionary processors. Theor. Comput. Sci. 410(35), 3188–3197 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hartmanis J., Stearns R.E.: On the computational complexity of algorithms. Trans. Am. Math. Soc. 117, 533–546 (1965)

    Article  MathSciNet  Google Scholar 

  4. Hillis W.D.: The Connection Machine. MIT, Cambridge (1985)

    Google Scholar 

  5. Manea F., Martin-Vide C., Mitrana V.: On the size complexity of universal accepting hybrid networks of evolutionary processors. Math. Struct. Comput. Sci. 17(4), 753–771 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Manea F., Mitrana V.: All NP-problems can be solved in polynomial time by accepting hybrid networks of evolutionary processors of constant size. Inf. Proc. Lett. 103(3), 112–118 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Margenstern M., Mitrana V., Perez-Jimenez M.: Accepting hybrid networks of evolutionary systems. Lect. Notes Comput. Sci. 3384, 235–246 (2005)

    Article  MathSciNet  Google Scholar 

  8. Minsky, M.L.: Size and structure of universal turing machines using tag systems. Recursive Function Theory, Symposium in Pure Mathematics, vol. 5, pp. 229–238 (1962)

  9. Papadimitriou C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  10. Post E.L.: Formal reductions of the general combinatorial decision problem. Am. J. Math. 65, 197–215 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rogozhin Y.: Small universal turing machines. Theor. Comput. Sci. 168, 215–240 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rozenberg, G., Salomaa, A. (eds): Handbook of Formal Languages, vol. I–III. Springer, Berlin (1997)

    Google Scholar 

  13. Sankoff D. et al.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. USA 89, 6575–6579 (1992)

    Article  Google Scholar 

  14. Woods, D., Neary, T.:On the time complexity of 2-tag systems and small universal Turing machines. 47th Annual IEEE symposium on foundations of computer science FOCS ’06, pp. 439–448 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Mitrana.

Additional information

Work is supported by the research grant ES-2006-0146 of the Spanish Ministry of Science and Innovation and the Romanian Ministry of Education and Research (PN-II Program, Projects GlobalComp, SEFIN and SELF). The work of Florin Manea is also supported by the Alexander von Humboldt Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loos, R., Manea, F. & Mitrana, V. Small universal accepting hybrid networks of evolutionary processors. Acta Informatica 47, 133–146 (2010). https://doi.org/10.1007/s00236-009-0113-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-009-0113-8

Keywords

Navigation