
Acta Informatica (2013) 50:77–122
DOI 10.1007/s00236-012-0173-z

ORIGINAL ARTICLE

Compositional type checking of delta-oriented software
product lines

Lorenzo Bettini · Ferruccio Damiani · Ina Schaefer

Received: 16 November 2011 / Accepted: 13 November 2012 / Published online: 11 January 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Delta-oriented programming is a compositional approach to flexibly implement-
ing software product lines. A product line is represented by a code base and a product line
declaration. The code base consists of a set of delta modules specifying modifications to
object-oriented programs. A particular product in a delta-oriented product line is generated
by applying the modifications contained in the suitable delta modules to the empty program.
The product-line declaration provides the connection of the delta modules with the product
features. This separation increases the reusability of delta modules. In this paper, we provide
a foundation for compositional type checking of delta-oriented product lines of Java pro-
grams by presenting a minimal core calculus for delta-oriented programming. The calculus
is equipped with a constraint-based type system that allows analyzing each delta module in
isolation, such that the results of the analysis can be reused. By relying only on the analysis
results for the delta modules and on the product line declaration, it is possible to establish
whether all the products of the product line are well typed according to the fragment of the
Java type system modeled by the calculus.

The authors of this paper are listed in alphabetical order. This work has been partially supported by the
Deutsche Forschungsgemeinschaft (DFG), the Italian MIUR project PRIN 2008 DISCO, the German-Italian
University Centre (Vigoni program) and the EU project FP7-231620 HATS.

L. Bettini · F. Damiani
Dipartimento di Informatica, Universitá di Torino,
C.so Svizzera, 185, 10149 Torino, Italy
e-mail: lorenzo.bettini@unito.it

F. Damiani
e-mail: ferruccio.damiani@unito.it

I. Schaefer (B)
Technische Universität Braunschweig, Mühlenpfordtstr. 23,
38106 Braunschweig, Germany
e-mail: i.schaefer@tu-bs.de; i.schaefer@tu-braunschweig.de

123

78 L. Bettini et al.

1 Introduction

Delta-oriented programming (DOP) [42,44] is a flexible compositional approach for imple-
menting software product lines [12]. The implementation of a product line in DOP is orga-
nized into a code base and a product line declaration. The code base consists of a set of
delta modules that comprise modifications of object-oriented programs. A delta module can
add classes, remove classes or modify classes by changing the class structure. A particular
product in a delta-oriented product line is generated by applying the modifications contained
in the suitable delta modules to the empty program. The product line declarationprovides the
connection between the delta modules and the variabilities of the products defined in terms
of product features and describes the set of valid feature configurations [28]. For each delta
module, an application condition over the product features is specified, and an application
ordering for the delta modules is fixed. The separation between delta modules and product
line declaration increases the reusability of delta modules, making it possible to develop
different product lines by reusing the same delta modules.

Delta-oriented programming is an extension of feature-oriented programming (FOP) [6],
a compositional approach for implementing software product lines (cf. [44] for a straight-
forward embedding of FOP into DOP). The code base of a feature-oriented product line
contains a set of feature modules that correspond directly to product features. Hence, the
product line declaration for a feature-oriented product line only provides the set of valid
feature configurations and a composition ordering of the feature modules. A feature module
can be understood as a delta module without remove operations such that product line devel-
opment always starts from base feature modules comprising the mandatory product features.
In DOP, any product can be chosen as a base (delta) module. Hence, DOP supports proactive
product line development, where all possible products are planned in advance, as well as
extractive product line development [34] which starts from existing product implementa-
tions. Moreover, the application conditions associated with delta modules, in the product line
declaration, allow handling combinations of features explicitly. This provides an elegant way
to counter the optional-feature problem [31] where two optional features require additional
glue code to cooperate properly. However, the additional flexibility provided by DOP makes
it more challenging than in FOP to efficiently check that for every valid feature configuration
a unique product can be generated and that all the products of the product line are well typed.

Product line analysis techniques can be classified into three main categories [49]: Product-
based analyses consider each product variant separately; Family-based analyses check the
complete code base of the product line in a single run to obtain a result about all possible
variants; Feature-based analyses consider the building blocks of the different product variants
(the feature modules in FOP and the delta modules in DOP) in isolation to derive results on
all variants.

In this paper, we provide a foundation for compositional type checking of delta-
oriented product lines by presenting a constraint-based type system that supports a
feature-based analysis phase and a final product-based analysis phase by relying on an
abstraction of product generation. The concepts of this approach are demonstrated for IFΔJ
(Imperative Featherweight Delta Java), a core calculus for delta-oriented product
lines of Java programs. IFΔJ is based on IFJ (Imperative Featherweight Java), an
imperative variant of FJ (Featherweight Java) [26], that is used to implement the prod-
ucts. In the feature-based analysis phase the constraint-based type system is used to analyze
each delta module in isolation. The analysis result for a delta module is called the type
abstraction of the delta module. In the product-based analysis phase, by relying only on the
type abstractions of the delta modules and on the product line declaration, it is possible to

123

Compositional type checking 79

Fig. 1 Feature model for the
expression product line Legend:

Mandatory
Optional
And

establish whether all the products of the product line are well typed according to the IFJ type
system. The type abstraction of a delta module represents the provides/requires interface of
the module. A novelty with respect to provide/requires interfaces of feature modules used
by compositional type checking for FOP product lines [19] is that (during the final product-
based analysis phase) the type abstraction of delta modules are composed in a delta-oriented
manner.

The paper is organized as follows. Section 2 introduces DOP by an example. Section 3
is an overview on the proposed approach for designing a type system for DOP. Section 4
introduces IFJ, the underlying calculus for implementing products. Section 5 presents the
syntax and semantics of IFΔJ. Sections 6 and 7 describe the constraint-based type system
for IFJ and IFΔJ, respectively. Section 8 discusses how to enhance early error recognition in
delta modules. Related work is discussed in Sect. 9. We conclude by summarizing the paper
and outlining some directions for future work in Sect. 10. The appendices contain the proofs
of the main results.

A preliminary version of the material presented in this paper appeared in [43]. This paper
contains more detailed explanations and examples, an improved version of the IFΔJ calculus
(including a more faithful formalization of theoriginal construct, which a modified method
can use to access the old implementation), a more detailed presentation of the IFJ and IFΔJ
calculi, and the proofs of the main results.

2 Delta-oriented programming

In order to illustrate the main concepts of DOP, we use a variant of the expression product line
(EPL) as described in [36]. The EPL is based on the expression problem [50], an extensibility
problem that has been proposed as a benchmark for data abstractions’ capability to support
new data representations and operations. We consider the following grammar:

Two different operations can be performed on the expressions described by this grammar:
printing, which returns the expression as a string, and evaluating, which returns the value
of the expression. The products in the EPL can be described by two feature sets, the ones
concerned with the data—Lit, Add, Neg—and the ones concerned with the operations—
Eval and Print. Lit and Print are mandatory features. The features Add, Neg and Eval are
optional. Figure 1 shows the feature model [28] of the EPL.

123

80 L. Bettini et al.

The example aims at illustrating the constructs of the IFΔJ calculus presented in Sect. 5,
rather than to provide an elegant implementation of the EPL. Although the example uses a
more general syntax (including the primitive type int, the shortcut syntax for operations
on strings, and the sequential composition) than the syntax of the IFJ calculus presented in
Sect. 4, the encoding in IFJ is straightforward. We refer to Schaefer and Damiani [44] for
examples of programming the EPL in DOP that exploit the full Java syntax.

2.1 Delta modules

The main concept of DOP are delta modules which are containers of modification opera-
tions to an object-oriented program. The modifications may add, remove or modify classes.
Modifying a class means changing the super class, adding or removing fields or methods or
modifying methods. The modification of a method can either replace the method body by
another implementation, or wrap the existing method using the original construct (simi-
lar to the Super construct in AHEAD [6], and to the proceed construct of AOP, see also
Sect. 9). The call original(· · ·) expresses a call to the method with the same name before
the modifications and is bound at the time the product is generated. Other statements can be
introduced before and after a call original(· · ·), wrapping the existing method implemen-
tation. This makes original different both from super in Java-like languages (used in a
subclass overridden method declaration to access the superclass implementation) and from
inner in the gbeta language [21] (used in a superclass to invoke possible customizations
in subclasses); in fact, original, in the resulting generated product, is not a dispatch to a
method in another class: it is actually the invocation of the old method which is copied in the
generated class.

Delta-oriented programming supports extractive product line development [34] which
starts from existing products (called legacy products) and turns them into a product line.
Listing 1 contains a delta module for introducing an existing product, realizing the features
Lit, Add and Print. Listing 2 contains the delta modules for adding the evaluation functionality
to the classes Lit and Add. Listing 3 contains the delta modules for incorporating the Neg
feature by adding and modifying the class Neg and for adding glue code required by the two
optional features Add and Neg to cooperate properly. Listing 4 contains the delta module
for removing the Add feature from the legacy product.

Listing 1: Delta module introducing a legacy product

123

Compositional type checking 81

Listing 2: Delta modules for the Eval feature

Listing 4: Delta module removing the Add feature

2.2 Delta-oriented product lines

A delta-oriented product line consists of a code base and a product line declaration. The
code base contains a set of delta modules, while the product line declaration creates the
connection to the product line variability specified in terms of product features. The product
line captures the configuration knowledge [14] of the product line. Listing 5 shows a product
line declaration for the EPL. The product line declaration:

123

82 L. Bettini et al.

– Lists the product features.
– Describes the set of valid feature configurations described by the feature model. In the

examples, the valid feature configurations are represented by a propositional formula over
the set of features. We refer to Batory [5] for a discussion on other possible representations.

– Attaches to each delta module an application condition specifying for which feature con-
figurations the delta module has to be applied. In the examples, the application condition
is represented by a propositional constraint over the set of features, given in a when
clause. Since only feature configurations that are valid according to the feature model are
used for product generation, the application conditions are understood as a conjunction
with the formula describing the set of valid feature configurations.

– Fixes the possible application orders of the delta modules by defining a total order on
the sets of a partition of the delta modules. Deltas in the same set of the partition can
be applied in any order, but the order of the sets must be obeyed. The ordering captures
semantic requires-relations that are necessary for the applicability of the delta modules.
In the examples, the ordering is represented by writing an ordered list of the delta module
sets which are enclosed by { .. } after the keyword deltas.

Listing 5: Declaration of the EPL

2.3 Product generation

A product is valid if it corresponds to a valid feature configuration. In order to obtain a
product for a particular feature configuration, the operations specified in the delta modules
with satisfied application conditions are applied incrementally to the empty program. Namely,
the generation of a product for a given feature configuration consists of two steps, performed
automatically:

1. Find all delta modules with a satisfied application condition.
2. Apply the selected delta modules in any linear ordering that respects the total order on

the partition of the delta modules. The first delta module is applied to the empty program,
the second delta module is applied to the outcome of the application of the first delta
module, and so on.

The operations of a delta module are applicable to a program if each class to be removed or
modified exists and, for every modified class, if each method or field to be removed exists,
if each method to be modified exists and has the same header as the modified method, and if
each class, method or field to be added does not exist. During the generation of a product, the
selected delta modules must be applicable in the given order, otherwise the generation of the
product fails. In particular, the first delta module that is applied can only contain additions.
The fresh name for the new method introduced by the application of a delta module of name

123

Compositional type checking 83

δ that wraps an existing method of name m by using the original construct is denoted
by m$δ.

Listing 6 depicts the product generated when the Lit, Add, Neg, Print and Eval features
are selected. Note that in the generated class Add the new method toString$DOptional-
Print has been introduced to implement the call of original: it has the same body as
the original version of the method toString and it is called by the modified version of the
method toString.

Listing 6: Generated code for Lit, Add, Neg, Print and Eval features

The flexibility supported by specifying (via the ordered partition of the delta modules) a
set of possible application orders (instead of a single application order) can be exploited to
optimize both product type-checking and product generation. This issue, not further discussed
in this paper, is investigated in [17].

2.4 Strongly-unambiguous delta-oriented product lines

If two delta modules add, remove or modify the same class, the ordering in which the
delta modules are applied may influence the resulting product. However, for a product-line
implementation, it is essential to guarantee that the product line is unambiguous, i.e, for
every valid feature configuration exactly one product is generated. A product line is strongly
unambiguous if each set in the partition of the delta modules specified in the product-line
declaration is consistent, that is, if one delta module in a set adds or removes a class, no other
delta module in the same set may add, remove or modify the same class, and the modifications
of the same class in different delta modules in the same set have to be disjoint. A strongly
unambiguous product line is also unambiguous.

The product line in Listing 5 is strongly unambiguous. Note that the property of being
strongly unambiguous is modular, since in order to check it only the consistency of each

123

84 L. Bettini et al.

Legend:

Mandatory
Optional
Alternative
And

Fig. 2 Feature model for the evolved expression product line

set in the partition of the delta modules specified by the product-line declaration has to be
checked.

2.5 Evolution of delta-oriented product lines

Delta-oriented programming also supports reactive product line development [34], starting
with an existing product line that is evolved in order to deal with new customer requirements.
Consider the example depicted in Listing 5 as the initial product line. Assume now that a
new feature Sub needs to be introduced for representing subtraction expressions. In the new
product line, the Sub feature becomes an alternative to the Neg feature (i.e., they cannot be
both present in the same product). Additionally, the Print feature should become optional
and the Eval feature mandatory. The feature model [28] for the evolved product line is given
in Fig. 2.

Listing 7: Declaration of the evolved EPL

The declaration for the evolved EPL is shown in Listing 7, where the operator
choose1(P1, . . . , Pn)means at most one of the propositions P1, . . . , Pn is true (see [5]). The
same is captured in the feature diagram (cf. Fig. 2) by introducing the additional (abstract)
feature NegativeNumbers to encapsulate the alternative between the features Neg and Sub.

123

Compositional type checking 85

The eight delta modules of the EPL (cf. Listing 5) are reused for the evolved EPL. Moreover,
in order to realize the new Sub feature, we have to define delta modules that introduce the
corresponding data structure for subtraction and the associated print and the evaluation func-
tionalities. The respective delta modules are shown in Listing 8. We also have to define delta
modules for removing the Print feature, shown in Listing 9, since printing is now optional.
Note that the evolved EPL is strongly unambiguous.

Listing 8: Delta modules for Sub feature

Listing 9: Delta modules removing the Print feature

Listing 10: Generated code for Lit, Sub and Eval features

123

86 L. Bettini et al.

Listing 10 depicts the product generated when the Lit, Sub and Eval features are selected.
This example shows that DOP supports product line evolution by reusing existing delta
modules, by adding new delta modules to implement new product features or to deal with
new feature combinations, and by reconfiguring the application conditions and the delta
module order in the product line declaration to capture changes in the feature model.
Since delta modules can be reused across different product lines, a type system for DOP
should support the reuse across different product lines of the types inferred for the delta
modules.

3 Type safety and compositional type-checking of DOP product lines

An SPL is type safe if all valid products can be generated and are well-typed programs
according to the type system of the target programming language. The analysis techniques
to ensure that a product line is type safe can be classified in three main categories [49]:

1. Product-based analyses consider each product variant separately. Product-based analyses
can use any standard analysis technique for single products. These analyses work well
when relatively few products are generated (as it happens in many practical cases), but
are in general infeasible when many products are generated (the number of products of
a product line may be exponential in the number of features). According to the product-
based approach, the type safety of an SPL could be checked by generating all products
and type checking each of them separately. Without a suitable tool support, it can be
difficult to trace the source of typing errors in composed code to the originating delta
modules.

2. Family-based analyses check the complete code base of the product line in a single run
to obtain a result about all possible variants. A family-based product line analysis which
relies on a monolithic model of the product line for checking the type safety of FOP
product lines has been proposed in [2].

3. Feature-based analyses consider the building blocks of the different product variants (i.e.,
the feature modules in FOP and the delta modules in DOP) in isolation to derive results
on all variants. The results of the analysis of each building block can be reused across
different product lines, like the associated building blocks can (cf. Sect. 2.5). Feature-
based analyses usually only work for feature-compositional properties, such as syntax
checking, or require a final product-based or family-based analysis phase in addition to
the feature-based analysis phase. For instance, in the type safety of FOP product lines
presented in [19] the feature-based phase generates constraints for every feature module
in isolation and the family-based phase checks these constraints for the whole product
family.

In this paper, we present a compositional type system for delta-oriented product lines
that supports a feature-based phase and a final product-based phase by relying on an
abstraction of product generation. The concepts of this approach are demonstrated for IFΔJ
(Imperative Featherweight Delta Java), a core calculus for delta-oriented product
lines of Java programs based on IFJ (Imperative Featherweight Java), an imperative
version of FJ (Featherweight Java) [26]. An IFJ program consists of a class table CT,
i.e., a mapping from class names to class definitions. The approach consists of two technical
means:

1. A constraint-based type system for IFJ that infers a set of class constraints C for an IFJ
program. A set of class constraints can be understood as a requires interface for a program.

123

Compositional type checking 87

The class signature table of CT is a representation of the program without method bodies.
It can be understood as a provides interface for a program. The pair 〈signature(CT),C 〉
is the type abstraction of the program CT. The type abstraction of a program can be
understood as its provides/requires interface. A checking procedure for the program type
abstraction can check the inferred constraints against the class signature table of CT in
order to establish whether CT is a well-typed IFJ program.

2. A constraint-based type system for IFΔJ that infers a set of class-constraint operations
Dδ for each delta module δ by considering each delta module separately. A set of class-
constraint operations can be understood as a requires interface for a delta module. The
signature of a delta module is a representation of the delta module without method bodies
(the analogue of the class signature table). It can be understood as a provides interface for
a delta module. The type abstraction of a delta module δ is the pair 〈signature(δ),Dδ〉. The
type abstraction of a delta module can be understood as its provides/requires interface.
The type abstraction of each product can be generated by composing in a delta oriented
manner the type abstractions of the delta modules that would be used to generate the
product. Namely:

– The signature of the product (that is, its class signature table) can be generated by
composing the signatures of the delta modules. The generation succeeds if and only
if the generation of the corresponding product would succeed.

– The set of class constraints of the product can be generated by composing the sets of
class-constraint operations of the delta modules.

According to the above explanations, the type safety of each product can be established by
relying only on the type abstractions of the delta modules and the product line declaration, by
generating and checking the type abstraction of the product (without generating the product).

– The generation of the type abstractions of all the delta modules is a feature-based analysis
phase.

– The generation and the checking of the type abstractions of all the products is a product-
based analysis phase.

We expect that generating and checking the abstractions of all the products as illustrated
above will take less time than generating the implementations of the products and checking
them by a Java compiler.

4 IFJ

In this section we introduce the syntax and the type system of IFJ (Imperative Feath-

erweight Java), a minimal imperative calculus for Java that we use as the underlying
calculus to implement single products. The operational semantics and the type soundness of
IFJ are given in Appendix A.

IFJ is a variant of FJ [26] that supports modification of fields by field assignment expres-
sions and does not require all the fields to be initialized in a single constructor call. This
makes IFJ more suitable than FJ for the formalization of SPLs of Java programs, since (as
already pointed out in [19]) the fact that FJ requires all the fields to be initialized in a single
constructor call, whose parameters have to match the field declarations, makes it difficult to
deal with product transformations that add (or remove) fields. The notations and definitions
introduced in this section will be intensively used through the rest of the paper.

123

88 L. Bettini et al.

Fig. 3 IFJ: syntax of classes (C ∈ class names, f ∈ field names, m ∈ method names, x ∈ variable names)

4.1 IFJ syntax

The abstract syntax of the IFJ constructs is given in Fig. 3. Following [26], we use the overline
notation for possibly empty sequences. For instance, we write “ē” as short for a possibly
empty sequence of expressions “e1, . . . , en” and “MD” as short for a possibly empty sequence
of method definitions “MD1 . . . MDn” (without commas). The empty sequence is denoted by
•. We abbreviate operations on sequences of pairs in similar way, e.g., we write “C̄ f̄” as
short for “C1 f1, . . . , Cn fn” and “C̄ f̄;” as short for “C1 f1; . . . Cn fn;”. Sequences of named
elements (field, method or parameter names, field, method or class definitions,..) are assumed
to contain no duplicate names (that is, the names of the elements of the sequence must be
distinct). The set of variables includes the special variable this (implicitly bound in any
method declaration), which cannot be used as the name of a method’s formal parameter.

A class definition class C extends D {FD; MD} consists of its name C, its superclass
D (which must always be specified, even if it is Object), a list of field definitions FD and a
list of method definitions MD. The fields declared in C are added to the ones declared in D and
its superclasses and are assumed to have distinct names (i.e., there is no field shadowing).
All fields and methods are public. Each class is assumed to have an implicit constructor that
initializes all instance variables to null.

A class table CT is a mapping from class names to class definitions. The subtyping relation
<: on classes (types) is the reflexive and transitive closure of the immediate extends relation
(the immediate subclass relation, given by the extends clauses in CT). The class Object
has no members and its definition does not appear in CT. In the rest of this section, we assume
that a class table CT satisfies the following sanity conditions:

(i) CT(C) = class C . . . for every C ∈ dom(CT);
(ii) for every class name C (except Object) appearing anywhere in CT, we have C ∈

dom(CT);
(iii) there are no cycles in the transitive closure of the immediate extends relation.

An IFJ program is a class table CT.1 A class definition CD can be understood as a map-
ping from the keyword extends to a superclass name and from field/method names to
field/method definitions. We use the metavariable a to range over field/method names, and
the metavariable AD to range over field/method definitions. The lookup of the definition of
a field/method a in class C is denoted by aDef (C)(a). For every class C in dom(CT), the
function aDef (C) is defined as follows:

aDef (C)(a) =
{
CT(C)(a) if a ∈ dom(CT(C))
aDef (D)(a) if a �∈ dom(CT(C)) and CT(C)(extends) = D

Given a field definition FD = C f and a method definition MD = C m(C̄ x̄) {· · · }, we write
signature(FD) to denote the type C of the field f and signature(MD) to denote the type C̄→ C
of the method m.

1 In FJ [26], a program is a pair (CT,e) of a class table and an expression e. We can encode it by adding to
CT a class class Main { C main() { return e; }}, where e is of type C.

123

Compositional type checking 89

The following example illustrates the IFJ encoding of the EPL product for Lit, Add, Neg,
Print and Eval features given in Listing 6 of Sect. 2.3.

Example 1 The sequential composition of two expressions, “e1; e2”, which is not part of the
IFJ syntax, can be encoded as follows. Introduce an auxiliary class Encode defining a method
sc2C
where “sc” is short for “sequential composition”, “2” is the number of expressions to be com-
posed, and “C” is the type ofe2. Then “e1; e2” is encoded as

In the following, we assume that the class Encode defines suitable methods sc2Lit (for
the sequential composition of two expressions, where the second one has type Lit), sc3Add
(for the sequential composition of three expressions, where the third one has type Add), etc.
We also assume a class Int for integers, with suitable methods sum, subtract, etc. The
class String has the method concat for concatenation. The distinction between different
String literals is immaterial for the purpose of type checking, therefore the occurrences
of string values (like ‘‘(’’, ‘‘+’’, etc.) can be encoded without loss of generality by the
expression new String(). Similarly, the occurrences of integer literals can be encoded by
new Int().

According to the above conventions, the classes Exp, Lit, Add and Neg in Listing 6 of
Sect. 2.3 can be encoded in IFJ as in Listing 11.

Listing 11: IFJ encoding of the product for Lit, Add, Neg, Print and Eval features

4.2 IFJ typing

A class signature CS is a class definition deprived of the bodies of its methods. The abstract
syntax is as follows:

CS ::= class C extends C
{
FD; FD} class signatures

MH ::= C m (C̄ x̄) method headers

123

90 L. Bettini et al.

A class signature table CST is a mapping from class names to class signatures. We write
signature(CT) to denote the class signature table consisting of the signatures of the classes in
the class table CT. The lookup of the type of a field/method a in the signature of the class C
is denoted by aType(C)(a). For every class C in dom(CST), the function aType(C) is defined
as follows:

aType(C)(a) =
{
CST(C)(a) if a ∈ dom(CST(C))
aType(D)(a) if a �∈ dom(CST(C)) and CST(C)(extends) = D

It is possible to check that there are no cycles in the transitive closure of the extends relation
by inspection of the class signature table. Moreover, by inspecting a class signature table, it
is possible to check, for every class C in dom(CST), that the names of the fields defined in C
are distinct from the names of the fields inherited from its superclasses, and that the type of
each method defined in C is equal to the type of any method with the same name defined in
any of the superclasses of C. Therefore, in the following we can safely assume that a class
signature table satisfies the following sanity conditions:

(i) CS(C) = class C . . . for every C ∈ dom(CS);
(ii) for every class name C (except Object) appearing anywhere in CS, we have C ∈

dom(CS);
(iii) the transitive closure of the immediate extends relation is acyclic;
(iv) C1 <: C2 implies that, for all method names m, if aType(C2)(m) is defined then

aType(C1)(m) = aType(C2)(mtrs); and
(v) C1 <: C2 and C1 �= C2 imply that, for all field names f, if f ∈ dom(CST(C2)) then

f �∈ dom(CST(C1)).

In order to type the null value (which is not considered in FJ [26]), the IFJ type system
uses the special type⊥, that is not a class name, cannot occur in IFJ programs and is a subtype
of any other type. We use the metavariable T to denote either a class name or ⊥.

The IFJ typing rules are given in Fig. 4. A type environment� is a mapping from variables
(including this) to class names, written x̄ : C̄. The empty environment will is denoted by •.
The rules for variable (T- Var), field selection (T- Field), method invocation (T- Invk), object
creation (T- New), upcast (T- UCast), downcast (T- DCast), method definition (T- Method)
and class definition (T- Class) are analogous to the corresponding rules for FJ given in [26].
However, the presentation is slightly different since our rules refer to the class signature table
of the program rather than to the class table. In particular, the rule for typing the definition of
a method m in a class C, (T- Method), relies on the fact that, according to the sanity condition
(iv) of the class signature table, any definition of a method with name m in a superclass of C
must have the same type. We also have a rule for null and a rule for field assignment (not
contained in FJ) and a rule for typing the whole program (left implicit in FJ). Note that, if
� CTOK holds, then CT satisfies the sanity conditions for class tables (cf. Sect. 4.1).

Expressions like (C)ewhere the type ofe is not a subtype ofC (called stupid casts in [26]) or
null.f and null.m(···) (that we call stupid selections) are ill-typed. Note that, at runtime, an
expression without stupid casts and stupid selections may reduce to an expression containing
either a stupid cast or a stupid selection. Therefore, the type system for runtime expressions
(given in “Appendix A” in order to formulate the type soundness by using standard technique
of subject reduction and progress theorems for a small step semantics) contains a rule for

123

Compositional type checking 91

Fig. 4 IFJ: typing rules for expressions, methods, classes and program CT (where CST denotes the class
signature table signature(CT), and T denotes either a class name or ⊥)

typing stupid casts and a rule for assigning any type T to the value null (so that stupid
selection can be typed).

Following [26], we say that a well-typed IFJ program is cast safe to mean that it can
be typed without using the rule for downcast. Every well-typed IFJ program is literally a
well-typed Java program.

5 IFΔJ

In this section, we introduce the syntax and the semantics of IFΔJ
(Imperative Featherweight Delta Java), a core calculus for DOP of product lines
of Java programs based on IFJ.

123

92 L. Bettini et al.

Fig. 5 IFΔJ: syntax of delta modules (where δ ∈ delta module names)

5.1 IFΔJ syntax

The abstract syntax of the IFΔJ constructs is given in Fig. 5. The constructs for class defini-
tions CD, field definitions FD and method definitions MD are those of IFJ, given in Fig. 3. The
metavariable δ ranges over delta module names.

A delta module definition DMD (see Fig. 5) can be understood as a pair formed by the
name δ of the delta module and a mapping from class names to class operations. A class
operation CO can specify the addition, removal or modification of a class. The adds-domain,
the removes-domain and the modifies-domain of a delta module definition DMD are defined
as follows:

addsDom(DMD) = {C | DMD(C) = adds class C · · · }
removesDom(DMD) = {C | DMD(C) = removes C}
modifiesDom(DMD) = {C | DMD(C) = modifies C · · · }

A class-modify operation is defined by possibly changing the super class and by list-
ing a sequence of attribute operations AO defining modifications of methods and addi-
tions/removals of fields and methods. A class-modify operation CO can be understood as
a mapping from the keyword extending to an empty or singleton set of class names and
from field/method names to attribute operations. The adds-, removes- and modifies-domain
of a class-modify operation CO are defined as follows:

addsDom(CO) = {a | CO(a) = adds · · · a · · · }
removesDom(CO) = {a | CO(a) = removes a}
modifiesDom(CO) = {m | CO(m) = modifies · · · m · · · }

A method-modify operation can either replace the method body by another implementation,
or wrap the existing method using the original construct. In both cases, the modified
method must have the same header as the unmodified method. The call this.original(ē),
which may only occur in the body of the method MD provided by a method-modify operation
modifies MD, expresses a call to the method with the same name before the modifications
and is bound at the time the product is generated.

After we have defined the notion of delta modules over IFJ, we can formalize IFΔJ product
lines. We use the metavariables ϕ and ψ to range over feature names. We write ψ as short
for the set {ψ}, i.e., the feature configuration containing the featuresψ . A delta module table
DMT is a mapping from delta module names to delta module definitions. An IFΔJ SPL is a
5-tuple L = (ϕ,Φ, DMT,Δ,Π) consisting of:

1. the features ϕ of the SPL,
2. the set of the valid feature configurations Φ ⊆P(ϕ),2

3. a delta module table DMT containing the delta modules,

2 The calculus abstracts from the concrete representation of the feature model.

123

Compositional type checking 93

4. a mappingΔ : Φ →P(dom(DMT)) determining for which feature configurations a delta
module must be applied (which is denoted by the when clause in the concrete examples),

5. a totally ordered partition Π of dom(DMT), determining the order of delta module
application.

Listing 12: IF J encoding of the delta modules for the feature configuration
Lit, Add, Neg, Print, Eval

Δ

123

94 L. Bettini et al.

The 4-tuple (ϕ,Φ,Δ,Π) represents the product line declaration, while the delta module
table DMT represents the code base. To simplify notation, in the following we always assume
a fixed SPL L = (ϕ,Φ, DMT,Δ,Π).

In the following, we write dom(δ) as short for dom(DMT(δ)), and we write δ(C) as short
for DMT(δ)(C).

Example 2 Consider the EPL example introduced in Sect. 2. Listing 12 illustrates the IFΔJ
encoding (according to the conventions introduced in Example 1 of Sect. 4.1) of the delta
modules: DLitAddPrint from Listing 1; DLitEval and DAddEval from Listing 2; and DNeg,
DNegEval, DNegPrint and DOptionalPrint from Listing 3. These are the delta modules
that must be applied when the feature configuration Lit,Add,Neg,Print,Eval is selected.

5.2 IFΔJ product generation

A delta module is applicable to a class table CT if each class to be removed or modified
exists and, for every class-modify operation, if each method or field to be removed exists, if
each method to be modified exists and has the same header specified in the method-modify
operation, and if each class, method or field to be added does not exist.

Given a delta module δ and a class table CT such that δ is applicable to CT, the application
of δ to CT, denoted by apply (δ, CT), is the class table CT′ defined as follows:

CT′(C) =

⎧⎪⎪⎨
⎪⎪⎩

CD if δ(C) = adds CD
undefined if δ(C) = removes C
applyδ(δ(C),CT(C)) if C ∈ modifiesDom(δ)
CT(C) otherwise

where applyδ(δ(C), CT(C)), the application of the class-modify operation δ(C) = CO to the
class definition CT(C) = CD, is the class definition CD′ defined as follows (recall that the
metavariable AD denotes either a field definition FD or a method definition MD):

CD′(extends)=
{
CD(extends) if CO(extending) = ∅
C′ if CO(extending) = {C′}

CD′(a)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AD if CO(a) = adds AD
undefined if CO(a) = removes a
MD[a$δ/original] if CO(a) = modifies MD
A a(Ā x̄){return e; } if a = m$δ for some m such that CO(m) = modifies MD,

original ∈ MD and CD(m) = A m(Ā x̄){return e; }
undefined if a=m$ · · · for some m such that

CO(m) = removes m or (CO(m) = modifies MD
CD(a) and original �∈ MD)otherwise

The semantics of the original construct is modeled by the third-to-last, the second-to-
last and the first-to-last cases of the definition of CD′:

– The third-to-last case specifies that the body of the method m is replaced with the body
obtained from the body in the method-modify operation by replacing all the occurrences
of the keyword original with the name, denoted but m$δ (where δ is the name of
the delta module containing the method-modify operation), of a new method with the
original body of the method m.

– The second-to-last case specifies that, if the method body in the method-modify operation
contains at least one occurrence of the keyword original, then a new method with the
same body of the original method and with name m$δ is introduced.

123

Compositional type checking 95

– The first-to-last case ensures that, if a method m is removed or modified without using
the original construct, then also the auxiliary methods m$ · · · that might have been
introduced by previously applied delta modules are removed.

An application order for the IFΔJ SPL L is a total order of its delta modules that is
compatible with the ordered partition Π . An application order defines a product generation
mapping. That is, a partial mapping from each feature configurationψ inΦ to the class table
of the product that is obtained by applying the delta modules Δ(ψ) to the empty class table
according to the given order. The product generation mapping can be partial since a non-
applicable delta module may be encountered during product generation such that the resulting
product is undefined. The product line is unambiguous if all application orders define the
same product generation mapping. In an unambiguous SPL, for every feature configuration
at most one product implementation is generated.

We write CTψ to denote the class table generated for the feature configuration ψ and
write <:ψ and aDef ψ to denote the subtype relation and the field/method lookup function
associated with the class table CTψ , respectively.

Example 3 The application to the empty class table of the delta modules in Listing 12 (in
the order in which they appear) generates the class table CTLit,Add,Neg,Print,Eval containing
the classes given in Listing 11 of Sect. 4.1.

5.3 Well-formed IFΔJ product lines

In this section we formalize in the context of IFΔJ the notion of strongly-unambiguous SPL
(informally introduced in Sect. 2.4) and the notion of type-safe SPL (informally introduced
in Sect. 3).

An IFΔJ SPL is strongly unambiguous if every set S of delta modules inΠ is consistent.
That is, if no class added or removed in a delta module of S is added, removed or modified
in another delta module of S, and for every class modified in more than one delta module
of S, its direct superclass is changed at most by one delta clause and the fields and methods
added, modified or removed are distinct.

Consistency of a set of delta modules can be inferred by only considering delta module
signatures that can be obtained by a straightforward inspection of each delta module in
isolation. A delta module signatureDMS is the analogue of a class signature for a delta module.
The abstract syntax of delta module signatures is obtained from the syntax of delta modules, in
Fig. 5, by replacing class definitions (CD) with class signatures (CS) and by replacing method
definitions (MD) with method headers (MH). We write signature(δ) to denote the signature of
the delta module δ.

If a product line is strongly unambiguous, then it is also unambiguous. In a strongly
unambiguous product line, two delta modules that modify the same method cannot be placed
in the same set of the partition even if they are never applied together. The property of being a
strongly-unambiguous product line is modular. It can be efficiently checked by only relying
on delta module signatures and the partition Π and it is preserved by: signature preserving
alterations to the delta modules, shrinking of the partition Π , changes to the application
conditions and changes to the set of valid feature configurations.

An IFΔJ SPL is well formed if the following conditions hold:

1. it is strongly unambiguous, and
2. it is type safe, that is, all valid products are well-typed IFJ programs (this implies that

the product generation mapping is total).

123

96 L. Bettini et al.

Fig. 6 IFJ: syntax of class constraints

6 Constraint-based type system for IFJ

In this section, we present a constraint-based type system for IFJ that is equivalent to the type
system presented in Sect. 4. The constraint-based type system for IFJ infers a class constraint
for each class definition in the program being typed. The set of class constraints inferred for
a program CT can then be checked against the class signature table signature(CT) in order to
establish whether CT is a well-typed IFJ program.

The constraint-based type system for IFJ extracts from a program CT the information
relevant to typing that is not present in its class signature table signature(CT) and encodes
them by constraints. The encoding is quite straightforward. Note that the constraints and the
constraint-based typing rules have been designed to be directly embedded in the constraint-
based type system IFΔJ (in Sect. 7). Namely:

– The inferred constraints are organized in a two-level hierarchy, corresponding to the
structure of the class table of the IFJ program:

1. each class constraint consists of the name of the respective class C and of a set of
method constraints inferred for the methods defined in the class, and

2. each method constraint consists of the name of the respective method and of the set
of expression constraints inferred for the body of the method.

The hierarchical organization of the constraints for a program supports the generation
of the constraint of a product starting from the constraints operation inferred (by the
constraint-based type system for IFΔJ) for the delta modules that would be used to
generate the product (cf. Sect. 3).

– The typing rule for classes generate each class constraint by analyzing each class in
isolation from the other classes in the program, and the rule for methods generate each
method constraint by analyzing each method in isolation from the other methods in the
class.

6.1 Constraints and expression constraints checking

The syntax of class constraints and method constraints is given in Fig. 6. A set of class
constraints C can be understood as a mapping from class names to class constraints, and a
set of method constraint M can be understood as a mapping from method names to method
constraints. The hierarchical organization of the constraints is immaterial for checking their
satisfaction (i.e, only expression constraints have to be checked).

The syntax of expression constraints is given in Fig. 7. Expression constraints involve the
type ⊥, class names and type variables. Type variables, ranged over by α, β and γ , will be
instantiated to class names when checking the constraints. The metavariable η denotes either

123

Compositional type checking 97

Fig. 7 IFJ: syntax and (informal) meaning of expression constraints, where: α and β denote type variables;
η denotes either a class name or a type variable; and τ denotes either the type ⊥, or a class name, or a type
variable

Fig. 8 IFJ: Checking rules for satisfaction of expression constraints w.r.t. a class signature table

a class name or a type variable, while the metavariable τ denotes either the type⊥, or a class
name, or a type variable. We say that a constraint is ground to mean that it does not contain
type variables.

The checking judgment for expression constraints is CST |� E ⇒ s, to be read “the
constraints in the set of expression constraints E are satisfied with respect to the class signature
table CST modulo the substitution s”. We write CST |� E to mean that CST |� E ⇒ s holds
for some substitution s. The associated rules are given in Fig. 8 where � denotes the disjoint
union of sets of constraints and ◦ denotes the composition of substitutions. The rules are
almost self-explanatory, according to the informal meaning of the expression constraints
given in Fig. 7. The checking of a constraint of the form subtype(· · ·· · ·) or cast(· · ·, · · ·) can
be performed only when the constraint is ground. Note that there are two rules for checking
a constraint of the form cast(·, ·) corresponding to an upcast and to a downcast, respectively.
The checking of a constraint of the form field(·, ·, ·) or meth(·, ·, ·) can be performed only
when the first argument is a class name and the third argument contains type variables only.
It causes the instantiation of all the type variables occurring in the third argument.

We say that a set of expression constraints is cast safe with respect to a class signature
table CST to mean that it can be checked without using the rule associated with downcast.

6.2 Constraint-based typing rules for IFJ

The constraint-based typing judgment for programs is � CT : C , to be read “program CT
has the class constraints C ”. The constraint-based typing rules for IFJ expressions, meth-
ods, classes and programs are given in Fig. 9. The rules (CT- Field) and (CT- Invk) are

123

98 L. Bettini et al.

Fig. 9 IFJ: constraint-based typing rules for expressions, methods, classes and programs

the only rules that create type variables. The type variables α created by rule (CT- Field)
occur in the third argument of the expression constraint field(η, f, α), and the type variables
α1, ..., αn, β created by rule (CT- Invk) occur in the third argument of the expression con-
straint meth(η, m, α1 . . . αn → β). Therefore, the checking rules for expression constraints
(given in Sect. 6.1) can be applied by considering the constraints in the order in which they
are created. Recall that: (i) the check of the constraints field(·, ·, ·) and meth(·, ·, ·) can be
performed only when their first arguments are class names and their third arguments contain
type variables only; and (i i) performing the check causes the instantiation of all the type
variables occurring in the constraint. It is worth observing that trying to check the constraints
in a different order cannot cause a different instantiation of any type variable.

Some expressions are recognized as ill-typed during constraint generation. In particular,
occurrences of variables x that are not declared as method parameters (according to rules

123

Compositional type checking 99

(CT- Method) and (CT- Var)) and stupid selections, i.e., expressions like null.f and
null.m(···) (according to rules (CT- Null), (CT- Field) and (CT- Invk)). Moreover, during
constraint generation it could be possible to detect type errors related to the use of classes
not belonging to the product-line (and used by the products). In particular, in a full-fledged
language, the type errors related to the use of primitive types (like int) or standard library
classes (like String).

The following example illustrates the constraint-based type system by considering the
class Add in Listing 11 (see Example 1 of Sect. 4.1).

Example 4 The constraint inferred for the method setAdd of class Add in Listing 11

is

Some optimizations (not considered in this paper) are possible. Constraints like subtype
(...,Object) and subtype (Add,Add) can be dropped. Information about standard library
classes, like Encode, that cannot be modified by the delta modules, can be exploited to infer
simpler constraints. For example, the following simpler constraints could be inferred:

The constraint inferred for the method eval of class Add in Listing 11

is

Assuming that Int is a standard library final class, it would be possible to infer a simpler
constraint (namely, replace β by Int and drop subtype(β, Int)). Further optimizations are
possible in the presence of primitive types (not formalized in IFJ). For instance, given the
version of method eval of class Add in Listing 6 (that uses the primitive type int)

it would be possible to infer the simpler method constraint

The constraint inferred for the method toString$DOptionalPrint() of class Add in
Listing 11

is

Assuming that String is a standard library final class and that every class has a method
toString with type • → String, it would be possible to infer the simpler constraint

123

100 L. Bettini et al.

Fig. 10 Constraints inferred for the classes in Listing 11

The constraint inferred for the method toString of class Add in Listing 11

is

Assuming that String is a standard library final class and that every class has a method
toString with type • → String, it would be possible to infer the simpler constraint

Figure 10 shows the constraints inferred for the classes in Listing 11 (for the sake of
readability, the simplified version of the constraints is used).

6.3 Properties

The hierarchical organization of the constraints derived for a product is immaterial for check-
ing their satisfaction. The function flat transforms a set of class-constraints C into a set of
expression constraints flat(C). It is defined as follows.

flat{C1 with M1, ..., Cn with Mn} = ∪i∈{1,...,n}flat(Mi)

flat{m1 with E1, ..., mn with En} = ∪i∈{1,...,n}Ei

The following theorem states that the constraint-based type system is sound and complete
with respect to the IFJ type system given in Sect. 4. The proof is given in “Appendix B”.

Theorem 1 (Soundness and completeness of IFJ constraint-based typing) Let CT be a
IFJ program and CST = signature(CT).

(Soundness) Let CST satisfy the sanity conditions for class signature tables, � CT : C
and CST |� flat(C). Then

1. � CTOK, and
2. if flat(C) is cast-safe with respect to CST, then CT is cast-safe.

123

Compositional type checking 101

Fig. 11 IFΔ J: syntax of class-constraint operations

(Completeness) Let � CTOK. Then there exists C such that:

1. � CT : C and CST |� flat(C), and
2. if CT is cast-safe, then flat(C) is cast-safe with respect to CST.

The constraint-based type system for IFJ is not interesting in its own (cf. Sect. 3). How-
ever, it soundness and completeness plays an important role in the proof of soundness and
completeness of the constraint-based type system for IFΔJ.

7 Constraint-based type system for IFΔJ

The constraint-based type system for IFΔJ analyzes each delta module in isolation. The
results of the analysis can be combined with the product line declaration in order to check
whether all the products that can be generated are well-typed.

For each valid feature configuration ψ , the class signature table CSTψ of the product CTψ
can be generated by applying the signature of the delta modules in Δ(ψ) to the empty class
signature table according to the given order (similarly to product generation). The constraint-
based type system infers, for each delta module, a set of class-constraint operations D . For
each valid feature configuration ψ , the set of class constraints Cψ of the product CTψ can be
generated by applying the sets of class-constraint operations inferred for the delta modules
in Δ(ψ) to the empty set of class constraints. Therefore, the type safety of a product line
can be established (by relying only on the signatures of the delta modules, the sets of class-
constraint operations inferred for the delta modules, and the product line declaration) without
reinspecting the delta modules and without generating the products.

7.1 Constraint-based typing rules for delta modules

The typing rules infer for a delta module a set of class-constraints operations D , namely
a class-constraint operation for each class operation in the delta module. The syntax of the
class-constraint operations is given in Fig. 11. A class-constraint operation can be an add, a
remove or a modify operation. A class-constraint-add operation consists of the keyword adds
followed by a class constraint (defined in Fig. 6). A class-constraint-remove operation is a

123

102 L. Bettini et al.

Fig. 12 IFΔ J: constraint-based typing rules for method operations, class operations and delta modules

class-remove operation removes C. Each class-constraint-modify operation consists of the
name of the subject class C and of a set of method-constraint operations. A method-constraint
operation can be an add, a remove, a replace or a wrap operation, described as follows.

– A method-constraint-add operation consists of the keyword adds followed by a method
constraint (defined in Fig. 6).

– A method-constraint-remove operation is a method-remove operation removes m.
– A method-constraint-wrap/replace operation consists of the keyword replaces/wraps

followed by a method constraint (defined in Fig. 6). Method-constraint-wrap opera-
tions are inferred for method-modify operations containing original, while method-
constraint-replace operations are inferred for method-modify operations not containing
original.

Thus, a set of class-constraint operations D can be understood as a mapping from class names
to class-constraint operations, and a class-constraint-modify operation can be understood as
a mapping from method names to method-constraint operations.

The constraint-based typing judgment for a delta module is� delta δ · · · : D , to be read
as “the delta module δ has class-constraints operations D”. The constraint-based typing rules
for IFΔJ attribute operations, class operations and delta modules are given in Fig. 12. Most
of the rules are self-explanatory, according to the meaning of method-constraint operations
and class-constraint operations illustrated above. The rules for the attribute operations for

123

Compositional type checking 103

Fig. 13 Sets of class-constraints operations inferred for the delta modules in Listing 12

adding and removing a field [(CT- S- addF) and (CT- S- remF), respectively] generate the
empty set of constraint operations, since the checks associated to field declarations in a
product are encompassed by the sanity conditions of the class signature table of the product.
The rules (CT- S- addM), (CT- S- repM), (CT- S- wraM) and (CT- C- addC) rely on the
rules (CT- Method) and (CT- Class) in Fig. 9. The rule (CT- C- modC) has an optional part
(enclosed in square brackets) to cope with the fact that the extendingpart of a class-modify
operation is optional.

Example 5 Figure 13 shows the constraints inferred for the delta modules in Listing 12.
For sake of readability, we use the version of the constraints simplified according to the
explanation given in Example 4.

7.2 Generation of the class signature tables and the class constraints of the products

The application of a delta module signature to a class signature table, denoted by
signApply(DMS, CST), performs the alterations specified in DMS to CST. We do not present
the formal definition of signApply(DMS, CST) since it is a straightforward abstraction of the
application of a delta module to a class table presented in Sect. 5.2. A delta module signature
is applicable to a class signature table if each class signature to be removed or modified
exists and, for every class-modify operation, if each method header or field to be removed
exists, if the header of each method to be modified exists and is the same header specified
in the method-modify operation, and if each class signature, method header or field to be
added does not exist (cf. the definition of delta module applicable to a class table, given at
the beginning of Sect. 5.2).

The following proposition states that, given a delta module δ and a class table CT, the
signature of the class table apply(δ, CT) can be computed directly from signature(δ) and
signature(CT). The proof is straightforward, by case distinction on the definitions of delta
module applicable to a class table, delta module signature applicable to a class table signature,
and on the definitions of the functions signature, signApply and apply.

Proposition 1 1. The delta module δ is applicable to the class table CT if and only if
signature(δ) is applicable to signature(CT).

123

104 L. Bettini et al.

2. If the delta module δ is applicable to the class table CT, then
signApply(signature(δ), signature(CT)) = signature(apply(δ, CT)).

For each valid feature configuration ψ of a strongly unambiguous product line, we write
CSTψ to denote the class signature table obtained by applying the signatures of the delta

modules Δ(ψ) to the empty class signature table in any linear ordering that respects the
total order on the partition of the delta modules specified in the product line declaration. The
following corollary states that CSTψ is indeed the class signature table of the product CTψ .

Corollary 1 (of Proposition 1) Let L be a strongly unambiguous IFΔJ SPL and ψ ∈ Φ.

1. The product CTψ is defined if and only if the class signature table CSTψ is defined.
2. CSTψ = signature(CTψ).

Therefore, the class signature table of any product can be generated without generating the
product.

Given a delta module δ and a class table CT such that δ is applicable to CT, the result of
the application of the set of class-constraint operations D of δ to the set of class constraints
C of CT such that, denoted by consApplyδ(D,C), is the set of class constraints C ′ defined
as follows:

C ′(C) =

⎧⎪⎪⎨
⎪⎪⎩

cc if D(C) = adds cc
undefined if D(C) = removes C
consApplyδ(D(C),C (C)) if D(C) = modifies C · · ·
C (C) otherwise

where the application of the class-constraint-modify operation cco = modifies Cwith O =
D(C) to the class-constraint cc = Cwith M = C (C), denoted by consApplyδ(cco, cc), is
the class-constraint cc′ = Cwith M ′ defined as follows:

cc′(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

mc if cco(m) = adds mc or cco(m) = replaces mc
undefined if cco(m) = removes m
mwith (E [m$δ/original]) if cco(m) = wraps mwith E
mwith E if m = m′$δ for some m′ such that

cco(m′) = wraps m′ with E ′ and cc(m′) = m′ with E
undefined if m = m′$ · · · for some m′ such that

cco(m′) = removes m′ or cco(m′) = replaces · · ·
cc(m) otherwise

The application of a set of class-constraint operations to a set of class constraints mimics
the application of a delta module to class table. The semantics of the original construct is
modeled by the the third, the fourth and the fifth cases of the definition of cc′:

– The third case specifies that the method constraint for the original method is replaced
with the method constraint obtained from the method constraint in the method-constraint-
wrap operation by replacing all the occurrences of the keyword originalwith the name,
denoted by m$δ (where m is the name of the method that has to be wrapped and δ is the
name of the delta module containing the method-constraint-wrap operation), of a new
method with the original body of the method m.

– The fourth case specifies that a method constraint for the method with name m$δ, with
the same expression constraints of the method constraint for the original method, is
introduced.

– The fifth case specifies that, if a constraint for a methodm is removed or replaced, then also
the constraints m$ · · · with · · · that might have been introduced by previously applied
class-constraint operations are removed.

123

Compositional type checking 105

The following proposition states that the class-constraint operations application defined
above indeed allows computing the class constraints for the class table apply(δ, CT) directly
from the class-constraint operations for δ and the class constraints for CT. The proof is given
in “Appendix C.1”.

Proposition 2 For every delta module δ ∈ dom(DMT) and for every class table CT
such that δ is applicable to CT, if � DMT(δ) : D and � CT : C , then � apply

(δ, CT) : consApplyδ(D,C).

For each valid feature configuration ψ of a strongly unambiguous product line, we write
Cψ to denote the set of class constraints obtained by applying the sets of class-constraint

operations inferred for the delta modules Δ(ψ) to the empty set of class constraints in any
linear ordering that respects the total order on the partition of the delta modules specified in
the product line declaration. The following corollary states that Cψ is indeed the set of class
constraints of of the product CTψ .

Corollary 2 (of Proposition 2) Let L be a strongly unambiguous IFΔJ SPL and ψ ∈ Φ. If
the class signature table CSTψ is defined and � delta δ · · · : Dδ (for all δ ∈ Δ(ψ)), then
� CTψ : Cψ .

Therefore, the class constraints of any product can be generated without generating the
product.

Example 6 The application of the sets of class-constraint operations in Fig. 13 to the empty
set of class constraints generates the class constraints given in Fig. 10.

7.3 Properties

The IFΔJ constraint-based type system enables checking the well-typedness of all possible
products by analyzing the delta modules in isolation, generating the constraints for the prod-
ucts, and checking the constraints obtained for each product against the class signature table
of that product. The following theorem states that the IFΔJ constraint-based type system is
sound and complete with respect to the IFJ type system. The proof is given in “Appendix C.2”.

Theorem 2 (Soundness and completeness of IFJ constraint-based typing) Let L be a
strongly unambiguous IFΔJ SPL and ψ ∈ Φ.

(Soundness) If CSTψ is defined and satisfies the sanity conditions for class signature

tables,3 � delta δ · · · : Dδ for all δ ∈ Δ(ψ), and CSTψ |� flat(Cψ), then:

1. � CTψ OK, and
2. if flat(Cψ) is cast-safe with respect to CSTψ , then CTψ is cast-safe.

(Completeness) Let � CTψ OK.

1. If for all δ ∈ Δ(ψ) there exists Dδ such that � delta δ · · · : Dδ , then
(a) CSTψ |� flat(Cψ), and
(b) if CTψ is cast-safe then flat(Cψ) is cast-safe with respect to CSTψ .

2. If there exists δ ∈ Δ(ψ) such that δ is not �-typable, then the body of the method-
add/modify operation in δ that is ill typed is not included in the product CTψ .

3 Cf. Sect. 4.2.

123

106 L. Bettini et al.

8 Enhancing early error recognition in delta modules

This section briefly discusses the issue of detecting as many type errors as possible in the code
of the delta modules before performing the final product-based analysis phase that generates
the type abstractions of the products (cf. Sect. 3).

In Sect. 6.2, we pointed out that the constraint-based typing rules for IFJ in Fig. 9 are able
to recognize some ill-typed expressions during constraint generation. When these rules are
used by the typing rules for IFΔJ in Fig. 9, it is safe to assume, without loss of generality, that
no method with name original is defined. So, rule (CT- Invk) in Fig. 9 can be enhanced to
detect more type errors when it is used to type the method-modify operations in the premise of
rule (CT- S- wraM) from Fig. 12. Namely, it can type calls to this.original(ē) by using
for original the type of m, A1 · · · Ap → C, instead of the type α1 · · ·αn → β (thus ensuring
that original is called with the right number of parameters and avoiding to introduce the
fresh variables α1, . . . , αn, β).

The family class signature FCS of a class C maps the keyword extends to a non-empty
set of class names and maps field/method names to a non-empty finite set of types such that:

– FCS(extends) contains a given class D if and only if the D is the direct superclass of C
in some valid product, and

– for each field/method name a, the set FCS(a) contains a given type if and only if the
field/method a is defined with that type in the class C in some valid product.

The family class signature table FCST of a delta-oriented product line is a mapping from
class names to family class signatures. It can be straightforwardly generated by composing
the signatures of all delta modules of the product line by ignoring the removes operations.
Many type errors could be detected by checking the set of class-constraint operations inferred
for a delta module against the family class signature table of the product line. If in a table
each set in the domain of the family class signature is a singleton and the subclassing relation
is acyclic, then the only type errors in the products of the product line that cannot be detected
by performing these checks are those due to fact that in some product some required field,
method, class or subclass is missing. A smart implementation of the constraint-based type
system could annotate each generated constraint with the location of the associated code in
delta module. This would make it possible to trace the source of typing errors that are detected
when checking constraints back to the originating delta modules. These checks should be
able to provide for delta modules the same guarantees provided for feature modules by the
lightweight global consistency checks illustrated in [48].

9 Related work

Delta-oriented programming [42,44] is an extension of feature-oriented programming [6]. In
[42], the general ideas of DOP are presented and compared conceptually and empirically to
FOP. The presentation in [42] uses the notion of a core product, that is a designated product
of the product line and the starting point of product generation. In [44], the notion of the
core product is dropped so that product generation only relies on delta modules. This makes
DOP even more flexible to support proactive, extractive and reactive product line engineering
[34]. Proactive product line engineering aims at developing the product line from scratch,
extractive product line engineering turns existing products into a product line, and proactive
product line engineering stepwise evolves an initial set of product variants. Furthermore, DOP
without the notion of a core product [44] allows a direct embedding of FOP into DOP. In this

123

Compositional type checking 107

paper, we use the notion of DOP as presented in [44] in order to provide a compositional
approach for type checking delta-oriented product lines of Java programs.

DOP and FOP are compositional approaches [30] for implementing SPLs in which code
fragments are associated with product features and assembled to implement a particular fea-
ture configuration. Other compositional approaches use aspects [4,29], mixins [45], hyper-
slices [47] or traits [7,20] to implement product line variability (see [36] for a discussion of
some of them with respect to FOP).

Feature-oriented Programming Various approaches to ensure the type safety of feature-
oriented product lines can be found in literature [2,3,19,35,48]. The type system of Light-

weight Feature Java (LFJ) [19] is the closest to our proposal. The calculus LFJ, based on
LJ (Lightweight Java) [46], provides a formalization of FOP as implemented in AHEAD
[6], together with a constraint-based type system that supports a feature-based phase and a
final family-based phase (cf. Sect. 3). The approach consists of three technical concepts:

1. A constraint-based type system for LJ that infers a set of constraints for a given LJ
program. The constraints can be checked against the program in order to establish whether
the program is well-typed according to the standard LJ type system.

2. A constraint-based type system for LFJ that analyzes each feature module in isolation
and infers a set of constraints for each feature module. The inferred constraints are
divided into structural constraints (constraints of the same form as in the LJ constraint-
based type system) and composition and uniqueness constraints that are imposed by the
introduction and refinement operations of the feature modules. The constraints can be
checked against the set of feature modules corresponding to a valid feature configuration
in order to establish whether: (i) product generation succeeds, and (ii) the corresponding
product is a well-typed LJ type program. Successful product generation requires that
the classes/methods/fields introduced by a feature module are not introduced by another
feature module earlier in the composition and that the classes and methods refined by a
feature module are introduced by another feature module earlier in the composition.

3. A procedure for translating the product line declaration and the constraints inferred for
the feature modules to propositional formulas from which a formula is constructed whose
satisfiability implies the type safety of the whole product line.

Checking the type safety of the product line by a product-based analysis phase relying directly
on the constraints for the feature modules (as done in the present paper) requires an explicit
iteration on the valid feature configurations. Checking the satisfiability of the propositional
formula may be exponential in the number of features. However, the structure of the generated
formula is suitable for fast analysis by modern SAT solvers and has been shown to scale well
in practice [19]. If the formula is not satisfiable, it is not straightforward to trace the error
back to the feature module that causes the error.

Due to the additional flexibility provided by DOP, there is currently no analogue of the
third concept of FOP type-checking available for DOP type-checking. The main issues are
the flexible association between delta modules and features (provided by the when clauses)
and the class/method/field removal operations that are not supported in FOP.

The original construct of IFΔJ is similar to the Super construct of AHEAD. LFJ

formalizes a simplified version of the Super construct. Namely, a call Super() represents
a call to the unmodified method where the formal parameters of the modified method are
passed implicitly as arguments and the body of the modified method is built by replacing the
occurrence of Super() with the body of the original method.

The LFJ and the IFΔJ type systems have similarities with a type system proposed in [1]
to type-check, compile and link code fragments. A code fragment is formalized as a set of

123

108 L. Bettini et al.

Java classes. Similarly to feature/delta modules, code fragments can reference definitions
provided in other code fragments. The purpose of the type system presented in [1] is to
ensure that linking code fragments compiled in isolation produces the same bytecode as the
one that would be generated by the global compilation process performed by a standard
Java compiler. The key idea is to define a polymorphic form of bytecode containing type
variables (ranging over class names) and equipped with a set of constraints involving type
variables. Polymorphic bytecode, which is generated by compiling each code fragment in
isolation, provides a representation for all the (standard) bytecode that can be obtained by
replacing type variables with classes satisfying the associated constraints. During the linking
phase, constraints are solved causing the instantiation of the type variables (thus transforming
polymorphic bytecode into standard bytecode.)

The Featherweight Feature Java for Product Lines (FFJP L) calculus [2] proposes an
independently developed type checking approach for feature-oriented product lines. FFJP L

relies on FFJ [3], a calculus for stepwise-refinement, that is not explicitly bound to imple-
menting SPLs. FFJ is based on FJ (Featherweight Java) [3]. The main differences
between FFJP L and LFJ are the following: (i) In FFJP L , feature-oriented mechanisms, such
as class/method refinements, are modeled directly by the dynamic semantics of the language
instead of by a translation into Java code; (i i) The FFJP L typing rules do not generate con-
straints, but directly consult the feature model, thus making it possible to straightforwardly
identify the location of an error in the code; and (i i i) FFJP L does not support modular
type-checking (each feature module is analyzed during a family-based phase by relying on
information of the complete product line).

Aspect-oriented Programming Both delta-oriented and aspect-oriented programming
(AOP) [33] combine code taken from different sources. In AOP, cross-cutting features (such
as logging services or concurrency primitives) are factored out into aspects instead of scat-
tering them in the application code. In DOP, deltas modules are the building blocks used to
generate code implementing desired product features. Aspects refer to parts of a program
at join-points, specified by point-cut expressions. By advice, the execution of the code at
join-points can be modified. Advice can be defined to be executed after, before or around
the “intercepted” join-point. In particular, an around-advice replaces the original code. The
intercepted join-point can be executed using proceed, which corresponds to the original
construct in DOP. The join-points can be of different nature, starting from the invocation of
a specific method on an object of a specific class, to control-flow based execution points.

AspectJ [32], an extension of Java with aspects, provides a compiler generating standard
Java code by applying aspects to Java classes. This process (aspect weaving) ensures that
aspect and non-aspect code run together in the expected way. Aspect weaving, in AspectJ, is
mostly carried out at compile time, reducing run-time overhead. For instance, most of the code
inserted to intercept join-points by execution of advice is realized by an additional method
invocation. Since such an invocation is typically a static or final method, it can be inlined
by most JVMs. This means that the detection of most join-points according to the specified
point-cuts can be performed statically by the AspectJ compiler. However, join-points can
also have a dynamic nature, e.g., based on the dynamic type of objects referred to in the
point-cuts, or based on the control-flow of the program, such as the first execution instance
of a recursive method. Hence, aspects also allow the programmer to intercept most execution
statements in a program, based on the dynamic control flow or the run-time type of objects.

The modification operations that can be specified in delta modules are sufficient to express
before, after and around advice considered in AOP. Additionally, delta modules can change
the superclass, change method implementations, and even remove methods, etc, while aspects

123

Compositional type checking 109

cannot change types in a program statically. The partial ordering of delta modules provided
by DOP product line declarations resembles the precedence order on advice in AOP. Delta
modules do not comprise a specification formalism for modifications to be carried out at
several places of a program. Instead, delta modules are statically connected to the product
features, since delta application is performed at compile-time only. However, adding a flexible
point-cut specification technique to delta modules is an interesting issue and a subject of future
work.

Another difference between AOP and DOP is that in DOP, a set of delta modules and
a product line declaration defines a set of products. On the contrary, in AOP, the combi-
nation of aspects with a base program usually defines a single aspect-oriented program.
An exception is the case when there are multiple AspectJ aspects without defined prece-
dence. Then, the AspectJ compiler non-deterministically chooses one program to compile,
such that a set of possible “woven” programs is defined. In order to use AOP to imple-
ment SPLs it might be useful to provide a product-line declaration with when clauses for
aspects.

The A calculus [25] aims at providing a core language as foundation of AOP. It solves the
problem that type soundness in the presence of some around advice definitions breaks which
also exists in the AspectJ implementation. The solution uses a flexible notion of proceed,
by representing it with a simple term variable that denotes a closure. The notion of proceed
in the A calculus is more flexible than other formalizations (see, e.g., [13,18]), by relying on
type ranges (while guaranteeing type soundness). In DOP, the original construct is similar
to proceed. However, the modification of a method by a delta module does not change the
signature, thus original can be used to implement a wrapper method with the original
signature. The original construct is, thus, typed with the same type as the return type of
the original method (cf. Sect. 5).

Class Composition Mechanisms as a Language Construct The language gbeta [21,22]
provides a mechanism for combining mixin-based classes and methods with propagation
(i.e., combining classes and methods can imply an implicit propagation of class or method
combinations). The whole approach is statically typed. The language supports inheritance
between virtual classes [37], allowing to implement higher-order hierarchies [23]. These
mechanisms are used in [24] to present a solution of the expression problem [50] which
consists of classes and methods to be added to a given class family.

In [51] mixin class composition mechanisms of Scala [38] are used to show other solu-
tions to the expression problem. The mixin class composition in Scala borrows both from
the mixin construct presented in [11] and the trait composition mechanism presented in [20].
Since Scala does not provide a direct language mechanism to perform deep mixin compo-
sition (which basically corresponds to gbeta’s propagation illustrated above), some more
code is required for solving some parts of the expression problem compared to the approach
in gbeta [24].

The “meta” and “generative” flavor of IFΔJ shares with gbeta’s higher-order hierarchies
[23] that class hierarchies are not modified (as in AOP): different separate copies are created.
However, although in gbeta a new root in a class hierarchy as well as a new intermediate
class can be introduced, still the inheritance relations must be kept. Thus, it is not possible
to completely change the superclass of an existing class, like in IFΔJ with the extending
clause. Moreover, in IFΔJ, besides extending existing classes, it is also possible to remove
parts of the classes, e.g., removing methods and fields.

The main differences between IFΔJ and the class composition mechanisms above is
that the former provides two levels in the language: one for specifying the execution parts

123

110 L. Bettini et al.

of the program, and one for manipulating and composing the code blocks to build new
products.

Hyper/J [39] implements multi-dimensional separation of concerns [47] for Java. Once
the concerns of an application are identified, Hyper/J provides mechanisms to specify mod-
ules (hyperslices) in terms of those concerns, and to synthesize components by integrat-
ing those modules. Starting from standard Java class files, it produces new Java class
files. Specifications of concerns and the relationships among them to be used for the
actual compositions are provided in a control file. The declarative completeness require-
ment of hyperslices (i.e., an hyperslice declares everything to which it refers) is intended
to decouple hyperslices from each other. These explicit declarations might become a bur-
den for the programmer; in IFΔJ the constraints are instead inferred by the type system
and this should make delta modules easier to reuse and should fit better the context of SPL
development.

The design of the constraint-based type system for IFΔJ involves issues similar to those
considered in type-checking of dynamic classes [27]. Dynamic classes perform run-time
updates of object-oriented systems by adding or refining classes (in a type-safe manner) or
by removing redundant program parts. Each dynamic class is statically typed with a set of
constraints (similar to the ones used for DOP) which are evaluated at run-time to ensure that
the system is still well-typed after the update is carried out. Since dynamic classes are applied
at run-time, only removals of redundant information are permitted in order to locally check
applicability at run-time. DOP is a generative programming approach where variability is
resolved at compile-time, allowing more flexible removals.

10 Conclusions and future work

We have provided a foundation for compositional type checking of delta-oriented product
lines that supports a feature-based analysis phase and a final product-based analysis phase
by relying on an abstraction of product generation. During the feature-based analysis phase
each delta module is analyzed in in isolation such that the analysis results can be re-used
across different product lines.

The initial ideas of DOP presented in [42] (see Sect. 9 for a comparison with the approach
of this paper) have been implemented as an Eclipse IDE and a standalone compiler, which
can be found at http://deltaj.sourceforge.net. At the same site, a new implementation of DOP
based on the approach presented in this paper, is also available. This implementation is still
in a development stage, though it implements most of the features of IFΔJ. In particular,
besides the language of delta modules and product-line declarations, we also have a DSL for
the constraints: the IFΔJ compiler, in addition to generating Java code for the products, also
generates the textual constraints; this way we can easily show to the programmer possible
errors due to configurations which violate constraints. All these features are integrated in
Eclipse.

In future work, we would like to investigate the possibility of enhancing the proposed
type checking mechanism for DOP with the third concept of the type checking approach
pursued for LFJ (cf. Sect. 9). Another interesting future research direction is to extend DOP
to express the change of the feature configuration of a product at run-time [40,41]. A first
attempt in this direction has been presented in [16] with the formal foundations being laid
out in [15]. To achieve this goal, it might be useful to equip IFΔJ with a direct semantics as
done for FFJP L [2].

123

http://deltaj.sourceforge.net

Compositional type checking 111

The concept of DOP is not bound to a particular programming language. For future
work, we are aiming to consider other languages for the underlying product implementations
following the ideas behind FeatureHouse. A starting point is the trait-based prototypical
programming language TraitRecordJ [7,8] (see also [9,10]). In TraitRecordJ, classes
are assembled from interfaces, records (providing fields) and traits [20] (providing methods)
that can be directly manipulated by designated composition operations. These operations
make TraitRecordJ a good candidate for enhancing the flexibility of delta modules and
providing further support for code reuse.

Acknowledgments We are grateful to the anonymous referees of Acta Informatica for insightful comments,
suggestions for improving the presentation and pointers to related work. We also thank Luca Padovani and
Shmuel Tyszberowicz for useful comments on a preliminary version of this paper.

Appendix A: IFJ reduction and type soundness

The length of a sequence ē is denoted by #(ē).

A.1 IFJ reduction

In order to properly model imperative features of IFJ, we introduce the concepts of address
and heap. Addresses, ranged over by the metavariable ι, are the elements of the denumerable
set I. Values, ranged over by the metavariable v are either addresses or null. Objects are
denoted by 〈C, f̄ = v〉, where C is the class of the object, f̄ are the name of the fields
and v̄ are the values of the fields. A heap H is a mapping from addresses to objects. The
empty heap will be denoted by ∅. Runtime expressions are obtained from expressions by
replacing all the variables (including this) by addresses. We will use e to denote runtime
expressions.

The states of a computation are represented by means of configurations. A configuration
is a pair consisting of a heap and a runtime expression, written H , e. The reduction relation
has the form H , e −→ H ′, e′, to read “the configuration H , e reduces to the configuration
H ′, e′ in one step”. The initial configuration associated to a program CT is ∅, e (where e is
the body of method main of class Main).

The reduction rules shown in Fig. 14, using the standard notions of computation rules
and congruence rules, ensure that the computation is carried on according to a call-by-value
reduction strategy.

The operational semantics uses the auxiliary functions mbody and fields, which are defined
in Fig. 15.

A.2 IFJ type soundness

In order to be able to formulate the type soundness of IFJ as a subject reduction theorem
and a progress theorem for the small-step semantics, we need to formulate a type system
for runtime expressions. Expressions containing either a stupid cast (a notion introduced in
[26]), i.e., a cast where the subject and the target are unrelated, or a stupid selection, i.e., a
field selection null.f or a method invocation null.m(· · ·), are not well typed according to
the IFJ (source level) type system. However, a runtime expression without stupid casts and
stupid selections may reduce to a runtime expression containing either a stupid cast or a stupid

123

112 L. Bettini et al.

Fig. 14 IFJ: operational semantics

Fig. 15 IFJ: auxiliary functions

selection. The type system for runtime expressions contains a rule for typing stupid casts,
and a rule for assigning any type T to the value null (so that stupid selection can be typed).

Typing rules for runtime expressions are shown in Fig. 16; these rules use the environment
Σ , which is a finite (possibly empty) mapping from addresses to class names, and they are

123

Compositional type checking 113

Fig. 16 IFJ: typing rules for runtime expressions and heaps

of the form Σ �′ e : T. In Fig. 16 we also present the notion of well-formed heap and of
well-formed configuration. The notion of well-formed heap ensures that the environment Σ
maps all the addresses in the heap into the type of the corresponding object and that for every
object stored in the heap, the fields of the object contain appropriate values.

Type soundness can be proved by using the standard technique of subject reduction and
progress theorems.

Lemma 1 If aT ypeC0m = D̄→ D and mbody(C0, m) = (x̄, e) then for some D0 and some
T <: D we have C0 <: D0 and this : D0, x̄ : D̄ � e : T.

123

114 L. Bettini et al.

Proof By straightforward induction on the derivation of mbody(C0, m), that is, on aDef
(C0)(m).

Lemma 2 (Substitution) If

1. Σ �′ ι.m(v) : D where Σ(ι) = C0 for some Σ , C0 and D,
2. aType(C0)(m) = Ā→ D, and
3. mbody(C0, m) = (x̄, e),

then for some C′ <: D we have Σ �′ [x̄← v, this← ι]e : C′.
Proof By hypothesis 1. and 2. and by Lemma 1, for some C and some T <: D, we have
C0 <: C and this : C, x̄ : Ā � e : T.

The proof then proceeds by structural induction on the derivation of this : C, x̄ : Ā �
e : T. We present only a few interesting cases (the cases for casts are the same as in FJ, in
particular, for (T- DCast) we can use (RT- SCast)). Note that, by rule (RT- Invk),Σ �′ v :
C̄ for some C̄ such that C̄ <: Ā (in particular, Ci = Ai when vi = null by rule (RT- Null)).

Case (T- Var) In this case e = xi for some xi ∈ x̄; [x̄ ← v, this ← ι]xi = vi and
Σ �′ vi : Ci for some Ci such that Ci <: Ai ; letting Ci = C′ finishes the case.

Case (T- Field) In this case e = e′.f. By rule (T- Field) we have this : C, x̄ : Ā � e′ : C′
and aType(C′)(f) = A. By the induction hypothesis, Σ �′ [x̄ ← v, this ← ι]e′ : C′′
for some C′′ <: C′. The thesis follows from aType(C′′)(f) = aType(C′)(f) = A.

Case (T- Invk) In this case e = e′.m(ē). Similar to the previous case, using the induction
hypothesis on e′ and ē, and using the fact that aType(C′′)(m) = aType(C′)(m) if C′′ <: C′.

Case (T- Assig) In this case e is of the form e0.f = e1. By (T- Assig) we have this :
C, x̄ : Ā � e0.f : A, this : C, x̄ : Ā � e1 : T1 for some T1 <: A. The thesis follows
from the induction hypothesis and the transitivity of <: .

Lemma 3 (Weakening) If Σ �′ e : T then Σ, ι : C �′ e : T.

Proof Straightforward induction on the derivation of Σ �′ e : T.

Theorem 3 (Subject reduction) If Σ � H ,Σ �′ e : T and H , e −→ H ′, e′ then there
exists Σ ′ ⊇ Σ such that Σ ′ � H ′,Σ ′ �′ e′ : T′ for some T′ <: T.

Proof The proof is by induction on a derivation of H , e −→ H ′, e′, with a case analysis
on the reduction rule used. We show only the most interesting cases for computation rules;
for congruence rules simply use the induction hypothesis (using Lemma 3).

Case (R- Field) The last applied rule is H , ι.fi −→ H , vi where H (ι) = 〈C, f̄ = v〉. By
hypothesisΣ �′ ι.fi : Ti . and by (WF- Heap) we haveΣ �′ vi : T′i for some T′i <: Ci .
Thus we have the thesis.

Case (R- Invk) The last applied rule is H (ι)=〈C,f̄=v〉mbody(m,C)=(x̄,e0)

H ,ι.m(v)−→H ,[x̄←v,this← ι]e0

By hypothesis Σ �′ ι.m(v) : T. Since the last applied typing rule must be (RT- Invk),
we have T = B for some B. Then the thesis follows by applying Lemma 2.

Case (R- New) LetΣ ′ = Σ ∪ {ι : C}. By hypothesisΣ � H , and by applying (WF- Heap)
we also have Σ ′ � H ∪ {ι �→ C, f̄ = null}.Σ ′ �′ ι : C follows from (RT- Addr).

Case (R- Assign) By rule (RT- Assign) we have that Σ �′ v : T′ and T′ <: T for some T′.
By hypothesis Σ � H , and by applying (WF- Heap) we also have Σ � H [H (ι) �→
〈C, . . . , fi = v, . . .〉].

123

Compositional type checking 115

Lemma 4 Let H , e be a well-typed configuration.

1. If e = ι.f then H (ι) = 〈C, · · ·〉 with aType(C)(f) = A for some class name A.
2. If e = ι.m(ē) then H (ι) = 〈C, · · ·〉 with aType(C)(m) = Ā→ B and �(Ā) = �(ē).

Proof Straightforward.

In order to formulate in a compact way the statement of the progress theorem we introduce
the notion of evaluation context for IFJ runtime expressions. The set of evaluation context
for IFJ runtime expressions is defined as follows:

E ::= [] ∣∣ E.f
∣∣ E.m(ē)

∣∣ v.m(v̄,E.ē)
∣∣ (C)E ∣∣ v.f = E

Theorem 4 (Progress) Let H , e be a well-typed normal form. Then

1. either e is a value, or
2. for some evaluation context E we can express e as

(a) either E [(A)ι] such that H (ι) = 〈B, · · ·〉 with B �<: A, or
(b) E [null.f] for some f, or
(c) E [null.m(v̄)] for some m and v̄, or
(d) E [null.f = v] for some f and v.

Proof Straightforward induction on typing derivations using Lemma 4.

Lemma 5 If • � e : T then • �′ e : T.

Proof Straightforward induction on typing derivations.

Theorem 5 (Type Soundness) If � CTOK, CT(Main) = class Main { C main()
{ return e; } }, • � e : T and ∅, e −→� H , e′ with H , e′ a normal form. Then e′
is

1. either null,
2. or an address ι such that H (ι) = 〈C, · · ·〉 with C <: T,
3. or an expression containing (A)ι such that H (ι) = 〈B, · · ·〉 with B �<: A,
4. or an expression containing either null.f or null.m(v̄) for some f, m and v̄.

Proof Follows from Lemma 5, Theorems 3 and 4.

Appendix B: Soundness and completeness of IFJ constraint-based typing

Lemma 6 Let CT be a IFJ program, C ∈ dom(CT), m ∈ dom(C), CST = signature(CT), CST
satisfy the sanity conditions for class signature tables, CT(C)(m) = B m (Ā x̄){return e′; }
and e be a subexpression of e′.

(Soundness) Let this : C, x̄ : Ā � e : τ | E and CST |� E ⇒ s. Then this : C, x̄ : Ā �
e : s(τ).
(Completeness) Let this : C, x̄ : Ā � e : T. Then there exist τ , E and s such that:
this : C, x̄ : Ā � e : τ | E , CST |� E ⇒ s and s(τ) = T.

Proof (Soundness) By structural induction on the derivations in the constraint-based
type system for expressions in Fig. 9, exploiting the rules in Fig. 8.

123

116 L. Bettini et al.

The cases (CT- Var), (CT- Null) and (CT- New) are immediate by rules (T- Var),
(T- Null) and (T- New), respectively. For rule (CT- New) observe that CST |�
{class(C)} implies C ∈ dom(CST).

Case (CT- Invk). Assume this : C, x1 : A1, . . . , xp : Ap � e0.m(e1, ..., en) :
β | (∪i∈{0,...,n}Ei) ∪ E and CST |� E ∪ (∪i∈{0,...,n}Ei) ⇒ s. From the premises of rule
(CT- Invk) we have that:

– � � e0 : η | E0,
– � � ei : τi | E (i∈1..n)

i ,
– α1, ..., αn, β fresh, and
– E = {meth(η, m, α1 · · ·αn → β), subtype(τ1α1), . . . , subtype(τnαn)}.

Assume (without loss of generality) that for all i �= j ∈ 0..n the set of the type variables
in {τi } ∪ Ei and the set of the type variables in {τ j } ∪ E j (with τ0 = η) are pairwise
disjoint. From the rules in Fig. 8 we have that s = s′ ◦ sn ◦ · · · ◦ s0 for some s′, sn, . . . , s0

such that:

– CST |� E0 ⇒ s0 and s0(η) = C0, for some C0,
– (for all i ∈ 1..n) CST |� Ei ⇒ si and si (τi) = Ti , for some Ti ,
– CST |� sn ◦ · · · ◦ s0(E)⇒ s′ where s′ = [BA1 · · · An/βα1 · · · αn], aType(C0)(m) =
A1 · · · An → B and Ti <: Ai

(i∈1..n).

By induction we have that:

– � � e0 : C0,
– � � ei : T (i∈1..n)

i .

Then, by rule (T- Invk), we get � � e0.m(e1, . . . , en) : B.
The remaing cases (T- Field), (T- Invk), (T- New), (T- Assig),(T- Cast) are similar to
the previous case.
(Completeness) By structural induction on the derivations in the type system for expres-
sions in Fig. 4, exploiting the rules in Fig. 8.

– The cases (T- Var), (T- Null) and (T- New) are immediate by rules (CT- Var),
(CT- Null) and (T- New), respectively. For rule (T- New) observe that C ∈
dom(CST) implies CST |� {class(C)}.

–Case (T- Invk). Assume � � e0.m(e1, . . . , en) : B. From the premises of (T- Invk) we
have that:

– � � e0 : C0,
– � � ei : T (i∈1..n)

i ,
– aType(C0)(m) = A1 · · · An → B, and
– Ti <: Ai

(i∈1..n).

By induction we have that:

– � � e0 : η | E0 and CST |� E0 ⇒ s0 with s0(η) = C0, and
– � � ei : τi | E (i∈1..n)

i and for all i ∈ 1..n: CST |� Ei ⇒ si with si (τi) = Ti ,

where, for all i �= j ∈ 0..n, the set of the type variables in {τi } ∪ Ei and the set of the type
variables in {τ j } ∪ E j (with τ0 = η) are pairwise disjoint. Consider

– α1, ..., αn, β fresh, and
– E = {meth(η, m, α1 · · ·αn → β), subtype(τ1α1), . . . , subtype(τnαn)}.

123

Compositional type checking 117

From the rules in Fig. 8 we have that:

– CST |� sn ◦ · · · ◦ s0(E)⇒ s′ where s′ = [BA1 · · · An/βα1 · · · αn].
Then, by rule (CT- Invk), we get this : C, x1 : A1, . . . , xp : Ap � e0.m(e1, ..., en) :
β | (∪i∈{0,...,n}Ei) ∪ E and CST |� E ∪ (∪i∈{0,...,n}Ei)⇒ s′ ◦ sn ◦ · · · ◦ s0.
Cases (T- Field), (T- Assig), (T- UCast), (T- DCast) are similar to the previous case.

Lemma 7 Let CT be a IFJ program, C ∈ dom(CT), m ∈ dom(C), CST = signature(CT) and
CST satisfy the sanity conditions for class signature tables.

(Soundness) Let this : C � CT(C)(m) : mwith E and CST |� E . Then this : C �
CT(C)(m)OK.
(Completeness) Let this : C � CT(C)(m)OK. Then there exists E such that: this : C �
CT(C)(m) : mwith E and CST |� E .

Proof Straightforward by Lemma 6.

Lemma 8 Let CT be a IFJ program, C ∈ dom(CT), CST = signature(CT) and CST satisfy
the sanity conditions for class signature tables.

(Soundness) Let � CT(C) : Cwith M and CST |� flat(M). Then � CT(C)OK.
(Completeness) Let � CT(C)OK. Then there exists M such that: � CT(C) : Cwith M
and CST |� flat(M).

Proof Straightforward by Lemma 7.

Restatement of Theorem 1 (Soundness and completeness of IFJ constraint-based typing)
Let CT be a IFJ program and CST = signature(CT).

(Soundness) Let CST satisfy the sanity conditions for class signature tables, � CT : C
and CST |� flat(C). Then

1. � CTOK, and
2. if flat(C) is cast-safe with respect to CST, then CT is cast-safe.

(Completeness) Let � CTOK. Then there exists C such that:

– � CT : C and CST |� flat(C), and
– if CT is cast-safe, then flat(C) is cast-safe with respect to CST.

Proof (Soundness)

1. Straightforward by Lemma 8 (Soundness).
2. If flat(C) is cast safe w.r.t. CST, then (T- DCast) is not used.

(Completeness)

1. Straightforward by Lemma 8 (Completeness).
2. Observe that, if (T- DCast) is not used, then flat(C) is cast safe w.r.t. CST.

Appendix C: soundness and completeness of IFΔJ constraint-based typing

C.1 Proof of Proposition 2

Lemma 9 For every delta module δ and for every class table CT such that δ is applicable to
CT, and for every class C ∈ dom(δ) ∩ dom(CT) such that � δ(C) : cco and � CT(C) : cc it
holds that

123

118 L. Bettini et al.

1. for every method m ∈ dom(δ(C)) ∩ dom(CT(C)) if

– this : C � δ(C)(m) : {mco}, and
– this : C � CT(C)(m) : mwith E ,

then

(a) (δ(C)(m) = modifies · ·· and (mco = replaces · ·· or mco = wraps · ··)) or
(δ(C)(m) = removes · ·· and mco = removes · ··),

(b) mco = replaces mwith E ′ implies that
i this : C � applyδ(δ(C)CT(C))(m) : mwith E ′,

ii m$ · · · �∈ dom(consApplyδ(cco, cc)),
(c) mco = wraps mwith E ′ implies that

i this : C � applyδ(δ(C)CT(C))(m) : mwith E ′[m$δ/original],
ii this : C � applyδ(δ(C)CT(C))(m$δ) : m$δwith E where cc(m) = mwith E ,

(d) mco = removes m implies that m �∈ dom(consApplyδ(cco, cc)) and m$ · · · �∈
dom(consApplyδ(cco, cc));

2. for every method m ∈ dom(δ(C))− domCT(C) if

– this : C � δ(C)(m) : {mco},
then

(a) δ(C)(m) = adds · ·· and mco = adds · ··,
(b) mco = adds mwith E ′ implies this : C � : apply(δ, CT)(C)(m)mwith E ′.

Proof Both points 1 and 2 follow straightforwardly by the definition of apply(δδ(C))CT(C)
(given in Sect. 5.2) and the definition of consApplyδ(cco, cc) (given in Sect. 7.2). By observ-
ing that rules (CT- S- addM), (CT- S- repM) and (CT- S- wraM) in Fig. 12 rely on rule
(CT- Method) in Fig. 9.

Lemma 10 For every delta module δ and for every class table CT such that δ is applicable
to CT, � delta δ · · · : D , and � CT : C it holds that

1. for every class C ∈ dom(δ) ∩ domCT if

– � δ(C) : cco, and
– � CT(C) : Cwith M ,

then

(a) (δ(C) = modifies · ·· and cco = modifies · ··) or (δ(C) = removes · ·· and
cco = removes · ··),

(b) cco = modifies Cwith O implies that � applyδ(δ(C)CT(C)) : consApplyδ

(modifies Cwith O, Cwith M),
(c) cco = removes C implies that C �∈ dom(consApplyδ(D,C));

2. for every class C ∈ dom(δ)− domCT if

– � δ(C) : cco

then

(a) δ(C) = adds · ·· and cco = adds · ··,
(b) cco = adds cc implies � apply(δ, CT)(C) : cc.

Proof Both points 1 and 2 follow straightforwardly by the definition of applyδ(δ(C)CT(C))
(given in Sect. 5.2), the definition of consApplyδ(cco, cc) (given in Sect. 7.2) and Lemma 9.

123

Compositional type checking 119

By observing that rule (CT- C- addC) in Fig. 12 relies on rule (CT- Class) in Fig. 9, and
rule (CT- C- modC) relies on rules (CT- S- addM), (CT- S- repM) and (CT- S- wraM) in
Fig. 12.

Restatement of Proposition 2 For every delta module δ ∈ dom(DMT) and for every class
table CT such that δ is applicable to CT, if� DMT(δ) : D and� CT : C , then� apply(δ, CT) :
consApplyδ(D,C).

Proof Straightforward by the definition of apply(δ, CT) (given in Sect. 5.2), the definition of
consApplyδ(D,C) (given in Sect. 7.2) and Lemma 10. By observing that rule (CT- Delta)

in Fig. 12 relies on rules (CT- C- addC) and (CT- C- modC) in Fig. 12.

C.2: Proof of Theorem 2

Restatement of Theorem 2 (Soundness and completeness of IFΔJ constraint-based typing)
Let L be a strongly unambiguous IFΔJ SPL and ψ ∈ Φ.

(Soundness) If CSTψ is defined and satisfies the sanity conditions for class signature

tables, � delta δ · · · : Dδ for all δ ∈ Δ(ψ), and CSTψ |� flat(Cψ), then:

1. � CTψ OK, and
2. if flat(Cψ) is cast-safe with respect to CSTψ , then CTψ is cast-safe.

(Completeness) Let � CTψ OK.

1. If for all δ ∈ Δ(ψ) there exists Dδ such that � delta δ · · · : Dδ , then
(a) CSTψ |� flat(Cψ), and
(b) if CTψ is cast-safe then flat(Cψ) is cast-safe with respect to CSTψ .

2. If there exists δ ∈ Δ(ψ) such that δ is not �-typable, then the body of the method-
add/modify operation in δ that is ill typed is not included in the product CTψ .

Proof (Soundness) Immediate by Corollary 2 and Theorem 1(Soundness).
(Completeness)

1. Immediate by Corollary 2 and Theorem 1(Completeness).
2. If the body of a method-add/modify operation in δ is ill typed, then it contains either

an occurrence of a variable that is not a formal parameter of the method, or a stupid
selection expression. Therefore, the inclusion of a method with a body containing
either an occurrence of a variable that is not a formal parameter of the method or a
stupid selection expression would contradict the assumption that � CTψ OK.

References

1. Ancona, D., Damiani, F., Drossopoulou, S., Zucca, E.: Polymorphic bytecode: compositional compilation
for java-like languages. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’05, pp. 26–37. ACM, New York (2005). doi:10.1145/1040305.
1040308

2. Apel, S., Kästner, C., Grösslinger, A., Lengauer, C.: Type safety for feature-oriented product lines. Autom.
Softw. Eng. 17(3), 251–300 (2010). doi:10.1007/s10515-010-0066-8

3. Apel, S., Kästner, C., Lengauer, C.: Feature featherweight java: a calculus for feature-oriented pro-
gramming and stepwise refinement. In: Proceedings of the 7th International Conference on Generative
Programming and Component Engineering, GPCE ’08, pp. 101–112. ACM, New York (2008). doi:10.
1145/1449913.1449931

123

http://dx.doi.org/10.1145/1040305.1040308
http://dx.doi.org/10.1145/1040305.1040308
http://dx.doi.org/10.1007/s10515-010-0066-8
http://dx.doi.org/10.1145/1449913.1449931
http://dx.doi.org/10.1145/1449913.1449931

120 L. Bettini et al.

4. Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K.: An overview of caesarJ. Trans. AOSD I, LNCS 3880,
135–173 (2006). doi:10.1007/11687061_5

5. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl, K. (eds.) Soft-
ware Product Lines (SPLC 2005), Lecture Notes in Computer Science, vol. 3714, pp. 7–20. Springer
(2005). doi:10.1007/11554844_3

6. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE Trans. Softw. Eng. 30,
355–371 (2004). doi:10.1109/TSE.2004.23

7. Bettini, L., Damiani, F., Schaefer, I.: Implementing software product lines using traits. In: Proceedings of
the 2010 ACM Symposium on Applied Computing, SAC ’10, pp. 2096–2102. ACM, New York (2010).
doi:10.1145/1774088.1774530

8. Bettini, L., Damiani, F., Schaefer, I., Strocco, F.: TraitRecordJ: a programming language with traits and
records. Sci. Comput. Program. (2011). doi:10.1016/j.scico.2011.06.007

9. Bono, V., Damiani, F., Giachino, E.: Separating type, behavior, and State to achieve very fine-grained
reuse. In: Electronic Proceedings of FTfJP (2007)

10. Bono, V., Damiani, F., Giachino, E.: On Traits and Types in a Java-like Setting. In: Ausiello, G., Karhumki,
J., Mauri, G., Ong, L. (eds.) Fifth IFIP international conference on Theoretical Computer Science—Tcs
2008, IFIP International Federation for Information Processing, vol. 273, pp. 367–382. Springer (2008)
doi:10.1007/978-0-387-09680-3_25

11. Bracha, G., Cook, W.: Mixin-based inheritance. In: Proceedings of the European Conference on Object-
Oriented Programming on Object-Oriented Programming Systems, Languages, and Applications, OOP-
SLA/ECOOP ’90, pp. 303–311. ACM, New York (1990). doi:10.1145/97945.97982

12. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison Wesley Longman,
Reading (2001)

13. Clifton, C., Leavens, G.T.: MiniMAO1: investigating the semantics of proceed. Sci. Comput. Program.
63(3), 321–374 (2006). doi:10.1016/j.scico.2006.02.009

14. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applications. Addison-
Wesley, Reading (2000)

15. Damiani, F., Padovani, L., Schaefer, I.: A formal foundation for dynamic delta-oriented software product
lines. In: Proceedings of the 11th International Conference on Generative Programming and Component
Engineering, GPCE ’12, pp. 1–10. ACM, New York (2012). doi:10.1145/2371401.2371403

16. Damiani, F., Schaefer, I.: Dynamic delta-oriented programming. In: Proceedings of the 15th International
Software product Line Conference, vol. 2, SPLC ’11, pp. 34:1–34:8. ACM, New York (2011). doi:10.
1145/2019136.2019175

17. Damiani, F., Schaefer, I.: Family-based analysis of type safety for delta-oriented software product lines. In:
Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation.
Technologies for Mastering Change, Lecture Notes in Computer Science, vol. 7609, pp. 193–207. Springer
(2012). doi:10.1007/978-3-642-34026-0_15

18. De Fraine, B., Südholt, M., Jonckers, V.: Strongaspectj: flexible and safe pointcut/advice bindings. In:
Proceedings of the 7th International Conference on Aspect-Oriented Software Development, AOSD ’08,
pp. 60–71. ACM, New York (2008). doi:10.1145/1353482.1353491

19. Delaware, B., Cook, W., Batory, D.: A machine-checked model of safe composition. In: Proceedings of
the 2009 Workshop on Foundations of Aspect-Oriented Languages, FOAL ’09, pp. 31–35. ACM, New
York (2009). doi:10.1145/1509837.1509846

20. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.: Traits: A mechanism for fine-grained reuse.
ACM TOPLAS 28(2), 331–388 (2006). doi:10.1145/1119479.1119483

21. Ernst, E.: gbeta - a language with virtual attributes, block structure, and propagating, dynamic inheritance.
Ph.D. thesis, Department of Computer Science, University of Århus, Denmark (1999). http://www.daimi.
au.dk/eernst/gbeta

22. Ernst, E.: Propagating class and method combination. In: Guerraoui, R. (ed.) ECOOP 1999—Object-
Oriented Programming, Lecture Notes in Computer Science, vol. 1628, pp. 67–91. Springer (1999).
doi:10.1007/3-540-48743-3_4

23. Ernst, E.: Higher-order hierarchies. In: Cardelli, L. (ed.) ECOOP 2003—Object-Oriented Program-
ming, Lecture Notes in Computer Science, vol. 2743, pp. 303–328. Springer (2003). doi:10.1007/
978-3-540-45070-2_14

24. Ernst, E.: The expression problem, Scandinavian style. In: MASPEGHI (2004). http://www.i3s.unice.fr/
maspeghi2004/final-version/e_ernst.pdf

25. Fraine, B., Ernst, E., Sdholt, M.: Essential AOP: the a calculus. In: D’Hondt, T. (ed.) ECOOP 2010—
Object-Oriented Programming, Lecture Notes in Computer Science, vol. 6183, pp. 101–125. Springer
(2010). doi:10.1007/978-3-642-14107-2_6

123

http://dx.doi.org/10.1007/11687061_5
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1109/TSE.2004.23
http://dx.doi.org/10.1145/1774088.1774530
http://dx.doi.org/10.1016/j.scico.2011.06.007
http://dx.doi.org/10.1007/978-0-387-09680-3_25
http://dx.doi.org/10.1145/97945.97982
http://dx.doi.org/10.1016/j.scico.2006.02.009
http://dx.doi.org/10.1145/2371401.2371403
http://dx.doi.org/10.1145/2019136.2019175
http://dx.doi.org/10.1145/2019136.2019175
http://dx.doi.org/10.1007/978-3-642-34026-0_15
http://dx.doi.org/10.1145/1353482.1353491
http://dx.doi.org/10.1145/1509837.1509846
http://dx.doi.org/10.1145/1119479.1119483
http://www.daimi.au.dk/eernst/gbeta
http://www.daimi.au.dk/eernst/gbeta
http://dx.doi.org/10.1007/3-540-48743-3_4
http://dx.doi.org/10.1007/978-3-540-45070-2_14
http://dx.doi.org/10.1007/978-3-540-45070-2_14
http://www.i3s.unice.fr/maspeghi2004/final-version/e_ernst.pdf
http://www.i3s.unice.fr/maspeghi2004/final-version/e_ernst.pdf
http://dx.doi.org/10.1007/978-3-642-14107-2_6

Compositional type checking 121

26. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: a minimal core calculus for Java and GJ. ACM
TOPLAS 23(3), 396–450 (2001). doi:10.1145/503502.503505

27. Johnsen, E., Kyas, M., Yu, I.: Dynamic classes: modular asynchronous evolution of distributed concurrent
objects. In: Cavalcanti, A., Dams, D. (eds.) FM 2009: Formal Methods, Lecture Notes in Computer
Science, vol. 5850, pp. 596–611. Springer (2009). doi:10.1007/978-3-642-05089-3_38

28. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain Analy-
sis (FODA) Feasibility Study. Technical report. Carnegie Mellon Software Engineering Institute
(1990)

29. Kästner, C., Apel, S., Batory, D.: A case study implementing features using aspectJ. In: Software Product
Line Conference (SPLC 2007), pp. 223–232. IEEE, Los Alamitos (2007). doi:10.1109/SPLINE.2007.12

30. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In: Proceedings of the 30th
International Conference on Software Engineering, ICSE ’08, pp. 311–320. ACM, New York (2008).
doi:10.1145/1368088.1368131

31. Kästner, C., Apel, S., ur Rahman, S.S., Rosenmüller, M., Batory, D., Saake, G.: On the impact of the
optional feature problem: analysis and case studies. In: Proceedings of the 13th International Software
Product Line Conference, SPLC ’09, pp. 181–190. Carnegie Mellon University, Pittsburgh (2009). doi:10.
1145/1753235.1753261

32. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview of aspectJ.
In: ECOOP 2001—Object-Oriented Programming, Lecture Notes in Computer Science, vol. 2072,
pp. 327–354. Springer (2001). doi:10.1007/3-540-45337-7_18

33. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.: Aspect-oriented
programming. In: ECOOP 1997—Object-Oriented Programming, Lecture Notes in Computer Science,
vol. 1241, pp. 220–242. Springer (1997). doi:10.1007/BFb0053381

34. Krueger, C.: Eliminating the adoption barrier. IEEE Softw. 19(4), 29–31 (2002). doi:10.1109/MS.2002.
1020284

35. Kuhlemann, M., Batory, D., Kästner, C.: Safe composition of non-monotonic features. In: Proceedings
of the Eighth International Conference on Generative Programming and Component Engineering, GPCE
’09, pp. 177–186. ACM, New York (2009). doi:10.1145/1621607.1621634

36. Lopez-Herrejon, R., Batory, D., Cook, W.: Evaluating support for features in advanced modularization
technologies. In: Black, A.P. (ed.) ECOOP 2005—Object-Oriented Programming, Lecture Notes in Com-
puter Science, vol. 3586, pp. 169–194. Springer (2005). doi:10.1007/11531142_8

37. Madsen, O.L., Møller-Pedersen, B.: Virtual classes: a powerful mechanism in object-oriented program-
ming. In: Conference Proceedings on Object-Oriented Programming Systems, Languages and Applica-
tions, OOPSLA ’89, pp. 397–406. ACM, New York (1989). doi:10.1145/74877.74919

38. Odersky, M.: The Scala Language Specification, version 2.4. Technical Report, Programming Methods
Laboratory, EPFL (2007)

39. Ossher, H., Tarr, P.: Hyper/J: multi-dimensional separation of concerns for Java. In: Proceedings of the
22nd International Conference on Software Engineering, ICSE ’00, pp. 734–737. ACM, New York (2000).
doi:10.1145/337180.337618

40. Ostermann, K.: Dynamically composable collaborations with delegation layers. In: Magnusson, B.
(ed.) ECOOP 2002—Object-Oriented Programming, Lecture Notes in Computer Science, vol. 2374,
pp. 89–110. Springer (2002). doi:10.1007/3-540-47993-7_4

41. Rosenmüller, M., Siegmund, N., Saake, G., Apel, S.: Code generation to support static and dynamic
composition of software product lines. In: Proceedings of the 7th International Conference on Generative
Programming and Component Engineering, GPCE ’08, pp. 3–12. ACM, New York (2008). doi:10.1145/
1449913.1449917

42. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented programming of software
product lines. In: Bosch, J., Lee, J. (eds.) Software Product Lines: Going Beyond (SPLC 2010), Lecture
Notes in Computer Science, vol. 6287, pp. 77–91. Springer (2010). doi:10.1007/978-3-642-15579-6_6

43. Schaefer, I., Bettini, L., Damiani, F.: Compositional type-checking for delta-oriented programming. In:
Proceedings of the Tenth International Conference on Aspect-Oriented Software Development, AOSD
’11, pp. 43–56. ACM, New York (2011). doi:10.1145/1960275.1960283

44. Schaefer, I., Damiani, F.: Pure delta-oriented programming. In: Proceedings of the 2nd International
Workshop on Feature-Oriented Software Development, FOSD ’10, pp. 49–56. ACM, New York (2010).
doi:10.1145/1868688.1868696

45. Smaragdakis, Y., Batory, D.: Mixin layers: an object-oriented implementation technique for refinements
and collaboration-based designs. ACM Trans. Softw. Eng. Methodol. 11(2), 215–255 (2002). doi:10.
1145/505145.505148

123

http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1007/978-3-642-05089-3_38
http://dx.doi.org/10.1109/SPLINE.2007.12
http://dx.doi.org/10.1145/1368088.1368131
http://dx.doi.org/10.1145/1753235.1753261
http://dx.doi.org/10.1145/1753235.1753261
http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1109/MS.2002.1020284
http://dx.doi.org/10.1109/MS.2002.1020284
http://dx.doi.org/10.1145/1621607.1621634
http://dx.doi.org/10.1007/11531142_8
http://dx.doi.org/10.1145/74877.74919
http://dx.doi.org/10.1145/337180.337618
http://dx.doi.org/10.1007/3-540-47993-7_4
http://dx.doi.org/10.1145/1449913.1449917
http://dx.doi.org/10.1145/1449913.1449917
http://dx.doi.org/10.1007/978-3-642-15579-6_6
http://dx.doi.org/10.1145/1960275.1960283
http://dx.doi.org/10.1145/1868688.1868696
http://dx.doi.org/10.1145/505145.505148
http://dx.doi.org/10.1145/505145.505148

122 L. Bettini et al.

46. Strniša, R., Sewell, P., Parkinson, M.: The java module system: core design and semantic definition. In:
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems
and Applications, OOPSLA ’07, pp. 499–514. ACM, New York (2007). doi:10.1145/1297027.1297064

47. Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.M.: N degrees of separation: multi-dimensional separation
of concerns. In: Proceedings of the 21st International Conference on Software Engineering, ICSE ’99,
pp. 107–119. ACM, New York (1999). doi:10.1145/302405.302457

48. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe composition of product lines. In: Proceedings of
the 6th International Conference on Generative Programming and Component Engineering, GPCE ’07,
pp. 95–104. ACM, New York (2007). doi:10.1145/1289971.1289989

49. Thüm, T., Apel, S., Kästner, C., Kuhlemann, M., Schaefer, I., Saake, G.: Analysis Strategies for Software
Product Lines. Technical Report FIN-004-2012, School of Computer Science, University of Magdeburg,
Germany (2012). http://www.cs.uni-magdeburg.de/inf_media/downloads/forschung/technical_reports_
und_preprints/2012/04_2012.pdf

50. Torgersen, M.: The expression problem revisited. In: Odersky, M. (ed.) ECOOP 2004—Object-Oriented
Programming, Lecture Notes in Computer Science, vol. 3086, pp. 123–146. Springer (2004). doi:10.
1007/978-3-540-24851-4_6

51. Zenger, M., Odersky, M.: Independently extensible solutions to the expression problem. In: FOOL (2005)

123

http://dx.doi.org/10.1145/1297027.1297064
http://dx.doi.org/10.1145/302405.302457
http://dx.doi.org/10.1145/1289971.1289989
http://www.cs.uni-magdeburg.de/inf_media/downloads/forschung/technical_reports_und_preprints/2012/04_2012.pdf
http://www.cs.uni-magdeburg.de/inf_media/downloads/forschung/technical_reports_und_preprints/2012/04_2012.pdf
http://dx.doi.org/10.1007/978-3-540-24851-4_6
http://dx.doi.org/10.1007/978-3-540-24851-4_6

	Compositional type checking of delta-oriented software product lines
	Abstract
	1 Introduction
	2 Delta-oriented programming
	2.1 Delta modules
	2.2 Delta-oriented product lines
	2.3 Product generation
	2.4 Strongly-unambiguous delta-oriented product lines
	2.5 Evolution of delta-oriented product lines

	3 Type safety and compositional type-checking of DOP product lines
	4 IFJ
	4.1 IFJ syntax
	4.2 IFJ typing

	5 IF iDeltaJ
	5.1 IFiDeltaJ syntax
	5.2 IFiDeltaJ product generation
	5.3 Well-formed IF iDeltaJ product lines

	6 Constraint-based type system for IFJ
	6.1 Constraints and expression constraints checking
	6.2 Constraint-based typing rules for IFJ
	6.3 Properties

	7 Constraint-based type system for IFiDeltaJ
	7.1 Constraint-based typing rules for delta modules
	7.2 Generation of the class signature tables and the class constraints of the products
	7.3 Properties

	8 Enhancing early error recognition in delta modules
	9 Related work
	10 Conclusions and future work
	Acknowledgments
	Appendix A: IFJ reduction and type soundness
	A.1 IFJ reduction
	A.2 IFJ type soundness

	Appendix B: Soundness and completeness of IFJ constraint-based typing
	Appendix C: soundness and completeness of IF iDelta J constraint-based typing
	C.1 Proof of Proposition 2
	C.2: Proof of Theorem 2

	References

