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Abstract

We give partial results on the factorization conjecture on codes proposed by Schützenberger.
We consider a family of finite maximal codes C over the alphabet A = {a, b} and we prove
that the factorization conjecture holds for these codes. This family contains (p, 4)-codes,
where a (p, 4)-code C is a finite maximal code over A such that each word in C has at most
four occurrences of b and ap ∈ C, for a prime number p. We also discuss the structure of
these codes. The obtained results once again show relations between factorizations of finite
maximal codes and factorizations of finite cyclic groups.

1 Introduction

The theory of variable-length codes is a topic with elegant mathematical results and strong con-
nections with automata theory. The theory originated at the end of the 60’s with Schützenberger,
who proposed in [28] the semigroup theory as a mathematical setting for the study of the uniquely
decipherable sets of words in the context of information theory (see [2] for a complete treatment
of this topic and also [1] for a viewpoint focused on applications of codes). In this paper we
follow this algebraic approach and codes are defined as the bases of the free submonoids of a
free monoid.

A well known class of codes is that of prefix codes, i.e., codes such that none of their words
is a left factor of another. A classical representation of a finite prefix code C over an alphabet
A is as a set of leaves on a tree. In this case, the set of the internal nodes represents the set of
the proper left factors P of C and C is maximal (i.e., C is not properly contained in any other
code over A) if and only if each internal node has a number of children equal to the cardinality
of A. Thus, it is clearly evident that C = PA \ P or, in terms of noncommutative polynomials,
C − 1 = P (A − 1) (here 1 is the empty word and X denotes the characteristic polynomial of a
finite language X, i.e., the formal sum of its elements).

One of the conjectures proposed by Schützenberger, known as the factorization conjecture,
asks whether a more general equation can be stated for a finite (not necessarily prefix) maximal
code C, namely whether finite subsets P , S of A∗ exist such that C − 1 = P (A − 1)S [22, 29].
This longstanding open question, one of the most important in the theory of codes, is inspired
by a problem of information theory [23].

∗Partially supported by the FARB Project “Aspetti computazionali e proprietà algebriche degli automi e dei

linguaggi formali” (University of Salerno, 2011), the FARB Project “Aspetti algebrici e computazionali nella teoria

dei codici e dei linguaggi formali” (University of Salerno, 2012) and the MIUR Project 2010-2011 “Automata

and Formal Languages: Mathematical and Applicative Aspects”.
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Only partial results are known (see [2]). The major contribution to this conjecture is due to
Reutenauer [26, 27]. In particular, he proved that for any finite maximal code C over A, there
exist polynomials P, S ∈ Z〈A〉 such that C−1 = P (A−1)S. We call (P, S) a factorization for C.
Moreover we say that a factorization (P, S) for C is positive if P, S or −P,−S have coefficients
0, 1.1

Positive factorizations always exist for a finite maximal code C over a one-letter alphabet
and these positive factorizations have all been constructed in [18]. However, factorizations which
are not positive also exist, even for these simple codes. In the case of a one-letter alphabet, it
has also been conjectured that if (P, S) is a factorization for C and S has coefficients 0, 1, then
the same holds for P [19].

There are not many examples of factorizations which are not positive. On the contrary, every
factorization for C is positive if C is a finite maximal code over a two-letter alphabet {a, b} with
m ≤ 3 occurrences of the letter b in its words [9, 16, 24]. In this paper, we investigate this
further and we prove the results which are briefly explained below.

Let A = {a, b}. For a polynomial S ∈ Z〈A〉, we denote by supp(S) the set of words in A∗

having a non-zero coefficient in S. Let C be a finite maximal code over A such that ap ∈ C, for
a prime number p. Let (P, S) be a factorization for C such that, for any word w ∈ A∗, if wbaj

is in supp(S) then aj is also in supp(S).
First, we show that if S ∈ N〈A〉, then (P, S) is positive (Theorem 4.1). This result is related

to the above-mentioned conjecture in [19]. Second, we prove that if supp(S) ⊆ a∗ ∪ a∗ba∗ then
(P, S) is positive (Theorem 4.2). Moreover, in this case we may inductively construct all these
factorizations (P, S) (Section 7).

A (p, 4)-code C is a finite maximal code over A containing ap and such that each word in C
has at most four occurrences of b. A corollary of the previous results is that if C is a (p, 4)-code,
for a prime number p, then each factorization for C is positive (Theorem 4.3).

Finally, for a polynomial P ∈ Z〈A〉, let Pg be polynomials such that a word w ∈ A∗ has
a non-zero coefficient α in Pg if and only if w has g occurrences of the letter b and w has the
same non-zero coefficient α in P . Let (P, S) be a factorization for a finite maximal code C over
{a, b} such that if aibaj is in supp(S1) then aj is in supp(S0). We prove that if P0, S0, S1 have
coefficients 0, 1, then P1 has nonnegative coefficients (Theorem 4.4).

Another objective is the description of the structure of the (positively) factorizing codes, i.e.,
codes satisfying the factorization conjecture. There are several papers devoted to this problem
[8, 9, 10, 11, 12, 13, 14, 15, 24]. In particular, the structure of m-codes, m ≤ 3, has been
characterized, as well as that of codes C such that C = P (A−1)S+1, with P ⊆ A∗, S ⊆ a∗. In
all these cases, there are relations between (positive) factorizations of finite maximal codes and
factorizations of cyclic groups. We tackle this problem for (p, 4)-codes and the results proved in
this paper once again show these relations.

The paper is organized as follows. In Section 2, we set up the basic definitions and known
results we need. In Section 3, we give an outline of the results on the factorization conjecture
and we prove these results in Section 4. In Section 5, we recall some known results and give an
outline of new results on positively factorizing codes. The new results will be stated in Sections
6, 7 and 8. Finally, in Section 9, we discuss some open problems that follow on from these
results.

1Note that in this paper we use the term “positive factorization” with a slightly different meaning with respect
to the definition of the same term in [2].
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2 Basics

2.1 Codes and words

Let A∗ be the free monoid generated by a finite alphabet A and let A+ = A∗ \ 1 where 1 is the
empty word. For a word w ∈ A∗ and a letter a ∈ A, we denote by |w| the length of w and by
|w|a the number of the occurrences of a in w. The reversal of a word w = a1 . . . an, ai ∈ A, is
the word w∼ = an . . . a1 and we set X∼ = {w∼ | w ∈ X}.

A code C is a subset of A∗ such that, for all h, k ≥ 0 and c1, . . . , ch, c
′
1, . . . , c

′
k ∈ C, we have

c1 · · · ch = c′1 · · · c
′
k ⇒ h = k and ci = c′i for i = 1, . . . , h.

A set C ⊆ A+, such that C ∩CA+ = ∅, is a prefix code. C is a suffix code if C∼ is a prefix code
and C is a biprefix code when C is both a suffix and a prefix code. A code C is a maximal code
over A if for each code C ′ over A such that C ⊆ C ′ we have C = C ′.

2.2 Polynomials

Let Z〈A〉 (resp. N〈A〉) denote the semiring of the polynomials with noncommutative variables
in A and integer (resp. nonnegative integer) coefficients. For a finite subset X of A∗, X denotes
its characteristic polynomial, defined by X =

∑

x∈X x. Therefore, “characteristic polynomial”
will be synonymous with “polynomial with coefficients 0, 1”. For a polynomial P and a word
w ∈ A∗, (P,w) denotes the coefficient of w in P and we set supp(P ) = {w ∈ A∗ | (P,w) 6= 0}.
If supp(P ) = ∅, then P = 0 is the null polynomial. When we write P ≥ Q, with P,Q ∈ Z〈A〉,
we mean that (P,w) ≥ (Q,w), for any w ∈ A∗. In particular, P ≥ 0 means that P ∈ N〈A〉.
Furthermore, P∼ is defined by (P∼, w∼) = (P,w), for each w ∈ A∗. For P ∈ Z〈A〉, A = {a, b}
and g ∈ N, we denote by Pg polynomials such that

∀w ∈ A∗ (Pg, w) =

{

(P,w) if |w|b = g,

0 otherwise.

Then for any P ∈ Z〈A〉, there exists h ∈ N such that P = P0 + . . . + Ph. We write, as
usual, Z[a] and N[a] instead of Z〈a〉 and N〈a〉. The map which associates the polynomial
∑

n∈N(H,n)an ∈ N[a] to a finite multiset H of nonnegative integers, is a bijection between the
set of the finite multisets H of nonnegative integers and N[a]. We represent this bijection by the
notation aH =

∑

n∈N(H,n)an. For example, a{0,0,1,1,1,3,4} = 2+3a+ a3 + a4. Consequently, the

following computation rules are defined: aM+L = aMaL, aM∪L = aM + aL, a∅ = 0, a0 = 1.

2.3 Factorization conjecture

Conjecture 2.1, given in a weaker form in [23], is among the most difficult, unsolved problems in
the theory of codes. This conjecture was formulated by Schützenberger but, as far as we know,
it does not appear explicitly in any of his papers. It was quoted as the factorization conjecture
in [22] for the first time and then also reported in [2, 3, 7].

Conjecture 2.1 [29] Given a finite maximal code C, there are finite subsets P , S of A∗ such
that:

C − 1 = P (A− 1)S.
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Each code C verifying the previous conjecture is finite, maximal and is called a (positively)
factorizing code.

Finite maximal prefix codes are the simplest examples of positively factorizing codes. Indeed,
C is a finite maximal prefix code if and only if C = P (A− 1) + 1 for a finite subset P of A∗ [2].
In the previous relation, P is the set of the proper prefixes of the words in C. More interesting
constructions of factorizing codes can be found in [4, 5, 6], whereas the result which is closest
to a solution of the conjecture is reported in Theorem 2.1 and was obtained by Reutenauer
[2, 3, 26, 27].

Theorem 2.1 [27] Let C ∈ N〈A〉, with (C, 1) = 0, and let P, S ∈ Z〈A〉 be such that C =
P (A−1)S+1. Then, C is the characteristic polynomial of a finite maximal code. Furthermore,
if P, S ∈ N〈A〉, then P, S are polynomials with coefficients 0, 1. Conversely, for any finite
maximal code C there exist P, S ∈ Z〈A〉 such that C = P (A− 1)S + 1.

Given a finite maximal code C, a factorization (P, S) for C is a pair of polynomials P, S ∈ Z〈A〉
such that C = P (A − 1)S + 1. Of course, (P, S) is a factorization for C if and only if the
same holds for (−P,−S) and, moreover, (S∼, P∼) is a factorization for C∼. We say that a
factorization (P, S) for C is positive if P, S or −P,−S have coefficients 0, 1. From now on,
A = {a, b} will be a two-letter alphabet.

3 Outline of the results on the factorization conjecture

Let C be a finite maximal code over A, let (P, S) be a factorization for C (Theorem 2.1). Then
P, S ∈ Z〈A〉 are such that C = P (A − 1)S + 1. Thus, the characteristic polynomial Cr of the
set Cr = {w ∈ C | |w|b = r} of the words in C with r occurrences of b, is the sum of the terms
of degree r with respect to the variable b in the polynomial P (A− 1)S + 1, i.e.,

C0 = P0(a− 1)S0 + 1, (3.1)

∀r ≥ 0 Cr+1 =
∑

i+j=r

PibSj +
∑

i+j=r+1

Pi(a− 1)Sj . (3.2)

Example 3.1 Consider the finite maximal code defined by the relation C = P (A − 1)S + 1,
with

P = 1 + a2ba{0,1,2,3,4,5,6} + a2ba3ba{0,1,2,3,4,5,6},

S = a{0,1,2,3,4} + a{0,1}ba{0,1,2,3,4}.

Then we have

P0 = 1, P1 = a2ba{0,1,2,3,4,5,6}, P2 = a2ba3ba{0,1,2,3,4,5,6},

S0 = a{0,1,2,3,4}, S1 = a{0,1}ba{0,1,2,3,4}.
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Consequently

C0 = P0(a− 1)S0 + 1 = (a− 1)a{0,1,2,3,4} + 1 = a5,

C1 = P0bS0 + P1(a− 1)S0 + P0(a− 1)S1

= ba{0,1,2,3,4} + a2ba{0,1,2,3,4,5,6}(a− 1)a{0,1,2,3,4} + (a− 1)a{0,1}ba{0,1,2,3,4}

= a2ba{7,8,9,10,11},

C2 = P1bS0 + P0bS1 + P1(a− 1)S1 + P2(a− 1)S0

= a2ba{0,1,2,3,4,5,6}ba{0,1,2,3,4} + ba{0,1}ba{0,1,2,3,4} +

a2ba{0,1,2,3,4,5,6}(a− 1)a{0,1}ba{0,1,2,3,4} + a2ba3ba{0,1,2,3,4,5,6}(a− 1)a{0,1,2,3,4}

= ba{0,1}ba{0,1,2,3,4} + a2ba{2,4,5,6,7,8}ba{0,1,2,3,4} + a2ba3ba{7,8,9,10,11},

C3 = P1bS1 + P2bS0 + P2(a− 1)S1

= a2ba{0,1,2,3,4,5,6}ba{0,1}ba{0,1,2,3,4} + a2ba3ba{0,1,2,3,4,5,6}ba{0,1,2,3,4} +

a2ba3ba{0,1,2,3,4,5,6}(a− 1)a{0,1}ba{0,1,2,3,4}

= a2ba{0,1,2,3,4,5,6}ba{0,1}ba{0,1,2,3,4} + a2ba3ba{2,3,4,5,6,7,8}ba{0,1,2,3,4},

C4 = P2bS1 = a2ba3ba{0,1,2,3,4,5,6}ba{0,1}ba{0,1,2,3,4}.

The factorization (P, S) for C in Example 3.1 is positive. We notice that ap ∈ C, with p a
prime number, S = S0+S1, and words aibaj in supp(S) are such that aj is also in supp(S). We
will prove that each factorization (P, S), for a code C satisfying these hypotheses, is necessarily
positive.

In the proof of this result we may assume that P = P0+ . . .+Pk with k ≥ 2 and S = S0+S1

with S1 6= 0. Indeed, we recall below that (P, S) is always positive if k ≤ 1 (and S = S0+S1) or
if S ∈ Z[a]. Given m ∈ N, an m-code C is a finite maximal code over {a, b} such that each word
in C has at most m occurrences of b, and at least one word of C contains exactly m occurrences
of b. The following result has been proved in [24] for m = 1, in [16] for m = 2 and in [9] for
m = 3.

Theorem 3.1 Let m ∈ N, m ≤ 3. Any m-code C is positively factorizing. Moreover, each
factorization for C is a positive factorization for C.

The following results have been proved in [9].

Theorem 3.2 Let C be a finite maximal code, let (P, S) be a factorization for C. If P ∈ Z〈a〉
or S ∈ Z〈a〉, then (P, S) is a positive factorization for C.

Theorem 3.3 Let C be a finite maximal code, let (U, V ) be a factorization for C. Then either
(P, S) = (U, V ) or (P, S) = (−U,−V ) satisfies the following conditions, where P =

∑k
i=0 Pi,

S =
∑h

i=0 Si.

(i) Pk and Sh have coefficients 0, 1.

(ii) Pk−1 ∈ N〈A〉\{0} and there are finite sets Lp of nonnegative integers, for p ∈ supp(Pk−1),
such that Pk =

∑

p∈supp(Pk−1)
pbaLp or Sh−1 ∈ N〈A〉 \ {0} and there are finite sets Ms of

nonnegative integers, for s ∈ supp(Sh−1), such that Sh =
∑

s∈supp(Sh−1)
aMsbs.

Theorem 3.3 states that Pk, S1 or −Pk, −S1 always have coefficients 0, 1. If ap ∈ C, we have
C0 = ap = P0(a − 1)S0 + 1, i.e., P0S0 = 1 + a + . . . + ap−1. Since for a prime number p, the
polynomial 1 + a + . . . + ap−1 is irreducible in Z[a] (see Example, p. 129 in [21]), one of the
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pairs (P0, S0), (S0, P0), (−P0,−S0), (−S0,−P0) is equal to the pair (1, 1 + a + . . . + ap−1). In
Section 4.1, we will prove that if S1 has coefficients 0, 1, then the same holds for polynomials
P0, S0 (Lemma 4.1).

In conclusion, P0 and S = S0 + S1 or −P0 and −S have coefficients 0, 1. Next, we will
consider factorizations (P, S) for C, with ap ∈ C and where S = S0 + . . . + St, t ≥ 1, is such
that, for any word w, if wbaj ∈ supp(S) then aj ∈ supp(S0). In Section 4.1, we will prove that
if S ∈ N〈A〉, then P is also in N〈A〉 (Theorem 4.1). Hence, P, S have coefficients 0, 1 (Theorem
2.1). As a consequence, we state our main result: if S = S0 + S1, then S ∈ N〈A〉 and (P, S) is
positive (Theorem 4.2).

Regarding the factorization conjecture, we will prove another result. In Section 4.2, we
consider (p, 4)-codes, i.e., 4-codes C such that C ∩ a∗ = {ap}. If (P, S) is a factorization for C
such that neither P nor S is in Z[a], then either P = P0+P1+P2, S = S0+S1 with P2 6= 0 and
S1 6= 0 or P = P0 + P1, S = S0 + S1 + S2 with P1 6= 0 and S2 6= 0 (see Example 3.1). Assume
S = S0+S1. One of the two cases in item (ii) of Theorem 3.3 applies to (P, S). In the second of
these cases, the above-mentioned results show that (P, S) is positive. We will easily prove that
(P, S) is positive in the first case also. The same arguments apply if P = P0 + P1. Therefore,
we show that all (p, 4)-codes have only positive factorizations. Notice that in [30] it has been
proved that an m-code C is positively factorizing if bm ∈ C and m is a prime number or m = 4.

Finally, in Section 4.3 we will prove that P1 has nonnegative coefficients under weaker hy-
potheses on P, S,C. More precisely, we remove the hypothesis on the power of a in C. We assume
that (P, S) is a factorization for C such that if aibaj is in supp(S1) then aj is in supp(S0). We
prove that if P0, S0, S1 have coefficients 0, 1, then P1 has nonnegative coefficients (Theorem 4.4).
In the proof of this result, we point out properties of P1 and S1 that will be used in Sections 6
and 8 for the construction of factorizing codes.

4 Main results

4.1 Factorizations (P, S) with one b in S

In this section, we prove our main result. We consider a factorization (P, S) for a finite maximal
code C over A, with C ∩ a∗ = {ap}, for a prime number p, and S = S0 + S1. We assume that
aibaj ∈ supp(S1) implies aj ∈ supp(S0). We prove that (P, S) is positive (Theorem 4.2). This
result is a direct consequence of Lemma 4.1 and Theorem 4.1.

Lemma 4.1 Let C be a finite maximal code over A with C ∩ a∗ = {ap}, for a prime number
p. Let (P, S) be a factorization of C such that S = S0 + S1. If S1 is a nonnull polynomial with
coefficients 0, 1, then P0, S0 are also polynomials with coefficients 0, 1.

Proof :
Let S1 =

∑

h∈H aMhbah, where H and Mh are finite, nonempty sets of nonnegative integers, for

h ∈ H. Set P1 =
∑

k∈K akbaLk −
∑

t∈T atbaL
′

t , where K,T are finite sets of nonnegative integers,
Lk, L

′
t are finite multisets of nonnegative integers, for k ∈ K, t ∈ T , and supp(

∑

k∈K akbaLk) ∩

supp(
∑

t∈T atbaL
′

t) = ∅. Suppose that P0, S0 are not polynomials with coefficients 0, 1. By
Eq. (3.1), we have P0 = −1, S0 = −(1+ a+ . . .+ ap−1) or P0 = −(1+ a+ . . .+ ap−1), S0 = −1.

Assume that the first case holds. Of course, C1 ≥ 0 and, by Eqs. (3.2), we have

C1 = ba{0,1,...,p−1} −
∑

h∈H

aMh(a− 1)bah +
∑

k∈K

akbaLk(1− ap) +
∑

t∈T

atbaL
′
t(ap − 1). (4.1)
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Let m = max{m′ | m′ ∈ Mh′ , h′ ∈ H}. Thus, for h ∈ H such that m = maxMh, we have
(ba{0,1,...,p−1} −

∑

h∈H aMh(a− 1)bah, am+1bah) < 0. By Eq. (4.1) this implies

(
∑

k∈K

akbaLk(1− ap) +
∑

t∈T

atbaL
′
t(ap − 1), am+1bah) > 0.

Assume (
∑

k∈K akbaLk(1 − ap), am+1bah) > 0. Hence, m + 1 ∈ K and Lm+1 6= ∅. Let ℓ =
maxLm+1. We now prove that (C1, a

m+1baℓ+p) < 0, in contradiction with C1 ≥ 0. By the defini-
tion ofm, we have (ba{0,1,...,p−1}−

∑

h∈H aMh(a−1)bah, am+1baℓ+p) ≤ 0 and by the definition of ℓ,

we have (
∑

k∈K akbaLk(1−ap), am+1baℓ+p) < 0. If we had (
∑

t∈T atbaL
′
t(ap−1), am+1baℓ+p) > 0,

then we would have (
∑

t∈T atbaL
′

tap, am+1baℓ+p) ≥ (
∑

t∈T atbaL
′

t(ap−1), am+1baℓ+p) > 0, hence,

m+ 1 ∈ T , ℓ ∈ L′
m+1 and supp(

∑

k∈K akbaLk) ∩ supp(
∑

t∈T atbaL
′
t) 6= ∅, a contradiction.

Therefore, (
∑

t∈T atbaL
′

t(ap − 1), am+1bah) > 0. Hence, m + 1 ∈ T and L′
m+1 6= ∅. Let

ℓ = minL′
m+1. Then (ba{0,1,...,p−1} −

∑

h∈H aMh(a − 1)bah, am+1baℓ) ≤ 0 by the definition of

m, and (
∑

t∈T atbaL
′

t(ap − 1), am+1baℓ) < 0 by the definition of ℓ. By Eq. (4.1), this implies
(
∑

k∈K akbaLk(1−ap), am+1baℓ) > 0 which yieldsm+1 ∈ K, ℓ ∈ Lm+1 and supp(
∑

k∈K akbaLk)∩

supp(
∑

t∈T atbaL
′
t) 6= ∅, again a contradiction.

Finally, assume P0 = −(1 + a+ . . .+ ap−1), S0 = −1. Now C1 is defined by

C1 = a{0,1,...,p−1}b−
∑

h∈H

aMh(ap − 1)bah +
∑

k∈K

akbaLk(1− a) +
∑

t∈T

atbaL
′

t(a− 1). (4.2)

Arguing as before, we consider am+pbah with m = max{m′ | m′ ∈ Mh′ , h′ ∈ H} = maxMh.
Since (a{0,1,...,p−1}b −

∑

h∈H aMh(ap − 1)bah, am+pbah) < 0 and C1 ≥ 0, by Eq. (4.2) we have

(
∑

k∈K akbaLk(1− a) +
∑

t∈T atbaL
′

t(a− 1), am+pbah) > 0.
If (

∑

k∈K akbaLk(1 − a), am+pbah) > 0, then m + p ∈ K and Lm+p 6= ∅. Hence, for

ℓ = maxLm+p we have (
∑

k∈K akbaLk(1 − a), am+pbaℓ+1) < 0. Moreover, (a{0,1,...,p−1}b −
∑

h∈H aMh(ap−1)bah, am+pbaℓ+1) ≤ 0 by the definition ofm, and (
∑

t∈T atbaL
′
t(a−1), am+pbaℓ+1) ≤

0, since otherwise am+pbaℓ ∈ supp(
∑

k∈K akbaLk)∩supp(
∑

t∈T atbaL
′

t). Thus (C1, a
m+pbaℓ+1) <

0, a contradiction. If (
∑

t∈T atbaL
′
t(a − 1), am+pbah) > 0, then a similar argument applies, and

for ℓ = minL′
m+p, we get (C1, a

m+pbaℓ) < 0, again a contradiction.

The following lemma is needed for the proof of Theorem 4.1.

Lemma 4.2 Let S be a polynomial in N〈A〉 such that if the word wbaj is in supp(S), then aj

is also in supp(S). Let S0 = aJ with J = {0} or J = {0, 1, . . . , p− 1}, where p is a nonnegative
number. Let r ≥ 0 and assume that P0, P1, . . . , Pr+1 ∈ Z〈A〉 are polynomials such that

∑

i+h=r

PibSh +
∑

i+h=r+1

Pi(a− 1)Sh ≥ 0.

If P0, P1, . . . , Pr ∈ N〈A〉, then Pr+1 ∈ N〈A〉.

Proof :
Assume that J = {0, 1, . . . , p−1} (if J = {0} we may apply the following argument with p = 1).
By contradiction, let Pr+1 = P ′

r+1−P ′′
r+1 with P ′

r+1, P
′′
r+1 ∈ N〈A〉, supp(P ′

r+1)∩ supp(P ′′
r+1) = ∅

and P ′′
r+1 6= 0. Let ℓ = max{ℓ′ | ∃x ∈ A∗ xbaℓ

′

∈ supp(P ′′
r+1)} and let x be a word such that

y = xbaℓ ∈ supp(P ′′
r+1).

7



By hypothesis, for any word wbaj ∈ supp(S), the nonnegative integer j is less than p. Hence,
(
∑

i+h=r PibSh +
∑

i+h=r+1, h 6=0 Pi(a − 1)Sh, ya
p) = 0. By the definition of y, we also have

(P ′′
r+1(a

p − 1), yap) = (P ′′
r+1a

p, yap) > 0. Thus

0 ≤ (
∑

i+h=r

PibSh +
∑

i+h=r+1

Pi(a− 1)Sh, ya
p)

= (Pr+1(a− 1)aJ , yap) = (Pr+1(a
p − 1), yap)

= (P ′
r+1(a

p − 1), yap)− (P ′′
r+1(a

p − 1), yap)

≤ (P ′
r+1a

p, yap)− (P ′′
r+1(a

p − 1), yap)

< (P ′
r+1a

p, yap) = (P ′
r+1, y).

In conclusion, (P ′
r+1, y) > 0 and y ∈ supp(P ′

r+1) ∩ supp(P ′′
r+1), a contradiction.

Theorem 4.1 Let C be a finite maximal code such that ap ∈ C, for a prime number p. Let
P ∈ Z〈A〉 and let S be a polynomial in N〈A〉 such that if the word wbaj is in supp(S) then aj

is also in supp(S). If (P, S) is a factorization for C, then P, S have coefficients 0, 1.

Proof :
Let P = P0 + P1 + . . .+ Pk and let S be a polynomial in N〈A〉 such that if the word wbaj is in
supp(S) then aj is also in supp(S). Assume that (P, S) is a factorization for a finite maximal
code C and ap ∈ C, where p is a prime number. Thus P0 has coefficients 0, 1 and Cr+1 is
defined by Eqs. (3.2), for any r ≥ 0. By using induction and Lemma 4.2, we can prove that
P0, P1, . . . , Pk ∈ N〈A〉. Hence P ∈ N〈A〉 and, by Theorem 2.1, P, S have coefficients 0, 1.

Remark 4.1 Lemma 4.2 is no longer true if we drop the hypothesis that wbaj ∈ supp(S)
only if aj ∈ supp(S), even if S is a polynomial with coefficients 0, 1. Indeed, let s, t, n ∈
N, with s ≥ 1, t ≥ 0, n ≥ 1, let P0 = 1, P1 = ba{0,1,...,t}n − asbatn, S = a{0,1,...,n−1} +
a{0,1,...,s−1}ba(t+1)n. Then P0bS0+P1(a−1)S0+P0(a−1)S1 = ba{1,...,n−1}+asbatn is a polynomial
with coefficients 0, 1. However, we do not know whether Theorem 4.1 is still true without the
aforementioned hypothesis. As already stated in Section 1, in [19] the authors formulated
the following conjecture: if (P, S) is a factorization for a finite maximal code over a one-letter
alphabet and S has coefficients 0, 1, then (P, S) is positive. Notice that Theorem 4.1 is connected
with a generalization of this conjecture to alphabets with size greater than one.

Theorem 4.2 Let C be a finite maximal code such that ap ∈ C, for a prime number p. Let
S = S0 + S1 be a polynomial such that if the word aibaj is in supp(S) then the word aj is also
in supp(S). If (P, S) is a factorization for C, then (P, S) is positive.

Proof :
Assume that C and S are as in the statement. Let (P, S) be a factorization for C. If S1 = 0 then
by Theorem 3.2 (P, S) is positive. Otherwise, by Theorem 3.3, either S1 or −S1 has coefficients
0, 1. In the first case, by Lemma 4.1, P0, S0 have coefficients 0, 1. Thus, Theorem 4.1 applies to
(P, S) and P, S have coefficients 0, 1. In the second case, arguing as before on the factorization
(−P,−S) for C, we can prove that −P,−S have coefficients 0, 1. Hence, in both cases (P, S) is
positive.

8



4.2 (p, 4)-codes are positively factorizing

In this section, we consider (p, 4)-codes, i.e., 4-codes C such that C ∩ a∗ = {ap}, for a prime
number p. We show that they are positively factorizing and have only positive factorizations.
Looking at Eqs. (3.2), factorizations for a 4-code may be divided into two sets, as described in
Lemma 4.3.

Lemma 4.3 Let C be a 4-code, let (U, V ) be a factorization for C. Then for (P, S) = (U, V )
or for (P, S) = (V ∼, U∼) one of the following two conditions is satisfied.

(1) P = P0 + P1 + P2 + P3, S = S0, with P3 6= 0, S0 6= 0.

(2) P = P0 + P1 + P2, S = S0 + S1, with P2 6= 0, S1 6= 0.

Theorem 4.3 Let p be a prime number. Any (p, 4)-code C is positively factorizing. Moreover,
each factorization for C is a positive factorization for C.

Proof :
Let p be a prime number, let C be a (p, 4)-code and let (U, V ) be a factorization for C. By
Lemma 4.3, (P, S) = (U, V ) or (P, S) = (V ∼, U∼), satisfies item (1) or item (2) in this lemma. If
(P, S) = (U, V ) satisfies item (1) in Lemma 4.3, then (P, S) is positive by Theorem 3.2. Assume
that (P, S) = (U, V ) satisfies item (2) in Lemma 4.3. By Theorem 3.3, (P, S) also satisfies one
of the following four conditions:

(i) P2, S1 have coefficients 0, 1 and P1 ∈ N〈A〉.

(ii) P2, S1 have coefficients 0, 1 and if the word aibaj is in supp(S), then the word aj is also in
supp(S).

(iii) −P2,−S1 have coefficients 0, 1 and −P1 ∈ N〈A〉.

(ii) −P2,−S1 have coefficients 0, 1 and if the word aibaj is in supp(S), then the word aj is
also in supp(S).

In view of Lemma 4.1 and Theorem 2.1, it is obvious that if (P, S) satisfies item (i), then P, S
have coefficients 0, 1. By Theorem 4.2, it is also clear that if (P, S) satisfies item (ii), then P, S
have coefficients 0, 1. Finally, if (P, S) satisfies item (iii) or (iv), then −P,−S have coefficients
0, 1 and (P, S) is positive.

Assume now that (P, S) = (V ∼, U∼) satisfies item (1) or item (2) in Lemma 4.3. The pair
(V ∼, U∼) is a factorization for the (p, 4)-code C∼ and the above arguments prove that (V ∼, U∼)
is positive. Hence (U, V ) is also positive.

4.3 Partially positive factorizations

We end this section with another result: if (P, S) is a factorization for C such that P0 = aI ,
S0 = aJ and S1 =

∑

j∈J a
Mjbaj, where I, J,Mj , for j ∈ J , are finite subsets of N, then P1

has nonnegative coefficients (Theorem 4.4). Let (P, S) be a factorization for C satisfying the
above conditions. Set P1 =

∑

i∈I′ a
ib(aLi − aL

′

i), where I ′ is a finite subset of N and aLi , aL
′

i are
polynomials in N[a] such that Li ∩ L′

i = ∅, for each i ∈ I ′. By Eqs. (3.2) for r = 0, we have

aIbaJ +
∑

i∈I′

aib(aLi − aL
′

i)(a− 1)aJ +
∑

j∈J

aI(a− 1)aMj baj ≥ 0. (4.3)
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Notice that P0(a − 1)S0 = an − 1, i.e., aIaJ = 1 + a + . . . + an−1, where an ∈ C. These pairs
(I, J) of subsets of N can be constructed by a method given in [18] and here they will be called
Krasner factorizations of the finite cyclic group Zn of order n. Theorem 4.4 will be proved
through Lemmas 4.4 – 4.7. These lemmas will also be used in Sections 6 and 8.

Lemma 4.4 Let (I, J) be a Krasner factorization of Zn. Let I ′, Mj, with j ∈ J , be finite
subsets of N, let aLi , aL

′

i ∈ N[a], with i ∈ I ′. Assume that Eq. (4.3) holds. Then, for each i ∈ I ′,
there exists ki ∈ N such that

aLi(a− 1)aJ − aL
′

i(a− 1)aJ + kia
J ≥ 0.

Proof :
Assume that I ′, Mj , with j ∈ J , aLi , aL

′

i , with i ∈ I ′, are as in the statement. By using Eq. (4.3),
we have:

∀i ∈ I ′ 0 ≤ (aI , ai)aJ + (aLi − aL
′

i)(a− 1)aJ +
∑

j∈J

(aI(a− 1)aMj , ai)aj

≤ (aI , ai)aJ + (aLi − aL
′

i)(a− 1)aJ +
∑

j∈J, (aI (a−1)aMj ,ai)≥0

(aI(a− 1)aMj , ai)aj

≤ aLi(a− 1)aJ − aL
′

i(a− 1)aJ + kia
J ,

where ki = k′i + (aI , ai), k′i = maxΓi, Γi = {0} ∪ {γj | γj = (aI(a− 1)aMj , ai) ≥ 0, j ∈ J}.

Lemma 4.5 Let k ∈ N. Let aX , aX
′

∈ N[a], with X ∩X ′ = ∅. If we have

aX(a− 1)− aX
′

(a− 1) + k ≥ 0, (4.4)

then aX
′

= 0. Furthermore, if aX is a nonnull polynomial then k > 0.

Proof :
By contradiction, assume that aX

′

6= 0 and let x = max{x′ | x′ ∈ X ′}. Thus we have x+ 1 > 0
and (−aX

′

(a− 1), ax+1) < 0. Hence, in view of Eq. (4.4), we have

0 ≤ (aX(a− 1)− aX
′

(a− 1) + k, ax+1)

= (aX(a− 1)− aX
′

(a− 1), ax+1)

< (aX(a− 1), ax+1)

≤ (aXa, ax+1),

which yields x ∈ X ∩X ′, a contradiction. Thus aX
′

= 0. If aX 6= 0, let x = min{x′ | x′ ∈ X}.
Since (aX(a− 1), ax) < 0, we have k > 0.

Let aH ∈ N[a], n ∈ N and t ∈ {0, . . . , n−1}. We set [H]t = {h ∈ H | h = t (mod n)}. Notice
that [H]t could be a multiset: any element h ∈ H such that h = t (mod n) is in [H]t with the
same multiplicity as in H.

Lemma 4.6 Let (I, J) be a Krasner factorization of Zn, let k ∈ N. Let aL, aL
′

∈ N[a], with
L ∩ L′ = ∅. If we have

aL(a− 1)aJaI − aL
′

(a− 1)aJaI + kaJaI ≥ 0, (4.5)

then aL
′

= 0. Furthermore, if aL is a nonnull polynomial then k > 0.
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Proof :
By Eq. (4.5), since (I, J) is a Krasner factorization of Zn, we have:

0 ≤ aL(a− 1)aJaI − aL
′

(a− 1)aJaI + kaJaI

= aL(an − 1)− aL
′

(an − 1) + k
an − 1

a− 1
,

which yields:

∀t ∈ {0, . . . , n − 1}, a[L]t(an − 1)− a[L
′]t(an − 1) + kat ≥ 0. (4.6)

By erasing at and by changing an with a in each term of this inequality, we get an inequality as
in Eq. (4.4). Precisely, for all t ∈ {0, . . . , n− 1}, let aXt , aX

′

t ∈ N[a] be defined as follows:

aXt =
∑

x∈N

(a[L]t , at+xn)ax, aX
′
t =

∑

x′∈N

(a[L
′]t, at+x′n)ax

′

.

As a direct consequence we have:

Xt 6= ∅ ⇔ [L]t 6= ∅, X ′
t 6= ∅ ⇔ [L′]t 6= ∅.

Furthermore, for any x ∈ N, we also have

(a[L]t(an − 1)− a[L
′]t(an − 1) + kat, axn+t) = (aXt(a− 1)− aX

′

t(a− 1) + k, ax).

Since for any y, t ∈ N we have (a[L]t(an−1)−a[L
′]t(an−1)+kat, ay) 6= 0 if and only if y = xn+t,

the above relation and Eq. (4.6) show that aXt(a − 1) − aX
′

t(a − 1) + k ≥ 0. Thus, in view of
Lemma 4.5, aX

′

t = 0, for all t. The latter relation yields a[L
′]t = 0 for all t, i.e., aL

′

= 0. Finally,
if aL 6= 0 then there is t such that [L]t 6= ∅. Consequently, aXt 6= 0 and k > 0, once again by
Lemma 4.5.

Lemma 4.7 Let (I, J) be a Krasner factorization of Zn, let k ∈ N. Let aL, aL
′

∈ N[a], with
L ∩ L′ = ∅. If we have

aL(a− 1)aJ − aL
′

(a− 1)aJ + kaJ ≥ 0, (4.7)

then aL
′

= 0. Furthermore, if aL is a nonnull polynomial then k > 0.

Proof :
By Eq. (4.7) and since aI ≥ 0, we have:

aL(a− 1)aJaI − aL
′

(a− 1)aJaI + kaJaI ≥ 0.

Thus the conclusion follows by Lemma 4.6.

We have proved the following result.

Theorem 4.4 Let (P, S) be a factorization for C such that P0 = aI , S0 = aJ and S1 =
∑

j∈J a
Mjbaj , where (I, J) is a Krasner factorization of Zn and Mj is a finite subset of N, for

j ∈ J . Then P1 has nonnegative coefficients.

Proof :
Let (P, S) be a factorization for C with P0, S0, S1 as in the statement. Let I ′ be a finite subset of
N and let aLi , aL

′

i be polynomials in N[a] such that P1 =
∑

i∈I′ a
ib(aLi −aL

′

i), where Li∩L′
i = ∅,

for i ∈ I ′. Thus (P, S) satisfies Eq. (4.3). By Lemma 4.4, for each i ∈ I ′ there exists ki ∈ N

such that aLi(a − 1)aJ − aL
′

i(a − 1)aJ + kia
J ≥ 0. Thus, aL

′

i = 0 for each i ∈ I ′ (Lemma 4.7)
and P1 ∈ N〈A〉.
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5 Positively factorizing codes

As observed in [2], the aim of the theory of codes is to give a structural description of codes in a
way that allows their construction. This has not yet been accomplished, except for some special
families of codes. In particular, a still open problem is a structural description of positively
factorizing codes. Once again, this description has been achieved for particular classes of codes,
through the construction of their factorizations. In this paper, we extend this construction to a
larger class, as outlined in Section 5.2. The obtained results once again show relations between
factorizations of finite maximal codes and factorizations of finite cyclic groups, whose definition
is recalled in Section 5.1.

5.1 Factorizations of cyclic groups

A pair (T,R) of subsets of N is a factorization of Zn if, for each i in {0, . . . , n− 1}, there exists
a unique pair (t, r) ∈ T ×R such that i = t+ r (mod n). We are interested in a special class of
factorizations, defined in [17] and called Hajós factorizations here. There are relations between
the structure of positively factorizing codes and Hajós factorizations of Zn. These relations have
been highlighted by a characterization of Hajós factorizations given in [10]: (T,R) is a Hajós
factorization of Zn if and only if there is a Krasner factorization (I, J) of Zn and a pair (M,L)
of finite subsets of N such that aT = aM (a − 1)aI + aI ≥ 0, aR = aL(a − 1)aJ + aJ ≥ 0. The
structure of the above subsets M,L, and therefore of the pairs (T,R), has been described in [8].
As a consequence, the following result has been stated (see Remark 6.7 in [8]).

Proposition 5.1 Let (I, J) be a Krasner factorization of Zn, let M be a finite subset of N and
let aT = aM (a− 1)aI + aI . If aT has nonnegative coefficients, then aT has coefficients 0, 1.

As stated in Proposition 5.2, subsets M,L satisfy another equation too. We also need the
following known result (Lemma 3.2 (ii), (iii), (iv) in [9]).

Lemma 5.1 Let k, n ∈ N.

(i) If H is a finite subset of N and (aH(a− 1) + k)(an − 1)/(a − 1) ≥ 0, then the polynomial
(aH(a− 1) + 1)(an − 1)/(a − 1) has coefficients 0, 1.

(ii) If aH ∈ N[a] and (aH(a− 1) + 1)(an − 1)/(a − 1) ≥ 0, then aH has coefficients 0, 1.

Proposition 5.2 Let (I, J) be a Krasner factorization of Zn, let M,L be finite subsets of N
such that

aT = aM (a− 1)aI + aI ≥ 0, aR = aL(a− 1)aJ + aJ ≥ 0.

Then aM (a− 1)aL + aM + aL is a polynomial with coefficients 0, 1.

Proof :
Let aH , aH

′

∈ N[a], with H ∩H ′ = ∅, and assume aM (a− 1)aL + aM + aL = aH − aH
′

. An easy
computation shows that

aT aR = aH(a− 1)aJaI − aH
′

(a− 1)aJaI + aJaI ≥ 0.

Thus aH
′

= 0, by Lemma 4.6.
Then (aH(a− 1) + 1)(an − 1)/(a− 1) ≥ 0 and aH = aM (a− 1)aL + aM + aL has coefficients

0, 1 by Lemma 5.1 (ii).
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We will see that our construction of positive factorizations is strongly related to Hajós
factorizations (T,R) satisfying an additional hypothesis: for the corresponding pair (M,L) we
have aM (a− 1)aL + aL ≥ 0 or aM (a− 1)aL + aM ≥ 0. In this case we say that (T,R) is a strong
Hajós factorization.

In [20], the author gave a construction of an infinite family of Hajós factorizations (T,R) of
Zn which are not strong, i.e., which are such that, for the corresponding pair (M,L), neither
aM (a − 1)aL + aL nor aM (a − 1)aL + aM is a polynomial with nonnegative coefficients. The
non-strong Hajós factorization (T,R) = ({0, 4, 8, 12, 16, 20}, {0, 3, 6, 21}) of Z24 is an element of
this family and the corresponding pair (M,L) is ({2, 3}, {1, 9, 11, 13}).

5.2 Outline of the results on positively factorizing codes

So far, factorizations (P, S) for finite maximal codes C have been constructed for 3-codes or
when supp(P ) or supp(S) is a subset of a∗. Factorizations for 1- and 2-codes belong to the
latter family. As said, all these factorizations are positive, i.e., P, S ∈ N〈A〉 or −P,−S ∈ N〈A〉.
In the description of their structure, as well as for other positive factorizations, we will assume
P, S ∈ N〈A〉.

Let P, S ∈ N〈A〉. Then (P, S) is a positive factorization for a 1-code if and only if P = aI and
S = aJ , for a Krasner factorization (I, J) of Zn [24]. Starting with these pairs (aI , aJ ), one may
inductively construct all positive factorizations (P, S) with P or S in N[a] as follows [8]. Assume
P ∈ N[a]. We have P = aI , S = S0 + S1 + . . . + St, with S0 = aJ and there are finite subsets
Mw of N such that Si =

∑

w∈supp(Si−1)
aMwbw, 1 ≤ i ≤ t, with aTw = aMw(a − 1)aI + aI ≥ 0.

Therefore (Tw, J) is a strong Hajós factorization of Zn since for the corresponding pair (Mw, ∅),
we have aMw ≥ 0. Of course, if S ∈ N[a], then (S∼, P∼) is as above.

In this paper, starting with the “simplest” pairs (aI , aJ +
∑

j∈J a
Mjbaj) in the above family,

we give a recursive construction of all positive factorizations (P, S) for a maximal code C with
S = aJ+

∑

j∈J a
Mjbaj . Notice that when n is a prime number, the factorizations (P, S) are those

mentioned in Theorem 4.2. We begin with a characterization of the words C1 with one occurrence
of b in Section 6. Then, in Section 7, we prove that each m-code C having a factorization (P, S),
with S as above, may be obtained from an (m− 1)-code C ′ having a factorization (P ′, S).

Positive factorizations (P, S) with supp(P ) ⊆ a∗ ∪ a∗ba∗ and S = aJ +
∑

j∈J a
Mjbaj have

already been characterized in [9]. As a matter of fact, if (U, V ) is a positive factorization for a
3-code such that neither U nor V is in N[a], then for (P, S) = (U, V ) or (P, S) = (V ∼, U∼), we
have P = aI +

∑

i∈I′ a
ibaLi , S = aJ +

∑

j∈J a
Mjbaj, where I ′, Li, for i ∈ I ′, and Mj , for j ∈ J ,

are finite subsets of N such that

∀j ∈ J aTj = aMj(a− 1)aI + aI ≥ 0, (5.1)

{i ∈ I ′ | Li 6= ∅} ⊆ ∪j∈JTj, (5.2)

∀i ∈ I ′ aRi = aLi(a− 1)aJ + aJ ≥ aLi(a− 1)aJ + aJi ≥ 0, (5.3)

where Ji = {j ∈ J | i ∈ Tj},

∀j ∈ J, i ∈ I ′ \ I aLi(a− 1)aMj + aLi ≥ 0. (5.4)

Moreover, there are i ∈ I ′ and j ∈ J such that Li 6= ∅ and Mj 6= ∅.

Remark 5.1 Of course, if Mj′ = ∅, then Tj′ = I and Eqs. (5.1) and (5.4) are satisfied for j′.
Analogously, if Li′ = ∅, then Eqs. (5.3) and (5.4) are satisfied for i′.
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Remark 5.2 Note that in the characterization of the positive factorizations (P, S) given in [9],
it is also required that aMj (a− 1)aLi + aMj + aLi ≥ 0, for i ∈ I ′ ∩ I, j ∈ J . In view of Eqs. (5.1),
(5.3), Proposition 5.2 applies to Li, Mj and shows that the above polynomial has coefficients
0, 1. Therefore, we may omit this condition.

Section 8 deals with some positive factorizations for 4-codes which are described below.
Lemma 5.2 is the counterpart of Lemma 4.3 for positive factorizations.

Lemma 5.2 Let C be a 4-code, let (U, V ) be a factorization for C, with U, V ∈ N〈A〉. Then,
for (P, S) = (U, V ) or (P, S) = (V ∼, U∼), one of the following three conditions is satisfied.

(1) P = P0 + P1 + P2 + P3 ∈ N〈A〉, S = S0 ∈ N[a], with P3 6= 0, S0 6= 0.

(2) P = aI +
∑

i∈I′ a
ibaLi +

∑

w∈X1
wbaLw , S = aJ +

∑

j∈J a
Mjbaj , where (I, J) is a Krasner

factorization of Zn, I
′, Li,Mj , Lw are finite subsets of N, for any i, j, w, and X1 is a finite

subset of a∗ba∗. Moreover,
∑

w∈X1
wbaLw 6= 0,

∑

j∈J a
Mjbaj 6= 0.

(3) P = aI +
∑

i∈I′ a
ibaLi +

∑

i∈I′,ℓ∈Li
aibaℓbaLi,ℓ, S = aJ +

∑

j∈J ′ aMjbaj , where (I, J) is
a Krasner factorization of Zn, I ′, J ′, Li,Mj , Li,ℓ are finite subsets of N, for any i, j, ℓ.
Moreover,

∑

i∈I′,ℓ∈Li
aibaℓbaLi,ℓ 6= 0,

∑

j∈J ′ aMjbaj 6= 0.

Proof :
The statement is a direct consequence of Lemma 4.3 and Theorem 3.3.

We have already described the structure of the positive factorizations for 4-codes satisfying
item (1) in Lemma 5.2. Furthermore, 4-codes having positive factorizations that satisfy item
(2) in Lemma 5.2 belong to the class considered in Section 7. Positive factorizations (P, S),
satisfying item (3) in Lemma 5.2, will be handled in Section 8 when I ′ = I, i.e., when all words
aibw in supp(P ) are such that i ∈ I.

Finally, let Ω(n) be the number of factors in the prime factorization of n ∈ N. We recall that
the structure of the words in C1 = C ∩ a∗ba∗ has been investigated in [12]. A characterization
of the words in C1 has been obtained when an ∈ C with Ω(n) ≤ 2 [15].

6 Words in C with one b: a special case

Let (P, S) be a factorization for a finite maximal code C with P, S ∈ N〈A〉. Set P0 = aI ,
S0 = aJ , where (I, J) is a Krasner factorization of Zn. Lemma 6.1 characterizes polynomials
P1, S1 under the hypothesis S1 =

∑

j∈J a
Mjbaj or P1 =

∑

i∈I a
ibaLi . Loosely speaking, this

result states that the set C1 = C ∩ a∗ba∗ of the words with one occurrence of b is the same as
in a 3-code. The proof of Lemma 6.1 is the same as in [9] and it is reported here for the sake of
completeness. This result will also be used in Sections 7 and 8.

Proposition 6.1 Let (I, J) be a Krasner factorization of Zn, let L be a finite subset of N and
let k be a positive integer such that aL(a − 1)aJ + kaJ ≥ 0. Then, for any j ∈ J , we have
(aL(a− 1)aJ + aJ , aj) ≤ 1.

Proof :
Assume that there exists k > 0 such that aL(a− 1)aJ + kaJ ≥ 0. Thus,

(aL(a− 1)aJ + kaJ)aI = (aL(a− 1) + k)(an − 1)/(a − 1) ≥ 0.
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Therefore, by Lemma 5.1 (i), (aL(a − 1) + 1)(an − 1)/(a − 1) is a polynomial with coefficients
0, 1. Assume that (aL(a− 1)aJ + aJ , aj) ≥ 2 with j ∈ J . Notice that

(aL(a−1)+1)(an−1)/(a−1) = aL(a−1)aJaI+aJaI = aL(a−1)aJ +aJ+(aL(a−1)+1)aJaI\0.

Thus, we obtain ((aL(a− 1) + 1)aJaI\0, aj) < 0, i.e.,

∃q ∈ N, i ∈ I \ 0 : q + i = j, (aL(a− 1)aJ + aJ , aq) < 0.

On the other hand, since aL(a − 1)aJ + kaJ ≥ 0, we have k > 1 and q ∈ J . This is impossible
since (I, J) is a Krasner factorization of Zn and i+ q = 0+ j with i ∈ I \ 0, 0 ∈ I, q, j ∈ J .

Lemma 6.1 Let (I, J) be a Krasner factorization of Zn, let I ′, Li,Mj be finite subsets of N.
We have

C1 = aIbaJ +
∑

i∈I′

aibaLi(a− 1)aJ +
∑

j∈J

aI(a− 1)aMjbaj ≥ 0

if and only if I ′, Li,Mj satisfy Eqs. (5.1)–(5.3), with Ji = {j ∈ J | i ∈ Tj}, for i ∈ I ′.

Proof :
Suppose that

C1 = aIbaJ +
∑

i∈I′

aibaLi(a− 1)aJ +
∑

j∈J

aI(a− 1)aMj baj ≥ 0.

In view of Lemma 4.4 (applied with L′
i = ∅), for any i ∈ I ′ there exists ki > 0 such that

aLi(a− 1)aJ + kia
J ≥ 0.

Assume that there exist j ∈ J and h ∈ N such that (aMj(a − 1)aI + aI , ah) < 0. Thus, we
have (aIbaJ +

∑

j∈J a
I(a−1)aMj baj , ahbaj) < 0 and so (

∑

i∈I′ a
ibaLi(a−1)aJ , ahbaj) > 0, since

C1 ≥ 0. Hence, h ∈ I ′ and (aLh(a − 1)aJ , aj) > 0. Consequently, (aLh(a − 1)aJ + aJ , aj) ≥ 2,
in contradiction with Proposition 6.1. This proves Eq. (5.1).

Set, as in Eq. (5.1), aTj = aMj (a− 1)aI + aI . By Proposition 5.1, Tj is a subset of N and we
have

C1 =
∑

j∈J

aTjbaj +
∑

i∈I′

aibaLi(a− 1)aJ ≥ 0.

For any i ∈ I ′ such that Li is nonempty, let ℓi = minLi. Thus, (
∑

i∈I′ a
ibaLi(a−1)aJ , aibaℓi) < 0

and
0 ≤ (C1, a

ibaℓi) = (
∑

j∈J

aTjbaj + aibaLi(a− 1)aJ , aibaℓi) < (
∑

j∈J

aTjbaj , aibaℓi).

Hence, {i ∈ I ′ | Li 6= ∅} ⊆ ∪j∈JTj , i.e., Eq. (5.2) holds. If we set Li = ∅ for i ∈ ∪j∈JTj \ I
′ and

Ji = {j ∈ J | i ∈ Tj}, we have

C1 =
∑

j∈J

aTjbaj +
∑

i∈I′

aibaLi(a− 1)aJ =
∑

i∈∪j∈JTj

aib(aLi(a− 1)aJ + aJi) ≥ 0.

The above relation proves Eq. (5.3).
Conversely, let (I, J) be a Krasner factorization of Zn and assume that I ′, Li,Mj satisfy

Eqs. (5.1)–(5.3). If we set Li = ∅ for i ∈ ∪j∈JTj \ I
′ and Ji = {j ∈ J | i ∈ Tj}, we have

C1 = aIbaJ +
∑

i∈I′

aibaLi(a− 1)aJ +
∑

j∈J

aI(a− 1)aMj baj

=
∑

j∈J

aTjbaj +
∑

i∈I′

aibaLi(a− 1)aJ =
∑

i∈∪j∈JTj

aib(aLi(a− 1)aJ + aJi) ≥ 0
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and the proof is complete.

7 Construction of factorizing codes with S = aJ +
∑

j∈J a
Mjbaj

In this section, we give a recursive characterization of positive factorizations (P, S) such that
S = aJ +

∑

j∈J a
Mjbaj . Consider again the finite maximal code C defined in Example 3.1 by

the relation C = P (A− 1)S + 1, with

P = 1 + a2ba{0,1,2,3,4,5,6} + a2ba3ba{0,1,2,3,4,5,6},

S = a{0,1,2,3,4} + a{0,1}ba{0,1,2,3,4}.

Set P ′ = P0 + P1 = 1 + a2ba{0,1,2,3,4,5,6}. Equalities defining C0, C1, C2 in Example 3.1, show
that C ′ = P ′(A − 1)S + 1 is a 3-code. Moreover, C = C ′ + zbaLz (A − 1)S, with zbaLz =
a2ba3ba{0,1,2,3,4,5,6} and zbat = a2ba3bat ∈ C ′, for t ∈ {0, 1, 2, 3, 4}. This construction can be
easily generalized and allows us to construct all factorizing codes with S = aJ +

∑

j∈J a
Mjbaj

(Theorem 7.1). Corollary 7.1 shows that these codes may be recursively constructed. Proposition
6.1 and Lemma 7.1 are the main tools we need in the proof. Lemma 7.2 is a preliminary step.

Lemma 7.1 Let (P, S) be a factorization for a finite maximal code C, with S = aJ+
∑

j∈J a
Mjbaj ∈

N〈A〉, P = P0 + . . .+ Pk ∈ N〈A〉, k ≥ 0. Then Ck+1 ⊆ {wbaj | w ∈ A∗, j ∈ J}.

Proof :
The conclusion is a direct consequence of the following equation, where it is understood that
Pk−1 = 0 for k = 0.

Ck+1 = Pkba
J +

∑

j∈J

Pk−1ba
Mjbaj +

∑

j∈J

Pk(a− 1)aMjbaj.

Lemma 7.2 Let P,P ′, S be polynomials in Z〈A〉, with P = P0 + . . . + Pk + Pk+1, P
′ = P0 +

. . . + Pk, k ≥ 0 and supp(S) ⊆ a∗ ∪ a∗ba∗. Set X = P (A − 1)S + 1 and Y = P ′(A − 1)S + 1.
Then Xi = Yi for i ∈ {0, . . . , k}, and moreover,

Xk+1 = Yk+1 + Pk+1(a− 1)S0,

Xk+2 = Yk+2 + Pk+1(a− 1)S1 + Pk+1bS0,

Xk+3 = Pk+1bS1.

Proof :
The conclusion is a direct consequence of Eqs. (3.1), (3.2).

Theorem 7.1 Let (I, J) be a Krasner factorization of Zn, let P, S be polynomials in N〈A〉, with
S = aJ +

∑

j∈J a
Mjbaj. Set P ′ = P0 + . . .+ Pk and P = P ′ + Pk+1, where k ≥ 0 and Pk+1 is a

nonnull polynomial. Then (P, S) is a positive factorization for a (k + 3)-code if and only if the
following conditions are satisfied:

(1) (P ′, S) is a positive factorization for a (k + t)-code C ′, where t = 2 if Pk 6= 0, t = 1
otherwise.
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(2) Pk+1 =
∑

z∈Qk
zbaLz,k+1 , where Qk = {z | ∃j ∈ J zbaj ∈ C ′

k+1} and Lz,k+1 is a finite
subset of N, for any z ∈ Qk.

(3) For any z ∈ Qk, set Jz = {j ∈ J | zbaj ∈ C ′
k+1}. We have

∀z ∈ Qk aLz,k+1(a− 1)aJ + aJ ≥ aLz,k+1(a− 1)aJ + aJz ≥ 0, (7.1)

∀j ∈ J, z ∈ Qk \ supp(Pk) aLz,k+1(a− 1)aMj + aLz,k+1 ≥ 0. (7.2)

Proof :
Let (I, J) be a Krasner factorization of Zn. Let P,P

′, S be polynomials in N〈A〉, where P = P0+
. . .+Pk+Pk+1, P

′ = P0+. . .+Pk, k ≥ 0, Pk+1 is a nonnull polynomial and S = aJ+
∑

j∈J a
Mjbaj.

Suppose that (P ′, S) is a positive factorization for a (k + t)-code C ′, with t = 2 if Pk 6= 0,
t = 1 otherwise, Pk+1 is as in item (2) and Eqs. (7.1), (7.2) are satisfied. By Lemma 7.1, C ′

k+1 ⊆

{wbaj | w ∈ A∗, j ∈ J}. Thus, C ′
k+1 =

∑

z∈Qk
zbaJz . Let us prove that (P, S) is a positive

factorization for a (k + 3)-code C. By Lemma 7.2, since Pk+1bS1 =
∑

j∈J Pk+1ba
Mjbaj ≥ 0, it

suffices to prove that the following relations hold

Ck+1 = C ′
k+1 + Pk+1(a− 1)aJ ≥ 0, (7.3)

Ck+2 = C ′
k+2 +

∑

j∈J

Pk+1(a− 1)aMjbaj + Pk+1ba
J ≥ 0. (7.4)

By Eq. (7.1) we have

Ck+1 = C ′
k+1+Pk+1(a−1)aJ = C ′

k+1+
∑

z∈Qk

zbaLz,k+1(a−1)aJ =
∑

z∈Qk

zb(aJz+aLz,k+1(a−1)aJ ) ≥ 0,

hence Eq. (7.3) is satisfied. Next, we have

Ck+2 = C ′
k+2 +

∑

j∈J

Pk+1(a− 1)aMjbaj + Pk+1ba
J

=
∑

j∈J

Pkba
Mjbaj +

∑

j∈J, z∈Qk

zb(aLz,k+1(a− 1)aMj + aLz,k+1)baj ≥

∑

j∈J, z∈Qk∩supp(Pk)

zb(aMj + aLz,k+1(a− 1)aMj + aLz,k+1)baj

+
∑

j∈J, z∈Qk\supp(Pk)

zb(aLz,k+1(a− 1)aMj + aLz,k+1)baj

In turn, by Eq. (7.2) we have

∑

j∈J, z∈Qk\supp(Pk)

zb(aLz,k+1(a− 1)aMj + aLz,k+1)baj ≥ 0,

then, by Lemma 6.1, aMj(a− 1)aI + aI ≥ 0 for any j ∈ J , and by Proposition 5.2 we have

∑

j∈J, z∈Qk∩supp(Pk)

zb(aMj + aLz,k+1(a− 1)aMj + aLz,k+1)baj ≥ 0.

Therefore, Eq. (7.4) is also satisfied and (P, S) is a positive factorization for a (k + 3)-code C.
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Conversely, assume that (P, S) is a positive factorization for a (k + 3)-code C. Set Pk+1 =
∑

z∈Qk
zbaLz,k+1 , where Qk is a finite set of words and Lz,k+1 is a finite nonempty subset of N,

for any z ∈ Qk.
We first prove that the polynomial Yk+1 = Pkba

J+
∑

j∈J Pk−1ba
Mjbaj+

∑

j∈J Pk(a−1)aMj baj

is in N〈A〉 \ {0}. Notice that if wbaj ∈ supp(Yk+1), then j ∈ J . By hypothesis, Ck+1 =
Yk+1 +

∑

z∈Qk
zbaLz,k+1(a − 1)aJ ≥ 0. Moreover, we have (aLz,k+1(a − 1)aJ , aq) < 0, for q =

minLz,k+1. For any q ∈ N such that (aLz,k+1(a− 1)aJ , aq) < 0 we get (Pk+1(a− 1)aJ , zbaq) < 0.
Thus, since Ck+1 ≥ 0, we also have (Yk+1, zba

q) > 0, that is q ∈ J . As a consequence,
aLz,k+1(a− 1)aJ + kaJ ≥ 0, where

k = max{h | (aLz,k+1(a− 1)aJ , aq) = −h, q ∈ J} > 0.

If there existed w ∈ A∗ and j ∈ N such that (Yk+1, wba
j) < 0, since Ck+1 ≥ 0, we should have

(
∑

z∈Qk
zbaLz,k+1(a − 1)aJ , wbaj) > 0. Thus, there should be z ∈ Qk such that (aLz,k+1(a −

1)aJ , aj) > 0. Moreover, the word wbaj is in supp(Yk+1), hence, as noticed before, j ∈ J and
so (aLz,k+1(a − 1)aJ + aJ , aj) ≥ 2. This relation is in contradiction with Proposition 6.1. In
conclusion, Yk+1 ∈ N〈A〉 \ {0}. Of course, Yk+2 =

∑

j∈J Pkba
Mjbaj ≥ 0. Finally, Ci = Yi ≥ 0,

for i ∈ {0, . . . , k} (Lemma 7.2). Hence, (P ′, S) is a positive factorization for a (k + t)-code C ′,
with t = 2 if Pk 6= 0, t = 1 otherwise. In turn, this implies Yk+1 = C ′

k+1 and, by Lemma 7.1, we
may set C ′

k+1 =
∑

z∈Q′

k
zbaJz , where Jz is a nonempty subset of J .

We have already observed that for any z ∈ Qk, we have (C ′
k+1, zba

ℓ) > 0 for ℓ = minLz,k+1.
Therefore, Qk ⊆ Q′

k and we may assume Qk = Q′
k if we define Lz,k+1 = ∅ for any word

z ∈ Q′
k \Qk. Therefore, condition (2) holds. Then by

Ck+1 =
∑

z∈Qk

zbaJz +
∑

z∈Qk

zbaLz,k+1(a− 1)aJ ≥ 0

Eq. (7.1) easily follows. Finally, by

Ck+2 =
∑

j∈J

Pkba
Mjbaj +

∑

z∈Qk,j∈J

zbaLz,k+1(a− 1)aMj baj +
∑

z∈Qk

zbaLz,k+1baJ ≥ 0

Eq. (7.2) easily follows.

Corollary 7.1 Let (I, J) be a Krasner factorization of Zn, let P, S be polynomials in N〈A〉, with
S = aJ +

∑

j∈J a
Mjbaj . Set P = P0+ . . .+Pk+1, with k ≥ 0. If (P, S) is a positive factorization

for a (k+3)-code C, then (P0 + . . .+Pr, S) is a positive factorization for a (r+2)-code for any
r ∈ {0, . . . , k} such that Pr 6= 0.

Proof :
The conclusion may be easily obtained by using induction and Theorem 7.1.

8 Construction of 4-codes

In this section we focus on positive factorizations (P, S) for 4-codes C satisfying item (3) in
Lemma 5.2 and such that I ′ = I, i.e.,

P = aI +
∑

i∈I

aibaLi +
∑

i∈I,ℓ∈Li

aibaℓbaLi,ℓ , S = aJ +
∑

j∈J ′

aMjbaj, (8.1)
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where (I, J) is a Krasner factorization of Zn and J ′, Li,Mj , Li,ℓ are finite subsets of N, for any
i, j, ℓ. We give a characterization of these pairs. Their first property is stated by Lemma 8.1.
This lemma, which is true also when I ′ 6= I, shows that the following relations hold:

∀i ∈ I, ℓ ∈ Li, j ∈ J ′ ∩ J aLi,ℓ(a− 1)aMj + aLi,ℓ + aMj ≥ 0, (8.2)

∀i ∈ I, ℓ ∈ Li, j ∈ J ′ \ J aLi,ℓ(a− 1)aMj + aMj ≥ 0. (8.3)

Lemma 8.1 Let I, J ′, J, Li,Mj , Li,ℓ be finite subsets of N, for any i, j, ℓ. We have

X3 =
∑

i∈I,ℓ∈Li

aibaℓbaLi,ℓbaJ +
∑

i∈I,j∈J ′

aibaLibaMjbaj

+
∑

i∈I,ℓ∈Li,j∈J ′

aibaℓbaLi,ℓ(a− 1)aMjbaj ≥ 0

if and only if Eqs. (8.2), (8.3) hold.

Proof :
Let us write the polynomial X3 in a different way:

X3 =
∑

i∈I,ℓ∈Li,j∈J\J ′

aibaℓbaLi,ℓbaj +
∑

i∈I,ℓ∈Li,j∈J ′∩J

aibaℓb(aLi,ℓ + aMj + aLi,ℓ(a− 1)aMj )baj

+
∑

i∈I,ℓ∈Li,j∈J ′\J

aibaℓb(aLi,ℓ(a− 1)aMj + aMj)baj .

Then X3 is a polynomial in N〈A〉 if and only if the second and the third sum on the right side
of the above equation are also polynomials in N〈A〉. Hence Eqs. (8.2), (8.3) easily follow.

Let (P, S) be a factorization for C satisfying Eq. (8.1). Then Lemma 6.1 applies to the
factorization (S∼, P∼) of C∼ and Eqs. (5.1)–(5.3) become:

∀i ∈ I aRi = aLi(a− 1)aJ + aJ ≥ 0, (8.4)

{j ∈ J ′ | Mj 6= ∅} ⊆ ∪i∈IRi, (8.5)

∀j ∈ J ′ aTj = aMj(a− 1)aI + aI ≥ aMj(a− 1)aI + aIj ≥ 0, (8.6)

where Ij = {i ∈ I | j ∈ Ri}, for j ∈ J ′. Proposition 8.1 shows that two further relations are
required in order to characterize this family of positive factorizations for a finite maximal code.

Proposition 8.1 Let P = aI +
∑

i∈I a
ibaLi +

∑

i∈I,ℓ∈Li
aibaℓbaLi,ℓ , S = aJ +

∑

j∈J ′ aMjbaj ,
where (I, J) is a Krasner factorization of Zn, J

′, Li,Mj , Li,ℓ are finite subsets of N, for any i, j, ℓ.
Then (P, S) is a positive factorization for a finite maximal code C if and only if Eqs. (8.2)–(8.6)
hold and, moreover,

∀i ∈ I, ℓ ∈ Li aRi,ℓ = aLi,ℓ(a− 1)aJ + aJ ≥ 0, (8.7)

∀i ∈ I, j ∈ J ′, ℓ ∈ Li (aLi(a− 1)aMj + aMj , aℓ) < 0 ⇒ j ∈ Ri,ℓ. (8.8)
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Proof :
Assume that P, S are as in the statement and Eqs. (8.2)–(8.8) hold. Since Li, Mj satisfy
Eqs. (8.4)–(8.6), for any i ∈ I, j ∈ J ′, the polynomial aLi(a− 1)aMj + aLi + aMj has coefficients
0, 1 (Proposition 5.2). Therefore, if (aLi(a − 1)aMj + aMj , aℓ) < 0 then ℓ ∈ Li and (aLi(a −
1)aMj + aMj + aℓ, aℓ) ≥ 0.

Let us show that (P, S) is a positive factorization for a code C, i.e., P (A− 1)S +1 = C ≥ 0.
We have to prove that Ch ≥ 0 for h ∈ {0, 1, 2, 3, 4}. Of course, C0 = aI(a− 1)aJ + 1 = an ≥ 0
and C4 =

∑

i∈I,ℓ∈Li,j∈J ′ aibaℓbaLi,ℓbaMjbaj ≥ 0. Furthermore, since Eqs. (8.4)–(8.6) hold, we
have C1 ≥ 0 (Lemma 6.1 applied to C∼

1 ) and since Eqs. (8.2), (8.3) hold, we have C3 ≥ 0
(Lemma 8.1). Finally, in view of Eqs. (8.7), (8.8) we have

C2 =
∑

i∈I

aibaLibaJ +
∑

j∈J ′

aIbaMjbaj +
∑

i∈I,j∈J ′

aibaLi(a− 1)aMj baj

+
∑

i∈I,ℓ∈Li

aibaℓbaLi,ℓ(a− 1)aJ

=
∑

i∈I,ℓ∈Li

aibaℓbaRi,ℓ +
∑

i∈I,j∈J ′

aib(aLi(a− 1)aMj + aMj )baj ≥ 0.

Conversely, let P = aI +
∑

i∈I a
ibaLi +

∑

i∈I,ℓ∈Li
aibaℓbaLi,ℓ , S = aJ +

∑

j∈J ′ aMjbaj , where
(I, J) is a Krasner factorization of Zn, J ′, Li,Mj , Li,ℓ are finite subsets of N, for any i, j, ℓ.
Assume P (A − 1)S + 1 = C ≥ 0, thus Ch ≥ 0 for h ∈ {0, 1, 2, 3, 4}. Since C1 ≥ 0, by Lemma
6.1 applied to C∼

1 , Eqs. (8.4)–(8.6) hold. Hence, by Proposition 5.2, for any i ∈ I, j ∈ J ′,
aLi(a − 1)aMj + aLi + aMj is a polynomial with coefficients 0, 1. In addition, since C3 ≥ 0,
Eqs. (8.2), (8.3) hold (Lemma 8.1). Furthermore, we have

C2 =
∑

i∈I

aibaLibaJ +
∑

j∈J ′

aIbaMjbaj +
∑

i∈I,j∈J ′

aibaLi(a− 1)aMjbaj

+
∑

i∈I,ℓ∈Li

aibaℓbaLi,ℓ(a− 1)aJ ≥ 0.

Assume that there are i ∈ I, ℓ ∈ Li, t ∈ N such that (aLi,ℓ(a− 1)aJ + aJ , at) < 0. Thus,

(
∑

i∈I

aibaLibaJ +
∑

i∈I,ℓ∈Li

aibaℓbaLi,ℓ(a− 1)aJ , aibaℓbat) < 0.

Since C2 ≥ 0, we have

(
∑

j∈J ′

aIbaMjbaj +
∑

i∈I,j∈J ′

aibaLi(a− 1)aMjbaj, aibaℓbat) > 0

which yields (aMt + aLi(a − 1)aMt , aℓ) > 0, i.e., (aMt + aLi(a − 1)aMt + aLi , aℓ) > 1. The last
relation is impossible since aLi(a − 1)aMt + aLi + aMt is a polynomial with coefficients 0, 1.
Therefore, Eq. (8.7) holds. Finally, we have

C2 =
∑

i∈I,ℓ∈Li

aibaℓbaRi,ℓ +
∑

i∈I,j∈J ′

aib(aLi(a− 1)aMj + aMj )baj ≥ 0.

By the above equation, for all i ∈ I, j ∈ J ′, ℓ ∈ Li such that (aLi(a− 1)aMj + aMj , aℓ) < 0, we
have j ∈ Ri,ℓ, i.e., Eq. (8.8) holds.
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Looking at Proposition 8.1, we see that two cases may occur: either for any i ∈ I and j ∈ J ′

we have aLi(a − 1)aMj + aMj ≥ 0 or not. Examples 8.1 and 8.2 from [13] illustrate the first
and the second case respectively and point out relations between 4-codes, 3-codes and Hajós
factorizations.

Example 8.1 Let us consider the polynomials:

P = a{0,2,4,12,14,16} + a{0,2,4,12,14,16}ba{1,3,5,7,9,11,13,15,17,19} +

a{0,2,4,12,14,16}ba{1,3,5,7,9,11,13,15,17,19}ba{1,3,5,7,9,11,13,15,17,19},

S = a{0,1,6,7} + a{2,3}ba21.

An easy computation shows that (P, S) is a positive factorization for a 4-code C = P (A −
1)S + 1. The pair (I, J) = ({0, 2, 4, 12, 14, 16}, {0, 1, 6, 7}) is a Krasner factorization of Z24.
Moreover, Li = Li,ℓ = L = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}, Mj = M = {2, 3}, J ′ = {21}.
There is a strong Hajós factorization (T,R) of Z24 associated with (P, S), namely (T,R) =
({0, 4, 8, 12, 16, 20}, {0, 27, 6, 21}), with the corresponding pair (M,L′) = ({2, 3}, {1, 3, 5, 7, 9, 11,
13, 15, 17, 19}). It is easy to see that the pair (P ′, S), with P ′ = P0 + P1, defines a 3-code.

Example 8.2 Let us consider the polynomials:

P = a{0,2,4,12,14,16} + a{0,2,4,12,14,16}ba{1,9,11,13} +

a{0,2,4,12,14,16}ba{1,9,11,13}ba{1,3,5,7,9,11,13,15,17,19},

S = a{0,1,6,7} + a{2,3}ba21.

An easy computation shows that (P, S) is a positive factorization for a 4-code C = P (A −
1)S + 1. We have Li = L = {1, 9, 11, 13}, Mj = M = {2, 3}, J ′ = {21}, Li,ℓ = L′ =
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19}. There are two Hajós factorizations of Z24 associated with (P, S):
the strong Hajós factorization (T,R′) = ({0, 4, 8, 12, 16, 20}, {0, 27, 6, 21}) with the correspond-
ing pair (M,L′) = ({2, 3}, {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}) and the non-strong Hajós factorization
(T,R) = ({0, 4, 8, 12, 16, 20}, {0, 3, 6, 21}) with the corresponding pair (M,L) = ({2, 3}, {1, 9, 11, 13}).
Notice that R ∩R′ = {21}. The pair (P ′, S), with P ′ = P0 + P1, does not define a 3-code.

9 Conclusions

In this paper we proved that if (P, S) is a factorization for a finite maximal code C, with
C ∩ a∗ = {ap} for a prime number p, S = S0 + S1 and if aj ∈ supp(S) for any aibaj ∈ supp(S),
then (P, S) is positive. We also proved that (p, 4)-codes satisfy the factorization conjecture and
each factorization (P, S) for a (p, 4)-code is positive.

A natural question is to characterize those positively factorizing codes having only positive
factorizations. One may conjecture that this is the case for finite maximal codes containing a
power of a with a prime exponent. This is a first research direction.

A related problem is to find conditions under which a factorization is positive. In this
framework, Hansel and Krob asked the following question, reported in [19]: let P,Q ∈ Z[a] be
such that PQ = 1 + a + . . . + an, with n ∈ N. If P has coefficients 0, 1 then does Q also have
coefficients 0, 1?

As a second direction of research for both the above mentioned problems, one can investigate
finite maximal codes containing a power of a with a prime exponent and having a factorization
(P, S), where S = S0 + S1 + . . . + Sk is a polynomial such that if aibw ∈ supp(Sj), then
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w ∈ supp(Sj−1), for j ∈ {1, . . . , k}. One may ask whether it is still true that P, S are necessarily
in N〈A〉. We have already proved that this statement holds if S is a polynomial in N〈A〉 such
that aj ∈ supp(S), for any wbaj in supp(S) (Theorem 4.1).

Concerning the structure of positively factorizing codes, our construction of (p, 4)-codes is
not complete. More generally, a method for constructing all positively factorizing codes is still
lacking (see [13, 14, 15] for conjectures and related problems). In this regard, it could be
interesting to look for a generalization of the constructions given in Sections 7, 8.

Another related question is to find conditions under which a set of words C1 satisfying
C1 = aI(a−1)S1+P1(a−1)aJ+aIbaJ , where (I, J) is a Krasner pair and P1, S1 are polynomials
with coefficients 0, 1, could be embedded in a factorizing code. Some sufficient conditions have
been stated in [10, 12, 14, 15].

Finally, one can investigate whether all the results concerning m-codes can be generalized
to alphabets having cardinality greater than two.
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