
ar
X

iv
:1

41
1.

31
64

v2
 [

cs
.C

C
]

 1
4

N
ov

 2
01

5

Noname manuscript No.
(will be inserted by the editor)

A linear-time algorithm for the orbit problem over

cyclic groups

Anthony W. Lin · Sanming Zhou

Received: date / Accepted: date

Abstract The orbit problem is at the heart of symmetry reduction methods for
model checking concurrent systems. It asks whether two given configurations in
a concurrent system (represented as finite strings over some finite alphabet) are
in the same orbit with respect to a given finite permutation group (represented
by their generators) acting on this set of configurations by permuting indices. It
is known that the problem is in general as hard as the graph isomorphism prob-
lem, whose precise complexity (whether it is solvable in polynomial-time) is a
long-standing open problem. In this paper, we consider the restriction of the orbit
problem when the permutation group is cyclic (i.e. generated by a single permu-
tation), an important restriction of the problem. It is known that this subproblem
is solvable in polynomial-time. Our main result is a linear-time algorithm for this
subproblem.

Keywords symmetry reductions · model checking · cyclic groups · orbits

1 Introduction

Since the inception of model checking (cf. [9]), a key challenge in verifying con-
current systems has always been how to circumvent the state explosion problem,
which is exponential in the number of processes and in the number of finite-domain
variables. The fundamental algorithmic problem can essentially be construed as a
reachability problem in an exponentially-sized graph that is succinctly represented
(e.g. in some concurrent programming language). Among others, symmetry reduc-
tion [20,11,16] has emerged to be an effective technique in combatting the state

A. W. Lin
Yale-NUS College
10 College Ave West, Singapore 138609
Tel.: +65 6601-3699
E-mail: anthony.w.lin@yale-nus.edu.sg

S. Zhou
School of Mathematics and Statistics
University of Melbourne
Parkville, Victoria 3010, Australia.

http://arxiv.org/abs/1411.3164v2

2 Anthony W. Lin, Sanming Zhou

explosion problem. The essence of symmetry reduction is to identify symmetries in
the system and avoid exploring states that are “similar” (under these symmetries)
to previously explored states, thereby speeding up model checking.

Every symmetry reduction method has to deal with the following two compu-
tationally difficult problems: (1) how to identify symmetries in the given system,
and (2) how to check that two configurations are similar under these symmetries.
To simplify our discussion of Problem 1, we will restrict our discussion to process
symmetries. [Extensions to data symmetries are possible, e.g., see the recent result
of [28], which gives a general reduction of process and data symmetry identification
in concurrent systems to symmetry identification in the solutions to constraints
in the constraint-satisfaction problem.] In this case, for concurrent systems with
n processes, Problem 1 amounts to searching for a group G of permutations on
[n] := {1, . . . , n} such that the system behaves in an identical way under the ac-
tion of permuting the indices of the processes by any π ∈ G. For example, for a
distributed protocol with a ring topology, the group G could be a rotation group
generated by the “cyclical right shift” permutationRS that maps i 7→ i+1 mod n
for each i ∈ [n]. See Example 1 for concrete examples. Although Problem 1 is com-
putationally hard in general, a lot of research advances has been made in the past
decade (e.g. see the recent survey [27], and also the recent paper [28] for a more
general technique that covers both process and data symmetries). Now the group
G partitions the state space of the concurrent system (i.e. Γn for some finite set Γ)
into equivalence classes called (G-)orbits. Problem 2 is essentially the orbit prob-
lem (over finite permutation groups): given G and two configurations v,w ∈ Γn,
determine whether v and w are in the sameG-orbit. For example, if G is generated
by RS with n = 4, the two configurations (1, 1, 0, 0) and (0, 0, 1, 1) are in the same
orbit. These two computational problems can be studied independently. The focus
of this paper is the second problem, i.e., the orbit problem.

Example 1 Two token-passing protocols with multiple tokens: These
examples are nondeterministic versions of the randomised self-stablising pro-
tocol of Israeli and Jalfon [21] (also see [24]).

T T

In the first example (left figure), there are n processes P1, . . . , Pn con-
nected in a ring-shaped topology (i.e. the neighbours of Pi are Pi+1 mod n and
Pi−1 mod n). There are m ≤ n tokens in the network, each held by a unique
process. At any given step, a unique process Pi holding a token is nondeter-
ministically chosen by a scheduler and is permitted to pass the token to its
neighbour Pj (i.e. either the left Pi−1 mod n neighbour or the right neightbour
Pi+1 mod n). If Pj already had a token, it will simply merge the two tokens
into one, which reduces the total number of tokens in the network by 1. For

A linear-time algorithm for the orbit problem over cyclic groups 3

each number n of processes, this description yields a transition system. For
example, configurations of the system are of the form (α1, . . . , αn) ∈ {⊥,⊤}n,
where ⊤ (resp. ⊥) constitutes that the process holds (resp. does not hold) a
token. The symmetry group Gn of the transition system is the Dihedral group
Dn, which is generated by the cyclical right shift RS (i 7→ i+ 1 mod n) and
the reflection (i 7→ n− i, for each i ∈ {1, . . . , n}). In the standard composition
of disjoint cycles notation, these permutations can be written as (1, 2, . . . , n)
and (1, n)(2, n− 1) · · · (⌊n/2⌋, ⌈n/2⌉), respectively.

In the second example (right figure above), we modify the first example
by disconnecting the line between P1 and Pn, which results in a line-shaped
topology. In effect, P1 (resp. Pn) can only pass a token to P2 (resp. Pn−1).
The symmetry group G′

n of the system in this case is the group generated by
the reflection mapping that maps i 7→ n− i, for each i ∈ {1, . . . , n}.

The orbit problem (OP) was first studied in the context of model checking
by Clarke et al. [11] in which it was shown to be in NP but is as hard as the
graph isomorphism problem, whose precise complexity (whether it is solvable in
polynomial-time) is a long-standing open problem. The difficulty of the problem is
due to the fact that the input group G is represented by a set S of generators and
that the size of G can be exponential in |S| in the worst case. There is also a closely
related variant of OP called the constructive orbit problem (COP), which asks to
compute the lexicographically smallest element w ∈ Γn in the orbit of a given
configuration v ∈ Γn with respect to a given group G. OP is easily reducible to
COP, though the reverse direction is by no means clear. COP was initially studied
in the context of graph canonisation by Babai and Luks [2], in which COP was
shown to be NP-hard (in contrast, OP is unlikely to be NP-hard since it would
imply the collapse of the polynomial-time hierarchy to its second level1). In the
context of model checking, COP was first studied by Clarke et al. [10], in which a
number of “easy groups” for which COP becomes solvable in P are given including
polynomial-sized groups (e.g. rotation groups), the full symmetry group Sn (i.e.
containing all permutations on [n]), and disjoint/wreath products of easy groups
(cf. [15]).

In this paper, we consider the orbit problem over cyclic groups (i.e. generated
by a single permutation π ∈ Sn), which is an important subproblem of OP. In the
case of rotation groups, one can do a simple enumeration of the group elements
and solve the orbit problem in polynomial-time. [More precisely, if the group has
m elements, this algorithm runs in time O(mn), which is already quadratic over
rotation groups.] However, cyclic subgroups of Sn can even be of size exponential in
n (see Proposition 3 below), which rules out this enumeration strategy. It turns out
that the orbit problem over cyclic groups is known to be solvable in polynomial-
time (e.g. see [2,23], where this is shown for a much larger class of permutation

1 For, if it were NP-hard, then the coset intersection problem (for permutation groups)
would be NP-hard, owing to its polynomial-time equivalence to the orbit problem [10]. By the
well-known results of [3,17] (also see [18, Section 6.5, Chapter 27]), which essentially shows
that the coset intersection problem is in the complexity class coAM (contained in the second
level of the polynomial hierarchy), this would mean that the polynomial hierarchy collapses to
the second level.

4 Anthony W. Lin, Sanming Zhou

groups denoted as Γd for every fixed d, which contains solvable groups). Another
way to see that OP over cyclic groups is solvable in polynomial-time is by a
quadratic-time reduction to the classical orbit problem over rational matrices [22]:
given a rational n-by-n matrix M and two rational vectors v,w ∈ Qn, determine
if there exists k ∈ N such that Mkv = w. In fact, the two problems coincide when
M is restricted to permutation matrices [7], i.e., 0-1 matrices with precisely one
column for each row with entry 1. That OP over cyclic groups is in P follows from
Kannan and Lipton’s celebrated result [22] that OP over rational matrices is in P.

Mere polynomial time-complexity is far from sufficient for the purpose of sym-
metry reduction methods, since a model checker will have to invoke an algorithm
for the orbit problem once each time a new configuration in the given transition
system is visited (e.g. see [27]). Recent case studies in [28] suggest that the cost
of solving the orbit problem often becomes extremely prohibitive, even more so
than the cost of computing the symmetries2. Therefore, lightweight methods for
dealing with the orbit problem are crucial for the success of symmetry reductions
in model checking.

Contributions. In this paper, we provide an algorithm for the orbit problem
over cyclic groups that runs in linear-time. To this end, we provide a linear-time
reduction to the problem of solvability of systems of linear congruence equations.
The reduction exploits subtle connections to the string searching problem.

As for the solvability of systems of linear congruence equations, there is a
well-known algorithm (based on the extended Euclidean algorithm) that runs in
linear-time assuming constant-time integer arithmetic operations. However, when
we measure the number of bit operations (i.e. bit complexity model), it turns out
that the algorithm runs in time cubic in the number of equations in the systems.
To address this issue, we restrict the problem to input instances provided by our
reduction from the orbit problem. We offer two solutions. Firstly, we show that
the average-case complexity of the algorithm under the bit complexity model is
O(log5 n), which is sublinear [Here, n measures the size of the input to the orbit
problem.] Secondly, we provide another algorithm that uses at most linearly many
bit operations in the worst case (though on average it is worse than the first
algorithm).

It turns out that permutation groups generated by two permutations already
suffice to make the orbit problem as hard as the graph isomorphism problem.
This is almost a direct corollary of the polynomial-time reduction in [11] from the
graph isomorphism problem to the orbit problem over some group G. It turns out
the group G that is produced by the reduction of [11] is not any arbitrary group
and could easily be generated by two generators (for the same reason that the full
symmetry group Sn on {1, . . . , n} can be generated by the permutations (1, 2) and
(1, 2, . . . , n)).

Organisation. Section 2 contains basic definitions, notations, and results that will
be used throughout the rest of the paper. We provide our linear-time reduction
from the orbit problem to equations solving in Section 3 (Algorithm 2). Thus far,
we assume that arithmetic operations take constant time. We deal with the issue
of bit complexity in Section 4. We conclude with future work in Section 5.

2 Some examples in [28] (even with a small number of processes) require a model checker to
invoke an algorithm for the orbit problem hundreds to thousands of times for one transition
system.

A linear-time algorithm for the orbit problem over cyclic groups 5

Acknowledgment. We thank the anonymous referees of the conference version
for their helpful feedback. Lin was supported by Yale-NUS Startup Grant; part
of the work was done when Lin was at Oxford supported by EPSRC (H026878).
Zhou was supported by ARC (FT110100629).

2 Preliminaries

General Notations: We use log (resp. ln) to denote logarithm in base 2 (resp.
natural logarithm). We use the standard interval notations to denote a subset of
integers within that interval. For example, [i, j) denotes the set {k ∈ Z : i ≤ k <
j}. Likewise, for each positive integer n, we use [n] to denote the set {1, . . . , n}.
We shall also extend arithmetic operations to sets of numbers in the usual way:
whenever S1, S2 ⊆ Z, we define S1 + S2 := {s1 + s2 : s1 ∈ S1, s2 ∈ S2} and
S1S2 := {s1 × s2 : s1 ∈ S1, s2 ∈ S2}. In the context of arithmetic over 2Z, we will
treat a number n ∈ N as the singleton set {n}. That way, for a, b ∈ N, the notation
a + bZ refers to the arithmetic progression {a + bc : c ∈ Z}, where a (resp. b) is
called the offset (resp. period) of the arithmetic progression. Likewise, for a subset
S ⊆ N, we use gcd(S) to denote the greatest common divisor of S.

We will use standard notations from formal language theory. Let Γ be an
alphabet whose elements are called letters. A word (or a string) w over Γ is a
finite sequence of elements from Γ . We use Γ ∗ to denote the set of all words over
Γ . The length of w is denoted by |w|. Given a word w = a1 . . . an, the notation
w[i, j] denotes the subword ai . . . aj . For a sequence σ = i1, . . . , ik ∈ [n]∗ of distinct
indices of w, we write w[σ] to denote the word ai1 . . . aik . We also define RS(w)
to be ana1a2 . . . an−1, i.e., the word w cyclically right-shifted.

Number Theory: In the sequel, we will use some standard results in number
theory and algorithmic number theory. The first result is Linear Congruence The-
orem and its application to solving a system of linear congruences. The second
result is Chinese Remainder Theorem.

Linear Congruence Theorem (e.g. see [13, Chapter 31.4] or [26, Theorem 4.5])
gives a fast method of determining whether an equation of the form ax ≡ b
(mod n) is solvable and, whenever it is solvable, the set of solutions to x.

Lemma 1 (Linear Congruence Theorem) The equation ax ≡ b (mod n) is
solvable for the unknown x iff d|b, where d = gcd(a, n). Furthermore, if it is
solvable, then the set of solutions equals x0 + (n/d)Z, for some x0 ∈ [0, n/d) that
can be computed in time O(logn) (assuming constant-time arithmetic operations).

An immediate application of Linear Congruence Theorem is to determine the
set of solutions to a system of linear congruences. A system of linear congruence
equations is a relation of the form

∧m
i=1 x ≡ ai (mod bi). [In general, a system of

linear congruence equations might take an equation of the form ax ≡ b (mod n),
but we do not need this general form in the sequel.] The set of solutions x ∈ Z to
this system is denoted by [[

∧m
i=1 x ≡ ai (mod bi)]], which equals

⋂m
i=1 (ai + biZ).

The system is solvable if the solution set is nonempty. We use false to denote
x ≡ 0 (mod 2) ∧ x ≡ 1 (mod 2), which is not solvable.

6 Anthony W. Lin, Sanming Zhou

Proposition 1 For any solvable system of linear congruence equations ϕ(x) :=
∧m

i=1 x ≡ ai (mod bi), we have [[ϕ(x)]] = [[x ≡ a (mod b)]] for some a, b ∈ Z. Fur-
thermore, there exists an algorithm which computes a, b in linear time (assuming
constant-time arithmetic operations).

Proposition 1 is witnessed by Algorithm 1, which is simply a repeated application
of Linear Congruence Theorem.

Algorithm 1 Solving a system of modular arithmetic equations

Input: A system of modular arithmetic equations
∧m

i=1 x ≡ ai (mod bi)
Output: Solution set [[

∧m
i=1 x ≡ ai (mod bi)]] as ∅ or an arithmetic progression a+ bZ.

a := 0; b := 1;
for i = 1, . . . ,m do

ϕ(y) := by ≡ ai − a (mod bi);
Apply algorithm from Lemma 1 on ϕ returning either ∅ or a′ + b′Z for [[ϕ]];
if [[ϕ]] = ∅ then return NO else a := a′b+ a; b := bb′ end if

end for
return a+ bZ;

Remark 1 The number of bits that is used to maintain a and b in the worst case is
linear in the size

∑m
j=1(logaj + log bj) of the input. This justifies treating a single

arithmetic operation as a constant-time operation. We will discuss bit complexity
in Section 4.

In the sequel, we will also use Chinese Remainder Theorem (e.g. see [13, Section
31.5] or [26, Theorem 2.6]).

Proposition 2 (Chinese Remainder Theorem) Let n1, . . . , nk be pairwise
relatively prime positive integers, and n =

∏k
i=1 ni. The ring Zn and the direct

product of rings Zn1
× · · · × Znk

are isomorphic under the function σ : Z →
Zn1

× · · · × Znk
with σ(x) := (x mod n1, . . . , x mod nk) for each x ∈ Z.

Groups: We briefly recall basic concepts from group theory and permutation
groups (cf. see [8]). A group G is a pair (S, ·), where S is a set and · : (S×S) → S
is a binary operator satisfying: (i) associativity (i.e. g1 · (g2 ·g3) = (g1 ·g2) ·g3), (ii)
the existence of a (unique) identity element e ∈ S such that g · e = e · g = g for all
g ∈ S, and (iii) closure under inverse (i.e. for each g ∈ G, there exists g−1 ∈ G such
that g · g−1 = g−1 · g = e). When it is clear from the context, we will write g · g′ as
gg′. The order ord(G) of the group G is defined to be the number |S| of elements
in G. This paper concerns only finite groups, i.e., groups G with ord(G) = |S| ∈ N.
For each n ∈ N, we define gn by induction: (i) g0 = e, and (ii) gn = gn−1 · g. The
order ord(g) of g ∈ G is the least positive integer n such that gn = e.

A subgroup H of G = (S, ·) (denoted as H ≤ G) is any group (S′, ·H) such that
S′ ⊆ S and ·H and · agree on S′. Lagrange’s Theorem states that the order ord(H)
of H divides the order ord(G) of G. Given any subset X ⊆ S, the subgroup 〈X〉
of G generated by X consists of those elements of G which can be expressed as a
finite product of elements of X and their inverses. If H = 〈X〉, then X is said to
generate H. A cyclic group is a group generated by a singleton set X = {g}.

An action of a group G = (S, ·) on a set Y is a function × : S × Y → Y such
that for all g, h ∈ S and y ∈ Y : (1) (gh)× y = g× (h× y), and (2) e× y = y. The
stabiliser of x by G is the subgroup StabG(x) := {g ∈ G : g × x = x} of G. If G is
understood, Stab(x) will be used to denote StabG(x). The (G-)orbit containing y,

A linear-time algorithm for the orbit problem over cyclic groups 7

denoted Gy, is the subset {g× y : g ∈ G} of Y . The action × partitions the set Y
into G-orbits. When the meaning is clear, we shall omit mention of the operator
×, e.g, condition (2) above becomes ey = y.

Permutation Groups. A permutation on [n] is any bijection π : [n] → [n].
The set of all permutations on [n] forms the (nth) full symmetry group Sn under
functional composition.We shall use the notation Id to denote the identity element
of each Sn. A word w = a0 . . . ak−1 ∈ [n]∗ containing distinct elements of [n] (i.e.
ai 6= aj if i 6= j) can be used to denote the permutation that maps ai 7→ ai+1 mod k

for each i ∈ [0, k) and fixes other elements of [n]. In this case, w is called a cycle
(more precisely, k-cycle or transpositions in the case when k = 2), which we
will often write in the standard notation (a0, . . . , ak−1) so as to avoid confusion.
Observe that w and RS(w) represent the same cycle c. We will however fix a
particular ordering to represent c (e.g. the word provided as input to the orbit
problem). For this reason, if v ∈ Γn for some alphabet Γ , the notation v[c] is well-
defined (see General Notations above), which means projections of v onto elements
with indices in c, e.g., if v = (1, 1, 1, 0) and c = (1, 4, 2), then v[c] = (1, 0, 1). Any
permutation can be written as a composition of disjoint cycles [8]. Each subgroup
G = (S, ·) of Sn acts on the set Γn (over any finite alphabet Γ) under the group
action of permuting indices, i.e., for each π ∈ S and v = (a1, . . . , an) ∈ Γn, we
define πv := (aπ−1(1), . . . , aπ−1(n)).

Complexity Analysis: We will assume that permutations will be given in the
input as a composition of disjoint cycles. It is easy to see that permutations can
be converted back and forth in linear time from such representations and the
representations of permutations as functions. The size ‖n‖ of a number n ∈ N is
defined to be the length of the binary representation of n, which is ⌊logn⌋+1. The
size ‖c‖ of a cycle c = (a1, . . . , ak) on [n] is defined to be

∑k
i=1 ‖ai‖ (in contrast,

the length |c| of c is k). For a permutation π = c1 · · · cm where each ci is a cycle,
the size ‖π‖ of π is defined to be

∑m
i=1 ‖ci‖. We will use standard asymptotic

notations from analysis of algorithms (big-O and little-o), cf. [13]. We also use
the standard ∼ notation: f(n) ∼ g(n) iff limn→∞ f(n)/g(n) = 1. We will use the
standard RAM model that is commonly used when analysing the complexity of
algorithms (cf. [13]). In Section 3, we will assume that integer arithmetic takes
constant time. Later in Section 4, we will use the bit complexity model (cf. [13]),
wherein the running time is measured in the number of bit operations.

3 Reducing to solving a system of linear congruence equations

The main result of the paper is:

Theorem 1 There is a linear-time algorithm for solving the orbit problem when
the acting group is cyclic.

In this section, we will prove this theorem assuming constant-time arithmetic op-
erations. In the next section, we will show that this theorem still holds for the bit
complexity model.

Before we proceed to the algorithm, the following proposition shows why the
naive algorithm that checks whether giv = w, for a given permutation g ∈ Sn and
for each i ∈ [0, ord(g)), actually runs in exponential time.

8 Anthony W. Lin, Sanming Zhou

Proposition 3 There exists a sequence {Gi}∞i=1 of cyclic groups Gi = 〈gi〉 such
that ord(gi) is exponential in the size ‖gi‖ of the permutation gi.

Proof Let pn denote the nth prime. The Prime Number Theorem states that pn ∼
n logn (cf. [19]). For each i ∈ Z>0, we define a cycle ci of length pi by induction on
i. For i = 1, let c1 = (1, 2). Suppose that ci−1 = (j, . . . , k). In this case, we define ci
to be the cycle (k+1, . . . , k+pi). To define the sequence {gi}∞i=1 of permutations,
simply let gi = Πi

j=1ci. For example, we have g3 = (1, 2)(3,4, 5)(6,7, 8, 9, 10).
Since ci’s are disjoint, the order ord(gi) of gi is the smallest positive integer k such
that ckj = Id for all j ∈ [i]. If Sj denotes the set of integers k satisfying ckj = Id,

then ord(gi) is precisely the smallest positive integer in the set
⋂i

j=1 Sj . It is
easy to see that Sj = pjZ, which is the set of solutions to the linear congruence
equation x ≡ 0 (mod pj). Therefore, by the Chinese Remainder Theorem (cf.
Propositon 2), the set

⋂i
j=1 Sj coincides with the arithmetic progression tiZ with

ti :=
∏i

j=1 pj . This implies that ord(gi) = ti. Now the number ti is also known as

the ith primorial number [1] with ti ∼ e(1+o(1))i log i, which is a corollary of the
Prime Number Theorem. On the other hand, the size of gi is

∑

(i) :=
∑i

j=1 pi,

which is known to be ∼ 1
2 i

2 ln i (cf. [4]). Therefore, ord(gi) is exponential in ‖gi‖
as desired. ⊓⊔

Algorithm 2 Reduction to system of modular arithmetic equations
Input: A permutation g = c1 · · · cm ∈ Sn, a finite alphabet Γ , and v,w ∈ Γn.
Output: A system of modular arithmetic equations, which is satisfiable iff ∃i ∈ N : gi(v) = w.

// First solve for each individual cycle
for all i = 1, . . . ,m do

Compute the length |ci| of the cycle ci;
Compute an ordered list S′

i ⊆ [0, |ci|) of numbers r with cri (v[ci]) = w[ci];
if S′

i = ∅ then return false end if
if |S′

i| = 1 then let ai be the member of Si; bi := |ci|; end if
if |S′

i| > 1 then ai := min(S′

i); a
′

i := min(S′

i \ {ai}); bi := a′i − ai; end if
end for
// Now for each i ∈ [1,m] we have a modular arithmetic equation x ≡ ai (mod bi)
return YES iff there exists x ∈ N satisfying

∧m
i=1 x ≡ ai (mod bi)

Our linear-time reduction that witnesses Theorem 1 is given in Algorithm 2. In
this algorithm, the acting group isG = 〈g〉 with g ∈ Sn, expressed as a composition
of disjoint cycles in a standard way, say, g = c1c2 · · · cm where each ci is a cycle.
Also part of the input is two strings v = v1 . . . vn,w = w1 . . . wn ∈ Γn over a finite
alphabet Γ . The orbit problem is to check whether fv = w for some f ∈ G, i.e.,
f = gr for some r ∈ Z. Since ci’s are pairwise disjoint cycles, the question reduces
to checking if there exists r ∈ N such that

∀i ∈ [1,m] : (criv)[ci] = w[ci]

In other words, for each i ∈ [1,m], applying the action cri to v gives us w when
restricted to the indices in ci. To simplify notations in the above equation, we fix
a letter a ∈ Γ and, for each i ∈ [1,m], let the notation vi (resp. wi) denote the
string v (resp. w) in which all letters but those in positions ci are replaced by a.
The equation above, therefore, amounts to

∀i ∈ [1,m] : crivi = wi (∗)

A linear-time algorithm for the orbit problem over cyclic groups 9

Essentially, Algorithm 2 sequentially goes through each cycle ci and computes the
set Si of solutions r to crivi = wi as the set of solutions to the linear congruence
equation x ≡ ai (mod bi). Therefore, the set of solutions to (*) is precisely the set
of solutions to the system of congruence equations

∧m
i=1 x ≡ ai (mod bi), which

by Proposition 1 can be solved in linear time.
To compute Si, we first prove a simple canonical form for Si.

Lemma 2 For each i = 1, . . . ,m, either Si = ∅ or Si = ai + biZ for some
ai ∈ [0, bi) and bi ∈ (0, |ci|] where bi divides |ci|.

Proof Let Gi = 〈ci〉 be the group generated by ci. Consider the stabiliser H :=
Stab(vi) of vi by Gi. Then, H is a subgroup of Gi. Since Gi is a cyclic group of
order |ci|, H is a cyclic group generated by some element h = cki , where k is the
smallest integer in (0, |ci|] such that cki ∈ H. It is known that k must be a divisor
of |ci|. This implies that the orbit containing vi consists of precisely k elements
vi, civi, . . . , c

k−1
i vi.

Suppose that Si 6= ∅. Let s be the smallest nonnegative integer in Si, i.e.,
csivi = wi. Then, s ∈ [0, k). We claim that Si = s + kZ. We have s + kZ ⊆ Si

since cs+kn
i vi = csi (c

kn
i vi) = csivi. Conversely, if t ∈ Si, then ctvi = cpvi, where

p is the smallest nonnegative integer such that p ≡ t (mod k). Then, it must be
the case that p = s since vi, civi, . . . , c

k−1
i vi are all different. Thus, it follows that

Si ⊆ s+ kZ. Letting ai = s and bi = k completes the proof. ⊓⊔

In view of Lemma 2, it suffices to show how to determine if Si 6= ∅ and, if so,
compute ai and bi in time O(‖ci‖). We first compute the length |ci| of the cycle
ci, which can be done in time O(‖ci‖). [This is the same as how to compute the
length of a list.] We proceed by computing representatives S′

i ⊆ [0, |ci|) for Si.
This suffices to compute ai and bi since:

– If S′

i = ∅, then Si = ∅.
– If S′

i = {a}, then Si = a+ |ci|Z.
– If |S′

i| > 1, then Si = ai + biZ, whenever ai and ai + bi are the two smallest
numbers in S′

i.

This case-by-case treatment is reflected in Line 3–Line 5 within the for-loop in
Algorithm 2. To compute S′

i, we collect a subset of numbers h ∈ [0, |ci|) such that
chi vi = wi. A quadratic algorithm for this is easy to come up with: sequentially
go through h ∈ [0, |ci|) while computing the current chi , and save h if chi vi = wi

holds. One way to obtain a linear-time algorithm is to reduce our problem to the
string searching problem: given a “text” T ∈ Σ∗ (over some finite alphabet Σ)
and a “pattern” P ∈ Σ∗, find all positions i in T such that T [i, i+ |P |] = P . This
problem is solvable in time O(|T |+ |P |) by Knuth-Morris-Pratt (KMP) algorithm
(e.g. see [13]).

We now show how to reduce our problem to the string searching problem
in linear time. We will also use the following running example to illustrate the
reduction: c = (6, 5, 7, 3, 2, 1), v = 010001111, and w = 101110001, where the
positions in v and w that are modified by c are underlined. Below, we will work
with the equivalent equation (criv)[ci] = w[ci] (i.e. instead of crivi = wi). Suppose
that c := ci = (j1, . . . , jk). We have v[c] = vj1 . . . vjk and w[c] = wj1 . . . wjk .

Lemma 3 (cv)[c] = RS(v[c]).

10 Anthony W. Lin, Sanming Zhou

In other words, if Dom(c) = {j1, . . . , jk}, the effect of c on v when restricted to
Dom(c) coincides with applying a cyclical right shift on the string v[c]. Follow-
ing our running example, it is easy to check that v[c] = 101010 and (cv)[c] =
RS(v[c]) = 010101.

Proof (of Lemma 3) Let u = u1 . . . uk := (cv)[c] and u = u′

1 . . . u
′

k := RS(v[c]).
It suffices to show that ut = u′

t for all t ∈ Zk. By definition of RS, it follows that
u′

t = vjt−1
. Now suppose that v′ = v′1 . . . v

′

n := cv. Then

v′j :=

{

vj if j /∈ Dom(c)
vj′ if j ∈ Dom(c) and, for some t ∈ Zk, j = jt+1 and j′ = jt.

So, for t ∈ Dom(c), we have ut = ((cv)[c])[t] = (v′[c])[t] = v′jt = vjt−1
. This proves

that ut = u′

t. ⊓⊔

Lemma 4 For each r ∈ N, we have (crv)[c] = RS
r(v[c]).

Proof This lemma can be proved by induction on r ∈ N. The base case r = 0
is vacuous. For the induction case, we assume the induction hypothesis: cr−1v =
RS

r−1(v[c]). It follows that

(crv)[c] = (c(cr−1v))[c] = RS((cr−1v)[c]) = RS(RS
r−1(v[c])) = RS

r(v[c]).

The third equality is by Lemma 3, while the fourth equality is by the induction
hypothesis. This completes the proof. ⊓⊔

Define the text T := v[c]v[c] and the pattern P := w[c]. Observe that, for
each r ∈ [k], P is matched at position r in T iff RS

r−1(v[c]) = w[c]. Therefore,
after running the KMP algorithm with the solution set S′, the set S′

i will be
{r − 1 : r ∈ S′}. Observe that this step takes time O(|T |+ |P |) = O(‖c‖).

Example 2 Continuing with our running example, it follows that T = v[c]v[c] =
101010101010 and P = w[c] = 010101. We see that P matches T at positions
S′ = {2, 4, 6}. This implies that S′

i = {1, 3, 5} and so the set Si of solutions r ∈ Z

to the equation crvi = wi is 1 + 2Z. �

Summing up. To sum up, the time spent computing the linear congruence equa-
tion x ≡ ai (mod bi) for each i ∈ [1,m] is O(‖ci‖). Therefore, our reduction runs
in time O(

∑m
i=1 ‖ci‖) = O(‖g‖), which is linear in input size. Therefore, invoking

Proposition 1 on the resulting system of linear congruence equations, we obtain
the set of solutions to (*) in linear time.

Example 3 Let us continue with our running example. Let

g1 := c(4, 8) = (6, 5, 7, 3, 2, 1)(4,8), g2 := c(4, 8, 9) = (6, 5, 7, 3, 2, 1)(4, 8, 9).

Then, running Algorithm 2 on g1 yields the system x ≡ 1 (mod 2)∧x ≡ 1 (mod 2),
which is equivalent to x ≡ 1 (mod 2). Running Algorithm 2 on g2 yields the system
x ≡ 1 (mod 2) ∧ x ≡ 1 (mod 3). Both systems are solvable. �

A linear-time algorithm for the orbit problem over cyclic groups 11

4 Making do with linearly many bit operations

Thus far, we have assumed that arithmetic operations take constant time. In this
section, since Algorithm 1 makes a substantial use of basic arithmetic operations,
we will revisit this assumption. It turns out that, although our reduction (Algo-
rithm 2) to solving a system of linear congruence equations runs in linear time
in the bit complexity model, the algorithm for solving the system of equations
(Algorithm 1) uses at least a cubic number of bit-arithmetic operations. The main
results in this section are two-fold: (1) on inputs given by our reduction, Algo-
rithm 1 runs in sublinear time (more precisely, O(log5 n)) on average in the bit
complexity model, and (2) there exists another algorithm for solving a system of
linear congruence equations (with numbers in the input represented in unary) that
runs in linear time in the bit complexity model in the worst case.

We begin with two lemmas that provide the running time of Algorithm 2 and
Algorithm 1 in the bit complexity model.

Lemma 5 Algorithm 2 runs in linear time in the bit complexity model.

Proof On ith iteration, the number |ci| is stored in binary counter and can be
computed by counting upwards from 0 and incrementing by 1 as we go through the
elements in ci. Although a single increment by 1 might take O(|ci|) bit operations
in the worst case (since we have to propagate the carry bit), it is known (e.g.
see [13, Chapter 17, p. 454]) that the entire sequence of operations actually takes
time O(|ci|). Finally, since addition and substraction of two numbers can easily be
performed in O(β) time on numbers that use at most β bits, the operation bi :=
a′i − ai on the last line of the iteration takes at most O(log |ci|) time. Therefore,
accounting for all the cycles, the algorithm takes

∑m
i=1 O(‖ci‖) = O(

∑m
i=1 ‖ci‖) =

O(‖g‖), which is linear in the input size. ⊓⊔

Lemma 6 On an input
∧m

i=1 x ≡ ai (mod bi) with N = max{bi : i ∈ [1,m]},
Algorithm 1 uses at most m logN bits to store any numeric variables. Furthermore,
the algorithm runs in time O(m3 log2 N) in the bit complexity model.

Proof On ith iteration, the number of bits used to store a and b grow by at most
log bi. On the other hand, the invariant that a′, b′ ∈ [0, bi) is always maintained on
the ith iteration and so they only need at most logN bits to represent throughout
the algorithm. Hence, the algorithm uses M = O(m logN) bits to store a, b, a′,
and b′. Extended Euclidean Algorithm runs in time O(M2) on inputs where each
number uses at most M bits (cf. [13, Problem 31-2]), which also bounds the time
it takes on each iteration. Therefore, the algorithm takes at most O(mM2) =
O(m3 log2 N) in the bit complexity model. ⊓⊔

We now provide an average case analysis of the running time of Algorithm 1
on system of linear congruence equations given by our reduction. The input to the
orbit problem over cyclic groups includes a permutation g ∈ Sn and two vectors
v,w ∈ Γn. We briefly recall the setting of average-case analysis (cf. [25]). Let ΠN

be the set of all inputs to the algorithm of size N . Likewise, let ΣN be the sum
of the costs (i.e. running time) of the algorithm on all inputs of size N . Hence, if
ΠN,k is the cost of the algorithm on input of size N with running time k, then
ΣN =

∑

k kΠN,k. The average case complexity of the algorithm is defined to be
ΣN/ΠN .

12 Anthony W. Lin, Sanming Zhou

Theorem 2 The expected running time of Algorithm 1 in the bit complexity model
on inputs provided by Algorithm 2 is O(log5 n).

Proof The size of a single permutation g ∈ Sn is O(n) and additionally Πn =
|Sn| = n!. Suppose that g has k cycles (say, g = c1 · · · ck). Then, Algorithm 2
produces a system of equations

∧k
i=1 x ≡ ai (mod bi), where ai, bi ∈ [0, |ci|).

By Lemma 6, Algorithm 1 takes O(k3 log2 n) time in the bit complexity model,
since N := max{bi : i ∈ [1,m]} ≤ n. In addition, the number of permutations
in Sn with k cycles is precisely the definition of the unsigned Stirling number

of the first kind

[

n
k

]

. Therefore, we have Σn = O

(

∑n
k=1(k

3 log2 n)

[

n
k

])

=

O

(

log2 n
∑n

k=1 k
3

[

n
k

])

. Therefore, it suffices to show that 1
n!

∑n
k=1 k

3

[

n
k

]

∼

c log3 n for a constant c. The proof can be found in the appendix. ⊓⊔

Finally, we will now give our final main result of this section.

Theorem 3 There exists a linear-time algorithm in the bit complexity model for
solving a system of linear congruence equations when the input numbers are rep-
resented in unary.

We now provide an algorithm that witnesses the above theorem. Let
∧m

i=1 x ≡ ai
(mod bi) be the given system of equations. With unary representation of numbers,
the size Ni of the equation x ≡ ai (mod bi) is ai + bi. We use n to denote the
total number of bits in the system of equations. Initially, we compute a binary
representation of all the numbers ai’s, bi’s, and n as in the proof of Lemma 5,
which takes linear time. Next we factorise all the numbers bi into a product of
distinct prime powers pei1

ji1
· · · peiti

jiti
, where pj stands for the jth prime and all eij ’s

are positive integers. This can be done in time O(
√
Ni log

2 Ni). To obtain this
time bound, we can use any unconditional3 deterministic factorisation methods
like Strassen’s algorithm, whose complexity was shown in [6] (cf. also see [14]) to
be O(f(N1/4 logN)) for factoring a number N , where f(M) is the number of bit
operations required to multiply two numbers with M bits. The standard (high-
school) multiplication algorithm runs in quadratic time giving us f(M) = O(M2),
which suffices for our purposes. This shows that Strassen’s algorithm runs in time
O(N1/2 log2 N). [In practice, do factoring using the general number field sieve (cf.
[13]), which performs extremely well in practice, though its complexity requires
some unproven number-theoretic assumptions.]

Next, followingChinese Remainder Theorem (CRT), compute zij := ai mod p
eij

ij

for each j ∈ [1, ti]. Let us analyse the time complexity for performing this. Each
zij can be computed by a standard algorithm (e.g. see [13]) in time quadratic in
the number of bits used to represent ai and p

eij

ij . Since each of these numbers use

at most logNi bits, each zi can be computed in time O(log2 Ni), which is o(Ni). In
addition, since eij > 1 for each j ∈ [1, ti], it follows that ti = O(logNi). This means
that the total time it takes to compute {zij : j ∈ [1, ti]} is O(log3 Ni), which is
also o(Ni). So, computing this for all i ∈ [1,m] takes time O(

∑m
i=1 log

3 Ni), which
is at most linear in the input size.

3 This means that the bound does not depend on any number-theoretic assumptions.

A linear-time algorithm for the orbit problem over cyclic groups 13

In summary, for each i ∈ [1,m], we obtained the following system of equations,
which is equivalent to x ≡ ai (mod bi) by CRT:

x ≡ zi1 (mod pei1

i1) ∧ · · · · · · ∧ x ≡ ziti (mod p
eiti

iti
) (Ei)

The final step is to determine if there exists a number x ∈ N that satisfies each
(Ei), for all i ∈ [1,m]. Loosely, we will go through all the equations and make sure
that there is no conflict between any two equations whose periods are powers of the
same prime number, i.e., x ≡ a (mod b) and x ≡ a′ (mod b′) such that b = pi and

b′ = pi
′

for some prime p and i, i′ ∈ Z>0. In order to achieve this in linear-time in
the bit complexity model, one has to store these equations in the memory (in the
form of lookup tables) and carefully perform the lookup operations while looking
for a conflict. To this end, we first compute pmax = max{pij : i ∈ [1,m], j ∈ [1, ti]}
and emax = max{eij : i ∈ [1,m], j ∈ [1, tj]}.

Lemma 7 pmax and emax can be computed using O(n) many bit operations.

Proof The algorithm for computing pmax and emax is a slight modification of the
standard algorithm that computes the maximum number in a list, which sequen-
tially goes through the list n1, . . . , nm while keeping the maximum number nmax

in the sublist explored so far. To ensure linear-time complexity, we have to make
sure that when comparing the values of ni and nmax, we explore at most ni bits
of nmax (since nmax is possibly much larger than ni). This is easily achievable
by assuming binary representation of these numbers without redundant leading 0s,
e.g., the number 5 will be represented as 101, not 0101 or 00000101. That way, we
will only need to inspect log(ni) bits from nmax on the ith iteration, which will
give a total running time of O(

∑m
i=1 log(ni)), which is linear in input size. ⊓⊔

Next, keep one 1-dimensional array A and one 2-dimensional array B:

A[1, . . . , pmax] B[1, . . . , pmax][1, . . . , emax].

A[k] and B[k][e] will not be defined when k is not a prime number. We will use
A[k] as a flag indicating whether some equation of the form x ≡ z (mod ke) has
been visited, in which case A[k] will contain (z, e). In this case, we will use B[k][e′]

(with e′ ≤ e) to store the value of z mod ke
′

.
We now elaborate how A and B are used when iterating over the equations

in the system. Sequentially go through each system (Ei) of equations. For each
i ∈ [1,m], sequentially go through each equation x ≡ zij (mod p

eij

ij), for each
j ∈ [1, ti], and check if A[pij] is defined. If it is not defined, set A[pij] := (zij, eij)
and compute B[pij][l] = zij mod pl for each l ∈ [1, eij]. If it is defined (say,
A[pij] = (z, e)), then we analyse the constraints x ≡ z (mod peij) and x ≡ zij
(mod p

eij

ij) simultaneously. We compare e and eij resulting in three cases:

Case 1. e = eij . In this case, make sure that z = zij otherwise the two equations
(and, hence, the entire system) cannot be satisfied simultaneously.

Case 2. e < eij . In this case, make sure that zij ≡ z (mod peij) (otherwise,
unsatisfiable) and assign A[pij] := (zij, eij). For each l ∈ [1, eij], update
B[pij][l] := zij mod plij .

Case 3. e > eij. In this case, make sure that zij ≡ z (mod p
eij

ij) (otherwise, un-
satisfiable).

14 Anthony W. Lin, Sanming Zhou

We now analyse the running time of this final step (i.e. when scanning through
the subsystem (Ei)). To this end, we measure the time it takes to process each
equation x ≡ zij (mod p

eij

ij). There are two cases, which we will analyse in turn.

(Case I): when A[pij] is not defined. In this case, setting A[pij] takes constant
time, while setting B[pij][l] for all l ∈ [1, eij] takes O(eij × (log zij + log p

eij

ij)2)
since computing a mod b can be done in time quadratic in log(a) + log(b). Since
eij ≤ logNi and zij, pij ≤ Ni, this expression can be simplified to O(logNi ×
log2(zijNipij)) = O(log3 Ni).

(Case II): when A[pij] is already defined, e.g., A[pij] = (z, e). In this case, we
will compare the values of e and eij. To ensure linear-time complexity, we will
make sure that at most log(eij) bits from e are read by using the trick from the
proof of Lemma 7. For Case 1, we will need extra O(log zij) = O(logNi) time
steps. For Case 2, we have 0 ≤ z ≤ peij and computing zij mod peij can be done

in time O(log2 Ni) as before. Updating B[pij][l] for all l ∈ [1, eij] takes O(log3 Ni)
as in the previous paragraph. For Case 3, since e > eij , we may access the value
of z mod p

eij

ij from B[pij][eij] in constant time and compare this with the value

of zij . Since z ∈ [0, p
eij

ij), this takes time O(logNi).

In summary, either case takes time at most O(log3 Ni). Therefore, accounting
for the entire subsystem (Ei), the algorithm incurs O(

∑ti
j=1 log

3 Ni) = O(log4 Ni)
time steps. Hence, accounting for all of the subsystems Ei (i ∈ [1,m]) the algo-
rithm takes time O(

∑m
i=1 log

4 Ni), which is linear in the size of the input. This
completes the proof of Theorem 3.

Remark 2 The purpose of the 2-dimensional array B above is to avoid superlinear
time complexity for Case 3. We can imagine a system of linear equations

∧m
i=1 x ≡

ai (mod bi), where a1 and b1 are substantially larger than the other ai’s and bi’s
(i ∈ [2,m]). In this case, without the lookup table B, checking whether ai ≡ a1
(mod bi) in Case 3 will require the algorithm to inspect the entire value of a1,
which prevents us from bounding the time complexity in terms of ai and will yield
a superlinear time complexity for our algorithm.

5 Future work

Since an algorithm for the orbit problem will be invoked many times during an
explicit-state model checking (in the worst case once each time a new state in the
transition system is visited; cf. [27]), we believe that it is important to further
identify efficiently solvable (preferably, in linear-time) subcases of the orbit prob-
lem. As mentioned in the Introduction, there are known classes of permutations
groups whose orbit problem is polynomial-time solvable (e.g. Γd which contains
solvable groups). We propose the question of further identifying other classes of
permutations groups whose orbit problem is solvable in linear time.

References

1. http://oeis.org/A002110. Primorial Numbers (The On-Line Encyclopedia of Integer
Sequences)

2. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: STOC, pp. 171–183 (1983)

http://oeis.org/A002110

A linear-time algorithm for the orbit problem over cyclic groups 15

3. Babai, L., Moran, S.: Arthur-merlin games: A randomized proof system, and a hierar-
chy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988). DOI 10.1016/
0022-0000(88)90028-1. URL http://dx.doi.org/10.1016/0022-0000(88)90028-1

4. Bach, E., Shallit, J.: Algorithmic Number Theory, Foundations of Computing, vol. 1. The
MIT Press (1996)

5. Benjamin, A.T., Preston, G.O., Quinn, J.J.: A stirling encounter with harmonic numbers.
Mathematics Magazine 75, 95–103 (2002)

6. Bostan, A., Gaudry, P., Schost, É.: Linear Recurrences with Polynomial Coefficients and
Application to Integer Factorization and Cartier-Manin Operator. SIAM J. Comput.
36(6), 1777–1806 (2007)

7. Brualdi, R.A.: Combinatorial matrix classes. Encyclopedia of Mathematics and Its Appli-
cations 108. Cambridge University Press (2006)

8. Cameron, P.J.: Permutation Groups. London Mathematical Society Student Texts. Cam-
bridge University Press (1999)

9. Clarke, E.M.: The birth of model checking. In: 25 Years of Model Checking (2008)

10. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model checking.
In: CAV, pp. 147–158 (1998)

11. Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal logic
model checking. Formal Methods in System Design 9(1/2), 77–104 (1996)

12. Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel
Publishing Company (1974). URL http://books.google.com.sg/books?id=C0HPgWhEssYC

13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Third
Edition, 3rd edn. The MIT Press (2009)

14. Costa, E., Harvey, D.: Faster deterministic integer factorization. CoRR abs/1201.2116
(2012)

15. Donaldson, A.F., Miller, A.: On the constructive orbit problem. Ann. Math. Artif. Intell.
57(1), 1–35 (2009)

16. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods in System
Design 9(1/2), 105–131 (1996)

17. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design (extended ab-
stract). In: FOCS, pp. 174–187 (1986). DOI 10.1109/SFCS.1986.47. URL
http://doi.ieeecomputersociety.org/10.1109/SFCS.1986.47

18. Graham, R.L., Grötschel, M., Lovász, L. (eds.): Handbook of Combinatorics (Vol. 2). MIT
Press, Cambridge, MA, USA (1995)

19. Hardy, G.H., Wright, E.M.: An Introduction to The Theory of Numbers, 6 edn. OUP
Oxford (2008)

20. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in System
Design 9(1/2), 41–75 (1996)

21. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-stabilizing
mutual exclusion. In: PoDC, pp. 119–131 (1990). DOI 10.1145/93385.93409. URL
http://doi.acm.org/10.1145/93385.93409

22. Kannan, R., Lipton, R.J.: Polynomial-time algorithm for the orbit problem. J. ACM
33(4), 808–821 (1986)

23. Luks, E.M.: Permutation groups and polynomial-time computation. In: DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, vol. 11, pp. 139–175 (1993)

24. Norman, G.: Analysing randomized distributed algorithms. In: Validation of Stochastic
Systems - A Guide to Current Research, pp. 384–418 (2004)

25. Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms, 2 edn. Addison-
Wesley Professional (2013)

26. Shoup, V.: A Computational Introduction to Number Theory and Algebra, 2 edn. Cam-
bridge University Press (2005)

27. Wahl, T., Donaldson, A.F.: Replication and abstraction: Symmetry in automated formal
verification. Symmetry 2, 799–847 (2010)

28. Zhang, S.J., Sun, J., Sun, C., Liu, Y., Ma, J., Dong, J.S.: Constraint-based automatic
symmetry detection. In: ASE, pp. 15–25 (2013)

http://dx.doi.org/10.1016/0022-0000(88)90028-1
http://books.google.com.sg/books?id=C0HPgWhEssYC
http://doi.ieeecomputersociety.org/10.1109/SFCS.1986.47
http://doi.acm.org/10.1145/93385.93409

16 Anthony W. Lin, Sanming Zhou

A Completing proof of Theorem 2

Let

[

n

k

]

denote the unsigned Stirling number of the first kind, and
(n
k

)

denote n choose k. The

harmonic number Hn is defined as

Hn =
n
∑

k=1

1

k
.

In general, for an integer s ≥ 1, the generalized harmonic number of order s is defined as

H
(s)
n =

n
∑

k=1

1

ks
.

It is known that
1

n!

n
∑

k=1

k

[

n

k

]

= Hn.

Define

f(n) =
1

n!

n
∑

k=1

k2
[

n

k

]

, g(n) =
1

n!

n
∑

k=1

k3
[

n

k

]

.

It is known that
n
∑

k=m

[

n
k

]

(k

m

)

=

[

n+ 1
m+ 1

]

,

(see [5]). In particular, we have

[

n+ 1
3

]

=
n
∑

k=2

[

n
k

]

(k

2

)

=
n
∑

k=1

[

n
k

]

k(k − 1)

2
=

1

2
n!(f(n)−Hn),

[

n+ 1
4

]

=
n
∑

k=3

[

n

k

]

(k

3

)

=
n
∑

k=1

[

n

k

]

k(k − 1)(k − 2)

6
=

1

6
n!(g(n)− 3f(n) + 2Hn).

That is, we have

f(n) =
2

n!

[

n+ 1
3

]

+Hn, and

g(n) =
6

n!

[

n+ 1
4

]

+ 3f(n)− 2Hn =
6

n!

[

n+ 1
4

]

+
6

n!

[

n+ 1
3

]

+Hn.

It is known (cf. page 217 of [12]) that

1

n!

[

n+ 1
3

]

=
1

2
(H2

n −H
(2)
n)

1

n!

[

n+ 1
4

]

=
1

6
(H3

n − 3HnH
(2)
n + 2H

(3)
n).

It is also known that Hn = γ + lnn, limn→∞ H
(2)
n = ζ(2) = π2

6
and limn→∞ H

(3)
n = ζ(3) ≈

1.202, where γ ≈ 0.577 is Euler’s constant and ζ(s) =
∑

∞

k=1
1
ks is the Riemann zeta function.

Hence we obtain
f(n) = H2

n −H
(n)
n +Hn ∼ ln2 n.

Putting all together, we obtain

g(n) =
6

n!

[

n+ 1
4

]

+ 3f(n) − 2Hn ∼ ln3 n.

	1 Introduction
	2 Preliminaries
	3 Reducing to solving a system of linear congruence equations
	4 Making do with linearly many bit operations
	5 Future work
	A Completing proof of Theorem ??

