
Exploiting a Hypergraph Model
for Finding Golomb Rulers

Manuel Sorge?, Hannes Moser??, Rolf Niedermeier, and Mathias Weller? ? ?

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Berlin, Germany
{manuel.sorge, rolf.niedermeier, mathias.weller}@tu-berlin.de

Abstract Golomb rulers are special rulers where for any two marks it
holds that the distance between them is unique. They find applications in
positioning of radio channels, radio astronomy, communication networks,
and bioinformatics. An important subproblem in constructing “compact”
Golomb rulers is Golomb Subruler (GSR), which asks whether it is
possible to make a given ruler Golomb by removing at most k marks. We
initiate a study of GSR from a parameterized complexity perspective.
In particular, we develop a hypergraph characterization of rulers and
consider the construction and structure of the corresponding hypergraphs.
We exploit their properties to derive polynomial-time data reduction rules
that lead to a problem kernel for GSR with O(k3) marks. Finally, we
provide a simplified NP-hardness construction for GSR.

Keywords: Hitting Set, NP-Hardness, Parameterized Complexity, Data Reduc-
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1 Introduction

A ruler is a finite subset of N, its elements are called marks. A ruler R is called
Golomb ruler if no two pairs of marks from R have the same distance. For
instance, {1, 2, 4, 8} forms a Golomb ruler while {2, 3, 5, 7} does not (since 7−5 =
5− 3 = 2, that is, distance 2 appears twice). The number of marks on a ruler
is called its order n and the distance between its smallest mark (which can be
assumed to be 0 without loss of generality) and its largest mark is called its length.1

While it is easy to construct Golomb rulers, finding a shortest Golomb ruler for a
given order n (encoded in unary) is assumed to be computationally intractable [6,
14]. However, there is no NP-hardness result for this problem so far, but due to
the multitude of its practical applications, there have been several computational
studies based on heuristics and massive parallelism (see [7, 8, 17] for example).
The applications of Golomb ruler construction include radio frequency selection,
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radio astronomy, data encryption, communication networks, and bioinformatics [2,
3, 4, 14, 18]. For instance, when placing radio channels in the frequency spectrum,
intermodulation interference is introduced by nonlinear behavior in transmitters
and receivers. For example, three channels at frequencies a, b, c may intermodulate
and create interference at the frequency d = a+ b− c. This type of interference
is avoided when placing the channels according to marks of a Golomb ruler, since
then, there cannot be a channel at frequency d, because d− a = b− c. Currently,
shortest Golomb rulers up to order n = 26 are known [7].

When constructing Golomb rulers one often has to place a number of marks
within a set of limited possible positions. Meyer and Papakonstantinou [14]
formalized this as the Golomb Subruler problem and showed its NP-hardness.2

Golomb Subruler (GSR)
Input: A finite ruler R ⊆ N and an integer k ≥ 0.
Question: Is there a Golomb ruler R′ ⊆ R such that |R \R′| ≤ k?

Our Results. We contribute a hypergraph characterization which helps us to show
fixed-parameter tractability of GSR for parameter k and to develop efficient
data reduction rules. More specifically, we provide a cubic-size problem kernel
for GSR with respect to the parameter k. The kernelization result is based on
structural observations of the corresponding hypergraphs and we also obtain
some insight regarding forbidden subgraph characterizations of this hypergraph
family. Finally, using the hypergraph notion, we provide an alternative, simpler
many-one reduction for proving the NP-completeness of GSR. Due to space
constraints most of the proofs and additional content is deferred to a full version
of the paper.

Preliminaries. A central tool for our analysis of GSR are hypergraphs. A
hypergraph basically is a system of subsets over some universe. More precisely, a
hypergraph H = (V,E) consists of the universe or set of vertices V and the set of
hyperedges E, where for each hyperedge e ∈ E, we have e ⊆ V . If used in context
of hypergraphs, we use “edge” as synonym for “hyperedge”. In particular, we
work with 3,4-hypergraphs, meaning that all hyperedges have cardinality three
or four. An edge of cardinality d are sometimes called d-edge. In this work, the
vertices of a hypergraph will one-to-one correspond to marks on a ruler and the
edges will one-to-one correspond to “conflicts” between marks, which will be
defined later. We often use the corresponding terms synonymously. For a given
hypergraph, we use n to denote the number of vertices and m to denote the
number of hyperedges. With respect to rulers, n denotes the number of marks
and m denotes the number of conflicts. If a vertex v is contained in an edge e,
then e is said to be incident to v.

An independent set I ⊆ V of a hypergraph H = (V,E) is a set of vertices
such that no hyperedge e ∈ E is a subset of I. In contrast, a vertex cover or,

2 For brevity we reformulated the problem slightly. The original problem is to find a
Golomb subruler containing at least a given number of marks. Clearly, this problem
and our reformulation are equivalent under polynomial-time many-one reductions.



equivalently, a hitting set C ⊆ V of H is a set of vertices such that V \ C is an
independent set of H. In the Hitting Set problem, a hypergraph H and an
integer l ≥ 1 is given and it is asked whether there is a hitting set in H that has
cardinality at most l. We will characterize GSR as a special type of Hitting
Set on 3,4-hypergraphs.

Besides hypergraph notation, we also use concepts of parameterized com-
plexity [10, 12, 15]. A computational (typically NP-hard) problem is called
fixed-parameter tractable with respect to a given parameter k (typically a positive
integer) if instances of size n can be solved in f(k) · nO(1) time. Herein, f(k) is
an arbitrary computable function. Note that fixed-parameter tractability is a
stronger statement than just “solvable in polynomial time for constant parameter
values” since k is not allowed to influence the degree of the polynomial.

An important concept in parameterized complexity is kernelization [5, 13].
Formally, a kernelization of a parameterized problem P is a polynomial-time
algorithm that, given an instance (I, k) of P , computes an instance (I ′, k′) of P
such that both |I ′| and k′ are bounded by a function depending only on k and
such that (I ′, k′) is a yes-instance if and only if (I, k) is a yes-instance. We call
the output (I ′, k′) a problem kernel.

2 Hypergraph Characterization

In this section, we provide a simple hypergraph characterization of rulers with
respect to the Golomb property and consider structural properties of the implied
hypergraphs. The characterization serves as basis for the succeeding sections.

LetR ⊂ N be a ruler. We say that two marks a, b ∈ R measure the distance |a−
b|. We say that the measurements of two pairs of marks a, b and c, d overlap,
if the length of the ruler {a, b, c, d} is strictly smaller than |a − b| + |c − d|. A
conflict is an inclusionwise minimal non-Golomb ruler. That is, a conflict is a set
of three or four marks that consists of two distinct unordered pairs of marks that
measure the same distance. See also Figure 1. The conflict hypergraph of a ruler R
is the hypergraph HR = (R,E), where E is the set of all conflicts contained
in R. With respect to rulers and conflict hypergraphs, we synonymously use the
terms vertices and marks, as well as edges and conflicts, respectively. Analogously
to d-edges (edges of cardinality d), we speak of 3-conflicts and 4-conflicts. The
following lemma is obvious.

Lemma 1. Let R be a ruler and HR = (R,E) be its conflict hypergraph. Then R
is Golomb if and only if E = ∅.

Hypergraph Construction. We now consider the construction of conflict hyper-
graphs. It is obvious that they can be constructed in O(n4) time. We show that
this bound can be improved to O(n3) in the worst case and this is also tight.

Instead of the trivial approach of verifying every possible tuple, one can
consider the distances between marks present in the ruler and examine which of
them lead to edges in the graph. Algorithm HypergraphConstruction describes
such a procedure. In this algorithm we use an auxiliary map M that maps every
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Figure 1: Two rulers with the marks a, b, c, and d, respectively. To the left, we see
that the marks a and b measure the same distance as c and d. We consider this
to be a conflict with respect to Golomb rulers and model it as an edge {a, b, c, d}
in the corresponding hypergraph. To the right we see a degenerated form of a
conflict which leads to an edge with only three vertices.

Algorithm HypergraphConstruction: Constructing a conflict hyper-
graph for a given ruler

Input: A finite ruler R ⊂ N.
Output: A hypergraph HR = (R,E).

1 Start with an empty hypergraph H with vertex set R;
2 Create an empty map M that maps integers to lists;
3 δmax ← max{x : x ∈ R} −min{x : x ∈ R};
4 for i ∈ R do
5 for j ∈ R, i < j ≤ i+ δmax/2 do
6 Add (i, j) to the list mapped to j − i in M ;

7 for i ∈ R do
8 for j ∈ R, i < j ≤ i+ δmax/2 do
9 for (k, l) in the list mapped to j − i in M, j ≤ k do

10 Add the edge {i, j, k, l} to H;

11 return H;

measurable distance to pairs of marks that measure it. First, we fill M : The first
two loops iterate over distances present in R and add every pair of vertices to
the entry in M corresponding to their distance. Then, for every short distance
in R (every distance at most half the maximum distance in R) M contains a list
with all pairs of marks that measure this distance. In the second step, we add
the edges to the designated conflict hypergraph H: The last three nested loops
again iterate over distances present in the ruler and simply add an edge to H for
every pair of marks that measure this distance. To formally prove the correctness
of Algorithm HypergraphConstruction we need the following auxiliary lemma.

Lemma 2. Every edge in a conflict hypergraph is due to two pairs of marks that
measure the same distance and the measurements do not overlap.

This lemma also allows us to disregard distances measured by marks that are
more than half the length of the ruler apart, because measurements of such long



distances must overlap. This basically gives the correctness of Algorithm Hyper-
graphConstruction. The running time can be shown to be cubic:

Lemma 3. Algorithm HypergraphConstruction constructs a conflict hypergraph
for its input ruler in O(n3) time.

Note that we only consider short distances in the loop-headers in lines 5 and 8
of Algorithm HypergraphConstruction. However, the omission of long distances
does not influence the asymptotic upper bound on the running time. This is a
heuristic trick that could prove useful in practice.

Unfortunately, the running time cannot be further improved because there
are rulers that contain Ω(n3) conflicts. We can show that this holds for rulers
whose marks form intervals in N and, thus, we obtain the following theorem.

Theorem 1. There is a hypergraph characterization for rulers such that Golomb
rulers one-to-one correspond to hypergraphs without edges. The worst-case time
complexity of computing the conflict hypergraph for a ruler R is Θ(n3).

Theorem 1 implies that GSR is fixed-parameter tractable with respect to the
parameter “number k of deleted marks”: By Lemma 1 Golomb rulers and only
these correspond to edge-less conflict hypergraphs. Thus, the task of removing
marks to obtain a Golomb subruler reduces to the task of removing vertices from
a hypergraph to obtain an edge-less graph. This is exactly the Hitting Set
problem and, thus, we can apply algorithms for this problem to GSR. The fastest
known parameterized algorithm solving instances of Hitting Set with m edges
and at most four vertices per edge runs in O(3.076` +m) time [9]. This implies
that GSR can be solved in O(3.076k + n3) time. However, the instances created
in the reduction sketched above seem rather restricted and this might lead to
speedups.

Observations on the Structure of Conflict Hypergraphs. We are interested in
the structure of the constructed hypergraphs, because we would like to develop
efficient algorithms exploiting the specific structure of GSR. This proves successful
in that we are able to give forbidden subgraphs that we use in Section 3 to prove
a polynomial-size problem kernel. However, the structure of conflict hypergraphs
is also interesting on its own. In this regard, our studies merely form a starting
point for further research.

At first, notice that the set of conflict hypergraphs is a strict subset of all
hypergraphs with edges of size three and four. This is because the construction
algorithm can be carried out using O(n3) edge additions, n being the number of
marks and thus vertices. However, general 3,4-hypergraphs can have

(
n
4

)
∈ Ω(n4)

edges.
It is interesting to determine which hypergraphs can and which cannot be

constructed. For example, this could be done through a forbidden subgraph char-
acterization: a set F of hypergraphs such that a 3,4-hypergraph H is a conflict
hypergraph for a ruler if and only if H does not contain a hypergraph G ∈ F as
subgraph. Unfortunately, we still cannot provide a forbidden subgraph characteri-
zation. However, we make partial progress by providing some forbidden subgraphs
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Figure 2: Forbidden subgraphs (2a, 2c, and 2d) and forbidden induced sub-
graphs (2b and 2e) of conflict hypergraphs of rulers. Letters (and indices) represent
vertices and closed curves encircling vertices represent hyperedges.

and forbidden induced subgraphs (see Figure 2). These might be helpful in research
towards a complete forbidden subgraph characterization of conflict hypergraphs, if
one exists. They might also be useful in deriving more efficient algorithms for GSR.

Due to space constraints, we only prove the absence of the subgraph in
Figure 2a in conflict hypergraphs. We give the basic idea for the induced subgraph
shown in Figure 2b. These two forbidden subgraphs are used in our data reduction
rules in Section 3. For the forbidden subgraphs in Figures 2c through 2e, we omit
a formal proof and refer to Sorge [19] for details.

Lemma 4 (Forbidden subgraph “small hand”). The graph shown in Fig-
ure 2a is a forbidden subgraph in a conflict hypergraph.

Proof. In an edge with three marks there is one mark exactly between the other
two. Let a, b be two marks on a ruler. Where can a third mark c in an edge
already comprising b and a be on the ruler? Either a, b, or c can be the mark in
the middle. Thus, there are at most three edges with three vertices intersecting
in a and b. ut

For the forbidden induced subgraph shown in Figure 2b, we first obtain an
observation about conflicts that intersect in two marks.

Lemma 5. Let a < b and c < d be four marks in a conflict hypergraph HR =
(R,E) and let {a, b, c, d} ∈ E. The cases (i) a − c = d − b and (ii) a − b =
c − d do not overlap and cover every situation. Furthermore, if there are two
conflicts e1, e2 ∈ E, both containing a, b and corresponding to the same case, then
there is another conflict (e1 ∪ e2) \ {a, b} ∈ E.

For a proof, one can basically consider all possible configurations of a, b, c, d on
a ruler and show that in each case the implied equations of the distances can be
rewritten such that other conflicts are implied. Thus, if there are three conflicts
intersecting in two marks, at least two of them correspond to the same case.
Hence, there is at least one additional conflict, yielding that the graph shown
in Figure 2b cannot be an induced subgraph in a conflict hypergraph.



Observe that, in order for a forbidden subgraph characterization for the conflict
hypergraphs to exist, the problem of deciding whether a given hypergraph is
isomorphic to a conflict hypergraph has to be decidable. We note that this is
the case and that it even lies in NP (details deferred to a full version of the
paper). Answering the question whether this problem is NP-hard is an important
challenge in this regard, as NP-hardness would rule out characterizations through
finitely many subgraphs.

3 Polynomial-Time Data Reduction and Kernelization

In this section, we present a kernelization algorithm for the Golomb Sub-
ruler (GSR) problem parameterized by the number k of deleted marks. We
use the hypergraph characterization and structural observations from Section 2
to derive data reduction rules such that after at most O(k(n+m)) processing
time, an equivalent instance with at most O(k3) marks remains.

Using the conflict hypergraphs, one can regard GSR as a special case of the
Hitting Set problem. If d is the maximum number of vertices in an edge, then
there is a problem kernel for Hitting Set with at most O(kd−1) vertices [1].
However, the reduction rules used for this problem kernel are not directly applica-
ble to our problem because the instances produced by these reduction rules may
not correspond to a ruler anymore: The high-degree rule used by Abu-Khzam [1]
removes edges and inserts parts of them into the hypergraph. These parts, how-
ever, can be of size one or two, violating conditions for conflict hypergraphs.
Abu-Khzam additionally applies a “crown-reduction” which deletes vertices while
keeping their incident edges intact. This operation is also not supported by
conflict hypergraphs of rulers.

We develop alternative data reduction rules that are simpler than the ones
given by Abu-Khzam. Despite this, the rules retain the problem kernel size
of a cubic number of vertices due to the restricted structure of the conflict
hypergraphs.

For our kernelization algorithm, we employ two modified high-degree reduction
rules. When exhaustively applied, one of these rules suffices to bound the number
of 3-conflicts in the conflict hypergraph, the other rule bounds the number
of 4-conflicts. With the help of these two bounds, we are then able to bound
the number of marks in a reduced instance. In the following description of the
reduction rules, we assume that the conflict hypergraph of the input ruler has
been computed, and is kept updated alongside the ruler. First we need the
following simple rule.

Reduction Rule 1 (Isolated marks). If there is a mark that is not present
in any conflict, then remove it.

It is clear that such marks never have to be deleted in order to make the input
ruler conflict-free.

The next two “high-degree” rules are similar in spirit to rules of Abu-
Khzam [1], but differ in decisive details.



The following reduction rule is based on the small hand forbidden subgraph
(Lemma 4) and the observation that if there are more than 3k 3-conflicts inter-
secting in a mark v, then v has to be deleted: This is because deleting any other
mark can destroy at most three 3-conflicts that contain v and, thus, at least k+ 1
marks would have to be deleted.

Reduction Rule 2 (High degree for 3-conflicts). If there is a mark v that
is contained in more than 3k 3-conflicts, then remove v from the ruler, remove
any conflicts containing v and decrement k by one.

Lemma 6. Rule 2 is correct and one application costs O(n+m) time. If Rule 2
cannot be applied to a ruler R and R can be made Golomb with at most k mark
deletions, then HR has at most 3k2 3-conflicts.

To lift the high-degree concept to 4-conflicts, we need the following auxiliary
lemma. It can be seen as an analogous replacement for Lemma 4.

Lemma 7. Let (R, k) be a yes-instance of GSR and let a < b be two marks
in R. The conflict hypergraph HR has at most 3k 4-conflicts that intersect in a, b.

The basic idea for the proof is to use Lemma 5 to show that if there are more
than 3k conflicts intersecting in a, b, then the additional edges implied form a
clique-like structure in which more than k marks have to be deleted. Thus, we
obtain the following reduction rule:

Reduction Rule 3 (High degree for 4-conflicts). If there is a mark v that
is contained in more than 3k2 4-conflicts, then remove v from the ruler, remove
any conflicts containing v, and decrement k by one.

Lemma 8. Rule 3 is correct and one application takes O(n+m) time. If Rule 3
cannot be applied to a ruler R and R can be made Golomb with at most k mark
deletions, then HR has at most 3k3 4-conflicts.

Concluding, we obtain the following theorem.

Theorem 2. Golomb Subruler has a problem kernel with at most 9k3+6k2+k
marks. The conflict hypergraph of the ruler of a kernelized instance has at
most 3k3 4-conflicts and 3k2 3-conflicts. The problem kernel can be computed
in O(k(n+m)) time if the conflict hypergraph is given.

Note that we can only achieve a running time of O(k(n + m)) if the conflict
hypergraph of the given ruler is also given. In the worst case, its computation
would imply an additional running time of O(n3) (Theorem 1).

4 A Simplified Hardness Construction

Meyer and Papakonstantinou [14] showed that Golomb Subruler (GSR) is NP-
hard via a reduction from an NP-hard SAT variant. However, the construction of
the ruler corresponding to the SAT formula is involved and hard to comprehend.
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Using our hypergraph characterization of rulers (Section 2), we provide a reduction
from the NP-complete Independent Set problem yielding a much simpler con-
struction. We observe that GSR is hard even when there are no three marks that
measure the same distance twice. We also note that the corresponding reduction
implies a W[1]-hardness result, that is, presumable fixed-parameter intractability,
for a modified version of GSR, where the size of the sought ruler depends on the
number of conflicts. Both results did not directly follow from the original proof.

In Independent Set a graph G = (V,E) and an integer l ≥ 1 are given
and it is asked whether there is a vertex set I ⊆ V in G such that no edge of G
is contained in I and |I| ≥ l. In Hypergraph Independent Set we simply
substitute hypergraphs for graphs. For readability we opt to use the word “edges”
for vertex sets of cardinality two and “hyperedges” for vertex sets of higher order
in this section.

The basic idea of our reduction from Independent Set is to output instances
of Hypergraph Independent Set that constitute conflict hypergraphs for
some rulers. Since the marks of a Golomb ruler R form an independent set in all
conflict hypergraphs of superrulers of R, in this way one achieves a reduction
from Independent Set to GSR.

Construction 1. Let a graph G and an integer l constitute an instance of
Independent Set. Construct the hypergraph H from G as follows: Add all
vertices of G to H. Let v1, . . . , vn be the vertices of G and let e1, . . . , em be
the edges in G. For every edge ej = {vij , vkj

} ∈ E(G), introduce two new
vertices cij ,j , ckj ,j into H and add the hyperedge ej ∪ {cij ,j , ckj ,j} to H. The
hypergraph H and the integer l + 2m constitute an instance of Hypergraph
Independent Set. See also Figure 3.

Lemma 9. Construction 1 is a polynomial-time many-one reduction from In-
dependent Set to Hypergraph Independent Set.

In order to prove NP-hardness for GSR, we now give a method to construct a
ruler R from a hypergraph H produced by Construction 1 such that the conflict
hypergraph HR of R is isomorphic to H.

Construction 2. Let H be a hypergraph derived from a graph as in Construc-
tion 1. Construct a ruler R as follows: For every vertex vi ∈ V (H), intro-
duce the mark 2(m+2)i into R, and for every vertex ci,j ∈ V (H), introduce the
mark 2(m+2)i + 2j − 1 into R.



Lemma 10. Construction 2 is polynomial-time computable and H is isomorphic
to HR.

For the proof of Lemma 10 we need the following observation.

Observation 1. The ruler {2i : i ∈ N} is a Golomb ruler.

Proof (Lemma 10). It is easy to see that Construction 2 can be carried out in
polynomial time. In order to prove the second part of the lemma, we show that
the function φ : V (H) → V (HR) that assigns each vertex vi the mark 2(m+2)i

and each vertex ci,j the mark 2(m+2)i + 2j − 1 is a hypergraph isomorphism
between H and HR. Thus, we prove that for each hyperedge in H, there is
a corresponding conflict in HR and vice-versa. For notational convenience, we
denote ci,0 := vi, 1 ≤ i ≤ n.

First consider a hyperedge in H and let this hyperedge contain the ver-
tices ci1,0, ci1,j , ci2,0, and ci2,j . Then, the four marks φ(ci1,0), φ(ci1,j), φ(ci2,0),
and φ(ci2,j) form a conflict in HR, because

2(m+2)i1 − (2(m+2)i1 + 2j − 1) = 2(m+2)i2 − (2(m+2)i2 + 2j − 1).

Next, consider a conflict in HR, that is, there are positive, not necessarily
distinct integers 1 ≤ i1, i2, i3, i4 ≤ n and 0 ≤ j1, j2, j3, j4 ≤ m such that

φ(ci1,j1)− φ(ci2,j2) = φ(ci3,j3)− φ(ci4,j4). (1)

Note that by allowing the variables jk to assume the value 0 we also catch
conflicts that contain marks corresponding to vertices vik . We claim that we can
assume that

i1 = i2 and i3 = i4. (2)

Provided that this is the case, Equation 1 simplifies to 2j1−2j2 = 2j3−2j4 , and this
yields J := |{j1, j2, j3, j4}| ≤ 2, because, by Observation 1, the ruler {2i : i ∈ N}
is a Golomb ruler and J = 3 ∨ J = 4 would imply that it contains a conflict.
This means that either (i) J = 1 ∨ j1 = j2, j3 = j4, or (ii) j1 = j3, j2 = j4.
In case (i) we have that ci1,j1 = ci2,j2 , ci3,j3 = ci4,j4 implying that Equation 1
does not represent a conflict in HR. Hence, we can assume that case (ii) holds.
Then, we get that either j1 = j3 = 0 or j2 = j4 = 0 as follows: For sake
of contradiction, assume that j1 6= 0 6= j2. This implies that there are four
vertices ci1,j1 , ci1,j2 , ci2,j1 , ci2,j2 in H. Then, however, by Construction 1, there are
two edges between the vertices vi1 , vi2 in the graph that H has been constructed
from; this is a contradiction. Without loss of generality, let j1 = 0. Thus, we get
that each conflict consists of marks of the form

φ(ci1,0)− φ(ci1,j2) = φ(ci3,0)− φ(ci3,j2) where 1 ≤ j2 ≤ m,

that is, each conflict represents a hyperedge in H.
We now have that φ is a hypergraph isomorphism if Condition 2 holds. For

Condition 2, we observe that the “2(m+2)i parts” and the “2j parts” of Equation 1



are independent in a sense: If we divide both sides of Equation 1 by 2m, every
2j part shrinks to at most 1. However, the absolute of the difference of two
2(m+2)i parts will still be at least 4. This implies that, if Equation 1 holds, the
statement 2(m+2)i1 − 2(m+2)i2 = 2(m+2)i3 − 2(m+2)i4 holds, too. By Observation 1
we again get that |{i1, i2, i3, i4}| ≤ 2. Now, if i1 6= i2, then i1 = i3, i2 = i4, and
we get an equation that is equivalent to Equation 1 such that Condition 2 holds,
by simply adding φ(ci2,j2) − φ(ci3,j3) to both sides and renaming the vertices
appropriately. ut

Lemma 10 implies the following theorem:

Theorem 3. Golomb Subruler is NP-complete, even if all conflicts in the
input instance are 4-conflicts.

5 Conclusion

In this work, we continued studies concerning the algorithmic complexity of
Golomb Subruler (GSR) In particular, we initiated research on its parame-
terized complexity (particularly, a cubic-size problem kernel was developed) and
studied combinatorial properties of GSR instances, which can be considered as
special Hitting Set problems. Some preliminary experimental investigations
indicated that our data reduction rules and simple search tree strategies may
be beneficial in practical studies for Golomb ruler construction. However, it
currently seems most promising to try to combine the data reduction with known
approaches such as the Distributed.net project [7].

Golomb ruler construction leads to numerous challenges for algorithmic and
complexity-theoretic research. For instance, there is the unsettled computational
complexity of constructing shortest Golomb rulers of order n (where input n
is specified in unary) [6]. This has been open for at least nine years. Moreover
there are numerous natural variations of Golomb ruler construction [14, 19]. In
this paper, we focused on GSR introduced by Meyer and Papakonstantinou [14].
Even restricting attention to GSR, a number of interesting research challenges
remain: Which graphs constitute a complete forbidden (induced) subgraph char-
acterization of conflict hypergraphs (see Section 2)? Can a given hypergraph
be recognized to be a conflict hypergraph in polynomial time, or is this task
NP-hard? Are there other interesting (structural) parameterizations for GSR
in the spirit of multivariate algorithmics [11, 16]?
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