
LIPIcs Leibniz International Proceedings in Informatics

On Timed Alternating Simulation for
Concurrent Timed Games

Laura Bozzelli1, Axel Legay1, Sophie Pinchinat1

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, FRANCE.

ABSTRACT. We address the problem of alternating simulation refinement for concurrent timed
games (TG). We show that checking timed alternating simulation between TG is EXPTIME-complete,
and provide a logical characterization of this preorder in terms of a meaningful fragment of a new
logic, TAMTL∗. TAMTL∗ is an action-based timed extension of standard alternating-time temporal
logic ATL∗, which allows to quantify on strategies where the designated player is not responsible
for blocking time. While for full TAMTL∗, model-checking TG is undecidable, we show that for its
fragment TAMTL, corresponding to the timed version of ATL, the problem is instead in EXPTIME.

1 Introduction

Refinement preorders constitute the standard mathematical approach to formalize the rela-

tion between abstract and concrete versions of the same system. Intuitively, an implementa-

tion I refines an abstraction A when each behavior of I is allowed by A. Refinement usually

comes together with a logical setting to formally express the requirements preserved by the

preorder. The goal is to ensure that the properties proved about the abstract description

continue to hold in the refined version (i.e., the implementation). This scenario may arise ei-

ther because the design is being carried out in an incremental fashion, or because the system

is too complex and an abstraction needs to be used to verify its properties.

In the design and analysis of reactive and distributed component-based systems, refine-

ment usually refers to a single component, whose behavior depends on assumptions on its

environment (the other components). In this context, traditional refinement preorders, like

simulation, are inappropriate because they do not distinguish between the behaviors of the

component and those of its environment; so that, refinement also restrict the environment

behaviors. Recently, [5, 10, 8] have addressed this problem and succeeded in an elegant

solution for finite-state systems based on the game paradigm: the system is modeled by a

multi-player finite-state concurrent game, where at each step, the next state is determined

by considering the “intersection” between the choices (behavioral options) made simulta-

neously and independently by all the players (the components). Thus, one can keep all as-

sumptions about a component separated from those of its environment. In this framework,

simulation refinement becomes alternating simulation [5], a preorder which exploits the game

setting and is defined according to a designated player (component):∗ an implementation I

refines an abstraction A of the same component whenever any possible behavioral option of

I is allowed by A, and controvariantly, any possible behavioral option of the environment

of A is allowed by the environment of I. In this way, the refinement restricts the component

behaviors without restricting the permissible environment behaviors.

∗or, more in general, w.r.t. any subset of players (coalitions)

c© Bozzelli, Legay, Pinchinat; licensed under Creative Commons License-NC-ND.
Foundations of Software Technology and Theoretical Computer Science (Kanpur) 2009.
Editors: Ravi Kannan and K. Narayan Kumar; pp 85–96
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany.
Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2009.2309

86 ON TIMED ALTERNATING SIMULATION FOR CONCURRENT TIMED GAMES

While classical simulation preserves universal fragments of standard branching tempo-

ral logics designed for closed systems such as CTL∗ [11], alternating simulation for a given

player preserves expressive fragments of alternating-time temporal logics designed for open

systems such as ATL∗ [5, 4]. The latter is a convenient formalism for component-based sys-

tems modeled by finite-state concurrent games, where properties need to be guaranteed by

a player irrespective of the behavior of the other players.

Our contribution. We address the problem of refinement for real-time component-based

systems, agreeing on the crucial role of timed information in practical applications, e.g. in

embedded–system applications. We extend the notion of alternating simulation refinement

for finite-state concurrent games to the setting of (perfect-information) timed concurrent

games (TG) with the element of surprise introduced in [9]. In this setting, at each step,

players choose simultaneously and independently moves consisting of delayed actions: the

move with the smallest delay is carried out and determines the next state (if the small-

est delay is proposed by several players, then the move of one of them is chosen nonde-

terministically). Moreover, we propose the new logic TAMTL∗ as a language for specify-

ing properties of timed component-based systems modeled by TG. TAMTL∗ is a real-time

action-based extension of ATL∗, in which the temporal operators correspond to those of the

timed linear-time temporal logic MTL [13]. Differently from the known real-time extension

of ATL∗, namely TATL∗ [12], which is based on a dense-time continuous semantic (the system

is observed at any point in time), we adopt a dense-time pointwise semantics (the system is

observed through events) [16]. Furthermore and more importantly, we generalize the class

of atomic formulas of MTL by introducing the notion of (timed) multi-action constraint. Intu-

itively, such constraints express requirements on the “observable” part of single steps along

TG runs, i.e., the delay-action chosen by each player and the player which is selected in the

current step. In this way we can directly express important properties such as the existence

of reasonable strategies, that are strategies where the designated player is not responsible

for blocking time progress. In TATL∗, this is not directly possible: to express the above re-

quirement we have to artificially extend the infinite labeled transition system (LTS) of the

given TG in order to obtain another LTS that cannot be associated to any TG specification.

Our main results are the following:

1. We show that checking timed alternating simulation between TG for a given player is

EXPTIME-complete. The upper bound is proved by a non-trivial generalization of the

region-abstraction approach used for checking timed simulation/bisimulation [7, 17].

The matching lower bound is shown by an easy and linear-time reduction from the

problem of checking timed simulation, which is known to be EXPTIME-hard [14].

2. We provide a logical characterization of timed alternating simulation for a given player

σ in terms of a meaningful fragment, σ-TAMTL∗
P, of TAMTL∗, where strategy quanti-

fiers are parameterized by σ and negation applies only to multi-action constraints. We

show that a TG A is timed σ-simulated by a TG B precisely when each σ-TAMTL∗
P

formula that holds in A also holds in B. To the best of our knowledge, this is the first

paper that provides a full logical characterization for a timed refinement preorder.

3. While for unrestricted TAMTL∗, model checking TG is undecidable (since TAMTL∗ sub-

sumes MTL over infinite words [15]), we show that for its fragment TAMTL, where

each temporal operator is immediately preceded by a strategy quantifier, the problem

BOZZELLI, LEGAY, PINCHINAT FSTTCS 2009 87

is instead in EXPTIME. To do so, for each player σ, we associate to the given TG a

region-abstraction finite-state turn-based game Gσ, and recursively reduce the prob-

lem to solving the games Gσ w.r.t. regular objectives. Compared to the TATL model

checking algorithm in [12], our approach is direct and provides more insight on TG.

Here, we restrict our attention to the two-player case, but all results can be extended

to the multi-player setting, where players play in coalitions. Details of this extension are

deferred to the full version of this paper.

Related work. Refinement of real-time closed systems has been addressed in many pa-

pers (e.g. [3, 1, 17]), where systems are modeled by standard timed automata (TA) [3]. Timed

language containment for TA is undecidable [3], while timed simulation [1, 17] between TA,

which preserves the universal fragment of timed CTL (TCTL) [2], is EXPTIME-complete [17,

14]. For the open system setting, we are only aware of the recent work of Bulychev et al.

[6], who propose timed simulation preorders for two-player timed games where partial ob-

servability is also taken into account. However, the games exploited there are asymmetric,

which prevents a natural extension to the multi-player setting. Moreover, there are some

significant restrictions on the model. For example, a player is enforced to play a discrete

action if the invariant at the current location expires. Furthermore, their notion of preorder

differs from ours in at least one crucial point: in their case, there is no interaction between

the choices of opponent players in the underlying simulation game.

2 Preliminaries

2.1 Concurrent Timed Games

Let R≥0 be the set of non-negative reals and Q≥0 be the set of non-negative rational numbers.

Fix a finite set of clock variables X. The set C(X) of clock constraints (over X) is the set of

boolean combinations of formulas of the form x ∼ c, where x ∈ X, c is a natural number,

and ∼∈ {≤, <}. A (clock) valuation (over X) is a function v : X → R≥0 that maps every clock

to a non-negative real number. Whether a valuation v satisfies a clock constraint g ∈ C(X),

denoted v |= g, is defined in a natural way. For t ∈ R≥0, the valuation v + t is defined

as (v + t)(x) = v(x) + t for all x ∈ X. For Y ⊆ X, the valuation v[Y := 0] is defined as

(v[Y := 0])(x) = 0 if x ∈ Y and (v[Y := 0])(x) = v(x) otherwise.

DEFINITION 1.[3] A timed transition table (TT) is a tuple T = 〈Act, X, Q, ∆, Inv〉, where Act

is a finite set of actions, Q is a finite set of locations, ∆ ⊆ Q × (Act ∪ {⊥}) × C(X)× 2X × Q

is a finite transition relation, where ⊥ /∈ Act is the null action, and Inv : Q → C(X) maps
each location to an invariant. We require that for each q ∈ Q, there is exactly one transition
(q,⊥, g, Y, q′) from q associated with the null action; moreover, q′ = q, g = true, and Y = ∅.

A state of T is a pair (q, v) such that q ∈ Q, v is a valuation, and the invariant at location

q is satisfied by v, i.e. v |= Inv(q). The TT T induces an infinite-state labeled transition

system (LTS) [[T]] = 〈S,→〉 over the set of labels R≥0 × (Act ∪ {⊥}) × ∆, where S is the set

of T -states, and the set of labeled edges →⊆ S × [R≥0 × (Act ∪ {⊥})× ∆]× S is defined as:

(q, v)
t,a,δ
−−→ (q′, v′) iff δ = (q, a, g, Y, q′), v + t |= g, v′ = (v + t)[Y := 0], and v + t′ |= Inv(q)

for each 0 < t′ ≤ t. Note that if (q, v)
t,⊥,δ
−−→ (q′, v′), then q′ = q and v′ = v + t.

88 ON TIMED ALTERNATING SIMULATION FOR CONCURRENT TIMED GAMES

DEFINITION 2.[9] A (two-player concurrent) timed game (TG) is a tuple A = 〈T , s0, Act0,

Act1〉, where T = 〈Act, X, Q, ∆, Inv〉 is a TT, s0 is a designated initial state of T whose clock
values are in Q≥0, and {Act0, Act1} is a partition of Act with Act0, Act1 6= ∅.

A state of A is a state of [[T]]. For each σ ∈ {0, 1}, let Act⊥σ = Actσ ∪ {⊥}. Intuitively,

Act⊥σ represents the set of actions for player σ. The set of moves MovA(σ) of player σ is given

by R≥0 × Act⊥σ ×∆. For a state s, the set of moves available to player σ in s, written MovA(σ, s),

is the set of moves (t, a, δ) ∈ MovA(σ) such that s
t,a,δ
−−→ s′ for some state s′, which is uniquely

determined and is denoted by NextA(s, 〈t, a, δ〉). Observe that MovA(σ, s) is not empty since

(0,⊥, (q,⊥, true, ∅, q)) ∈ MovA(σ, s), where q is the location of s.

The timed game is intuitively played as follows. In each state s, each player σ chooses

a move (t, a, δ) ∈ MovA(σ, s) indicating that the player wants to play the transition δ asso-

ciated with the action a after a delay of t time units. The null action ⊥ signifies the player’s

intention to remain idle for the specified time delay. The move with the shorter proposed

time delay determines the next state of the game; if both player propose the same delay, then

one of the chosen moves occurs non-deterministically. An outcome of the game corresponds

to an infinite path of [[T]] augmented with additional information. Before formalizing these

notions, we recall that in the standard definition of TG (see e.g. [9]) a move of a player just

consists of a timed delay followed by an action. This because the underlying TT is assumed

to be time-deterministic, i.e. for each (t, a) ∈ R≥0 × Act and state s, there is at most one

transition δ such that s
t,a,δ
−−→ s′. Here, we have removed this restriction. Thus, to uniquely

determine the next state, a player has to specify also the transition to be taken.

For moves (t0, a0, δ0) ∈ MovA(0, s) and (t1, a1, δ1) ∈ MovA(1, s), the joint destination

move, written JDM(〈t0, a0, δ0〉, 〈t1, a1, δ1〉), is {〈t0, a0, δ0〉, 〈t1, a1, δ1〉} if t0 = t1, and the sin-

gleton {〈tk, ak, δk〉} for the unique k ∈ {0, 1} such that tk < t1−k otherwise.

A run of A is a finite or infinite sequence π = s0, 〈m0
1, m1

1, σ1〉, s1, 〈m0
2, m1

2, σ2〉, s2, . . . such

that for any k, sk ∈ S, m0
k+1 ∈ MovA(0, sk), m1

k+1 ∈ MovA(1, sk), σk+1 ∈ {0, 1}, m
σk+1

k+1 ∈

JDM(m0
k+1, m1

k+1), and sk+1 = NextA(sk, m
σk+1

k+1). For each k, we denote by πk the suffix-run

of π starting from state sk, and by π[0, k] the prefix-run of π leading to state sk. The duration

DUR(π) of π is the sum of timestamps of the selected moves m
σk+1

k+1 along π. An infinite run

π is divergent if DUR(π) = +∞. Let FRuns be the set of finite runs of A. For π ∈ FRuns,

we denote by last(π) the last state of π. A strategy fσ for player σ ∈ {0, 1} is a mapping

fσ : FRuns → MovA(σ) assigning to each finite run π a move to be proposed by player σ at

last(π) such that fσ(π) ∈ MovA(σ, last(π)). For each state s, the set of outcomes of strategy fσ

from s, OutcomesA(σ, s, fσ), is the set of all infinite runs s0, 〈m0
1, m1

1, σ1〉, s1, 〈m0
2, m1

2, σ2〉, s2 . . .

such that s0 = s, and for each k ≥ 0, fσ(s0, 〈m0
1, m1

1, σ1〉, s1, . . . sk) = mσ
k+1. Let π =

s0, 〈m0
1, m1

1, σ1〉, s1, 〈m0
2, m1

2, σ2〉, s2 . . . with m
j
k = (t

j
k, a

j
k, δ

j
k) (for each j = 0, 1 and k ≥ 1).

The trace of π, written trace(π), is 〈(t0
1, a0

1), (t1
1, a1

1), σ1〉, 〈(t0
2, a0

2), (t1
2, a1

2), σ2〉, . . .

We are also interested in strategies fσ of player σ ∈ {0, 1} such that player σ is not

responsible for blocking time progress [9]. Let Blamelessσ be the set of infinite runs π =
s0, 〈m0

1, m1
1, σ1〉, s1, . . . such that player σ is responsible only for finitely many steps, i.e. such

that there is k ≥ 1 so that for all j ≥ k, σj = 1 − σ. Note that Blamelessσ does not distinguish

between runs which have the same trace. A strategy fσ for player σ is reasonable in a state s

iff for all runs π in OutcomesA(σ, s, fσ), either π is divergent or π ∈ Blamelessσ.

BOZZELLI, LEGAY, PINCHINAT FSTTCS 2009 89

2.2 The logic TAMTL∗

In this subsection, we introduce a real-time action-based extension of the alternating-time

temporal logic ATL∗ [4], called TAMTL∗, based on a dense-time pointwise semantics.

Fix two nonempty and disjoint sets of actions Act0 and Act1. A (timed) multi-action over

(Act0, Act1) is a triple θ = 〈(t0, a0), (t1, a1), σ〉, where (ti, ai) ∈ R≥0 × Act⊥i for i = 0, 1,

σ ∈ {0, 1}, and tσ ≤ t0, t1. Note that the traces of runs in TG on (Act0, Act1) are sequence of

multi-actions. A (timed) multi-action constraint χ is a triple χ = 〈(a′0,∼0 c0), (a′1,∼1 c1), σ′〉,
where σ′ ∈ {0, 1} and for i = 0, 1, a′i ∈ Act⊥i , ∼i∈ {=, <,≤, >,≥}, and ci ∈ Q≥0. The above

multi-action θ satisfies χ, written θ |= χ, iff σ = σ′ and for i = 0, 1, ai = a′i and ti ∼i ci.

The sets of state formulas ϕ and path formulas ψ of TAMTL∗ over (Act0, Act1) are defined as:

ϕ := true | ¬ ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈〈σ〉〉ψ | 〈〈σ〉〉reψ

ψ := χ | ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | ψ UI ψ | ψŨ Iψ

where σ ∈ {0, 1}, 〈〈σ〉〉 and 〈〈σ〉〉re are strategy quantifiers, where, intuitively, 〈〈σ〉〉re is re-

stricted to σ-reasonable strategies, χ is a multi-action constraint, UI is the constrained strict

until operator, where I is an interval with bounds in Q≥0 ∪ {+∞}, and Ũ I is the dual of UI .

The set of state formulas ϕ forms the language TAMTL∗. TAMTL∗ is interpreted over states

of TG. Let A be a TG over (Act0, Act1), s be a state of A, and π be an infinite run of A. For a

state formula ϕ and a path formula ψ, the satisfaction relations (A, s) |= ϕ and (A, π) |= ψ

are defined by induction as follows (we omit the rules for boolean connectives):

(A, s) |= 〈〈σ〉〉ψ iff there is a strategy f of player σ such that

for all π ∈ OutcomesA(σ, s, f), (A, π) |= ψ

(A, s) |= 〈〈σ〉〉reψ iff there is a reasonable strategy f of player σ such that for all

π ∈ OutcomesA(σ, s, f), (A, π) |= ψ if π is divergent

(A, π) |= χ iff trace(π) = θ0, θ1, . . . and θ0 |= χ

(A, π) |= ϕ iff π = s0, . . . and (A, s0) |= ϕ

(A, π) |= ψ1 UI ψ2 iff there is i > 0 such that DUR(π[0, i]) ∈ I,

(A, πi) |= ψ2, and (A, πk) |= ψ1 for all 0 < k < i

(A, π) |= ψ1Ũ Iψ2 iff (A, π) |= ¬((¬ψ1)UI(¬ψ2))

We write A |= ϕ to mean that (A, s0) |= ϕ for the initial state s0 of A. We use some standard

shortcuts: ♦I ψ := trueUI ψ (eventually), �I ψ := ¬♦I ¬ψ (always), and ©I ψ := (¬true)UI ψ

(next). We omit the subscript I when I = R≥0. We denote by TAMTL the fragment of

TAMTL∗ consisting of the formulas in which every temporal operator is immediately pre-

ceded by a strategy quantifier. Moreover, for σ ∈ {0, 1}, let σ-TAMTL∗
P be the fragment of

TAMTL∗ (not closed under negation) in which all strategy quantifiers are parameterized by

σ, and negation is applied only to multi-action constraints. Intuitively, σ-TAMTL∗
P formulas

describe behaviors that player σ can enforce no matter what player 1 − σ does. Note that

since TG are not determined [9], the dual σ- ˜TAMTL∗
P of σ-TAMTL∗

P does not correspond to

(1− σ)-TAMTL∗
P. By the equivalence below, it follows that in fact 〈〈σ〉〉re is a derivate operator

in TAMTL∗ and also in σ-TAMTL∗
P. However, this does not hold for the logic TAMTL.

〈〈σ〉〉reψ ≡ 〈〈σ〉〉
(
((�♦[1,∞[true) → ψ) ∧ (¬(�♦[1,∞[true) → ψblamelessσ

)
)

ψblamelessσ
:= ♦�

(∨

a0∈Act⊥0

∨

a1∈Act⊥1

〈(a0,≥ 0), (a1,≥ 0), 1 − σ〉
)

90 ON TIMED ALTERNATING SIMULATION FOR CONCURRENT TIMED GAMES

EXAMPLE 3. Let Act0 = {a} and Act1 = {b}. The 0-TAMTL∗
P formula 〈〈0〉〉re � (〈(a,≥ 0),

(b,≥ 0), 0〉 → ♦[1,1]〈(a,≥ 0), (b,≥ 0), 1)〉) requires that player 0 has a reasonable strategy
ensuring that along every its divergent outcome, every a-event (i.e., the action a is selected

in the current step) is followed one time unit later by a b-event.

3 Timed Alternating Simulation

In this section, we introduce the notion of timed alternating simulation between TG which

generalizes alternating simulation between finite-state concurrent games [5].

Fix two comparable TG A = 〈TA, sA0 , ActA0 , ActA1 〉 and B = 〈TB, sB0 , ActB0 , ActB1 〉, i.e. such

that ActA0 = ActB0 and ActA1 = ActB1 . Let SA (resp., SB) be the set of states of A (resp., B).

DEFINITION 4. For a player σ ∈ {0, 1}, a relation H ⊆ SA × SB is a timed alternating

simulation for player σ from A to B iff for all (sA, sB) ∈ H, the following holds:
- for every move mA

σ = (t, a, δA) ∈ MovA(σ, sA), there is a matching move mB
σ = (t, a, δB) ∈

MovB(σ, sB) such that for every move mB
1−σ = (t′, b, δ′B) ∈ MovB(1 − σ, sB), there is a

matching move mA
1−σ = (t′, b, δ′A) ∈ MovA(1 − σ, sA) so that for all i = 0, 1,

mA
i ∈ JDM(mA

0 , mA
1) implies (NextA(sA, mA

i), NextB(sB , mB
i)) ∈ H

Note that mB
i ∈ JDM(mB

0 , mB
1). If there is a timed alternating simulation H for player σ from

A to B such that (sA0 , sB0) ∈ H, we say that B timed σ-simulates A, and we write A �σ B.

Note that �σ is a preorder on TG. We can give a game-theoretic interpretation of timed

alternating simulation for a player σ ∈ {0, 1}. Consider the following two-player turn-based

game whose set of main positions is SA × SB . The initial position is (sA0 , sB0). Each round

consists of five steps as follows. Assume that the current main position is (sA, sB). Then:

1. The antagonist chooses a move mA
σ = (t, a, δA) ∈ MovA(σ, sA) of player σ in A avail-

able at state sA, and moves to position p1 = (sA, sB, mA
σ).

2. The protagonist, from p1, chooses a matching move mB
σ = (t, a, δB) ∈ MovB(σ, sB) of

player σ in B available at state sB , and moves to position p2 = (sA, sB , mA
σ , mB

σ).

3. The antagonist, from p2, chooses a move mB
1−σ = (t′, b, δ′B) ∈ MovB(1− σ, sB) of player

1 − σ in B available at state sB, and moves to position p3 = (sA, sB , mA
σ , mB

σ , mB
1−σ).

4. The protagonist, from p3, chooses a matching move mA
1−σ = (t′, b, δ′A) ∈ MovA(σ, sA)

of player 1−σ in A available at state sA, and moves to p4 = (sA, sB , mA
σ , mB

σ , mB
1−σ, mA

1−σ).

5. The antagonist, from position p4, chooses i = 0, 1 such that mA
i ∈ JDM(mA

0 , mA
1), and

moves to the main position (NextA(sA, mA
i), NextB(sB , mB

i)).

If the game proceeds ad infinitum, then the protagonist wins. Otherwise, the game reaches

a position from which the protagonist cannot choose in steps 2 or 4 above a matching move,

and the antagonist wins. It easily follows that B timed σ-simulates A iff the protagonist has

a winning strategy. Note that for each σ ∈ {0, 1}, we have a different turn-based game.

Intuitively, B timed σ-simulates A iff player σ is more powerful in game B than in game

A, i.e. each behavior that player σ can induce in A, it can also induce in B. The following

lemma formalizes this intuition. Let H ⊆ SA × SB. For a run π of A and a run π′ of B
having the same length, we write H(π, π′) to mean that for each prefix-run π[0, k] of π,

(last(π[0, k]), last(π′ [0, k])) ∈ H.

BOZZELLI, LEGAY, PINCHINAT FSTTCS 2009 91

LEMMA 5. Let H be a timed alternating simulation for player σ ∈ {0, 1} from A to B.
Then, for all (sA, sB) ∈ H and strategy fA of player σ in A, there exists a strategy fB of
player σ in B such that for every run πB ∈ OutcomesB(σ, sB , fB), there exists a run πA ∈
OutcomesA(σ, sA, fA) so that H(πA, πB) and trace(πA) = trace(πB).

EXAMPLE 6. The figure depicts two simple TG A and B with Act0 = {a} and Act1 = {b}.

Let s0
A = (qA, v) and s0

B = (qB, v) be the initial states of A and B, where v is any valuation
with v(x) ≤ 1. It easily follows that B timed 0-simulates A and A timed 1-simulates B, but
the vice versa of each of two conditions does
not hold. Moreover, note that there exists no
(standard) timed simulation from A to B and

vice versa (w.r.t. the given initial states).

�

��mqA

A

a
x ≤ 1

b
x ≤ 3

U �

�

��mqB

B

a
x ≤ 2

b
x ≤ 2

U �

3.1 Checking Timed Alternating Simulation

In this subsection, we show that for given comparable TG A and B, and player σ ∈ {0, 1},

checking whether A �σ B is decidable via a suitable region abstraction, and the check can

be done in exponential time. Fix two comparable TG A = 〈TA, sA0 , Act0, Act1〉 and B =
〈TB, sB0 , Act0, Act1〉. Let SA (resp., SB) be the set of states of A (resp., B), and let XA (resp.,

XB) be the set of clocks of A (resp., B). W.l.o.g. we can assume that XA ∩ XB = ∅.

Region equivalence [3]: we denote by Kmax the largest constant occurring in the clock con-

straints of A and B. Given a clock valuation vA over XA and a clock valuation vB over

XB, the clock valuation vA‖vB over XA ∪ XB is defined in the obvious way (recall that

XA ∩ XB = ∅). For t ∈ R≥0, ⌊t⌋ denotes the integral part of t and f ract(t) denotes its

fractional part. The region equivalence relation over SA × SB, written ≈A‖B, is defined as fol-

lows: ((qA, vA), (qB, vB)) ≈A‖B ((q′A, v′A), (q′B , v′B)) iff qA = q′A, qB = q′B, and for each

x ∈ XA ∪ XB , either both (vA‖vB)(x), (v′A‖v′B)(x) > Kmax, or the following holds:

• ⌊(vA‖vB)(x)⌋ = ⌊(v′A‖v′B)(x)⌋ and f ract((vA‖vB)(x)) = 0 iff f ract((v′A‖v′B)(x)) = 0;

• for each y ∈ XA∪XB s.t. (vA‖vB)(y) ≤ Kmax, f ract((vA‖vB)(x)) ≤ f ract((vA‖vB)(y))
iff f ract((v′A‖v′B)(x)) ≤ f ract((v′A‖v′B)(y)) (ordering of the fractional parts).

Let RegA‖B be the set of equivalence classes of ≈A‖B, called regions. By [3], RegA‖B is

finite and its size is singly exponential in the sizes of A and B.

Finite Sampling of R≥0: let (sA, sB) ∈ SA × SB and x1, . . . , xn be the clocks in XA ∪ XB

whose values t1, . . . , tn in (sA, sB) are not greater than Kmax. Assume w.l.o.g. that τ1 ≤ τ2 ≤
. . . ≤ τn, where τi = f ract(ti) for 1 ≤ i ≤ n. Let τ0 = 0, τn+1 = 1, and min(sA, sB) =
min{⌊t1⌋, . . . , ⌊tn⌋}. We consider the following finite set of real numbers:

Times(sA, sB) = {h − 1
2(τi + τi+1) | i = 0, . . . , n and h = 1, . . . , Kmax − min(sA, sB)} ∪

{h− τi | i = 1, . . . , n and h = 1, . . . , Kmax −min(sA, sB)} ∪ {0, . . . , Kmax + 1−min(sA, sB)}}

Thus, Times(sA, sB) consists of the integers in {0, . . . , Kmax + 1 − min(sA, sB)} plus the dis-

tances between the points p and the integers 1, . . . , Kmax − min(sA, sB), where p is either a

fractional part τj or the mid-point of some interval [τi, τi+1] with 0 ≤ i ≤ n. Intuitively,

the distance d between a mid-point 1
2(τi + τi+1) and an integer h = 1, . . . , Kmax − min(sA, sB)

92 ON TIMED ALTERNATING SIMULATION FOR CONCURRENT TIMED GAMES

is used as a representative for all timestamps t such that h − τi+1 < t < h − τi (formally,

(vA‖vB) + t ≈A‖B (vA‖vB) + d, where vA and vB are the clock valuations of sA and sB).

Checking if A �σ B for σ ∈ {0, 1}: let Hmax
σ be the maximal timed alternating simulation

for player σ from A to B. We show that Hmax
σ is a computable union of regions.

DEFINITION 7.[Goodness] Let Γ ⊆ RegA‖B be a set of regions and let R ∈ Γ. We say that R

is good in Γ w.r.t. player σ ∈ {0, 1} iff there is (sA, sB) ∈ R such that:
1. for every move mA

σ = (t, a, δA) ∈ MovA(σ, sA) with t ∈ Times(sA, sB), there is a match-

ing move mB
σ = (t, a, δB) ∈ MovB(σ, sB) such that for every move mB

1−σ = (t′, b, δ′B) ∈
MovB(1 − σ, sB) with t′ ∈ Times(sA, sB), there is a matching move mA

1−σ = (t′, b, δ′A) ∈

MovA(1 − σ, sA) so that for all i = 0, 1 with mA
i ∈ JDM(mA

0 , mA
1),

(NextA(sA, mA
i), NextB(sB , mB

i)) ∈ Ri for some Ri ∈ Γ

Fix σ ∈ {0, 1} and let Ωσ : 2RegA‖B → 2RegA‖B be the monotone operator defined as fol-

lows: Ωσ(Γ) = {R ∈ Γ | R is good in Γ w.r.t. player σ}. We show that Ωσ is computable and

Hmax
σ =

⋃
R∈Γmax

R, where Γmax is the greatest fixpoint of Ωσ. For this, we need the following

crucial technical lemma, which extends the result given in [17] for timed simulation.

LEMMA 8. Let Γ ⊆ RegA‖B be a set of regions and R ∈ Γ such that R is good in Γ w.r.t. player
σ. Then, each (sA, sB) ∈ R satisfies the condition obtained from Condition 1 in Definition 7
by removing the constraint that the timestamps have to be chosen in Times(sA, sB).

Let H ⊆ SA × SB be a timed alternating simulation for player σ from A to B. We denote

by ΓH the set ΓH = {R ∈ RegA‖B | R ∩ H 6= ∅}. By Definition 7, the following holds.

LEMMA 9. If H ⊆ SA × SB is a timed alternating simulation for player σ from A to B, then
ΓH is a fixpoint of Ωσ.

By Lemmata 8 and 9, we obtain the following results.

COROLLARY 10. If H ⊆ SA × SB is a timed alternating simulation for player σ from A to B,

then
⋃

R∈ΓH
R is a timed alternating simulation for player σ from A to B.

COROLLARY 11. Let Γ ⊆ RegA‖B be a set of regions. Then, Ωσ(Γ) = Γ iff
⋃

R∈Γ R is a timed
alternating simulation for player σ from A to B.

By Corollary 10, Hmax
σ is a union of regions in RegA‖B, and by Corollary 11, Hmax

σ =⋃
R∈Γmax

R, where Γmax is the greatest fixpoint of Ωσ. Note that Γmax can be obtained by

iterative applications of Ωσ starting with Γ0 = RegA‖B. There can be at most |RegA‖B | many

iterations. Moreover, by Lemma 8, Condition 1 in Definition 7 is independent on what

representative is chosen for the given equivalence class. Since |Times(sA, sB)| for (sA, sB) ∈
SA× SB and |RegA‖B | are singly exponential in the sizes of A and B, if follows that Ωσ(Γ) for

given Γ ⊆ RegA‖B can be computed in single exponential time in the sizes of A and B. Since

A �σ B iff (sA0 , sB0) ∈ Hmax
σ , checking whether A �σ B is in EXPTIME. We can show that

the problem is also EXPTIME-hard by a straightforward and linear reduction from checking

timed simulation between TT, which is EXPTIME-hard [14]. Thus, we obtain the following.

THEOREM 12. Given two comparable TG A and B and player σ ∈ {0, 1}, the problem of
checking whether A �σ B is EXPTIME-complete.

BOZZELLI, LEGAY, PINCHINAT FSTTCS 2009 93

3.2 Logical characterization of timed alternating simulation

In this subsection, we give a logical characterization of timed alternating simulation for a

given player σ ∈ {0, 1} in terms of the fragment σ-TAMTL∗
P of TAMTL∗.

THEOREM 13. Let A and B be two TG over (Act0, Act1) and σ ∈ {0, 1}. Then, A �σ B if

and only if for every σ-TAMTL∗
P formula ϕ, A |= ϕ implies B |= ϕ. Hence, A �σ B if and

only if for every σ- ˜TAMTL∗
P formula ϕ̃, B |= ϕ̃ implies A |= ϕ̃.

Sketched proof. For the direct implication (⇒), it suffices to show that if H is a timed alternat-

ing simulation for player σ from A to B, then the following holds:

1. for all σ-TAMTL∗
P (state) formulas ϕ and (sA, sB) ∈ H, (A, sA) |= ϕ implies (B, sB) |= ϕ.

2. for all path formulas ψ of σ-TAMTL∗
P and for all infinite runs πA of A and πB of B s.t.

H(πA, πB) and trace(πA) = trace(πB), (A, πA) |= ψ implies (B, πB) |= ψ.

The proof is by induction on the structure of formulas. The non-trivial case is that of state

formulas of the form 〈〈σ〉〉ψ (recall that 〈〈σ〉〉re is a derivate operator in σ-TAMTL∗
P). Assume

that (sA, sB) ∈ H and (A, sA) |= 〈〈σ〉〉ψ. Thus, there is a strategy fA of player σ in A such

that for each outcome πA of fA from sA, (A, πA) |= ψ. Since (sA, sB) ∈ H, by Lemma 5,

there is a strategy fB of player σ in B such that for each outcome πB of fB from sB , there is

an outcome πA of fA from sA so that H(πA, πB) and trace(πA) = trace(πB). By ind. hyp.,

Property 2 holds for the path formula ψ. Hence, evidently, the result follows.

For the converse implication (⇐) of the theorem, assume that A 6�σ B. Let σ = 0 (the

other case is symmetric). We need to prove that for some 0-TAMTL∗
P formula ϕ, A |= ϕ

and B 6|= ϕ. Consider the turn-based 0-simulation game G0 between the antagonist and the

protagonist on page 90. By the results of Subsection 3.1 we can assume that the timestamps

chosen by the antagonist are in the finite set Times(sA, sB), where (sA, sB) is the main current

position of the game. It follows that G0 is finitely-branching. Since A 6�0 B, the antagonist

has a winning strategy f starting from (sA0 , sB0), where sA0 (resp., sB0) is the initial state of A
(resp., B) whose clock-values are rational. Hence, the strategy-tree Tf of f from (sA0 , sB0) is

finite, and (by def. of Times) the timestamps of the moves along the edges of Tf are rational.

We claim that for each node xp of Tf labeled by a main position p = (sA, sB) ∈ SA × SB,

there is a 0-TAMTL∗
P formula ϕp such that (A, sA) |= ϕp and (B, sB) 6|= ϕp. Hence, the result

follows. The proof is by induction on the height of the subtree of Tf rooted at node xp. By

construction, xp has exactly one child, say x′p, and the edge from xp to x′p corresponds to a

move m0
A = (t, a, δA) for player 0 in MovA(0, sA) with t ∈ Times(sA, sB) ⊆ Q≥0 chosen by

the antagonist in Step 1 on page 90. Moreover, the edges from x′p to its children y1, . . . , yn, if

any, correspond to all and only the matching moves m0
B = (t, a, δB) ∈ MovB(0, sB) of m0

A for

player 0 in B from sB . If n = 0 (base case), there is no such a matching move. In this case, the

0-TAMTL∗
P formula ϕp satisfying the claim is 〈〈0〉〉(

∨
b∈Act⊥1

∨
κ∈{0,1}〈(a, = t), (b,≥ 0), κ〉).

Now, assume that n ≥ 1. By construction, for each 1 ≤ i ≤ n, yi has a unique

child y′i and the edge from yi to y′i is associated with some move (t′, b, δ′B) ∈ MovB(1, sB)
(depending on i) with t′ ∈ Times(sA, sB) ⊆ Q≥0 chosen by the antagonist in Step 3 on

page 90. Moreover, the edges from y′i to its children zi,1, . . . , zi,mi
represent all and only the

possible matching moves (t′, b, δ′A) ∈ MovA(1, sA) (for player 1 in A from sA) of the move

(t′, b, δ′B) ∈ MovB(1, sB). Assume that for each 1 ≤ i ≤ n, mi ≥ 1, i.e. y′i is not a leaf (the

94 ON TIMED ALTERNATING SIMULATION FOR CONCURRENT TIMED GAMES

other case being simpler). By construction, for each 1 ≤ l ≤ mi, zi,l has a unique child z′i,l ,

which is labeled by a main position in SA × SB, and the edge from zi,l to z′i,l corresponds to

a choice κ = 0, 1 of the antagonist in Step 5 on page 90. We distinguish two cases:

• ∃1 ≤ i ≤ n. ∀1 ≤ l ≤ mi: the edge from zi,l to z′i,l is associated with the choice κ = 1;

• ∀1 ≤ i ≤ n. ∃1 ≤ l ≤ mi: the edge from zi,l to z′i,l is associated with the choice κ = 0.

Here, we focus on the first case. Let m1
B = (t′, b, δ′B) ∈ MovB(1, sB) be the move associated

with the edge from yi to y′i, where t′ ∈ Q≥0, and wB = NextB(sB , m1
B). By construction, t′ ≤ t

and the nodes z′i,1, . . . , z′i,mi
are labeled by positions (w1

A, wB), . . . , (wmi
A , wB), respectively,

where w1
A, . . . , wmi

A are the states of A obtained from sA applying all and only the matching

moves (t′, b, δ′A) ∈ MovA(1, sA) of m1
B. By ind. hyp. for each 1 ≤ l ≤ mi, there is a 0-TAMTL∗

P

formula φl s.t. (A, wl
A) |= φl and (B, wB) 6|= φl. Let ϕp be the 0-TAMTL∗

P formula given by

〈〈0〉〉
{(∨

c∈Act⊥1

∨

κ∈{0,1}

〈(a, = t), (c,≥ 0), κ〉
)
∧

(
〈(a, = t), (b, = t′), 1〉 → ©(φ1 ∨ . . . ∨ φmi

)
)}

Evidently, (A, sA) |= ϕp. Moreover, (B, sB) 6|= ϕp, since for every strategy of player 0 in B
which initially selects from sB a move of the form (t, a, δ), there is an outcome from sB of the

form π = sB , 〈(t, a, δ), (t′ , b, δB), 1〉, wB, . . ., where by hypothesis wB 6|= (φ1 ∨ . . . ∨ φmi
).

From the proof of Theorem 13, it follows that timed alternating simulation for player σ

can also be logically characterized by the small fragment of σ-TAMTL∗
P which only uses the

boolean connectives, the next temporal modality ©, and the strategy quantifier 〈〈σ〉〉.

4 Model checking TG against TAMTL

Fix a TG Ain over (Act0, Act1) and a TAMTL formula ϕ. By [3], w.l.o.g. we can assume that

the constants occurring in ϕ are natural numbers. Moreover, we can assume that Ain uses a

clock xdiv, which is reset whenever the constraint xdiv ≥ 1 holds. Let A be the TG obtained

from Ain by simply adding a new clock, say xϕ (note that xϕ is never used by A). Let Kmax

be the largest constant occurring in A and ϕ. We denote by RegAin
(resp., RegA) the finite

set of equivalences classes of the region equivalence on the set SAin
(resp., SA) of states of

Ain (resp., A) w.r.t. the constant Kmax [3], which is defined similarly to the set RegA‖B in

Subsection 3.1. We show that checking whether Ain |= ϕ (model-checking problem) can be

reduced to solving finite-state games w.r.t. regular objectives. For this, we associate to A
two finite-state games which abstract away from precise time information.

Let R ∈ RegA. A region R′ ∈ RegA is an abstract time-successor of R, written R ≤ R′,

if there is (q, v) ∈ R such that for some t ∈ R≥0, (q, v + t) ∈ R′ and v + t′ |= Inv(q) for

each 0 < t′ < t. By [3], the previous condition is independent on what representative is

chosen in R. Moreover, if R ≤ R′ and R ≤ R′′, then either R′ ≤ R′′ or R′′ ≤ R′. The set of

abstract moves available to player σ in R, written Movabs
A (σ, R), is the set of triples (R′, a, δ) ∈

RegA × Act⊥σ × ∆, such that R ≤ R′, δ = (q, a, g, Y, q′), q is the location associated with R′,

and g holds in R′. Given m = (R′, a, δ) ∈ Movabs
A (σ, R) with δ = (q, a, g, Y, q′), we denote by

Nextabs
A (R, m) the unique region R′′ such that there is (q, v) ∈ R′ so that (q, v[Y := 0]) ∈ R′′.

By [3], the previous condition is independent on what representative is chosen in R′.

Let σ ∈ {0, 1}. The finite-state turn-based two-player game Aabs
σ = 〈Pσ = Pσ

σ ∪ P1−σ
σ , Eσ〉

is defined as follows: Pσ
σ = RegA × {0, 1} is the set of states (or positions) for player σ,

BOZZELLI, LEGAY, PINCHINAT FSTTCS 2009 95

P1−σ
σ = {〈R, m, l〉 | R ∈ RegA, m ∈ Movabs

A (σ, R), and l ∈ {0, 1}} is the set of positions for

player 1 − σ, and Eσ ⊆ (Pσ
σ × P1−σ

σ) ∪ (P1−σ
σ × Pσ

σ) consists of following edges:

• (R, l) ։ (R, m, l) for all R ∈ RegA, m ∈ Movabs
A (σ, R), and l ∈ {0, 1};

• (R, 〈R1, a, δ1〉, l) ։ (R′, l′) iff ∃〈R2, b, δ2〉 ∈ Movabs
A (1 − σ, R) s.t. either l′ = σ, R1 ≤ R2,

and R′ = Nextabs
A (R, 〈R1, a, δ1〉), or l′ = 1−σ, R2 ≤ R1, and R′ = Nextabs

A (R, 〈R2, b, δ2〉).

A strategy for player σ in Aabs
σ is a function f : P∗

σ · Pσ
σ → P1−σ

σ such that for each π = π′ · p ∈
P∗

σ · Pσ
σ , p ։ f (π) is an edge of Aabs

σ . For each p ∈ Pσ, the set OutcomesAabs
σ

(σ, p, f) of infinite

outcomes of f from p is defined in the usual way. For a finite set of propositions Prop, a label-

ing function L : Pσ → 2Prop, a standard LTL formula ξ over Prop, and position p ∈ Pσ, we say

that the strategy f is winning in p w.r.t. L and the objective ξ if for each outcome p0, p1, . . . ∈
OutcomesAabs

σ
(σ, p, f), L(p0), L(p1), . . . satisfies ξ. The following two lemmata show the con-

nection between the strategies of player σ in A and the strategies of player σ in Aabs
σ .

LEMMA 14. Let σ ∈ {0, 1}, f be a strategy of player σ in A, R0 ∈ RegA, and s0 ∈ R0. Then,

there is a strategy fabs of player σ in Aabs
σ such that for each path πabs = (R0, 0), p0, (R1, σ1), p1,

(R2, σ2) . . . ∈ OutcomesAabs
σ

(σ, (R0, 0), fabs), there exists a run π ∈ OutcomesA(σ, s0, f) of the

form π = s0, 〈m0
1, m1

1, σ1〉, s1, 〈m0
2, m1

2, σ2〉, . . . so that for each h ≥ 1, sh ∈ Rh.

LEMMA 15. Let σ ∈ {0, 1} and fabs be a strategy of player σ in Aabs
σ , and R0 ∈ RegA. Then,

there is a strategy f of player σ in A s.t. for each π = s0, 〈m0
1, m1

1, σ1〉, s1, 〈m0
2, m1

2, σ2〉, . . . ∈
OutcomesA(σ, s0, f) with s0 ∈ R0, there is πabs ∈ OutcomesAabs

σ
(σ, (R0, 0), fabs) of the form

πabs = (R0, 0), p0, (R1, σ1), p1, (R2, σ2) . . . so that for each h ≥ 1, sh ∈ Rh.

THEOREM 16. The set of states sin of Ain such that (Ain, sin) |= ϕ is a union of regions in
RegAin

, and its (region) representation can be computed in exponential time. Hence, model
checking TG against TAMTL is in EXPTIME.

PROOF. We prove by induction on the structure of the formulas that the result holds for

each state subformula φ of ϕ. Here, we illustrate the case in which φ = 〈〈σ〉〉re(φ1 UI φ2) for

some σ ∈ {0, 1}. For s ∈ SA, we denote by Proj(s) the associated state in SAin
. Let SA[xϕ :=

0] be the set of states in SA such that the value of clock xϕ is 0. Note that for each s ∈ SA,

(A, s) |= φ iff (Ain, Proj(s)) |= φ. By ind. hyp. it follows that for each i = 1, 2, the set of

states s ∈ SA such that (A, s) |= φi is a union of regions in RegA whose representation can be

computed in exponential time. Evidently, it suffices to show that the last condition continues

to hold for the set of states s in SA[xϕ := 0] such that (A, s) |= 〈〈σ〉〉re(φ1 UI φ2). Note that

by the previous observations, for each s0 ∈ SA[xϕ := 0], (A, s0) |= 〈〈σ〉〉re(φ1 UI φ2) iff there

is a strategy f of player σ in A such that for each π = s0, 〈m0
1, m1

1, σ1〉, s1, 〈m0
2, m1

2, σ2〉, . . . ∈
OutcomesA(σ, s0, f), the associate sequence Reg(s0), σ1, Reg(s1), σ2, . . ., where Reg(sj) is the

region of sj, satisfies the following: either (1) for infinitely many j ≥ 0, Reg(sj) satisfies the

constraint xdiv ≥ 1, and there is k > 0 such that Reg(sk) satisfies φ2 and the constraint xϕ ∈ I,

and Reg(sh) satisfies φ1 for each 0 < h < k, or (2) there is k ≥ 0 such that for each j ≥ k,

σj 6= σ and Reg(sj) satisfies xdiv < 1. Let L : Pσ → {pφ2 , pφ1
, (xdiv ≥ 1), (xϕ ∈ I), 0, 1} be the

labeling of Aabs
σ defined in the obvious way. Then, by Lemmata 14 and 15, for all regions

R0 ∈ RegA satisfying xϕ = 0 and s0 ∈ R0, it holds that (A, s0) |= 〈〈σ〉〉re(φ1 UI φ2) iff there

is a winning strategy fabs of player σ in Aabs
σ in position (R0, 0) w.r.t. the labeling L and the

LTL objective: [� ♦(xdiv ≥ 1) ∧ (pφ1 U (pφ2 ∧ (xϕ ∈ I)))] ∨ [♦ �(¬(xdiv ≥ 1) ∧ (1 − σ))]

96 ON TIMED ALTERNATING SIMULATION FOR CONCURRENT TIMED GAMES

Since LTL finite-state games for a fixed LTL formula can be solved in polynomial time

[18] and since the size of Aabs
σ is exponential in the size of Ain, the result follows.

References

[1] L. Aceto and A. Jeffrey. A Complete Axiomatization of Timed Bisimulation for a Class

of Timed Regular Behaviours. Theoretical Computer Science, 152(2):251–268, 1995.

[2] R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking in dense real-time. Information

and Computation, 104(1):2–34, 1993.

[3] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.

[4] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal

of the ACM, 49(5):672–713, 2002.

[5] R. Alur, T.A. Henzinger, O. Kupferman, and M .Y. Vardi. Alternating Refinement Rela-

tions. In Proc. 9th CONCUR, LNCS 1466, pp. 163–178, 1998.

[6] P. Bulychev, T. Chatain, A. David, and K.G. Larsen. Checking simulation relation be-

tween timed game automata. In Proc. 7th FORMATS, LNCS, 2009. To appear

[7] K. C̆erāns. Decidability of Bisimulation Equivalences for Parallel Timer Processes. In

Proc. 4th CAV, LNCS 663, pp. 302–315, 1992.

[8] L. de Alfaro, L. Dias da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea. Sociable

Interfaces. In Proc. 5th FROCOS, LNCS 3717, pp. 81–105, 2005.

[9] L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and M. Stoelinga. The Element

of Surprise in Timed Games. In Proc. 14th CONCUR, LNCS 2761, pp. 142–156, 2003.

[10] L. de Alfaro and T. A. Henzinger. Interface automata. In Proc. 9th FSE, ACM , pp. 109–

120, 2001.

[11] E.A. Emerson and J.Y. Halpern. Sometimes and Not Never Revisited: On Branching

Versus Linear Time. Journal of the ACM, 33(1):151–178, 1986.

[12] T.A. Henzinger and V.S. Prabhu. Timed Alternating-Time Temporal Logic. In Proc. 4th

FORMATS, LNCS 4202, pp. 1–17, 2006.

[13] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time

Systems, 2(4):255–299, 1990.

[14] F. Laroussinie and Ph. Schnoebelen. The State Explosion Problem from Trace to Bisim-

ulation Equivalence. In Proc. 3rd FOSSACS, LNCS 1784, pp. 192–207, 2000.

[15] J. Ouaknine and J. Worrell. On Metric Temporal Logic and Faulty Turing Machines. In

Proc. 9th FOSSACS, LNCS 3921, pp. 217–230, 2006.

[16] J. Ouaknine and J. Worrell. On the Decidability of Metric Temporal Logic. In Proc. 20th

LICS, pp. 188-197, IEEE Computer Society Press, 2005.

[17] S. Tasiran, R. Alur, R .P. Kurshan, and R.K. Brayton. Verifying Abstractions of Timed

Systems. In Proc. 7th CONCUR, LNCS 1119, pp. 546–562,1996.

[18] W. Thomas. Automata on Infinite Objects. Handbook of Theoretical Computer Science:

Formal Models and Sematics, B:133–192, 1990.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

