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Abstract: We consider symbolic tree automata (sta) and symbolic tree
transducers (stt). We characterize s-recognizable tree languages (which are
the tree languages recognizable by sta) in terms of (classical) recognizable
tree languages and relabelings. We prove that sta and the recently intro-
duced variable tree automata are incomparable with respect to their recog-
nition power. We define symbolic regular tree grammars and characterize
s-regular tree languages in terms of regular tree languages and relabelings.
As a consequence, we obtain that s-recognizable tree languages are the
same as s-regular tree languages.

We show that the syntactic composition of two stt computes the compo-
sition of the tree transformations computed by each stt, provided that (1)
the first one is deterministic or the second one is linear and (2) the first
one is total or the second is nondeleting. We consider forward application
and backward application of stt and prove that the backward application
of an stt to any s-recognizable tree language yields an s-recognizable tree
language. We give a linear stt of which the range is not an s-recognizable
tree language. We show that the forward application of simple and lin-
ear stt preserves s-recognizability. As a corollary, we obtain that the type
checking problem of simple and linear stt and the inverse type checking
problem of arbitrary stt is decidable.
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1 Introduction

Symbolic tree automata (sta) and symbolic tree transducers (stt) were introduced in
[VB11a] and [VB11b]. They differ from classical finite-state tree automata and tree
transducers [GS84, GS97] in that they work with trees over an infinite, unranked set
of symbols. According to [GKS10], examples of systems with finite control and infinite
source of data are software with integer parameters [BHM03], datalog systems with
infinite data domain [BHJS07], and XML documents of which the leaves are associated
with data values from some infinite domain [BCC+03]. It was mentioned in [VB11a]
that lifting the finite alphabet restriction is useful to enable efficient symbolic analysis.
Symbolic transducers are useful for exploring symbolic solvers when performing basic
automata-theoretic transformations [VHL+12].

In this paper we provide new formal definitions of sta and stt which slightly differs
from those given in [VB11a, VB11b]. At the end of Sections 3.1 and 5.1 we will
compare our definitions with the original ones.

Roughly speaking, an sta is a finite-state tree automaton [Don70] except that the
input trees are built up over an infinite set of labels. In order to ensure a finite
description of the potentially infinite set of transitions we bind the maximal number
of the successors of a any node occurring in an input tree by an integer k ∈ N, and
we employ finitely many unary Boolean-valued predicates over the set of labels. Then
every transition of a symbolic k-bounded tree automaton (sk-ta) has the form

(q1 . . . ql, ϕ, q)

where 0 ≤ l ≤ k, q, q1, . . . , ql are states, and ϕ is a unary Boolean-valued predicate.
Such a transition is applicable to a node if ϕ holds for the label of that node. The
tree language L(A) recognized by an sta A is defined as the union of all tree languages
L(A, q), where q is a final state, and the family (L(A, q) | q ∈ Q) is defined inductively
in the same way as for finite-state tree automata. A tree language is sk-recognizable
if there is an sk-ta which recognizes this language, and it is s-recognizable if it is sk-
recognizable for some k ∈ N. An example of an s2-recognizable tree language is the
set of all binary trees with labels taken from N such that every label is divisible by 2
or every label is divisible by 3 as, e.g., 2(4, 6) or 3(15, 18) (cf. Example 3.2).

By restricting the set of labels to a ranked alphabet Σ and just allowing, for every
σ ∈ Σ, the characteristic mapping on {σ} as predicate, we reobtain the classical finite-
state tree automata. In [VB11a] it was proved that bottom-up sta are determinizable,
that the class of s-recognizable tree languages is closed under the Boolean operations,
and that the emptiness problem for s-recognizable tree languages is decidable provided
the emptiness problem in the Boolean algebra of predicates is decidable.

Similarly, an stt is a top-down tree transducer [Tha70, Rou70, Eng75] except that
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its input and output trees are built up over potentially infinite sets of (resp., input
and output) labels. In the same way as for sta, we ensure finiteness by an a priori
bound k on the maximal number of the successors of a node and by using a finite set
of unary predicates. The right-hand side of each rule of a symbolic k-bounded tree
transducer (sk-tt) contains unary functions, rather than explicit output symbols as in
top-down tree transducers. These functions are then applied to the current input label
and thereby produce the output labels. More formally, a rule has the form

q(ϕ(x1, . . . , xl))→ u

where 0 ≤ l ≤ k, q is a state, ϕ is a unary Boolean-valued predicate over the set of
input labels, x1, . . . , xl are the usual variables that represent input subtrees, and u is
a tree in which each internal node has at most k successors and is labeled by a unary
function symbol; the leaves of u can be labeled alternatively by objects q′(xi) with
state q′ and xi ∈ {x1, . . . , xl}. Clearly, the leaf labels of the form q′(xi) organize the
recursive descent on the input tree as usual in a top-down tree transducer. The tree
transformation computed by an stt is defined in the obvious way by means of a binary
derivation relation. For instance, there is a (nondeterministic) s2-tt which transforms
each binary tree over N into a set of binary trees over N such that a subtree n(ξ1, ξ2)
of the input tree is transformed into m(ξ′1, ξ

′
2) where

• m = n, and ξ′1 and ξ′2 are transformations of ξ1 and ξ2, respectively, or

• m = n
6 if n is divisible by 6, and both ξ′1 and ξ′2 are transformations of ξ1 (cf.

Example 5.3).

By restricting the predicates on the input labels to some ranked alphabet (as for sta
above) and by only allowing unary functions such that each one produces a constant
symbols from some ranked (output) alphabet, we reobtain top-down tree transducers.

Since sta and stt can check and manipulate data from an infinite set, they can be
considered as tools for analyzing and transforming trees as they occur, e.g., in XML
documents. Thus, the theoretical investigation of sta and stt is motivated by practical
problems as e.g. type checking and inverse type checking.

In this paper we further develop the theory of sta and stt. We prove a characteriza-
tion of s-recognizable tree languages in terms of (classical) recognizable tree languages
and relabelings (Thm. 3.5). We compare the recognition power of sta with that of
variable tree automata [MR11] (also cf. [GKS10]). More specifically, we characterize
the tree language recognized by a variable tree automaton by the union of infinitely
many s-recognizable tree languages (Prop. 3.8) and we show that sta and variable tree
automata are incomparable with respect to recognition power (cf. Thm. 3.9). More-
over, as a generalization of (classical) regular tree grammars [Bra69] we introduce
symbolic regular tree grammars and characterize s-regular tree languages in terms of
regular tree languages and relabelings (Thm. 4.3). As a corollary, we obtain that
s-recognizable tree languages are the same as s-regular tree languages (Thm. 4.4).

For stt we recall the concept of the syntactic composition from [VB11b]. We show
that syntactic composition of two sttM and N computes the composition of the tree
transformations computed byM and N , provided that (1)M is deterministic or N is
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linear or (2)M is total or N is nondeleting (Thm. 5.8). Hereby, we generalize Baker’s
classical result [Bak79, Thm. 1].

Finally, we consider forward application and backward application of stt; these in-
vestigations are motivated by the (inverse) type checking problem (see among others
[MSV03, AMN+03, EM03, MBPS05]). We show that the backward application of
an sk-tt (which is the application of its inverse) to any sk-recognizable tree language
yields an sk-recognizable tree language (Thm. 6.3). It is well-known that the forward
application of linear top-down tree transducers preserves recognizability of tree lan-
guages (see e.g. [Tha69] or [GS84, Ch. IV, Cor. 6.6]). It is surprising that for stt the
corresponding result does not hold, in fact there is a linear sk-tt of which the range
is not an sk-recognizable tree language (Lm. 6.4). However, the application of simple
and linear stt preserve s-recognizability (Thm. 6.5). As a corollary, we obtain that the
type checking problem of simple and linear stt, as well as, the inverse type checking
problem of arbitrary stt is decidable (Thm. 6.7).

Since the theory of sta and stt is based on concepts which are slightly different from
the foundations of classical finite-state tree automata and tree transducers, we list
them in detail is Section 2.

2 Preliminaries

2.1 General

The set of nonnegative integers is denoted by N.
For a set A, we denote by |A| and P(A) the cardinality and the set of all subsets of

A. Moreover, we denote by ιA the identical mapping over A. For a set I, an I-indexed
family over A is a mapping f : I → A. We denote the family f also by (fi | i ∈ I).

Let ρ ⊆ A×B be a relation. For every A′ ⊆ A, we define ρ(A′) = {b ∈ B | (a, b) ∈
ρ for some a ∈ A′}. For another relation σ ⊆ B × C, the composition of ρ and σ is
the relation ρ ◦ σ = {(a, c) | ∃(b ∈ B) : (a, b) ∈ ρ and (b, c) ∈ σ}. The reflexive and
transitive closure of a relation ρ ⊆ A×A is denoted by ρ∗.

2.2 Trees

In this paper we mainly consider trees over a nonempty and unranked set. We note
that our concept of a tree differs from that of [VB11a, VB11b] in that we do not
consider the empty tree as the base of the inductive definition.

Let U be a (possibly infinite) nonempty set, called the set of labels, and Y a further
set. The set of trees over U (or: U -trees) indexed by Y , denoted by TU (Y ), is the
smallest subset T of (U ∪Y ∪{(, )}∪{, })∗ such that (i) (U ∪Y ) ⊆ T , and (ii) if a ∈ U
and ξ1, . . . , ξl ∈ T with l ≥ 1, then a(ξ1, . . . , ξl) ∈ T . If Y = ∅, then we write TU for
TU (Y ). A tree language over U (or: U -tree language) is any subset of TU .
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Let Q be a set with Q∩U = ∅. Then we denote by Q(TU (Y )) the subset {q(ξ) | q ∈
Q, ξ ∈ TU (Y )} of TQ∪U (Y ).

We define the set of positions in a U -tree by means of the mapping pos : TU (Y )→
P(N∗) inductively on the argument ξ ∈ TU (Y ) as follows: (i) if ξ ∈ (U ∪ Y ), then
pos(ξ) = {ε}, and (ii) if ξ = a(ξ1, . . . , ξl) for some a ∈ U , l ≥ 1 and ξ1, . . . , ξl ∈ TU (Y ),
then pos(ξ) = {ε} ∪ {iv | 1 ≤ i ≤ l, v ∈ pos(ξi)}.

For every ξ ∈ TU (Y ) and w ∈ pos(ξ), the label of ξ at w, denoted by ξ(w) ∈ (U ∪Y ),
the subtree of ξ at w, denoted by ξ|w ∈ TU (Y ), and the rank at w, denoted by rkξ(w) ∈
N, are defined inductively as follows: (i) if ξ ∈ (U ∪ Y ), then ξ(ε) = ξ|ε = ξ, and
rkξ(ε) = 0, and (ii) if ξ = a(ξ1, . . . , ξl) for some a ∈ U , l ≥ 1 and ξ1, . . . , ξl ∈ TU (Y ),
then ξ(ε) = a, ξ|ε = ξ, and rkξ(ε) = l, and if 1 ≤ i ≤ l and w = iv, then ξ(w) = ξi(v),
ξ|w = ξi|v, and rkξ(w) = rkξi(v).

Let ξ ∈ TU (Y ) be a tree. For any V ⊆ U , we define posV (ξ) = {w ∈ pos(ξ) |
ξ(w) ∈ V }. If V = {a}, then we write just posa(ξ) for posV (ξ). Moreover, for every
ζ ∈ TU (Y ) and w ∈ pos(ξ), we denote by ξ[ζ]w the tree which is obtained by replacing
the subtree ξ|w by ζ.

We will consider trees with variables and the substitution of trees for variables.
For this, let X = {x1, x2, . . .} be an infinite set of variables, disjoint with U , and let
Xl = {x1, . . . , xl} for every l ∈ N. For trees ξ ∈ TU (Xl) and ζ1, . . . , ζl ∈ TU (Y ), we
denote by ξ[ζ1, . . . , ζl] the tree which we obtain by replacing every occurrence of xi by
ζi for every 1 ≤ i ≤ l. We note that ξ[ζ1, . . . , ζl] ∈ TU (Y ). Moreover, we denote by
CU (Xl) the set of trees in TU (Xl) in which each variable xi occurs exactly once and
the order of variables from left to right is x1, . . . , xl. We call the elements of CU (Xl)
l-contexts.

Finally, let ξ ∈ TU (Y ) and k ∈ N. We define the rank rk(ξ) of ξ to be rk(ξ) =
max{rkξ(w) | w ∈ pos(ξ)} and we say that ξ is k-bounded if rk(ξ) ≤ k. We denote the

set of all k-bounded U -trees indexed by Y by T
(k)
U (Y ). Clearly, T

(k)
U (Y ) ⊂ T (k+1)

U (Y ).

A k-bounded U -tree language (or: (U, k)-tree language) is a subset of T
(k)
U . A U -tree

language L is bounded if there is a k ∈ N such that L is k-bounded. Moreover, we

define the set of k-bounded l-contexts to be C
(k)
U (Xl) = CU (Xl) ∩ T (k)

U (Xl).

In this paper U , V , and W will always denote arbitrary nonempty sets
unless specified otherwise.

2.3 Tree transformations

Let k ∈ N. A k-bounded tree transformation (or: k-tree transformation) is a mapping

τ : T
(k)
U → P(T

(k)
V ) (or: alternatively, a relation τ ⊆ T (k)

U ×T
(k)
V ). A tree transformation

is a k-tree transformation for some k ∈ N. If for every ξ ∈ T (k)
U , there is exactly one

ζ ∈ T (k)
V such that (ξ, ζ) ∈ τ (i.e., τ is a mapping), then we also write τ : T

(k)
U → T

(k)
V .

The inverse τ−1, the domain dom(τ), and the range range(τ) of a tree transformation
τ are defined in the standard way.

5



Let τ ⊆ T (k)
U ×T

(k)
V be a tree transformation, L ⊆ T (k)

U and L′ ⊆ T (k)
V tree languages.

The forward application (or just: application) of τ to L is the tree language τ(L) =

{ζ ∈ T
(k)
V | ∃(ξ ∈ L) : (ξ, ζ) ∈ τ}. The backward application of τ to L′ is the tree

language τ−1(L′) (which is the forward application of τ−1 to L′).

We extend the above concepts and the composition of tree transformations to classes
of tree transformations and classes of tree languages in a natural way. For instance, if
C and C′ are classes of k-tree transformations, and L is a class of k-tree languages, then
we define C ◦ C′ = {τ ◦ σ | τ ∈ C and σ ∈ C′} and C(L) = {τ(L) | τ ∈ C and L ∈ L}.

A relabeling is a mapping τ : U → P(V ) such that τ(a) is recursive and it is
decidable if τ(a) = ∅ for every a ∈ U ; it is called deterministic if τ(a) is a singleton
for every a ∈ U . Let k ∈ N. The k-tree relabeling (induced by τ) is the mapping

τ ′ : T
(k)
U → P(T

(k)
V ), defined by

τ ′(a(ξ1, . . . , ξl)) = {b(ζ1, . . . , ζl) | b ∈ τ(a) and ζi ∈ τ ′(ξi) for 1 ≤ i ≤ l}.

Then the mapping τ ′ is extended to τ ′′ : P(T
(k)
U ) → P(T

(k)
V ) by τ ′′(L) =

⋃
ξ∈L τ

′(ξ)

for every L ∈ P(T
(k)
U ).

We note that the composition of two k-tree relabelings τ ′1 and τ ′2 is again a k-tree
relabeling. In fact, if τ1 : U → P(V ) and τ2 : V → P(W ), then τ1 ◦ τ2 induces τ ′1 ◦ τ ′2.
In the sequel, we drop the primes from τ ′ and τ ′′ and identify both mappings with τ .

2.4 Predicates and label structures

A (unary) predicate over U is a mapping ϕ : U → {0, 1}. We denote by Pred(U)
the set of all predicates over U . Let ϕ ∈ Pred(U) be a predicate. We introduce the
notation [[ϕ]] for {a ∈ U | ϕ(a) = 1}.

We define the operations ¬, ∧, and ∨ over Pred(U) in the obvious way and extend ∧
and ∨ to finite families (ϕi | i ∈ I) of predicates in Pred(U). In particular, [[

∧
i∈∅ ϕi]] =

U and [[
∨
i∈∅ ϕi]] = ∅.

Let Φ ⊆ Pred(U) be a finite set of recursive predicates such that [[ϕ]] = ∅ is decidable
for every ϕ ∈ Φ. We call the pair (U,Φ) a label structure. The Boolean closure of Φ,
denoted by BC(Φ), is the smallest set B ⊆ Pred(U) such that

(i) Φ ⊆ B,

(ii) ⊥,> ∈ B where >(a) = 1 and ⊥(a) = 0 for every a ∈ U , and

(iii) for every ϕ,ψ ∈ B, the predicates ¬ϕ, ϕ ∧ ψ, and ϕ ∨ ψ are in B.

It is clear that (BC(Φ),∧,∨,¬,⊥,>) is a Boolean algebra for every Φ ⊆ Pred(U).

2.5 Tree automata, tree grammars, tree transducers

We assume that the reader is familiar with the basic concepts of the theory of (classical)
tree automata and tree transducers which can be found among others in [GS84, GS97]
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and [CDG+97]. In particular, we freely use the concept of a ranked alphabet, a tree
language over a ranked alphabet, a finite-state tree automaton, a recognizable tree
language, a regular tree grammar, a regular tree language, a top-down tree transducer,
and of a tree transformation. Here we recall only some notations.

A ranked alphabet is a finite set Σ equipped with a rank mapping rkΣ : Σ→ N. We
define Σl = {σ ∈ Σ | rkΣ(σ) = l} (l ≥ 0) and maxrk(Σ) = max{rkΣ(σ) | σ ∈ Σ}. It is
clear that every tree ξ ∈ TΣ is maxrk(Σ)-bounded.

A finite-state tree automaton is a system A = (Q,Σ, δ, F ), where Q is a finite,
nonempty set (states), Σ is a ranked alphabet, δ = (δσ | σ ∈ Σ) is the family of sets of
transitions, i.e., δσ ⊆ Ql ×Q for every l ∈ N and σ ∈ Σ with rkΣ(σ) = l, and F ⊆ Q
is the set of final states. The set of trees recognized by A is denoted by L(A). A tree
language L ⊆ TΣ is recognizable if there is a finite-state tree automaton A such that
L = L(A).

A regular tree grammar is a tuple G = (Q,Σ, q0, R) where Q is a finite set of states1,
Σ is a ranked alphabet, q0 ∈ Q (initial state), and R is a finite set of rules of the form
q → u with q ∈ Q and u ∈ TΣ(Q). The derivation relation induced by G and the
tree language generated by G are denoted by ⇒G and L(G), respectively. We will also
consider reduced regular tree grammars and regular tree grammars in normal form in
the sense of [CDG+97].

3 Symbolic tree automata

In this section we formalize our adaptation of the concept of a symbolic tree automaton
from [VB11a] and compare our model with the original one. Then we prove basic
properties of sta. Finally, we compare the recognition capacity of sta with that of
variable tree automata.

3.1 Definition of sta

Definition 3.1 Let k ∈ N. A symbolic k-bounded tree automaton (sk-ta) is a tuple
A = (Q,U,Φ, F,R) where

• Q is a finite, nonempty set (states),

• (U,Φ) is a label structure,

• F ⊆ Q (set of final states), and

• R is a finite set of rules of the form (q1 . . . ql, ϕ, q) where 0 ≤ l ≤ k, q1, . . . , ql, q ∈
Q, and ϕ ∈ BC(Φ).

Let ρ = (q1 . . . ql, ϕ, q) ∈ R. We call (q1 . . . ql) the left-hand side, ϕ the guard, and
q the right-hand side of the rule ρ, and denote them by lhs(ρ), grd(ρ), and rhs(ρ)

1Usually these symbols are called nonterminals; but since this notion leads to misunderstandings in
the application area of natural language processing, we prefer to call these symbols states.
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respectively. Clearly, every sk-ta is an s(k+ 1)-ta. By a symbolic tree automaton (sta)
we mean an sk-ta for some k ∈ N.

For every q ∈ Q, we define the tree language L(A, q) ⊆ T
(k)
U recognized by A in

state q, as follows. The family (L(A, q) | q ∈ Q) is the smallest Q-family (Lq | q ∈ Q)
of tree languages such that

(i) if a ∈ U , (ε, ϕ, q) ∈ R, and a ∈ [[ϕ]], then a ∈ Lq, and

(ii) if a ∈ U , (q1 . . . ql, ϕ, q) ∈ R with 1 ≤ l ≤ k and a ∈ [[ϕ]], and ξ1 ∈ L(A, q1), . . . ,
ξl ∈ L(A, ql), then a(ξ1, . . . , ξl) ∈ Lq.

The condition that all predicates in Φ (and hence in BC(Φ)) are recursive ensure that

we can decide whether ξ ∈ L(A, q) for every q ∈ Q and ξ ∈ T (k)
U .

The tree language recognized by A, denoted by L(A), is the set

L(A) =
⋃
q∈F

L(A, q) .

A tree language L ⊆ T
(k)
U is symbolically k-recognizable (sk-recognizable) if there is

an sk-ta A such that L(A) = L. We denote the class of all sk-recognizable U -tree

languages by REC(k)(U). Moreover, we call a tree language s-recognizable if it is
sk-recognizable for some k ∈ N.

Two sk-ta A and B are equivalent if L(A) = L(B).

Example 3.2 We give an example of an sta. For this we consider the set U = N and
the 2-bounded tree language

L =
{
ξ ∈ T (2)

N | ξ is binary and(
(∀w ∈ pos(ξ) : ξ(w) is divisible by 2) ∨ (∀w ∈ pos(ξ) : ξ(w) is divisible by 3

)}
where a tree ξ is binary if rkξ(w) ∈ {0, 2} for every w ∈ pos(ξ). For instance, the trees
2(4, 6) and 3(15, 18) are in L.

The following s2-ta A = (Q,N,Φ, F,R) recognizes L:

• Q = F = {2, 3},
• Φ = {div(2),div(3)} with [[div(i)]] = {n ∈ N | n is divisible by i},
• for every i ∈ {2, 3} the transitions (ε,div(i), i) and (i i,div(i), i) are in R.

For instance, 6(12, 18) ∈ L(A, 2) ∩ L(A, 3).

Our definition of sta slightly differs from the one in [VB11a] in the following two
points.

1. They fix a Boolean algebra B of predicates in advance, and then they make a
theory of sta only over B. We are free to choose predicates whenever we need them.

2. In [VB11a] no bound on the number of successors of nodes is mentioned. In our
definition we put an explicit bound on this number in order to guarantee closure of
sk-recognizable tree languages under complement.
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We note that this closure under complement is not discussed clearly in [VB11a].
The root of the ambiguity is that the complement of a tree language, appearing in
Prop. 3 of that paper, is not defined. If the complement of a tree language L is
meant to be UT〈σ〉 \L (as maybe is suggested by the definition of the complement of a
predicate [VB11a, p.146]), which corresponds to TU \L in our notation, then the class
of s-recognizable tree languages is not closed under complement as stated in [VB11a,
Prop. 3, Thm. 1]. This can be seen easily as follows. Let L be an s-recognizable
tree language (in the sense of [VB11a] or of the present paper). Then obviously L is
bounded, while the tree language UT〈σ〉 \ L is not bounded. Hence the latter cannot
be s-recognizable.

However, if we define the complement of a k-bounded tree language L with respect

to T
(k)
U , i.e., to be T

(k)
U \ L, then the class of sk-recognizable tree languages is closed

under complement (by using the appropriate adaptations of [VB11a, Prop. 3, Thm.
1].

3.2 Basic properties

Here we give a characterization of s-recognizable tree languages in terms of (classical)
recognizable tree languages and tree relabelings. Moreover, we introduce uniform tree
languages and show that any uniform tree language is not s-recognizable.

We will need the following obvious fact.

Observation 3.3 Both ∅ and the set T
(k)
U are sk-recognizable for every set U and

k ∈ N.

In the following we give a characterization of s-recognizable tree languages in terms
of recognizable tree languages and relabelings. First we prove the next lemma.

Lemma 3.4

1. For every sk-recognizable tree language L we can effectively construct a k-
bounded recognizable tree language L′ and a k-tree relabeling τ such that
L = τ(L′).

2. For every k-bounded recognizable tree language L′ and k-tree relabeling τ we
can effectively construct an sk-recognizable tree language L such that L = τ(L′).

Proof First assume that L = L(A) for some sk-ta A = (Q,U,Φ, F,R). We construct
the finite-state tree automaton A′ = (Q,Σ, δ, F ), where

• Σl = {[ϕ, l] | (q1 . . . ql, ϕ, q) ∈ R for some q1, . . . , ql, q ∈ Q}, 0 ≤ l ≤ k and

• δ[ϕ,l] = {(q1 . . . ql, q) | (q1 . . . ql, ϕ, q) ∈ R}.
It should be clear that L(A′) is k-bounded. Moreover, we define the relabeling τ :
Σ→ P(U) by τ([ϕ, l]) = [[ϕ]] for every [ϕ, l] ∈ Σ.

9



We can easily prove the following statement by induction on trees: for every ξ ∈ T (k)
U

and q ∈ Q we have

ξ ∈ L(A, q) ⇐⇒ ∃(ζ ∈ L(A′, q)) such that ξ ∈ τ(ζ),

which proves that L(A) = τ(L(A′)).
For the proof of the other implication, let us consider a finite-state tree automaton

A′ = (Q,Σ, δ, F ) such that L(A′) is k-bounded. We may assume without loss of
generality that maxrk(Σ) ≤ k. Moreover, let τ : Σ → P(U) be a relabeling. We
construct the sk-ta A = (Q,U,Φ, δ′, F ), where Φ and R are defined as follows:

• Φ = {ϕσ | σ ∈ Σ}, where [[ϕσ]] = τ(σ) for every σ ∈ Σ,

• δ′ = {(q1 . . . ql, ϕσ, q) | (q1 . . . ql, q) ∈ δσ for some l ≥ 0, σ ∈ Σl}.
It should be clear that L(A) = τ(L(A′)). �

By letting τ be the identity mapping in Lemma 3.4(2), we obtain that each recog-
nizable tree language is also s-recognizable. A further consequence of Lemma 3.4 is
the mentioned characterization.

Theorem 3.5 A tree language L is sk-recognizable if and only if it is the image of a
k-bounded recognizable tree language under a k-tree relabeling.

Using the above characterization result, we can easily give examples of bounded
tree languages that are not s-recognizable. For an infinite U , we call a tree language
L ⊆ TU uniform if it satisfies the following conditions:

(a) L is infinite,

(b) all trees in L have the same shape, i.e., for every ξ, ζ ∈ L, we have pos(ξ) =
pos(ζ), and

(c) for every ξ ∈ L, there is an a ∈ U such that ξ(w) = a for every w ∈ pos(ξ).

For instance, the tree language L2 = {a(a) | a ∈ U} is uniform provided U is infinite.
In particular, pos(ξ) = {ε, 1} for every ξ ∈ L2. Now we can prove the following.

Lemma 3.6 Let L ⊆ T (k)
U be a uniform tree language such that |pos(ξ)| > 1 for every

ξ ∈ L. Then L is not sk-recognizable.

Proof We prove by contradiction, i.e., we assume that L is sk-recognizable. By
Lemma 3.4(1), there is a ranked alphabet Σ, a k-bounded recognizable tree language
L′ ⊆ TΣ, and a relabeling τ : Σ→ P(U) such that L = τ(L′). Since τ , being a k-tree
relabeling, preserves the shape of trees, the shape of all trees in L′ is the same as that
of all trees in L. Then, since Σ is a finite set, L′ is also finite. Finally, since L is
infinite, there are a tree ζ ∈ L′, different positions v and w of ζ, and different labels
a, b ∈ U such that a ∈ τ(ζ(v)) and b ∈ τ(ζ(w)). Then there is a tree ξ ∈ τ(ζ) such that
ξ(v) = a and ξ(w) = b, which contradicts to condition (c) for uniform tree languages.�

By the above lemma, for an infinite U , the 1-bounded tree language L2 is not s-
recognizable.
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3.3 Comparison with variable tree automata

In [GKS10] another automaton model with infinite input alphabet was introduced. It
is called variable (string) automaton. In [MR11] this concept has been extended to
variable tree automata over infinite alphabets (vta). The theory of vta is different from
that of sta, e.g., the class of s-recognizable tree languages is closed under complement
(cf. [VB11a, Prop. 3]) which does not hold for the class of v-recognizable tree languages
(cf. [MR11, Cor. 2], and [GKS10, Thm. 2]). Moreover, every sta is determinizable
(cf. [VB11a, Thm. 1]), whereas not every variable (string) automata over infinite
alphabets is determinizable (cf. [GKS10, Sec. 4.1]).

In this section we will compare the recognition power of sta and of vta. In order to
be able to do so, (1) we modify our sta model a bit and then (2) we recall the concepts
of vta from [MR11] in a slightly adapted form.

By a ranked set we mean a nonempty set U of symbols such that with each symbol
a ∈ U an element in N, the rank of a, is associated. For every l ≥ 0, we denote by Ul
the set of all symbols of U with rank l.

The set of trees over a ranked set U is defined in the obvious way.

An sk-ta A = (Q,U,Φ, F,R) is a ranked sk-ta (rsk-ta) if

• U is a ranked set, and

• Φ is a finite set of predicates (we do not require that predicates in Φ are recursive
and that the emptiness problem in Φ is decidable).

The concepts of an rsk-recognizable tree language and an rs-recognizable tree language
are defined in the obvious way.

Now we prepare the definition of a variable tree automaton. Let U and V be
ranked sets. A rank preserving relabeling (r-relabeling) from U to V is a mapping
τ : U → P(V ) such that τ(Ul) ⊆ Vl (l ≥ 0). Then τ extends to trees in the same
way as in case of k-tree relabelings (cf. Section 2.3). We note that τ(a) need not be
recursive and τ(a) = ∅ need not be decidable for a ∈ U .

Let Σ be a ranked alphabet, V an infinite ranked set, A, Z, and Y ranked alphabets.
We say that the collection (A,Z, Y ) is a valid partitioning of Σ for V if

• A = Σ ∩ V , and Σl = Al ∪ Zl ∪ Yl for every l ≥ 0,

• A, Z, and Y are pairwise disjoint, and

• |Yl| ≤ 1 for every 0 ≤ l ≤ maxrk(Σ).

The elements of Z and Y are called bounded variable symbols and free variable symbols.

Let (A,Z, Y ) be a valid partitioning of Σ for V and τ : Σ → P(V ) an r-relabeling.
We say that τ is (A,Z, Y )-valid if

(i) τ is the identity on A,

(ii) |τ(z)| = 1 for every z ∈ Z,

(iii) τ is injective on Z and Al ∩ τ(Zl) = ∅ for every l ≥ 0, and
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Figure 1: An (A,Z, Y )-valid r-relabeling τ : Σ→ P(V ).

(iv) τ(y) = Vl \ (Al ∪ τ(Zl)) for every l ≥ 0 and y ∈ Yl.
We denote the set of all (A,Z, Y )-valid r-relabelings by VR(A,Z, Y ). In Fig. 1 we
illustrate the conditions for a valid r-relabeling.

A variable tree automaton (vta) is a tuple B = (A, V, A, Z, Y ) where

• A = (Q,Σ, δ, F ) is a finite-state tree automaton,

• V is an infinite ranked set,

• (A,Z, Y ) is a valid partitioning of Σ for V .

The tree language recognized by B is the set

L(B) =
⋃

(τ(L(A)) | τ ∈ VR(A,Z, Y )) .

We call a tree language v-recognizable if it can be recognized by a vta.

Proposition 3.7 For every ranked alphabet Σ, every recognizable tree language L over
Σ is also v-recognizable.

Proof Let A be a finite-state tree automaton (with input ranked alphabet Σ) such
that L = L(A). Moreover, let V be an arbitrary infinite ranked set such that Σ ⊆ V .
We observe that (Σ, ∅, ∅) is a valid partitioning of Σ for V , hence B = (A, V,Σ, ∅, ∅)
is a vta over V . Moreover, the only (Σ, ∅, ∅)-valid r-relabeling is the identity mapping
over Σ. Hence we obtain that L(B) = L(A). �

Next we relate v-recognizable tree languages and s-recognizable tree languages.
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Proposition 3.8 Let B = (A, V, A, Z, Y ) be a vta and A have input ranked alphabet
Σ. Then there is a family (Lτ | τ ∈ VR(A,Z, Y )) of rsk-recognizable tree languages
over V such that

L(B) =
⋃

(Lτ | τ ∈ VR(A,Z, Y )),

where k = maxrk(Σ).

Proof We note that every τ ∈ VR(A,Z, Y ) is a k-tree relabeling. Hence, by an easy
adaptation of Lemma 3.4(2), we have that the tree language τ(L(A)) is recognizable
by an rsk-ta Aτ . Hence the statement holds with Lτ = L(Aτ ). �

In spite of the above fact, we can prove the following statement.

Theorem 3.9 The class of v-recognizable tree languages and the class of s-recognizable
tree languages are incomparable with respect to inclusion.

Proof a) We give a v-recognizable tree language and show that it is not rs-
recognizable. For this, let V = V0 ∪ V1 be an infinite ranked set such that V0 = {c},
and consider the ranked alphabet Σ = Σ0 ∪ Σ1 with Σ0 = {c} and Σ1 = {z} with
z 6∈ V . Let A be a finite-state tree automaton with input ranked alphabet Σ such that
L(A) = {zzc} (where parentheses are omitted). Now ({c}, {z}, ∅) is a valid partitioning
of Σ for V , hence B = (A, V, {c}, {z}, ∅) is a vta over V . Since every ({c}, {z}, ∅)-valid
r-relabeling takes z to an element a ∈ V1, we have L(B) = {aac | a ∈ V1}. By an easy
adaptation of Lemma 3.6 we obtain that L(B) is not rs-recognizable.

b) We give an rs1-recognizable tree language and show that it is not v-recognizable.

For this, let Σ = Σ0 ∪Σ1 be a ranked alphabet with Σ0 = {a} and Σ1 = {e, o}, and
let V = V0 ∪ V1 be an infinite ranked set with V0 = {a} and V1 = N . Consider the
recognizable tree language

L = {a, oa, eoa, oeoa, eoeoa, . . .}

over Σ (where parentheses are omitted), and the r-relabeling τ defined by

τ(a) = a, τ(e) = set of all even numbers, and τ(o) = set of all odd numbers.

By the adaptation of Lemma 3.4(2) to rsk-ta, we obtain that the tree language τ(L)
can be recognized by an rs1-ta. Roughly speaking, τ(L) consists of all sequences of the
form nk . . . n2n1a, where k ≥ 0, ni is an odd number if i is odd and an even number
otherwise. We show by contradiction that τ(L) cannot be recognized by any vta.

For this, assume that there is a vta B = (A, V, A, Z, Y ), where the input alphabet
of A is Σ = A ∪ Z ∪ Y such that L(B) = τ(L). We may assume without loss of
generality that Y = ∅, which can be seen as follows. Assume that Y = {y}, and that
there is a tree ξ ∈ L(A) such that y occurs in ξ at the position 1i (see Section 2.2
for the definition of a position). Moreover, let τ : Σ → P(V ) be an (A,Z, Y )-valid
r-relabeling. Since τ(y) contains both even and odd numbers, there are trees ζ and ζ ′

in the set τ(ξ) such that at the position 1i of ζ and ζ ′ there is an odd number and an
even number, respectively. On the other hand, τ(ξ) ⊆ L(B), which is a contradiction
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because at the position 1i of every tree in L(B) there is either an odd number or an
even number (depending on whether i is odd or even).

Hence Y = ∅. Now assume that |A ∪ Z| = m. Then every tree in ξ ∈ L(A) consists
of at most m different symbols. Moreover, by the definition of the (A,Z, Y )-valid r-
relabeling, for every τ ∈ VR(A,Z, Y ), each tree in τ(ξ) consists of m different symbols.
It means, each tree in L(B) consists of m different symbols, which contradicts to the
much more flexible form of trees in τ(L). �

4 Symbolic regular tree grammars

In this section we introduce symbolic regular tree grammars and show that they are
semantically equivalent to sta.

Definition 4.1 A symbolic k-bounded regular tree grammar (sk-rtg) is a tuple G =
(Q,U,Φ, q0, R), where

• Q is a finite set (states2),

• (U,Φ) is a label structure,

• q0 ∈ Q (initial state), and

• R is a finite set of rules of the form q → u where q ∈ Q and u ∈ T (k)
BC(Φ)(Q).

By a symbolic regular tree grammar (srtg) we mean an sk-rtg for some k ∈ N.

The sk-rtg G = (Q,U,Φ, q0, R) induces the derivation relation ⇒G⊆ T
(k)
U (Q) ×

T
(k)
U (Q) defined by ξ1 ⇒G ξ2 iff there is a position w ∈ posq(ξ1) and a rule q → u in
R, such that ξ2 = ξ1[u′]w, where u′ is obtained from u by replacing every occurrence
of ϕ ∈ BC(Φ) by some a ∈ [[ϕ]]. (The condition that all predicates in Φ are recursive
makes the relation ⇒G recursive.)

The k-bounded tree language L(G, q) generated by G from a state q ∈ Q is the set

L(G, q) = {ξ ∈ T (k)
U | q ⇒∗G ξ} .

The tree language generated by G, denoted by L(G), is the set L(G, q0). A tree language

L ⊆ T
(k)
U is called symbolically k-regular (for short: sk-regular) if there is an sk-rtg G

such that L = L(G). Moreover, a tree language is s-regular if it is sk-regular for some
k ∈ N.

Two sk-rtg G1 and G2 are equivalent if L(G1) = L(G2).

In the following we give a characterization of s-regular tree languages in terms of
regular tree languages and relabelings.

2In classical regular tree grammars these elements are called nonterminals.
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Lemma 4.2

1. For every sk-regular tree language L we can effectively construct a k-bounded
regular tree language L′ and a k-tree relabeling τ such that L = τ(L′).

2. For every k-bounded regular tree language L′ and k-tree relabeling τ we can
effectively construct an sk-regular tree language L such that L = τ(L′).

Proof First let L = L(G) for some sk-rtg G = (Q,U,Φ, q0, R). We construct the
regular tree grammar G′ = (Q,Σ, q0, R

′) as follows.

• For every l ≤ k, let

Σl = {[ϕ, l] | ∃(q → u) ∈ R,w ∈ posBC(Φ)(u) : u(w) = ϕ and rkw(u) = l},

• and let R′ be the set of all rules q → u′ such that there is a rule q → u in R and
u′ is obtained from u as follows: for every w ∈ pos(u)BC(Φ), we replace u(w) by
[u(w), rkw(u)].

It is obvious that L(G′) is k-bounded. Moreover, we let the relabeling τ : Σ → P(U)
be defined by τ([ϕ, l]) = [[ϕ]] for every 0 ≤ l ≤ k and [ϕ, l] ∈ Σl.

We can prove the following statement by tree induction:

for every ζ ∈ T (k)
U and q ∈ Q:

q ⇒∗G ζ iff there is a ξ ∈ TΣ: q ⇒∗G′ ξ and ζ ∈ τ(ξ).

Then L(G) = τ(L(G′)).
For the proof of Statement 2, let us consider a regular tree grammar G′ =

(Q,Σ, q0, R) such that L(G′) is k-bounded and a relabeling τ : Σ → P(U). We
may assume without loss of generality that maxrk(Σ) ≤ k. We construct the sk-rtg
G = (Q,U,Φ, q0, R

′), where Φ and R′ are defined as follows:

• Φ = {ϕσ | σ ∈ Σ}, where [[ϕσ]] = τ(σ) for every σ ∈ Σ,

• R′: if q → u is in R, then q → u′ is in R′ where u′ is obtained from u by replacing
every σ by ϕσ.

It should be that L(G) = τ(L(G′)). �

It follows from Lemma 4.2(2) that each regular tree language is also s-regular. We
obtain this by letting τ be the identity mapping. As another consequence of Lemma
4.2, we obtain the following characterization result.

Theorem 4.3 A tree language L is sk-regular if and only if it is the image of a k-
bounded regular tree language under a k-tree relabeling.

We can also show that s-recognizable tree languages are the same as s-regular tree
languages.

Theorem 4.4 A tree language is s-recognizable if and only if it is s-regular.
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Proof It follows directly from Lemmas 3.4 and 4.2 and the fact that a tree language
is recognizable if and only if it can be generated by a regular tree grammar (cf. e.g.
Theorem 3.6 in Chapter II of [GS84]). �

In the rest of this section we show some useful transformations on sk-rtg which
preserve the generated tree language. For this, we need some preparation.

Let G = (Q,U,Φ, q0, R) be an sk-rtg. A rule q → u in R is feasible if, for every
predicate ϕ which occurs in u, we have [[ϕ]] 6= ∅, and we call G clean if all its rules are
feasible. It is obvious that rules which are non-feasible cannot be used in any valuable
derivations. Hence, they can be dropped from R without any effect on the generated
tree language L(G). Moreover, it is decidable whether a rule is feasible or not due to
the fact that the emptiness of predicates in Φ is decidable. Summarizing up, for every
sk-rtg we can construct an equivalent one, which is clean.

The sk-rtg G is in normal form if every rule has the form q → ϕ(q1, . . . , ql) for some
l ≤ k, ϕ ∈ BC(Φ), and q1, . . . , ql ∈ Q. A state q ∈ Q is reachable if there is a tree

ξ ∈ T (k)
U (Q) such that q0 ⇒∗G ξ and q occurs in ξ. Moreover, the state q is productive,

if L(G, q) 6= ∅. Finally, G is reduced if all its states are reachable and productive. We
can prove the following result.

Lemma 4.5 For every sk-rtg there is an equivalent reduced sk-rtg which is in normal
form.

Proof Let G = (Q,U,Φ, q0, R) be an sk-rtg. We may assume that G is clean. By
Lemma 4.2(1), there is a regular tree grammar G′ over some ranked alphabet Σ such
that L(G) is k-bounded, and there is a relabeling τ : Σ → P(U) such that L(G) =
τ(L(G′)). Since G is clean, τ(σ) 6= ∅ for every σ ∈ Σ (see the proof of that lemma).

Then we transform G′ into an equivalent regular tree grammar G′′ which is reduced
and is in normal form using the transformations in [CDG+97, Prop. 2.1.3, 2.1.4]. Note
that L(G′′) is k-bounded and L(G) = τ(L(G′′)).

Finally, we follow the proof of Lemma 4.2(2) to construct an sk-rtg G from G′′ and
τ such that L(G) = τ(L(G′′)). Then G is clean due to the above condition on τ .
Moreover, a direct inspection of that construction shows that G is reduced and is in
normal form. �

5 Symbolic tree transducers

In this section we formalize our adaptation of the concept of a symbolic tree trans-
ducer from [VB11a, VB11b]. Then we show some basic properties, relate symbolic
tree transducers to classical top-down tree transducers [Tha70, Rou70, Eng75], and
compare our model with the original one. Finally, we prove a composition result for
symbolic tree transducers.
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5.1 Definition of stt

For every finite set Q and l ∈ N, we let Q(Xl) = {q(xi) | q ∈ Q, xi ∈ Xl}.
We denote by F(U → V ) the set of all unary computable functions from U to V .

Moreover, for every tree u ∈ TF(U→V )(Y ) and a ∈ U , we denote by u(a) the tree which
is obtained by replacing every function f in u by the value f(a) ∈ V . Hence we have
that u(a) ∈ TV (Y ).

Definition 5.1 Let k ∈ N. A symbolic k-bounded tree transducer (sk-tt) is a tuple
M = (Q,U,Φ, V, q0, R), where

• Q is a finite set (states),

• (U,Φ) is a label structure (input label structure) and V is a set (output labels),

• q0 ∈ Q (initial state), and

• R is a finite set of rules of the form q(ϕ(x1, . . . , xl))→ u where q ∈ Q, ϕ ∈ BC(Φ),

0 ≤ l ≤ k, and u ∈ T (k)
F(U→V )(Q(Xl)).

Clearly, every sk-tt is an s(k + 1)-tt. By an stt we mean an sk-tt for some k ∈ N.

For a rule ρ = q(ϕ(x1, . . . , xl)) → u, we call the pair (q, l) the left-hand side state-
rank pair, ϕ the guard, and u the right-hand side of ρ, and denote them by lhs(ρ),
grd(ρ), and rhs(ρ), respectively.

We say that the stt M is linear (resp. nondeleting) if, for each rule ρ as above,
its right-hand side contains at most (resp. at least) one occurrence of xi for every
1 ≤ i ≤ l.

Moreover, M is deterministic if, for any two different rules ρ1 and ρ2 in R, the
condition lhs(ρ1) = lhs(ρ2) entails that [[grd(ρ1)]] ∩ [[grd(ρ2)]] = ∅. Finally, M is total
if for every q ∈ Q and 0 ≤ l ≤ k, we have

[[
∨
ρ∈R

lhs(ρ)=(q,l)

grd(ρ)]] = U.

We note that, as for sta, no sk-tt is a total s(k + 1)-tt.

Next we define the semantics of an sk-tt M = (Q,U,Φ, V, q0, R). We define the
derivation relation of M, denoted by ⇒M, to be the smallest binary relation ⇒M⊆
TV (Q(TU ))× TV (Q(TU )) such that for every ξ1, ξ2 ∈ TV (Q(TU )):

ξ1 ⇒M ξ2 iff there is a position w ∈ pos(ξ1) and a rule q(ϕ(x1, . . . , xl)) → u in R,
such that

• ξ1|w = q(a(ζ1, . . . , ζl)) for some a ∈ [[ϕ]] and ζ1, . . . , ζl ∈ T (k)
U , and

• ξ2 = ξ1[u′]w, where u′ is obtained from u(a) by replacing every index p(xi) ∈
Q(Xl) by p(ζi).

The conditions that all predicates in Φ are recursive and that all functions in the right-
hand side of the rules are computable make the relation ⇒M recursive. Sometimes,
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we drop M from ⇒M.

Let q ∈ Q, ξ ∈ TU , and ζ ∈ TV . We can show by induction on ξ that if ξ ∈ T (k)
U

and q(ξ)⇒∗M ζ holds, then also ζ ∈ T (k)
V . The q-tree transformation computed byM,

denoted by Mq, is the relation

Mq = {(ξ, ζ) ∈ T (k)
U × T (k)

V | q(ξ)⇒∗M ζ} .

The tree transformation computed by M, also denoted by M, is defined by M =
Mq0 . The class of tree transformations computed by sk-tt (resp. linear, nondeleting,

deterministic, and total, sk-tt) is denoted by STT(k) (resp. l - STT(k), n - STT(k),

d - STT(k), and t - STT(k)). These restrictions can be combined in the usual way, for

instance, we will denote by ln - STT(k) the class of tree transformations computed by
linear and nondeleting sk-tt.

A deterministic sk-tt (total sk-tt) transforms every input tree into at most one (at
least one) output tree.

Lemma 5.2 If M is a deterministic (resp. total) sk-tt, then we have |Mq(ξ)| ≤ 1

(resp. |Mq(ξ)| ≥ 1) for every q ∈ Q and ξ ∈ T (k)
U .

Example 5.3 We consider the s2-tt M = (Q,U,Φ, U, q, R) with Q = {q}, U = N,
and Φ = {div(2),div(3)} with [[div(i)]] is the set of all non-negative integers which are
divisible by i. Moreover, R has the following rules:

ρ1 : q
(
[div(2) ∧ div(3)](x1, x2)

)
→ [: 6](q(x1), q(x1))

ρ2 : q(>(x1, x2)) → [id](q(x1), q(x2))
ρ3 : q(>) → [id]

where the unary functions [: 6] and id perform division by 6 and the identity, respec-
tively. Note that M is not deterministic, because lhs(ρ1) = lhs(ρ2) = (q, 2) and

[[grd(ρ1)]] ∩ [[grd(ρ1)]] = [[div(2) ∧ div(3)]] ∩ [[>]] = [[div(2) ∧ div(3)]] 6= ∅ .

Also note that M is not total, because for l = 1 we have:

[[
∨
ρ∈R

lhs(ρ)=(q,1)

grd(ρ)]] = [[
∨
ρ∈∅

grd(ρ)]] = [[⊥]] = ∅ 6= U .

Also M is neither linear nor nondeleting, because of rule ρ1.

On the input tree ξ = 6(12(4, 6), 7) the s2-ttM can perform the following derivation:

q(6(12(4, 6), 7))
⇒ 1(q(12(4, 6)), q(12(4, 6)))
⇒2 1(2(q(4), q(4)), 12(q(4), q(6)))
⇒4 1(2(4, 4), 12(4, 6))
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The s2-ttM transforms a binary tree ξ in the following way. At each position w,M
can reproduce the label ξ(w) of this position and recursively transforms the subtrees
(using rules ρ2 and ρ3). If ξ(w) is divisible by 6, then, additionally (using rule (ρ1)),
M can divide it by 6, delete the second subtree, and process two copies of the first
subtree independently.

Next we show that stt generalize (classical) top-down tree transducers. For every
b ∈ V , we denote by cb the constant function in F(U → V ) defined by cb(a) = b for
every a ∈ U . An sk-tt M = (Q,U,Φ, V, q0, R) is alphabetic if

• U and V are ranked alphabets such that maxrk(U),maxrk(V ) ≤ k,

• Φ = {ϕσ | σ ∈ U} where [[ϕσ]] = {σ},
• each rule in R has the form q(ϕσ(x1, . . . , xl))→u, where

- l = rkU (σ), and

- for every w ∈ (pos(u)\posQ(Xl)
(u)) we have u(w) = cb and rku(w) = rkV (b)

for some b ∈ V .

We call predicates of the form ϕσ alphabetic.

LetM = (Q,Σ,Φ,∆, q0, R) be an alphabetic sk-tt with rank mappings rkΣ and rk∆.
Let N = (Q,Σ,∆, q0.R

′) be a top-down tree transducer with the same rank mappings.
Then we say that M and N are related if

q(ϕσ(x1, . . . , xl))→ u ∈ R iff q(σ(x1, . . . , xl))→ u′ ∈ R′ ,

where we obtain u′ from u by replacing cδ by δ for every δ ∈ ∆.

For every alphabetic sk-tt M we can construct a related top-down tree transducer
N and vice versa. Moreover, it is easy to see that if M and N are related, then the
tree transformations computed by M any by N are the same. Hence we obtain the
following result.

Observation 5.4 The class of tree transformations computed by alphabetic stt is the
same as the class of top-down tree transformations.

Recall that ιU is the identity mapping on U . Let A = (Q,U,Φ, F,R) be an sk-ta.
We introduce the sk-tt A= = (Q,U,Φ, U, F,R=), where

R= = {q(ϕ(x1, . . . , xl))→ιU (q1(x1), . . . , ql(xl)) | (q1 . . . ql, ϕ, q) ∈ R}.

We will need the following fact.

Lemma 5.5 For every sk-recognizable tree language L, there is a linear and nondelet-
ing sk-tt N such that N = ιL.

Proof Let L = L(A) for some sk-ta A. Then N = A= is appropriate. �

Finally, we want to compare our model with the original one from [VB11b]. Each
rule of their symbolic tree transducer has either of the following two forms:
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(a) q(ε)→ e or

(b) q(f(x, y1, . . . , yk))
ϕ[x]−→ u[x, q1(y1), . . . , qk(yk)]

where ε is the only nullary constructor for trees (more precisely, for the empty tree)
and f is the only non-nullary constructor for trees. Since in our approach we have
neither the empty tree nor the constructor ε, there are no rules in our definition of
symbolic tree transducers which correspond to rules of type (a). Also the constructor
ε does not occur in the right-hand side of rules of type (b). Then, in our approach, a
rule of type (b) looks as follows:

q(ϕ(y1, . . . , yk))→ ψ(u)

where the transformation ψ is defined inductively on its argument as follows:

• ψ(f(p, u1, . . . , ul)) = (λx.p)
(
ψ(u1), . . . , ψ(ul)

)
, and

• ψ(qi(yi)) = qi(yi).

That is, ψ applies the constructor f , replaces an expression p (in which the variable
x occurs) by the unary function λx.p, and recursively calls itself on the subterms
u1, . . . , ul.

5.2 Composition results concerning stt

In [VB11b], among others, composition properties of symbolic tree transformations
are considered. Their main result is Theorem 1 which, in its first statement, says that
tree transformations computed by stt are closed under composition. For this they give
the following proof: “The first statement can be shown along the lines of the proof of
compositionality of TOP [15, Theorem 3.39].” where “[15]” is [FV98] in the current
paper. Unfortunately, the mentioned proof of [FV98] is not applicable, because there
the authors only consider total and deterministic top-down tree transducers.

Moreover, also on the semantics level there is a deficiency. In Section 4.1 they claim
the following:

(†) For two arbitrary sttM and N , the composition algorithm delivers an
stt which computes the composition M◦N .

However, this is not true, which can be seen as follows. Let us apply their composition
algorithm to two alphabetic sk-ttM and N , then the resulting sk-tt is also alphabetic
(by Observation 5.7) and, due to their claim, it computesM◦N . Since alphabetic sk-
tt correspond to top-down tree transducers it means that the class of all top-down tree
transformations is closed under composition. However, it is not, due to the counter
examples given in [Rou70, p 267.] (cf. also [Tha70, Eng75]).

So, the proof of the first statement is insufficient. We even conjecture that this
statement is wrong, i.e., STT(k) is not closed under composition.

In this section we prove a weaker version of claim (†) which only holds for particular
sttM and N , cf. Theorem 5.8. In fact, we generalize the composition theorem [Bak79,
Thm. 1] for top-down tree transducers to symbolic tree transducers.
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For this, we use the composition algorithm of [VB11b] which results in the syntactic
composition M;N , and we show that in certain cases the stt M;N computes the
relation M◦N . In the following, we recall the composition algorithm of [VB11b] in
our formal setting. We note that this composition algorithm generalizes the (syntactic)
composition of top-down tree transducers as presented in the definition before Theorem
1 of [Bak79].

Let f ∈ F(U → V ) and v ∈ TF(V→W )(Y ). We denote by f ◦ v the tree obtained
from v by replacing every occurrence of a function g ∈ F(V → W ) by the function
f ◦ g ∈ F(U →W ). Of course f ◦ v ∈ TF(U→W )(Y ).

In the following it will be useful to show the occurrences of objects of the form
q(xi) in the right-hand side of rules of an stt explicitly. Therefore sometimes we write

an arbitrary element of T
(k)
F(U→V )(Q(Xl)) in the form u[q1(xi1), . . . , qm(xim)], where

m ≥ 0, u ∈ C(k)
F(U→V )(Xm), q1, . . . , qm ∈ Q, and 1 ≤ i1, . . . , im ≤ l.

We define the syntactic composition M;N of two sk-tt M and N by applying N
to the right-hand side of rules ofM. However, we can do it only symbolically because
such a right-hand side is built up from functions and not from labels. In fact, we define
a symbolic version of the derivation relation⇒N , denoted by

s⇒N which processes trees
over functions. Besides, the rewrite relation

s⇒N also deals with objects of the form
q(xi) in its input trees. Moreover, we have to collect the Boolean combinations which
are encountered during the transformation of a right-hand side.

Formally, let M = (Q,U,Φ1, V, q0, R1) and N = (P, V,Φ2,W, p0, R2) be two sk-tt
and Φ = Φ1 ∪ {f ◦ ψ | f ∈ F(U → V ), ψ ∈ Φ2}. First, we define the binary relation
s⇒N over the set

BC (Φ)× TΣ

(
P
(
T∆ (Q (Xl))

)
∪ (P ×Q) (Xl)

)
where Σ = F(U →W ) and ∆ = F(U → V ) (cf. Fig. 2). For every

(θ, t), (θ′, t′) ∈ BC (Φ)× TΣ

(
P
(
T∆ (Q (Xl))

)
∪ (P ×Q) (Xl)

)
we have

(θ, t)
s⇒N (θ′, t′) iff one of the following two conditions hold:

(i) there is a position w ∈ pos(t) such that

• t|w = p(q(xi)) for some p ∈ P , q ∈ Q, and xi ∈ Xl,

• t′ = t[〈p, q〉(xi)]w, and

• θ′ = θ, or

(ii) there is a position w ∈ pos(t) and a rule p(ψ(x1, . . . , xl))→ v in R2 such that

• t|w = p(f(t1, . . . , tl)) for some p ∈ P , f ∈ F(U → V ), and t1, . . . , tl ∈
TF(U→V )(Q(Xl)),

• t′ = t[v′]w where v′ is obtained from f ◦ v by replacing every p(xi) ∈ Q(Xl) by
p(ti), and
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Figure 2: The derivation relation
s⇒N .

• θ′ = θ ∧ f ◦ ψ.

The following statement follows from the definition of the relation
s⇒N .

Lemma 5.6 (Lift lemma.) If (ϕ, t) (
s⇒N )∗ (θ, t′), then, for every a ∈ [[θ]] we have

a ∈ [[ϕ]] and t(a)⇒∗N ′ t′(a), where ⇒N ′ is the extension of ⇒N to the set

TW

(
P
(
TV (Q (Xl))

)
∪ (P ×Q) (Xl)

)
,

which we obtain by adding the rules p(q(xi)) → 〈p, q〉(xi) to R2 for every 1 ≤ i ≤ k
(cf. p.195 of [Bak79]).

Second, we construct the sk-tt M;N = (P × Q,U,Φ,W, 〈p0, q0〉, R), called the
syntactic composition of M and N , where the set R of rules is defined as follows. If

q(ϕ(x1, . . . , xl))→ u[q1(xi1), . . . , qm(xim)] (1)

is a rule in R1, and for some p ∈ P and v ∈ C(k)
F(U→W )(Xn) we have(

ϕ, p(u[q1(xi1), . . . , qm(xim)])
)

(
s⇒N )∗

(
θ, v[〈p1, qj1〉(xij1 ), . . . , 〈pn, qjn〉(xijn )]

)
(2)

and [[θ]] 6= ∅

then let the rule

〈p, q〉(θ(x1, . . . , xl))→v[〈p1, qj1〉(xij1 ), . . . , 〈pn, qjn〉(xijn )] (3)
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be in R. Note that

{ij1 , . . . , ijn} ⊆ {i1, . . . , im} ⊆ {1, . . . , l}.

We also note that syntactic composition preserves the properties linear, nondeleting,
total, and deterministic. For instance, if bothM and N are linear, thenM;N is also
linear.

Observation 5.7 The syntactic composition of two alphabetic sk-tt is an alphabetic
sk-tt.

Proof Let us assume that M and N are alphabetic. Then ϕ in (2) is an alphabetic

predicate. Moreover, we observe that if in (i) of the definition of
s⇒N , the predicate θ

is alphabetic, then also θ′ is alphabetic; moreover, if in (ii) of this definition ϕ and ψ
are alphabetic and f is a constant function, then either [[θ′]] = ∅ or θ′ = θ. Therefore,

θ in (3) is alphabetic. Moreover, by direct inspection of (ii) of the definition of
s⇒N

we can see that v in (2) consists of constant functions over W . �

Now we are able to prove our main composition result, which is in fact the general-
ization of [Bak79, Thm. 1].

Theorem 5.8 Let M and N be sk-tt for which the following two conditions hold:

(a) M is deterministic or N is linear, and

(b) M is total or N is nondeleting.

Then the sk-tt M;N induces M◦N .

Proof We prove that, for every ξ ∈ T (k)
U , p ∈ P , q ∈ Q, and ζ ∈ T (k)

W , we have

〈p, q〉(ξ)⇒∗M;N ζ (4)

if and only if

there exists an η ∈ T (k)
V such that q(ξ)⇒∗M η and p(η)⇒∗N ζ. (5)

The proof can be performed by induction on ξ. The proof of the implication (5) ⇒
(4) is straightforward, hence we leave it. We note that (as in [Bak79, Thm.1]) we need
neither condition (a) nor (b) for the proof of this direction.

To prove that (4) ⇒ (5), let us assume that (4) holds and that ξ = a(ξ1, . . . , ξl) for

some a ∈ U , 0 ≤ l ≤ k, and ξ1, . . . , ξl ∈ T (k)
U .

Let us assume that we applied the rule (3) in the first step of (4). Then (4) can be
written as

〈p, q〉(a(ξ1, . . . , ξl))⇒M;N v(a)[〈p1, qj1〉(ξij1 ), . . . , 〈pn, qjn〉(ξijn )]

⇒∗M;N v(a)[ζ1, . . . , ζn]
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for some ζ1, . . . , ζn ∈ T (k)
W , where a ∈ [[θ]] and ζ = v(a)[ζ1, . . . , ζn]. Hence,

〈p1, qj1〉(ξij1 )⇒∗M;N ζ1 , . . . , 〈pn, qjn〉(ξijn )⇒∗M;N ζn,

and thus, by the induction hypothesis, there are η1, . . . , ηn ∈ T (k)
V such that

qj1(ξij1 )⇒∗M η1 and p1(η1)⇒∗N ζ1, . . . , qjn(ξijn )⇒∗M ηn and pn(ηn)⇒∗N ζn. (6)

Since rule (3) is in R, there is a rule of then form (1) in R1 such that the derivation
(2) holds. Hence, by Lemma 5.6, a ∈ [[ϕ]] and

p(u(a)[q1(xi1), . . . , qm(xim)]) (
s⇒N )∗ v(a)[〈p1, qj1〉(xij1 ), . . . , 〈pn, qjn〉(xijn )]. (7)

Now we define the tree η. For this, let 1 ≤ λ ≤ m. If λ = jα for some 1 ≤ α ≤ n, then
we define ηλ = ηα. This ηλ is well-defined, which can be seen as follows. Assume that
jα = jβ for some 1 ≤ β 6= α ≤ n. Then N is not linear, and thus by condition (a) M
is deterministic, which implies ηα = ηβ . Note that by (6)

qλ(ξiλ) = qjα(ξijα )⇒∗M ηα = ηλ.

If there is no α with λ = jα, then N is deleting and thus by condition (b) M is total.

Hence, there is a tree ηλ ∈ T
(k)
V such that qλ(ξiλ)⇒∗M ηλ.

Let η = u(a)[η1, . . . , ηm]. Since the rule (1) is in R1 and a ∈ [[ϕ]], we have

q(a(ξ1, . . . , ξl))⇒M u(a)[q1(ξi1), . . . , qm(ξim)]⇒∗M u(a)[η1, . . . , ηm].

Moreover by an obvious modification of (7) and by (6)

p(u(a)[η1, . . . , ηm])⇒∗N v(a)[p1(ηj1), . . . , p1(ηjn)] =

v(a)[p1(η1), . . . , p1(ηn)]⇒∗N v(a)[ζ1, . . . , ζn]. �

Due to Observation 5.7 this theorem generalizes [Bak79, Thm.1].

As an application of the above theorem, we can show that both the class of tree
transformations computed by total and deterministic sk-tt and the one computed by
linear and nondeleting sk-tt are closed under composition.

Corollary 5.9 (a) td - STT(k) ◦ td - STT(k) = td - STT(k)

(b) ln - STT(k) ◦ ln - STT(k) = ln - STT(k).

Proof We prove only (a) because the proof of (b) is similar. The inclusion from left
to right can be seen as follows. Let M and N be total and deterministic sk-tt. The
sk-ttM;N is also total and deterministic and, by Theorem 5.8, for the computed tree
transformations M;N = M ◦ N holds. The other inclusion follows from the facts

that (i) any tree transformation τ ⊆ T
(k)
U × T (k)

V can be decomposed as τ ◦ ι
T

(k)
V

and

(ii) ι
T

(k)
V

can be computed by a total and deterministic sk-tt. �
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6 Forward and backward application of stt

In this section we consider forward and backward application of stt to s-recognizable
tree languages. In particular, we consider the domain and the range of tree transfor-
mations computed by stt. Finally, we apply these results to the problem of (inverse)
type checking.

6.1 Application of stt

We begin with the following result.

Theorem 6.1 dom(STT(k)) = REC(k).

Proof First we prove the inclusion from left to right. For this, let M =
(Q,U,Φ, V, q0, R) be an sk-tt. We construct the sk-rtg G = (P(Q), U,Φ, {q0}, R′)
such that dom(M) = L(G), where the set R′ of rules is defined as follows.

For every 0 ≤ l ≤ k and P ⊆ Q with P = {p1, . . . , pm} for some m ≥ 1, and rules

p1(ϕ1(x1, . . . , xl))→ u1, . . . , pm(ϕm(x1, . . . , xl))→ um (8)

in R, let R′ contain the rule

P → (ϕ1 ∧ . . . ∧ ϕm)(P1, . . . , Pl)

where Pi = {q ∈ Q | q(xi) occurs in uj for some 1 ≤ j ≤ m}. Thus, in particular, for
every 0 ≤ l ≤ k, the rule

∅ → >(∅, . . . , ∅)

with l occurrences of ∅ in its right-hand side is in R′. Hence ∅ ⇒∗G ξ for every ξ ∈ T (k)
U .

We claim that for every P ⊆ Q and ξ ∈ TU we have:

P ⇒∗G ξ iff
(

for every p ∈ P there is a ζ ∈ TV such that p(ξ)⇒∗M ζ
)
. (9)

The statement is clear for P = ∅, therefore we assume that P = {p1, . . . , pm} for some
m ≥ 1. We prove (9) by induction on ξ.

Let ξ = a(ξ1, . . . , ξl) ∈ T (k)
U . Then
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P ⇒G a(P1, . . . , Pl)⇒∗G a(ξ1, . . . , ξl)

iff there is a rule P → (ϕ1 ∧ . . . ∧ ϕm)(P1, . . . , Pl) in R′ with a ∈
(⋂m

j=1[[ϕj ]]
)

and for every 1 ≤ i ≤ l, Pi ⇒∗G ξi

iff there are rules (8) in R with a ∈
(⋂m

j=1[[ϕj ]]
)

and

for every 1 ≤ i ≤ l and q ∈ Pi there is a tree ζi,q ∈ TV s.t. q(ξi)⇒∗M ζi,q

iff for every 1 ≤ j ≤ m there is a rule pj(ϕj(x1, . . . , xl))→ uj s.t. a ∈ [[ϕj ]]

and for every occurrence of q(xi) in uj ∃ a tree ζi,q ∈ TV s.t. q(ξi)⇒∗M ζi,q

iff for every 1 ≤ j ≤ m there is a tree ζj ∈ TV such that pj(a(ξ1, . . . , ξl))⇒∗M ζj .

Statement (9) with P = {q0} implies L(G) = dom(M). Hence, by Theorem 4.4 we
obtain that dom(M) is sk-recognizable. The other inclusion follows from Lemma 5.5.�

Example 6.2 We illustrate the construction of the sk-rtg G in the proof of Theorem
6.1 by an example.

Let the s2-tt M contain the rules

q0(ϕ(x1, x2)) → f(p(x1), q(x1)) p̄(θ1) → h1

p(ψ(x1)) → g(p̄(x1), p′(x1)) p′(θ2) → h2

q(ψ′(x1)) → p̂(x1) p̂(θ3) → h3

Then s2-rtg G contains (among others) the following rules:

{q0} → ϕ
(
{p, q}, ∅

)
∅ → >

{p, q} → (ψ ∧ ψ′)
(
{p̄, p′, p̂}

)
∅ → >

(
∅
)

{p̄, p′, p̂} → (θ1 ∧ θ2 ∧ θ3) ∅ → >
(
∅, ∅
)
.

Now we can prove that backward application of stt preserve recognizability of tree
languages.

Theorem 6.3 (STT(k))−1(REC(k)) = REC(k).

Proof First we prove the inclusion from left to right. For this, let M =

(Q,U,Φ, V, q0, R) be an sk-tt, and L ⊆ T
(k)
V an sk-recognizable tree language. It

is an elementary fact that M−1(L) = dom(M◦ ιL). By Lemma 5.5, there is a linear
and nondeleting sk-tt N with N = ιL. Moreover, by Theorem 5.8, the sk-tt M;N
induces M◦N . Hence M−1(L) = dom(M;N ), which is sk-recognizable by Theorem
6.1.

The other inclusion follows from Lemma 5.5. �

It is well-known from the theory of classical tree automata and tree transducers that
the forward application of linear top-down tree transformations preserve recognizabil-
ity of tree languages (see e.g. [Tha69] or [GS84, Ch. IV, Cor. 6.6]). In particular,
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the range of every linear top-down tree transformation is a recognizable tree language.
We can show easily that a linear sk-tt does not have the analogous property.

Lemma 6.4 There is a linear s1-tt M such that range(M) is not 1-recognizable.

Proof Let us assume that U is infinite and define the s1-ttM = ({q}, U, {>}, U, q, R),
where R consists of the only rule

q(>( ))→ ιU (ιU ).

It is clear that M induces the 1-tree transformation {(a, a(a)) | a ∈ U}. Thus
range(M) = {a(a) | a ∈ U}, which is not 1-recognizable by the remark after Lemma
3.6. �

The non-recognizability of range(M) above is due to the fact that M is able to
“duplicate” a node of the input tree by having two occurrences of an appropriate
function symbol on the right-hand side of its rule. We would like to identify a restricted
version of an stt which does not have this capability in the hope of that such an
stt preserves recognizability. Therefore we define simple stt as follows. An sk-tt
M = (Q,U,Φ, V, q0, R) is simple if rhs(ρ) contains exactly one function symbol for
every rule ρ ∈ R. We denote the class of tree transformations computed by simple
and linear stt by sl - STT. Then we can prove the desired result using the following
notation. If ϕ ∈ Pred(U) and f : U → V is a mapping, then f(ϕ) denotes the predicate
defined by [[f(ϕ)]] = f([[ϕ]]).

Theorem 6.5 sl - STT(k)(REC(k)) = REC(k).

Proof First we prove the inclusion from left to right. Let M = (Q,U,Φ, V, q0, R) be
a simple and linear sk-tt and L be an s-recognizable tree language such that L = L(G)
for some reduced sk-rtg G = (P,U,Ψ, p0, RG) which is in normal form (cf. Theorem
4.4 and Lemma 4.5).

We construct the sk-rtg G′ = (Q× P, V,Ψ′, 〈q0, p0〉, R′), where

• Ψ′ = {f(ϕ ∧ ψ) | ϕ and f occur in a rule of R, and ψ in a rule of RG}, and

• R′ is the smallest set of rules satisfying that if p → ψ(p1, . . . , pl) is in RG and
q(ϕ(x1, . . . , xl))→ f(q1(xi1), . . . , qm(xim)) is in R, then the rule

〈q, p〉 → f(ϕ ∧ ψ)(〈q1, pi1〉, . . . , 〈qm, pim〉) (10)

is in R′.

We show that L(G′) = M(L). For this it suffices to prove the following statement.
For every q ∈ Q, p ∈ P , and ζ ∈ TV we have

〈q, p〉 ⇒∗G′ ζ ⇐⇒ ∃(ξ ∈ L(G, p)) such that q(ξ)⇒∗M ζ.

We prove only the direction ⇒ by induction on the number n of steps of the cor-
responding derivation and we show only the induction step n to n + 1. The other
direction can be proved in a similar way.
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Direction ⇒, step n→ n+ 1: We assume that in the first step of the derivation
we applied the rule (10) obtained from the rules p → ψ(p1, . . . , pl) in RG and
q(ϕ(x1, . . . , xl))→ f(q1(xi1), . . . , qm(xim)) in R. (Note that {i1, . . . , im} ⊆ {1, . . . , l}.)
Then we have

〈q, p〉 ⇒G′ b(〈q1, pi1〉, . . . , 〈qm, pim〉)⇒n
G′ b(ζ1, . . . , ζm)

for some b ∈ [[f(ϕ ∧ ψ)]] and ζ1, . . . , ζm ∈ T
(k)
V . By the I.H., there are trees ξij ∈

L(G, pij )) such that qij (ξij ) ⇒∗M ζj for every 1 ≤ j ≤ m. Moreover, there is a

a ∈ ([[ϕ]] ∩ [[ψ]]) such that b = f(a). Now define the tree ξ = a(ξ1, . . . , ξl) ∈ T
(k)
U ,

where ξj = ξil if j = il for some 1 ≤ l ≤ m; and let ξj be an arbitrary tree in L(G, pj)
otherwise (note that G is reduced). Then

p⇒G a(p1, . . . , pl)⇒∗G a(ξ1, . . . , ξl),

hence ξ ∈ L(G, p). Moreover

q(a(ξ1, . . . , ξl))⇒M b(〈q1, pi1〉(ξi1), . . . , 〈qm, pim〉(ξim))⇒∗M b(ζ1, . . . , ζm).

The inclusion from right to left follows from Lemma 5.5 and the fact that A= is a
simple and linear stt. �

Corollary 6.6 range(sl - STT(k)) = REC(k).

Proof Let M = (Q,U,Φ, V, q0, R) be a simple and linear sk-tt. Obviously,

range(M) = M(T
(k)
U ). Moreover, by Observation 3.3, T

(k)
U is sk-recognizable. Hence

the statement follows from Theorem 6.5. �

6.2 Type checking with stt

Intuitively, type checking means to verify whether or not all documents in a view have
a certain type. According to [EM03], a typical scenario of type checking is that τ
translates XML documents into HTML documents. Thus, for a set L of XML docu-
ments τ(L) is an HTML-view of the documents in L. In practice, we are interested
in particular XML documents, which turn to be a recognizable tree language of un-
ranked trees over some alphabet. Also, certain desired properties of the so-obtained
HTML documents can be described in terms of recognizability of tree languages. Thus,
the type checking problem of τ in fact means to check whether τ(L) ⊆ L′ for rec-
ognizable tree languages L and L′. The inverse type checking problem can be de-
scribed in a similar way. The type checking and the inverse type checking problem
for different kinds of transducers was considered in several works, see among others
[MSV03, AMN+03, EM03, MBPS05]. For stt we obtain the following results.

Theorem 6.7

(a) The inverse type checking problem for stt is decidable.
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(b) The type checking problem for simple and linear stt is decidable.

Proof Both statements follow from the fact that the inclusion problem of s-
recognizable tree languages is decidable. This latter fact can be seen as follows. By
[VB11a, Thm. 3], s-recognizable tree languages are effectively closed under Boolean
operations, for closure under complement, see our correction at the end of Section 3.1.
Moreover, by [VB11a, Thm. 4], the emptiness problem is decidable for s-recognizable
tree languages provided that the emptiness problem in the underlying label structure
is decidable. Since, by our definition, the label structure underlying an sk-ta has a
decidable emptiness problem, we obtain that the inclusion problem of s-recognizable
tree languages is decidable.

Then the proof of (a) is as follows. Let M : T
(k)
U → T

(k)
V be an sk-tt and L′ ⊆

T
(k)
U and L ⊆ T

(k)
V s-recognizable tree languages. By Theorem 6.3, the tree language

M−1(L) is effectively sk-recognizable, thus we can decide if M−1(L) ⊆ L′ holds or
not. Statement (b) can be proved in a similar way, using Theorem 6.5. �

7 Conclusion and an open problem

In this paper we have further elaborated the theory of sta and stt. Our main contribu-
tions are: the characterization of s-recognizable tree languages in terms of relabelings
of recognizable tree languages, the introduction of symbolic regular tree grammars
and the proof of their equivalence to sta, the comparison of sta and variable tree au-
tomata, the composition of stt, and the forward and backward application of stt to
s-recognizable tree languages.

Finally, we mention an open problem. In the definition of simple sk-tt we required
that the right-hand side of each rule contains exactly one function symbol. We conjec-
ture that, for the closure result in Theorem 6.5, it is sufficient to require that right-hand
sides of rules contain at most one function
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