
06 May 2024

Università degli studi di Udine

Original

Metric propositional neighborhood logic with an equivalence relation

Publisher:

Published
DOI:10.1007/s00236-016-0256-3

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/1110493 since 2017-05-29T13:58:17Z

Noname manuscript No.
(will be inserted by the editor)

Metric Propositional Neighborhood
Logic with an Equivalence Relation

Angelo Montanari ¨ Marco Pazzaglia ¨ Pietro

Sala

Received: date / Accepted: date

Abstract The propositional interval logic of temporal neighborhood (PNL for
short) features two modalities that make it possible to access intervals adjacent
to the right (modality xAy) and to the left (modality xAy) of the current interval.
PNL stands at a central position in the realm of interval temporal logics, as it is
expressive enough to encode meaningful temporal conditions and decidable (unde-
cidability rules over interval temporal logics, while PNL is NEXPTIME-complete).
Moreover, it is expressively complete with respect to the two-variable fragment of
first-order logic extended with a linear order FO2

răs. Various extensions of PNL
have been studied in the literature, including metric, hybrid, and first-order ones.
Here, we study the effects of the addition of an equivalence relation „ to Met-
ric PNL (MPNL„). We first show that the finite satisfiability problem for PNL
extended with „ is still NEXPTIME-complete. Then, we prove that the same
problem for MPNL„ can be reduced to the decidable 0-0 reachability problem
for vector addition systems and vice versa (EXPSPACE-hardness immediately
follows).

1 Introduction

In this paper, we study the effects of adding an equivalence relation to the met-
ric interval logic of temporal neighborhood (MPNL), interpreted over the class of

Angelo Montanari
Department of Mathematics and Computer Science,
University of Udine, Italy
E-mail: angelo.montanari@uniud.it

Marco Pazzaglia
Bending Spoons
Milano, Italy
E-mail: marco@pazzaglia.me

Pietro Sala
Department of Computer Science,
University of Verona, Italy
E-mail: pietro.sala@univr.it

2 Angelo Montanari et al.

finite linear orders. Benefits that arise from extending a logic with one or more
equivalence relations have been already pointed out in the literature. As an ex-
ample, the addition of an equivalence relation to the two-variable fragment of
first-order logic FO2 on (finite) data words (words where each position consists of
a pair whose first element belongs to a finite alphabet and the second one, the data
value, to an infinite set) makes it possible to check whether two word positions
carry the same data value [2]. In most cases, such an increase in expressiveness
comes with a blow-up in complexity (see, for instance, the fields of timed automata
[22], temporal logics [8], and semistructured data [2]).

Overview. In the context of first-order logic, the finite satisfiability problem for
the two-variable fragment of first-order logic FO2 extended with one, two, or
more equivalence relations has been systematically explored in [13–15], while in
[2] Bojańczyk et al. investigated the extension of FO2 over finite and infinite data
words with an equivalence relation. In the temporal setting, similar analyses have
been done by Demri and Lazic [8], that studied the extension of linear temporal
logic over data words by means of freeze quantifiers, which allow one to store ele-
ments at the current word position into a register and then to use them in equality
comparisons deeper in the formula, and by Ouaknine and Worrell [22], who showed
that both satisfiability and model checking for metric temporal logic over finite
timed words are decidable with a non-primitive recursive complexity.

The addition of an equivalence relation to an interval temporal logic has been
first investigated by Montanari and Sala in [19]. They focused on the interval logic
of Allen’s relations meets, begun by, and begins extended with an equivalence rela-
tion „ (ABB̄„), interpreted over finite linear orders and N. On the one hand, they
showed that the resulting increase in expressive power makes it possible to estab-
lish an original connection between interval temporal logics and extended regular
languages of finite and infinite words [1]. On the other hand, they proved that the
addition of „ to ABB̄, whose satisfiability problem is known to be EXPSPACE-
complete [18], drastically increases its computational complexity: ABB̄„ turns
out to be decidable, with a non-primitive recursive complexity, over finite linear
orders and undecidable over N. As a preliminary step, they gave a geometrical
interpretation to ABB̄„ models in terms of compass structures [24], where each
interval ra, bs, with a ď b, is interpreted as a point pa, bq in the plane and interval
relations are replaced by corresponding relations between points. Decidability of
ABB̄„ over finite linear orders rests on a suitable small model property, based on
a contraction method that, under suitable conditions, makes it possible to collapse
two rows, and all rows in between, of the compass structure. Then, they provided
an encoding of the 0-0 reachability problem for lossy Minsky counter machines,
which is known not to be a recursive primitive problem, in the finite satisfiability
problem for ABB̄„, and an encoding of the 0-N reachability problem for the same
class of machines, which is known to be undecidable, into the satisfiability problem
for ABB̄„ over N.

In [4], Bresolin et al. established a strong connection between FO2 and PNL,
proving that the latter is expressively complete with respect to the former extended
with a linear order ă, denoted FO2

răs. Moreover, there are polynomial reductions
in both directions (the polynomial PNL-to-FO2

răs reduction is straightforward,
while the exponential FO2

răs-to-PNL reduction given in [4] can be turned into
a polynomial one by first applying Scott’s normal form [23] to FO2

răs formulas,

Metric Propositional Neighborhood Logic with an Equivalence Relation 3

which can be computed in polynomial time and reduces the quantifier depth of
the formulas to two1). Such a bridge allows useful transfers in both directions.

Decidable and undecidable extensions of FO2. Various extensions of FO2 with one or
more equivalence relations, the ordering relation ă, and/or the successor relation
`1 have been already studied in the literature. In the following, we will denote by
FO2

rrel1, ..., relks the extension of FO2 over arbitrary signatures, with rel1, ..., relk
as the only pre-interpreted relations, and by FO2

prel1, ..., relkq the extension of
FO2 where, besides the pre-interpreted relations rel1, ..., relk, only unary symbols
can be used.

In [20], Mortimer showed that FO2 enjoys the finite model property and thus
its satisfiability problem is decidable. From his proof, a doubly exponential bound
on the size of models can be extracted. Later on [10], Grädel et al. proved that
the finite satisfiability problem for FO2 is in fact NEXPTIME-complete.

A systematic analysis of the extensions of FO2 with one or more equivalence
relations was started by Kieronski and Otto in [14], where they proved that the
finite satisfiability problem for FO2 extended with one or two equivalence rela-
tions is decidable, while it becomes undecidable when three or more equivalence
relations are added. As a preliminary step, they showed that FO2 has a small
model substructure property, that is, one can substitute a part of the domain of
any size (even infinite) with an equivalent part whose size is bounded in the size
of the vocabulary (such a result generalizes the small model property for FO2

given in [10]). Then, they exploited this property both to prove that FO2
r„s itself

has a small model property (they provided an exponential upper bound to the
size of the model) and to reduce the satisfiability problem for FO2

r„1,„2s to an
equivalent combinatorial problem for an infinite chessboard. The undecidability of
the satisfiability problem for FO2

r„1,„2,„3s is proved by means of a reduction
from a suitable tiling problem. As for the complexity of the decidable extensions,
they showed that finite satisfiability for FO2

r„s is NEXPTIME-complete, as in the
case of FO2 . Later [15], Kieronski and Tendera proved that finite satisfiability for
FO2

r„1,„2s is in 3-NEXPTIME, and then, in [13], Kieronski et al. further refined
such a result showing that it is in fact 2-NEXPTIME-complete.

By building on techniques from [10] and performing an in-depth analysis of the
basic 1-types and 2-types in FO2

răs-models, Otto proved that FO2
răs is decidable

in NEXPTIME over the class of all linear orders, as well as over some natural
subclasses of it, including the class of finite linear orders [21].

In Section 3, we generalize Kieronski and Otto’s result about NEXPTIME-
completeness of finite satisfiability for FO2

r„s [14], as well as Otto’s result about
NEXPTIME-completeness of finite satisfiability for FO2

răs [21], by showing that
finite satisfiability for PNL extended with an equivalence relation „, which is
equivalent to FO2

ră,„s, is NEXPTIME-complete as well. The proof rests on a
model contraction technique that extends the point elimination technique used to
demonstrate the decidability of finite satisfiability for PNL in [5]. Unfortunately,
the proof cannot be lifted to FO2

ră, „1,„2s in any natural way. As a matter of
fact, the extension of FO2 with an equivalence relation and a linear order was
already considered, albeit in a restricted form, by Bojańczyk et al. in [2], where

1 The polynomial reduction from FO2răs to PNL is outlined in the appendix.

4 Angelo Montanari et al.

the authors proved that FO2
pă,„q on data words, when interpreted over the class

of finite linear orders or N, is NEXPTIME-complete.

In [2], Bojańczyk et al. also showed that the extension of FO2 with three binary
relations, interpreted as a linear order, a successor relation, and an equivalence re-
lation, and an unlimited number of unary relations, denoted by FO2

p„,ă,`1q, is
decidable over finite and infinite data words (that is, finite linear orders and N).
Their proof consists of three steps: (i) an FO2

p„,ă,`1q-formula is rewritten in a
suitable normal form; (ii) the resulting formula in normal form is transformed into
an equivalent data automaton; (iii) the emptiness problem for data automata is re-
duced (by a 2-EXPTIME-reduction) to the emptiness problem for vector addition
systems (VAS), which is known to be decidable [16] (even though no elementary
upper bound is known). They also provided an inverse reduction, from the empti-
ness problem for VAS to the satisfiability problem for FO2

p„,ă,`1q, which is
computable in PTIME.

In Section 4, we improve such a result, as far as finite linear orders are con-
cerned, by substituting binary relations for unary ones. We prove the decidability
of finite satisfiability for MPNL„, which is equivalent to FO2

ră,„,`1s, by reduc-
ing such a problem to the decidable 0-0 reachability problem for vector addition
systems. EXPSPACE-hardness immediately follows from the polynomial-time re-
duction from the emptiness problem for VAS to the finite satisfiability problem
for FO2

p„,ă,`1q given in [2].

Contributions and organization of the paper. To summarize, in this paper we investi-
gate extensions of PNL (equivalently, FO2

răs) with an equivalence and a successor
relation. The outcomes of the paper can be summarized as follows. First, we prove
that the NEXPTIME-completeness of the finite satisfiability problem for PNL is
preserved under addition of an equivalence relation „. Then, we focus on MPNL.
In [7], Bresolin et al. proved that the satisfiability problem for MPNL over finite
linear orders is EXPSPACE-complete. Here, we show that the finite satisfiability
problem for MPNL„ is decidable with a non-primitive recursive complexity and we
prove its EXPSPACE-hardness. It is worth pointing out that, as in [2], the succes-
sor is assumed to be in relational form (it can be easily checked that the relational
and functional characterizations of the successor are not equivalent in FO2

răs). As
a matter of fact, the addition of a successor function to PNL immediately yields
undecidability, as shown in [3].

The rest of the paper is organized as follows. In Section 2, we provide some
background knowledge. In Section 3, we prove that the addition of an equivalence
relation to PNL does not lead to any increase in computational complexity. In Sec-
tion 4, we study the extension of MPNL with an equivalence relation. Conclusions
provide an assessment of the work done and outline future research directions. An
appendix with an outline of the polynomial reduction from FO2

răs to PNL and
all the missing proofs concludes the paper.

2 Preliminaries

In this section, we give syntax and semantics of Metric PNL and we show how to
extend it with an equivalence relation „. Moreover, we introduce basic notions and

Metric Propositional Neighborhood Logic with an Equivalence Relation 5

terminology that will be used in the following sections. Finally, we briefly recall
the notion of vector addition system.

2.1 (Metric) Propositional Neighborhood Logic and extensions

The language of PNL consists of a set AP of proposition letters, the propositional
connectives and _, modalities xAy and xAy for Allen’s relations meets and met

by, respectively, and a modal constant π (also denoted by len0) [9]. MPNL is
obtained from PNL by adding an infinite set of (pre-interpreted) proposition letters
len1, . . . , lenk, . . . for length constraints, that allow one to constrain the length of
the current interval to be equal to 1, 2, . . . [3]. Formulae of MPNL, denoted by
ϕ,ψ, . . ., are generated by the following grammar:

ϕ ::“ p | ϕ | ϕ_ ϕ | xAyϕ | xAyϕ | lenk,

where p P AP and k P N.
The other propositional connectives, the logical constants J (true) and K

(false), and the dual modalities rAs and rAs are defined as usual (see below).
Hereafter, we denote by |ϕ| the size of ϕ, which equals the sum of the number
of uninterpreted proposition letters in ϕ, the number of logical connectives and
temporal modalities in ϕ, and, for each pre-interpreted proposition letter lenk in
ϕ, the summation of the number of digits of the binary encoding of k.

Given a linearly-ordered domain D “ xD,ăy, a (non-strict) interval over D is
an ordered pair rx, ys, with x “ y or x ă y (x ď y for short). We denote by IpDq
the set of all intervals over D. From now on, we assume D to be a finite prefix of N
(a finite linear order). The semantics of MPNL is given in terms of models of the

form M “ xIpDq, V y, where V : AP Ñ 2IpDq is a valuation function assigning a set
of intervals to every proposition letter. We recursively define the truth relation ,
as follows:

– M, rx, ys , p iff rx, ys P V ppq, for any p P AP;
– M, rx, ys , ϕ iff it is not the case that M, rx, ys , ϕ;
– M, rx, ys , ϕ_ ψ iff M, rx, ys , ϕ or M, rx, ys , ψ;
– M, rx, ys , xAyϕ iff M, ry, zs , ϕ for some z ě y;
– M, rx, ys , xAyϕ iff M, rz, xs , ϕ for some z ď x;
– M, rx, ys , lenk iff y ´ x “ k, for all k ě 0.

An MPNL formula ϕ is said to be satisfiable if there exist a model M “ xIpDq, V y
and an interval rx, ys P IpDq such that M, rx, ys , ϕ. For technical reasons (namely,
to ensure the correctness of the contraction technique we will use in the decidability
proof for PNL„), we assume ϕ to be of the form xAyψ. It can be easily shown that
ψ is satisfiable if and only if ϕ p“ xAyψq is satisfiable.

The extensions of PNL and MPNL with an equivalence relation, respectively
denoted by PNL„ and MPNL„, are obtained by adding a special symbol „ to
their language and by interpreting it as an equivalence relation on the domain.
Formally, each model is augmented with an equivalence relation „ and the symbol
„ is interpreted according to the following rule:

– M, rx, ys ,„ iff x „ y.

6 Angelo Montanari et al.

As usual, we denote by rxs„ the „-class x belongs to. For the sake of simplicity,
hereafter we restrict our attention to (a fragment of) MPNL„ with π (that is,
len0) and len1 only. The generalization to lenk, for all k ě 0, is straightforward.

2.2 Atoms, interval tuples, labeled interval structures, and temporal requests

Let ϕ be an MPNL„ formula. W.l.o.g., we assume that both len1 and „ occur in ϕ,
as if len1 (resp., „) is missing, ϕ belongs to PNL„ (resp., to MPNL). We define the
closure of ϕ, denoted by Clpϕq, as the set of all sub-formulas of ϕ and their negations
(we replace all formulas of the form ψ in Clpϕq by ψ), plus the sub-formulas
xAylen1, rAs len1, xAylen1, and rAs len1, xAyplen1^ „q, and rAs plen1^ „q.

A ϕ-atom (atom for short) F is a maximal, syntactically-consistent subset of
Clpϕq, that is, a set F such that (i) ψ P F if and only if ψ R F , for all ψ P Clpϕq,
(ii) ψ P F if and only if ψ1 P F or ψ2 P F , for all ψ “ ψ1 _ ψ2 P Clpϕq. We denote
the set of all ϕ-atoms by Atomsϕ.

Let Trϕ be the set of all temporal formulas in Clpϕq, that is, the subset of Clpϕq
consisting of all and only the formulas of the forms xAyψ, xAyψ, rAsψ, and rAsψ
(we write rAs ψ for xAyψ, rAs ψ for xAyψ, xAy ψ for rAsψ, and xAy ψ for
 rAsψ), and let Rϕ be the set of all maximal, syntactically-consistent subsets R
of Trϕ (that is, xAyψ P R if and only if rAs ψ R R, and so on). It can be easily

shown that |Rϕ| is bounded by 2p|ϕ|`2q. For each R P Rϕ, we define the restrictions
R|A “ txAyψ P Ru and R|A “ txAyψ P Ru. We put Rϕ|A “ tR|A : R P Rϕu and
Rϕ|A “ tR|A : R P Rϕu.

Given F P Atomsϕ and R1, R2 P Rϕ, the triple pR1, F, R2q is an interval-tuple

if and only if it holds that: (i) for each xAyψ P Trϕ, if xAyψ R R1, then ψ P F ,
and for each xAyψ P Trϕ, if xAyψ R R2, then ψ P F ; (ii) for each xAyψ P Trϕ,
xAyψ P F if and only if xAyψ P R2; (iii) for each xAyψ P Trϕ, xAyψ P F if and only if
xAyψ P R1; (iv) for each ψ P F , if xAyψ P Trϕ, then xAyψ P R1, and if xAyψ P Trϕ,
then xAyψ P R2.

W.l.o.g., hereafter we restrict ourselves to sets of requests R P Rϕ such that
there exists an interval tuple pR,F,Rq for some atom F P Atomsϕ including π.

Let LRϕ Ď Atomsϕ ˆ Atomsϕ be such that for each pair of atoms A1, A2 P

Atomsϕ, A1 LRϕA2 if and only if (i) for each rAsψ P Clpϕq, if rAsψ P A1, then
ψ P A2, and (ii) for each rAsψ P Clpϕq, if rAsψ P A2, then ψ P A1. A (ϕ-)labeled

interval structure (LIS for short) is a pair L “ xD,Ly, where D is a finite linear
order and L : IpDq Ñ Atomsϕ is a labeling function such that:

1. for each pair of neighboring intervals rx, ys, ry, zs P IpDq, it holds that Lprx, ysq
LRϕ Lpry, zsq;

2. for all x, y, z P D, with x ď y ď z, if „ P Lprx, ysq X Lpry, zsq, then „ P Lprx, zsq,
if „ P Lprx, zsq X Lprx, ysq, then „ P Lpry, zsq, and if „ P Lprx, zsq X Lpry, zsq,
then „ P Lprx, ysq;

3. for all x, y P D, with x ă y, len1 P Lprx, ysq if and only if for all z P D, with
x ď z ď y, either z “ x or z “ y.

We say that a point x P D is fulfilled if and only if (i) for all xAyψ P Trϕ and
y pď xq P D, if xAyψ P Lpry, xsq, then there exists z ě x such that ψ P Lprx, zsq and
(ii) for all xAyψ P Trϕ and px ďq y P D, if xAyψ P Lprx, ysq, then there exists z ď x

Metric Propositional Neighborhood Logic with an Equivalence Relation 7

such that ψ P Lprz, xsq. A LIS L “ xD,Ly is fulfilling if and only if all points in D

are fulfilled. A fulfilling LIS L “ xD,Ly satisfies ϕ if and only if there exists an
interval rx, ys P IpDq such that ϕ P Lprx, ysq. The following theorem establishes a
link between LISs and models of an MPNL„ formula.

Theorem 1 An MPNL„ formula ϕ is satisfiable over a finite linear order D if and

only if there exists a fulfilling LIS L “ xIpDq,Ly that satisfies ϕ.

The proof is straightforward and thus omitted. In the following, we will often write
‘a fulfilling LIS for ϕ’ for ‘a fulfilling LIS that satisfies ϕ’.

Finally, we associate with each point of the temporal domain of a LIS a set of
future temporal requests and a set of past temporal requests. Let L “ xD,Ly be a
LIS and x P D. The set of future temporal requests of x is the set req|Apxq “ txAyψ P

Trϕ : Dy P D xAyψ P Lpry, xsqu Y trAsψ P Trϕ : Dy P D rAsψ P Lpry, xsqu, while the
set of past temporal requests of x is the set req|Apxq “ txAyψ P Trϕ : Dy P D xAyψ P

Lprx, ysqu Y trAsψ P Trϕ : Dy P D rAsψ P Lprx, ysqu. For each x P D, let reqpxq “

req|Apxq Y req|Apxq. It trivially holds that |reqpxq|p“ |req|Apxq| ` |req|Apxq|q is
bounded by |ϕ| ` 2.

2.3 Vector addition systems

We conclude the section with a short account of vector addition systems (VAS). In
Section 4, we will provide a reduction from the satisfiability problem for MPNL„
to the 0-0 reachability problem for vector addition systems with states (VASS for
short). A non-primitive recursive decision procedure for the latter problem can be
found in [16], while a proof of its EXPSPACE-hardness is given in [17].

Alternative, equally-expressive characterizations of VAS / VASS have been
proposed in the literature, e.g., [11,12]. In the following, we will provide a slightly
different, but equivalent, formulation of VASS that better suits our needs. A VASS
A is a quintuple pQ,Qi, Qf , C,∆q, where Q is a finite set of states, Qi and Qf are
the subsets of Q representing initial and final states, respectively, C is a finite set
of counters tc1, . . . , cnu, and ∆ is the transition relation.

We define a set U of updates on C as a finite set of operations of the form ci`k,
with ci P C and k P Z, to be executed as a single (atomic) operation. W.l.o.g., we
can assume that U includes at most one operation per counter. This allows us to
provide each set of updates U with a vector interpretation vU Ď Z|C| as follows: for
each ci P C, vU rcis “ k, if ci ` k P U ; vU rcis “ 0 otherwise (no operation involving
ci belongs to U).

Let us denote by U the set of all possible sets of updates. The transition relation
∆ is a subset of QˆUˆQ. A configuration of the VASS A is a pair pq, vq P QˆN|C|.
We say that a transition pq1, U, q2q P ∆ is active in a configuration pq, vq if (and only

if) q1 “ q and v` vU P N|C|. Let Conf be the set of all possible configurations. We
define a binary relation ÑAĎ Conf ˆConf as follows: for all pq, vq, pq1, v1q P Conf ,
pq, vq ÑA pq

1, v1q if and only if there is a transition pq, U, q1q P ∆ such that pq, U, q1q
is active in pq, vq and v1 “ v ` vU .

Let Ñ˚A be the reflexive and transitive closure of ÑA. The 0-0 reachability

problem for A consists of deciding whether there exist qi P Qi and qf P Qf such
that pqi, 0q Ñ

˚
A pqf , 0q.

8 Angelo Montanari et al.

3 Adding an equivalence relation to PNL: PNL„

In this section, we prove that the addition of an equivalence relation „ to PNL
preserves decidability (in fact, it does not cause any increase in complexity). How-
ever, proving decidability of PNL„ turns out to be more involved than in the case
of PNL (it is worth pointing out that this is not the case with RPNL, the future
fragment of PNL: if we restrict ourselves to RPNL the original decidability proof
can be easily adapted to the extended logic RPNL„).

The proof consists of three lemmas. The first one provides an (exponential)
upper bound on the size of an (equivalence) class in a minimal model. The second
lemma gives a sufficient condition for the complete removal of a class. The third
lemma uses the second one to obtain an (exponential) upper bound on the maximal
number of classes in a minimal model. Therefore, combined together, these lemmas
limit the cardinality of a minimal model to a size exponential in the length of
the formula. Moreover, the polynomial reductions from/to PNL to/from FO2

răs

can be easily extended to PNL„ and FO2
ră,„s, thus proving decidability and

NEXPTIME-completeness of FO2
ră,„s.

To start with, we introduce the concept of close friends of a point x in a LIS
L, which consists of a minimal set of points (in L) that satisfy all requests of x.
For the sake of readability, we distinguish between future and past close friends of
a point x.

Let ϕ be a PNL„ formula and L “ pD,Lq be a fulfilling LIS that satisfies ϕ.
For all x P D, the set of future close friends of x, denoted by Cf |Apxq, is a minimal
subset of D such that, for each xAyψ P req|Apxq, there exists x1 P Cf |Apxq with
ψ P Lprx, x1sq. Similarly, the set of past close friends of x, denoted by Cf |Apxq, is a
minimal subset of D such that, for each xAyψ P req|Apxq, there exists x1 P Cf |Apxq
with ψ P Lprx1, xsq. We define the set of close friends of x to be the set Cfpxq “
Cf |Apxq Y Cf |Apxq. It clearly holds that |Cfpxq| ď |ϕ| ´ 1.

The following contraction lemma provides an upper bound to the size of equiv-
alence classes.

Lemma 1 Let ϕ be a PNL„ formula and L “ pD,Lq be a fulfilling LIS that satisfies

it. If there exists a point x such that |rxs„| ą 2 ¨ p|ϕ|2 ´ 1q ¨ 2|ϕ|´1, then there exists a

fulfilling LIS L1 “ pD1,L1q that satisfies ϕ with |D1| “ |D| ´ 1.

Proof Let C be 2 ¨ p|ϕ|2 ´ 1q and let x P D be such that |rxs„| ą C ¨ 2|ϕ|´1. Since
there are at most 2|ϕ|´1 different sets of requests2, then there exist C ` 1 points
x̂0 ă . . . ă x̂C in rxs„ with the same set of requests, that is, reqpx̂iq “ reqpx̂i`1q

for each 0 ď i ă C. Now, let x̂ “ x̂C{2 and let Bp„px̂q and Bf„px̂q be respectively the
sets tx̂0, . . . , x̂C{2´1u and tx̂C{2`1, . . . , x̂Cu. We define the sets Blockedpx̂q “ Cfpx̂qY
Ť

x1PCfpx̂q Cfpx
1
q, Freef„px̂q “ Bf„px̂qzBlockedpx̂q, and Freep„px̂q “ Bp„px̂qzBlockedpx̂q.

By a cardinality argument, both |Freef„px̂q| and |Freep„px̂q| are greater than or
equal to C{2´ pp|ϕ| ´ 1q2 ` |ϕ| ´ 1q “ p|ϕ|2 ´ 1q ´ p|ϕ|2 ´ |ϕ|q “ |ϕ| ´ 1.

We now show how to build a fulfilling LIS L1 “ pD1,L1q, whose domain D1 is
equal to Dztx̂u, that still satisfies ϕ. First, we observe that there may exist y ă x̂

and xAyψ P req|Apyq such that ψ P Lpry, x̂sq and ψ R Lpry, xsq for all x ‰ x̂, and,

2 Unlike the case of MPNL„, the closure of a PNL„ formula ϕ only consists of the set of
all sub-formulas of ϕ and their negations.

Metric Propositional Neighborhood Logic with an Equivalence Relation 9

similarly, there may exist y ą x̂ and xAyψ P req|Apyq such that ψ P Lprx̂, ysq and
ψ R Lprx, ysq for all x ‰ x̂. In either case, the removal of x̂ causes the defect of an
unsatisfied request. To fix this, in the following we show how to suitably exploit
the points in Freef„px̂q (resp., Freep„px̂q) to solve the problems possibly caused by
the removal of x̂. The idea is to properly define the labeling L1, that we initially
set equal to L, in such a way that defects are eliminated and no new defect is
introduced.

First, we force all points in the future of x̂, belonging to the same equivalence
class as x̂, which have not been blocked, to satisfy their past requests in the same
way as x̂ does (that is, with the same past points). Similarly, we force all points in
the past of x̂, belonging to the same equivalence class as x̂, which have not been
blocked, to satisfy their future requests in the same way as x̂ does. Formally, for
all x P Freef„px̂q and x1 P Cf |Appx̂q, we put L1prx1, xsq “ Lprx1, x̂sq; similarly, for all
x P Freep„px̂q and x1 P Cf |Appx̂q, we put L1prx, x1sq “ Lprx̂, x1sq. Such a relabeling

guarantees that all points in the set Cfpx̂q Y Freef„px̂q Y Freep„px̂q are fulfilling.

Next, we show how to use the elements of Freef„px̂qYFree
p
„px̂q to fix the defects

of the remaining points, if any (recall that both Freef„px̂q and Freep„px̂q contains

at least |ϕ| ´ 1 elements). For all x P D1zpCfpx̂q Y Freef„px̂q Y Freep„px̂qq, we must

distinguish three cases. Let x̂ P Cf |Apxq. Since x̂ R Freef„px̂q, |Free
f
„px̂qzCfpxq| ě

1 and thus there exists at least one free element x1 P Freef„px̂q such that the
relabeling of the interval px, x1q does not introduce any new defect (x1 has the same
close friends as x̂ and x is not one of them). Hence, we put L1prx, x1sq “ L1prx, x̂sq.
The case x̂ P Cf |Apxq can be dealt with in a completely symmetric way. In case
x̂ R Cfpxq, we leave the labeling unchanged. [\

The next lemma gives a sufficient condition for the removal of an equivalence
class. To prove it, we introduce a finer classification of the requests of a point
that makes it possible to distinguish between those which are satisfied by intervals
whose endpoints belong to the same equivalence class and those which are satisfied
by intervals whose endpoints belong to different classes.

We denote by req|„Apxq the subset of future requests of a point x which are
satisfied over an interval rx, ys, with x „ y, and by req|Apxq the subset of future
requests of x which are satisfied over an interval rx, ys, with x  y. The two sets
are not necessarily disjoint as they may share requests of the form xAyψ. We define
in a similar way the subsets req|„

A
pxq and req|

A
pxq. Moreover, we define the sets

req|„pxq “ req|„Apxq Y req|„
A
pxq and req|pxq “ req|Apxq Y req|

A
pxq. We denote

the (structured) set of requests of a point x by reqSpxq “ preq|„pxq, req|pxqq.
With a little abuse of notation, in the following we will use reqpxq for reqSpxq.

Let R be the set of all possible (structured) sets of requests. It can be easily

checked that |R| is now bounded by 4|ϕ|´1. In addition, we denote by Cf„pxq
(resp., Cfpxq) the subset of Cfpxq consisting of all and only those elements in
Cfpxq that fulfill some request in req|„pxq (resp., req|pxq). It trivially holds that,
for any x, the two sets Cf„pxq and Cfpxq are disjoint.

Finally, we say that an equivalence class rxs„, for some x P D, is covered if for
each x1 P rxs„, there exist 2M points x1 ă . . . ă xM ă x1 ă xM`1 ă . . . ă x2M
such that (i) xi  x1 and reqpxiq “ reqpx1q, for all 1 ď i ď 2M , and (ii) xi  xj ,
for all 1 ď i ă j ď 2M , where M “ |ϕ|2 ` |ϕ| ´ 1 (we concisely say that points
x1, . . . , x2M cover x1).

10 Angelo Montanari et al.

Lemma 2 Let ϕ be a PNL„ formula and L “ pD,Lq be a fulfilling LIS that satisfies it.

If there is x P D such that rxs„ is covered, then there exists a fulfilling LIS L1 “ pD1,L1q,
that satisfies ϕ, with D1 “ Dzrxs„.

Proof We show how to obtain L1 as the output of an iterative procedure that
takes L0 “ L as input and, at the i-th iteration, replaces Li´1 “ pDi´1,Li´1q by
Li “ pDi,Liq, with Di “ Di´1ztx

1
u for some x1 P rxs„XDi´1. Notice that, while the

initial LIS L0 “ L is fulfilling, this is not necessarily the case with the subsequent
ones. For any LIS Li, we only require the following conditions (invariant of the
iterative procedure) to be satisfied: (1) each x1 P Dizrxs„ is fulfilled in Li, (2)
rxs„ X Di is covered, and (3) for each x1 P rxs„ X Di and each xAyψ P req|Apx

1
q

(resp., Aψ P req|
A
px1qq, there exists x2 P Di such that ψ P Liprx1, x2sq (resp.,

ψ P Liprx2, x1sqq.
The invariant trivially holds for L0. We now prove that if it holds for the LIS

Li, then we can build a new LIS Li`1, which is obtained from Li by removing a
point x̂ P rxs„ XDi, that satisfies it as well.

By item (2) of the invariant, there exist 2M points x1, . . . , x2M , with x1 ă . . . ă

xM ă x̂ ă xM`1 ă . . . ă x2M , that cover x̂ (recall that M “ |ϕ|2 ` |ϕ| ´ 1). We

denote by Bppx̂q, B
f
px̂q, and Bpx̂q the sets tx1, . . . , xM u, txM`1, . . . , x2M u, and

Bppx̂q YB
f
px̂q, respectively.

Let Blockedpx̂q be the set Cfpx̂qY
Ť

x1PCfpx̂q Cfpx
1
qYtx P Bpx̂q : Dx1 P Cfpx̂qpx1 „

xqu. This set of blocked points differs from that of Lemma 1 for the inclusion of
those points in Bpx̂q that belong to the same equivalence class of some point
in Cfpx̂q. Since all points in Bpx̂q belong to different equivalence classes, the
last argument of the set union contributes at most |Cfpx̂q| “ |ϕ| ´ 1 additional
points to the set of blocked points. Hence, |Blockedpx̂q| consists of at most |ϕ|2 ´
1 points. Moreover, in analogy with Lemma 1, we define the sets Freeppx̂q “

Bppx̂qzBlockedpx̂q and Freefpx̂q “ Bfpx̂qzBlockedpx̂q. Since |Bppx̂q| “ |B
f
px̂q| “

|ϕ|2 ` |ϕ| ´ 1, both |Freeppx̂q| and |Freefpx̂q| are greater than or equal to |ϕ|.

Let Freepx̂q “ Freeppx̂qYFree
f
px̂q. By construction, each element belonging

to Freepx̂q is not „-related to any element in Cfpx̂q. We define the labeling Li`1

as follows.

First, for each x1 P Freeppx̂q and each x2 P Cf |Apx̂q, we have that x1 ă

x̂ ă x2 and we put Li`1prx
1, x2sq “ Liprx̂, x2sq p“ Lprx̂, x2sqq. Similarly, for each

x1 P Freefpx̂q and each x2 P Cf |Apx̂q, we have that x2 ă x̂ ă x1 and we put
Li`1prx

2, x1sq “ Liprx2, x̂sq p“ Lprx2, x̂sqq. Notice that in this way we fixed all prob-
lems possibly introduced by the removal of x̂ for the points in Freepx̂q and Cfpx̂q.

Then, for all x1 P DizpFreepx̂q Y Cfpx̂q Y rxs„q, we distinguish three cases3.

Case (i): x̂ P Cf |Apx1q. Since |Cfpx1q| ď |ϕ| ´ 1, |Freefpx̂q| ě |ϕ|, and x̂ R Freefpx̂q,

|Freefpx̂qzCfpx
1
q| ě 2 and thus there are (at least) two distinct points y, z P

Freefpx̂q that do not belong to Cfpx1q. By definition of Freefpx̂q, y  z; it imme-
diately follows that at least one of them, say y, does not belong to rx1s„. We put
Li`1prx

1, ysq “ Liprx1, x̂sq. Case (ii): x̂ P CfApx
1
q. This case is completely symmetric

to the previous one, and thus its analysis is omitted. Case (iii): x̂ R Cfpx1q. The
labeling of all intervals featuring x1 as one of their endpoints remains unchanged.

3 It is worth remarking that Cf„px̂q Ď rxs„.

Metric Propositional Neighborhood Logic with an Equivalence Relation 11

To complete the proof, we need to show that the invariant is preserved in
Li`1. As for item (1), we first observe that the labeling of intervals with „-related

endpoints does not change. Moreover, for all x1 P Freefpx̂q, we fulfill all requests

in req|
A
px1q by forcing x1 to satisfy them as, by item (3), x̂ does (in Li). The

same for x1 P Freeppx̂q. Finally, for all x1 R Freepx̂q Y Cfpx̂q Y rxs„ such that
x̂ P Cfpx1q, we make use of points in Freepx̂q to fix the defects introduced by
the removal of x̂. Item (2) trivially holds in Li`1 as the procedure does not change
the „-relation between pairs of points in Di`1. Similarly, the procedure does not
change the labeling of the intervals with at least one endpoint in pDi X rxs„qztx̂u,
and thus item (3) holds.

The procedure terminates after |rxs„| steps when all points in rxs„ have been
removed. From the invariant, it follows that the resulting LIS is fulfilling (and it
satisfies ϕ). [\

The next lemma provides an upper bound to the number of equivalence classes.
Its proof exploits Lemma 2.

Lemma 3 Let ϕ be a PNL„ formula and L “ pD,Lq be a fulfilling LIS for it. If there

are more than T “ 2 ¨M ¨ |Rϕ| equivalence classes in L, with M “ |ϕ|2 ` |ϕ| ´ 1, then

there is a fulfilling LIS L1 “ pD1,L1q for ϕ with a strictly smaller number of classes.

Proof We show how to select a non-empty subset of „-classes that can be safely
removed. We take into consideration one R P Rϕ at a time. More precisely, we
start by letting S0 “ D, and, at the i-th step, we select a new R P Rϕ and we use
it to replace Si´1 by Si, where Si is obtained from Si´1 by removing the elements
of (at most) 2 ¨M selected „-classes.

Let AR “
ŤM
j“1rx

R
j s„ be the union of the „-classes of the M leftmost elements

in Si´1 such that xRj  xRk and reqpxRj q “ R for all 1 ď j ‰ k ďM . Formally, each

xRj is recursively defined as follows (for 1 ă j ďM):

xR1 :“ mintx P Sj´1 : reqpxq “ Ru,

xRj :“ mintx P Sj´1 : reqpxq “ R^ @k ă j px  xRk qu

Analogously, let ĀR “
ŤM
j“1rx̄

R
j s„, where x̄R1 , ..., x̄

R
M are the M rightmost elements

in Si´1zAR such that x̄Rj  x̄Rk and reqpx̄Rj q “ R for all 1 ď j ‰ k ďM , that is (for
1 ă j ďM):

x̄R1 :“ maxtx P Si´1zAR : reqpxq “ Ru,

x̄Rj :“ maxtx P Si´1zAR : reqpxq “ R^ @k ă j px  xRk qu.

The condition x̄Rj R AR is introduced to avoid class collisions. It is worth noticing

that some xRj or x̄Rj may be empty (this is the case, for instance, if there are fewer
than 2 ¨M classes with elements with requests R). We define Si as Si´1zpARYĀRq.

To conclude the proof, it suffices to show that all „-classes included in S|Rϕ|

(the set obtained from the above iterative process) satisfy the conditions of Lemma
2 and thus they can be safely removed. Let C be one such class. By construction,

each element x P C has M elements x
reqpxq
1 , ..., x

reqpxq
M P DzS|Rϕ|

before it and M

elements x̄
reqpxq
1 , ..., x̄

reqpxq
k P DzS|Rϕ|

after it such that (i) they belong to different
„-classes (all different from rxs„) and (ii) they feature the same requests as x. [\

12 Angelo Montanari et al.

Theorem 2 The satisfiability problem for PNL„ over the class of finite linear orders

is NEXPTIME-complete.

Proof Decidability of finite satisfiability for PNL„ immediately follows from the
above lemmas, that provide an exponential upper bound to both the number of
„-classes and the number of their elements. NEXPTIME-hardness follows from
that of PNL [6]. [\

We conclude the section by pointing out that decidability (and NEXPTIME-
completeness) of the satisfiability problem for FO2

ră,„s over finite linear orders
directly follows from Theorem 2, as the polynomial reductions from PNL to FO2

răs

and from FO2
răs to PNL can be easily extended to PNL„ and FO2

ră,„s main-
taining the same (polynomial) complexity.

4 Adding an equivalence relation to MPNL: MPNL„

In this section, we show how to reduce the satisfiability problem for MPNL„
over the class of finite linear orders to the decidable 0-0 reachability problem for
vector addition systems (VASS). The opposite reduction comes for free from the
reduction of the 0-0 reachability problem for VASS to the satisfiability problem for
FO2

p„,ă,`1q over finite data words [2], since the latter is embeddable in MPNL„.
Let ϕ be an MPNL„ formula to be checked for satisfiability. In the following,

we build a VASS Aϕ such that the 0-0 reachability problem for Aϕ can be positively
solved if and only if ϕ is satisfiable over the class of finite linear orders. As we shall
see, the possibility of constraining the length of intervals to equal 1, provided by
MPNL„ by means of the metric constraint len1, makes it quite difficult to give a
bound on the size of each equivalence classes as well as on their overall number.
In Section 3, we solved these two problems for PNL„ in Lemma 1 and Lemma
3, respectively. We shall show that the latter problem, namely, the problem of
constraining the number of equivalence classes, can be dealt with by exploiting
the counting feature of VASS. However, as a preliminary to that, we provide a
characterization of each equivalence class in terms of the behaviour of a limited
number of its elements (the exact number depends on the size of the formula). Such
a characterization will be obtained via a re-labelling of intervals in a fulfilling LIS
(that satisfies ϕ) that allows us to replace an arbitrary fulfilling LIS by a more
regular one. The following definitions and results go in that direction.

Let L “ pD,Lq be a LIS and let x be a point in D. We define the class-position of
x, denoted pos„pxq, as the number of distinct points x1 P rxs„ such that x1 ă x and
reqpx1q “ reqpxq. Moreover, given an equivalence class rxs„ and a set of requests
R, we denote by maxpR, rxs„q the point y P rxs„ with reqpyq “ R (if any) such
that, for all points z P rxs„, if reqpzq “ reqpyq, then z ď y. Now, let L “ pD,Lq be
a fulfilling LIS that satisfies an MPNL„ formula ϕ. We define the set req|ą1,Apxq

as the set of all and only those formulas xAyψ for which there exists y such that
y ą x, ψ P Lprx, ysq, and len1 R Lprx, ysq. The set req|

ą1,Apxq is defined analogously.

A far friend mapping ffL : D Ñ 2D is a function that maps each element x P D
to a minimal set D1 Ď D such that (i) for each xAyψ P req|ą1,Apxq, there exists
y P ffLpxq such that y ą x, ψ P Lprx, ysq, and len1 R Lprx, ysq and (ii) for each
xAyψ P req|

ą1,Apxq, there exists y P ffLpxq such that y ă x, ψ P Lpry, xsq, and

Metric Propositional Neighborhood Logic with an Equivalence Relation 13

len1 R Lpry, xsq. For all x P D, we define the natural restrictions ffAL pxq and ffAL pxq

of ffLpxq to the points in the future and in the past of x, respectively, that is,

ffAL pxq “ ty P ffLpxq : y ą xu and ffAL pxq “ ty P ffLpxq : y ă xu.

Lemma 4 Let ϕ be a satisfiable MPNL„ formula. Then, there is a fulfilling LIS L “

pD,Lq for ϕ and a far friend function ffL such that, for all x P D, it holds that (i) for

each y P ffAL pxq, pos„pyq ď |ϕ|
2
´ |ϕ| and (ii) if |ϕ|2 ´ |ϕ| ă pos„pxq, then ffAL pxq “

ffAL pmaxpreqpxq, rxs„qq.

Proof The proof is done in two steps. First, given a fulfilling LIS L “ pD,Lq for ϕ
and a far friend function ffL, we build a fulfilling LIS L1 (for ϕ) and a far friend
function ffL1 satisfying (i); then, we turn L1 and ffL1 into a fulfilling LIS L2 (for
ϕ) and a far friend function ffL2 that satisfy both (i) and (ii).

Let M “ |ϕ|2 ´ |ϕ|. The number k of ‘defects’ to fix in L in order to satisfy

condition (i) is equal to |tpx, x1q : x P ffAL px
1
q ^ pos„pxq ą Mu|. We build L1 by a

finite number of iterations of a basic procedure, which starts from L0 “ pD,L0q “

pD,Lq, ffL0
“ ffL, and k0 “ k (if k0 “ 0, we simply put L “ L1 and ffL1 “ ffL, and

we move to the next step).
Let Li “ pD,Liq be the output of i-th iteration of the procedure and let ki “

|tpx, x1q : x P ffALi
px1q ^ pos„pxq ą Mu|. We show how to obtain a fulfilling LIS

Li`1 “ pD,Li`1q, that satisfies ϕ, and a far friend function ffLi`1
with ki`1 ă ki.

Let x P ffALi
px1q, for some x1 P D, with pos„pxq ą M , and let D “ tx1, . . . , xM u

be the set of the first M points in rxs„ with reqpxjq “ reqpxq (clearly, xj ă x

for all 1 ď j ď M). As the cardinality of the set D
1
“

Ť

x2PffA
Li
pxq ff

A
Li
px2q is

bounded by p|ϕ| ´ 1q2 “ M ´ p|ϕ| ´ 1q, there are at least |ϕ| ´ 1 distinct points

xj1 , . . . , xj|ϕ|´1
in DzD

1
. Since x P ffLi

px1q (and x R D), there is at least one

point xjk in pDzD
1
qzffLi

px1q. We put Li`1prxjk , x
1
sq “ Liprx, x1sq, Li`1prxjk , x

2
sq “

Liprx, x2sq for each x2 P ffALi
pxq, and ffLi`1

px1q “ pffLi
px1qztxuqYtxjku. The labeling

function Li`1 and the far friend function ffLi`1
over the other intervals and points,

respectively, are the same as those given at the i-th step. After k1 ď k steps (at
some iteration, it may happen that we solve more than one defect), we obtain a
pair pLk1 , ffLk1

q that satisfies condition (i).
The construction of a fulfilling LIS L2 and a far friend function ffL2 that satisfy

both (i) and (ii) is pretty much the same, apart from the fact that it requires to
start from a fulfilling LIS for ϕ that satisfies (i). We begin by letting L0 “ L1, which
satisfies condition (i). Next, we show that, for each n ą 0, the fulfilling LIS Ln
generated by the n-th iteration of the procedure still satisfies (i). Let Li and ffLi

be
respectively the LIS and the far friend function generated at the i-th iteration of the
procedure. By the inductive hypothesis, they satisfy condition (i). If they satisfy
also condition (ii), then we put L2 “ Li and ffL2 “ ffLi

, and we stop. Otherwise,
there exists x P D such that pos„pxq ą M and ffLi

pxq ‰ ffLi
pmaxpreqpxq, rxs„qq,

which implies that x ă maxpreqpxq, rxs„q. Let x1 “ maxpreqpxq, rxs„q. By the

inductive hypothesis (Li and ffLi
satisfy (i)), x R

Ť

x2PffA
Li
px1q ff

A
Li
px2q. We put

Li`1prx, x
2
sq “ Liprx1, x2sq for each x2 P ffALi

px1q, ffLi`1
pxq “ ffALi

pxqYffALi
px1q. The

labeling function Li`1 and the far friend function ffLi`1
over the other intervals

and points, respectively, are the same as those given at the i-th step. It can be
easily checked that Li`1 is a fulfilling LIS for ϕ and Li`1 and ffLi`1

still satisfy

14 Angelo Montanari et al.

condition (i). Moreover, the number of points in D that do not satisfy condition (ii)
in Li`1 is strictly less than the number of points that do not satisfy it in Li. The
procedure terminates after a number h1 ď h of steps, where h “ |tx : pos„pxq ą
M ^ ffAL0

pxq ‰ ffAL0
pmaxpreqpxq, rxs„qqu|. We put L2 “ Lh1 and ffL2 “ ffLh1

. [\

Let L and ffL be respectively the fulfilling LIS for ϕ and the far friend function
whose existence is guaranteed by Lemma 4. We call such a pair pL, ffLq a well-

match. We shall use the far friend function to keep track of the requests of any
point x P D which are satisfied by points y at a distance greater than 1. Requests
of x which are satisfied by points y at a distance less than or equal to 1 from x,
that is, at the immediate predecessor or successor of x, indeed, turn out to be
easy to check by means of a VASS. Lemma 4 states that for any fulfilling LIS

L, we can rearrange the intervals of L in such a way that, for each point x P D,
each ψ P req|A,ą1pxq is satisfied at a point y with pos„pyq ď |ϕ|

2
´ |ϕ|. Moreover,

it states that, for each point x P D, pos„pxq ď |ϕ|2 ´ |ϕ| or its future requests
req|A,ą1pxq are dealt with as those of the maximum witness of reqpxq in its class,
i.e., by making use of the same points. It is worth pointing out that there is an
asymmetry in the way we deal with past and future requests, which stems from
the fact that the VASS will process a (candidate) model from the first point to
the last one. Indeed, for each past request xAyψ of a point x, the VASS guarantees
that it can be satisfied by the points already introduced, which amounts to saying
that the whole set req|Apxq can be readily checked for fulfillment when x is added
to the model. On the other hand, fulfillment of xAyψ requests of x is postponed
as it can be checked only when all the points of the (candidate) model have been
introduced.

We are now ready to provide a finite characterization of „-classes based on
the notion of class word. A class word rw is a finite word on the alphabet Rϕ such
that, for each R P Rϕ, |ti : rwris “ Ru| ď |ϕ|2 ´ |ϕ| ` 1. Let ĂWϕ be the set of all
class words on Rϕ. Given a fulfilling LIS L “ pD,Lq for ϕ, we say that a point
y P D is meaningful if pos„pyq ď |ϕ|

2
´ |ϕ| or y “ maxpreqpyq, rys„q. For any class

rxs„, we define the class word rwrxs„ to be the word reqpx̄1q, . . . , reqpx̄mq, where
x̄1, . . . , x̄m is the sequence (according to the ordering relation ă) of all and only
the meaningful points in rxs„. As it happens with atoms and sets of requests, class
words are syntactic objects that may or may not occur in a fulfilling LIS L for ϕ,
that is, the set of class words witnessed by some class rxs„ in some fulfilling LIS
L for ϕ is contained in ĂWϕ, but not vice versa.

As already observed, in any computation of a VASS, xAy requests are checked
immediately for fulfillment, while xAy requests can be postponed. In order to keep
track of the xAy requests which have been already fulfilled, class words are paired
with an additional word that stores information about these requests. Given a class
word rw, a temporary fulfillment of rw is a word t

rw P R˚ϕ such that (i) |t
rw| ď | rw|, (ii)

for each 1 ď i ď |t
rw|, t rwris Ď rwris|A, and (iii) xAylen1 P t

rwris for each 1 ď i ă |t
rw|.

A temporary fulfillment of length m collects the xAy-requests of a class word up
to position m that have been already fulfilled.

In the following, we will make use of the temporary fulfilment of a given class
word up to a given point, which is defined as follows. Let pL, ffLq, where L “

pD,Lq, be a well-match, rxs„ be an equivalence class, and y be a point in D. The
temporary fulfilment of rwrxs„ up to point y, denoted by t

rwrxs„,y
is a sequence R1pĎ

reqApx̄1qq . . . Rm1pĎ reqApx̄m1qq, where x̄1 . . . x̄m1 is the sequence of meaningful

Metric Propositional Neighborhood Logic with an Equivalence Relation 15

points in rxs„ less than or equal to y and, for each 1 ď i ď m1, Ri “ tψ P

Lprxi, zsq X reqApx̄iq : z ă y^ pz P ffLpx̄iq _ @z
1
px̄i ă z1 ď z Ñ z1 “ zqqu. Intuitively,

a temporary fulfilling t
rwrxs„,y

represents the snapshot of the fulfilments of the xAy-

requests of the meaningful points in rxs„ when some point y (not necessarily in
rxs„) is introduced.

Given a class word rw, let T
rw be the set of all possible temporary fulfilments

of it. Moreover, let T be the set union of T
rw for all rw P ĂWϕ. We say that a

temporary fulfilment t
rw is final if and only if |t

rw| “ | rw| and for all 1 ď i ď | rw|,
t
rwris “ txAyψ P rwrisu. Moreover, we say that the pair p rw, t

rwq is final if t
rw is final.

We define a partial order ď over T
rw such that, for each t

rw, t
1
rw in T

rw, t
rw ď t1

rw if
and only if |t

rw| “ |t
1
rw| and, for each 1 ď i ď |t

rw|, t rwris Ď t1
rwris.

The counters of the VASS will be indexed by the pairs p rw, t
rwq, where rw is a class

word and t
rw P T

rw is one of its possible temporary fulfillments. A rough upper bound

to the number C of counters of the VASS is thus given by 22¨p|ϕ|`2q¨p|ϕ|2´|ϕ|`1q¨2|ϕ|`2

(the length of the class word, and consequently that of the temporary fulfillment, is

bounded by p|ϕ|2´|ϕ|`1q¨2|ϕ|`2 and the number of different values that can occur
at each position of the class word, and consequently of the temporary fulfillment,
is bounded by 2|ϕ|`2).

Let x be the point introduced in the current state of the VASS and let R be the
set of its requests. The class of x, the class of its immediate predecessor, and the
classes of the points which are used to satisfy the past requests in req|Apxq, whose
number is bounded by |ϕ|, are dealt with by the control of the automaton, as we
shall show later. All the other classes are updated by making use of the following
3-argument relation:

t
rw

R
ÝÑ t1

rw if and only if (i) t
rw ď t1

rw; (ii) there exist mp“ |t
rw|q interval tuples

preqp rwrisq, Fi, Rq such that for each 1 ď i ď m, t1
rwris “ t

rwris Y txAyψ P t rwris :
ψ P Fiu and len1,„R Fi; (iii) there exists no a temporary fulfillment t2

rw, with
t1
rw ă t2

rw, that satisfies both (i) and (ii).

Property (iii) guarantees a maximality condition with respect to the satisfied xAy-
requests for meaningful points in the update of the temporary fulfillment. From
the point of view of the model, one can always find a LIS that guarantees such a
property in a pointwise manner.

Let D be a finite linear order and x P D, with x ‰ minpDq. We denote by prepxq
the predecessor of x. We introduce now the notion of saturated well-match.

Definition 1 Let pL, ffLq, with L “ pD,Lq, be a well-match. We say that pL, ffLq is
saturated if and only if for each pair x, x1 P D, with x1 R

Ť

x2PffA
L pxqYtx,prepxqu

rx2s„

and x1 ă x, it holds that, for every well-match pL1, ffL1q, with L1 “ pD,L1q and

ffAL1 “ ffAL , such that L1prx1, xsq “ Lprx1, xsq, with x1 ‰ x1 or x ‰ x, it holds that
t
rwrx1s„,x

ć t1
rwrx1s„,x

for the temporary fulfillments t
rwrx1s„,x

in L and t1
rwrx1s„,x

in L1.

The intuitive meaning of saturation is that for any pair of points x, x1, with x1 ă x,
in a saturated well-match pL, ffLq, if x1 has no role in the fulfilling of the past
requests of x, then the temporary fulfillment t rwrx1s„,x cannot be improved, that

is, it is not possible to increase the set of future requests that x1 fulfills before

the introduction of x by changing any labeling in L under the constraint that ffAL
remains the same.

16 Angelo Montanari et al.

The next lemma shows that we can safely restrict our attention to saturated
well-matches.

Lemma 5 Let ϕ be a satisfiable MPNL„ formula and let pL, ffLq, with L “ pD,Lq,
be a well-match for it. Then, there is a saturated well-match pL1 “ pD,L1q, ffL1q for it.

Proof The proof is quite straightforward. Once more, it exploits an iterative pro-
cedure that builds a sequence of well-matches that progressively fixes the defects
with respect to the saturation property. As we shall see, one of its distinctive fea-

tures is that it does not change the function ffAL , that is, it enforces ffALi
“ ffALi`1

for all i, as it updates some labelings without affecting it.
Let L0 “ pD,L0q “ pD,Lq. By hypothesis, the LIS L0 satisfies the conditions

of Lemma 4. Consider now the well-match built at the i-th iteration. Let x, x1,
with x1 ă x, be the minimum pair of elements in D (according to a lexicographical
order on the pairs px, x1q) such that the saturation condition is violated in Li.

Then, there exists a well-match pL1i, ff
1
Li
q, with L1i “ pD,L1iq and ffALi

“ ff
1A
Li

, such
that for each pair x̂1, x̂, with x̂1 ‰ x1 or x̂ ‰ x, it holds that Liprx̂1, x̂sq “ L1iprx̂

1, x̂sq

and t
rwrx1s„,x

ă t1
rwrx1s„,x

for the temporary fulfillments t
rwrx1s„,x

in Li and t
rw1
rx1s„,x

in L1i. Since temporary fulfillments are built only on meaningful points, it holds
that pos„px

1
q ď |ϕ|2 ´ |ϕ| or x1 “ maxpreqpx1q, rx1s„q. Moreover, since x1 ă x is a

violation of the saturation property, it holds that x1 R
Ť

x2PffA
L pxqYtx,prepxqu

rx2s„.

As a direct consequence of the latter condition, it holds that tψ P req|Apx
1
q :

Dx2 ď x, ψ P Liprx1, x2squ Ă tψ P req|Apx
1
q : Dx2 ď x, ψ P L1iprx

1, x2squ and since
Liprx1, x2sq “ L1iprx

1, x2sq, for each x2 ‰ x, it holds that Liprx1, xsq X req|Apx
1
q Ă

L1iprx
1, xsq X req|Apx

1
q.

Since x1 R ffAL pxq, we can safely put Li`1prx
1, xsq “ L1iprx

1, xsq, leaving the

labeling of all the other intervals and ffAL unchanged. It is easy to check that
t
rwrx1s„,x

ă t1
rwrx1s„,x

holds for the temporary fulfillments t
rwrx1s„,x

in Li and t1
rwrx1s„,x

in Li`1.
To complete the proof, it suffices to observe that, for all x1 P D, at most

|req|Apx
1
q| ď |ϕ| pairs of points px1, xq, with x1 ă x, are taken into consideration by

the procedure. Since at each iteration i` 1 the added point x is used to fulfill (in
Li`1) at least one request ψ P req|Apx

1
q, with x1 ă x, which in Li was fulfilled with

a point x2 ą x, it immediately follows that after at most k steps, with k ď |ϕ| ¨ |D|,
we obtain a saturated LIS L1 “ Lk for ϕ. [\

The saturation property will be exploited in the proof of the completeness of
the reduction: starting from a saturated well-match pL, ffLq, with L “ pD,Lq, one
can indeed prove the existence of a 0-0 computation for the VASS.

Let us now focus on the computation of the VASS. Whenever we introduce a
(new occurrence of a) set of requests R, it may happen that the second component
of a pair p rw, t

rwq needs to be updated. More precisely, for all pairs p rw, t
rwq such

that there exists t1
rw with t

rw
R
ÝÑ t1

rw, we force the VASS to simultaneously decrease
the counter c

rw,t
Ăw

by 1 and to increase the counter c
rw,t1

Ăw
by 1 (value transfer).

However, to guarantee that such an update does not violate the soundness of the
construction, we must successfully cope with two non-trivial problems:

(P1) Any given occurrence of a set R cannot be used more than one time, that is,

when we transfer values from a counter c
rw,t

Ăw
to a counter c

rw,t1
Ăw

, with t
rw

R
ÝÑ t1

rw,

Metric Propositional Neighborhood Logic with an Equivalence Relation 17

we must guarantee that all the transitions that transfer values from c
rw,t1

Ăw
to

another counter c
rw,t2

Ăw
are not fired until a new set R1 is introduced. If that

were not the case, we would be using a single occurrence of a set R (associated
with a given point x) to solve more requests than it can handle and this would
compromise the soundness of the construction.

(P2) Whenever a transition performing a value transfer from a counter c
rw,t

Ăw
to

a counter c
rw,t1

Ăw
, with t

rw
R
ÝÑ t1

rw, is fired, we can only conclude that c
rw,t

Ăw
was

greater than zero at that time. The VASS, indeed, cannot test c
rw,t

Ăw
for being

0 and, if this is not the case, fire all possible transitions until it reaches 0 (this
is the feature that makes reachability problems for such machines decidable).
Then, in a computation, it may happen that c

rw,t
Ăw

remains greater than zero
when we introduce a new request R1 after R even in those cases in which it

was possible to transfer the value of c
rw,t

Ăw
to some c

rw,t1
Ăw

, with t
rw

R
ÝÑ t1

rw. This
does not compromise the fulfilling of xAy requests, as their fulfillment is simply
postponed. However, if c

rw,t
Ăw

never changes its value, that is, no transition that
executes the decrement of c

rw,t
Ăw

is ever fired, two explanations are possible:

either c
rw,t

Ăw
“ 0 or c

rw,t
Ăw
ą 0 and t

rw z
R
ÝÑ t1

rw for any t1
rw. While the first case is

perfectly acceptable in a computation, the second one is sufficient to cause the
termination of the computation with failure (again, the problem arises because
we cannot test whether or not c

rw,t
Ăw

is equal to 0).

Problem (P1) can solved by using maximality of the ternary relation t
rw

R
ÝÑ t1

rw,

which guarantees that if we fix R, then the binary relation
R
ÝÑ is anti-transitive.

Then, it is possible to arrange the pairs (class word, temporary fulfilment) in an

arbitrary order ăR such that p rw, t
rwq ăR p rw, t

1
rwq if (and only if) t

rw z
R
ÝÑ t1

rw. Thus,
once we leave the pair p rw, t

rwq, updates involving t
rw cannot be considered anymore,

unless we introduce another set of requests R1. As a matter of fact, the order ăR
depends on the chosen set R. Hence, we assume that |R| total orders ăR have
been initially fixed (one for each R P Rϕ), all satisfying the above conditions.

Problem (P2) can be dealt with by exploiting the distinctive properties of LISs.
The next lemma gives necessary and sufficient conditions for the expansion of

a (not necessarily fulfilling) LIS with a new point.

Lemma 6 Let ϕ be an MPNL„ formula, L “ pD,Lq be a LIS, and R be a set of

requests. Then, there is a LIS L1 “ pD1,L1q, with D1 “ D Y txu, for some x R D,

D1 “ D Y tx1 ă x : x1 P Du, L1prx1, x2sq “ Lprx1, x2sq, for all x1 ď x2 P D, and

reqpxq “ R, if and only if there is D̂ Ď D, with either D̂ “ H or D̂ “ rx1s„, for some

x1 P D, such that, for each x2 P D, there is an interval tuple preqpx2q, F,Rq, for some

atom F , with „P F if and only if x2 P D̂ and len1 P F if and only if x2 “ maxpDq.

Proof The proof is straightforward (the claim follows from the properties of LISs).
As for the left-to-right direction, since L1 is a LIS, preqpx1q,L1prx1, xsq, reqpxqq is

an interval tuple, for each x1 P D1. We must distinguish two cases. If |rxs„| “ 1 (x is
the only element in rxs„), then „R L1prx2, xsq, for each x2 P D, and len1 P L1prx2, xsq
if and only if x2 “ maxpDq. If |rxs„| ą 1, then „P Lprx1, xsq, for all x1 P rxs„,
„R L1prx1, xsq, for all x1 P Dzrxs„, and len1 P L1prx1, xsq if and only if x1 “ maxpDq.

As for the right-to-left direction, suppose that there exist a set of requests R
and a set of points D̂ Ď D, with either D̂ “ H or D̂ “ rx1s„, for some x1 P D,

18 Angelo Montanari et al.

such that, for each x2 P D, there is an interval tuple preqpx2q, F,Rq, for some atom
F , with „P F if and only if x2 P D̂ and len1 P F if and only if x2 “ maxpDq.
We let D1 “ D Y txu, for some x R D, and D1 “ D Y tx1 ă x : x1 P Du, and
we define the labeling function L1, over the IpD1q, as follows. First of all, we let
L1prx1, x2sq “ Lprx1, x2sq for all x1, x2 P D, with x1 ď x2. Then, we distinguish two
cases. Case (i): x belongs to a class D̂ “ rx1s„, for some x1 P D. By hypothesis,
for each x2 P D, either x2 R rx1s„ and there exists an interval tuple preqpx2q, F,Rq

such that „R F and len1 P F if and only if x2 “ maxpDq or x2 P rx1s„ and
there exists an interval tuple preqpx2q, F,Rq such that „P F and len1 P F if and
only if x2 “ maxpDq. In both cases, we let Lprx2, xsq “ F . Case (ii): D̂ “ H.
Then, by hypothesis, for each x2 P D, x2 R rx1s„ and there exists an interval tuple
preqpx2q, F,Rq such that „R F and len1 P F if and only if x2 “ maxpDq. We let
Lprx2, xsq “ F . It is immediate to check that the resulting pair L1 “ pD1,L1q is a
LIS. [\

According to Lemma 6, a point x, with reqpxq “ R, can be added at a certain
computation step if and only if one of the following conditions holds:

– for all x1 introduced so far, there is an interval tuple preqpx1q, F,Rq, with „R F ;
– there exist m pě 1q points x1, . . . , xm, among those introduced so far, such

that (i) xi „ xj , for all 1 ď i, j ď m, and xi  x1, for all 1 ď i ď m and
x1 P Dztx1, . . . , xmu; (ii) for all 1 ď i ď m, there exists an interval tuple
preqpxiq, F,Rq, with „P F , and if xi “ maxpDq, then len1 P F ; (iii) for at
least one 1 ď i ď m, there exists no interval tuple preqpxiq, F,Rq, with „R F .

Notice that, while in the second case we are forced to insert x into the class of
x1, . . . , xm, in the first case we can either introduce a new class and add x to it or
insert x in one existing class, provided that for each x1 in such a class there is an
interval tuple preqpx1q, F,Rq, with „P F , and if x1 “ maxpDq, then len1 P F .

Formally, this can be done by means of a simple function f„ that keeps track
of the number of classes featuring at least one point x with reqpxq “ R, for each
R P R. As a matter of fact, it is not necessary to know the exact number of classes,
but it suffices to distinguish among the following cases: (i) R does not occur in
any class yet, (ii) R occurs in exactly one class, or (iii) R occurs in more than one
class. Accordingly, we introduce a function f„ : RÑ t0, 1,`u, called class witness
function. We specify how to update such a function when moving from one state
to another by means of the control of the VASS.

In the control of the VASS, we put together the set R, the pair (class word,
temporary fulfilment) of R, the function f„, and a multi-set of at most |ϕ| pairs
of the form p rw, t

rwq, denoted by PR, called preemption. Intuitively, such a multi-set
represents the classes that have been used to satisfy those xAy-requests of R which
have been satisfied at a distance greater than 1 (at most |ϕ| ´ 1) plus the pair
(class word, temporary fulfillment) of the predecessor of R if (and only if) R and
its predecessor have been assigned to different classes. In addition, we include an
index m, that allows us to order (according to ăR) the updates of the counters.

Finally, given a class word rw, a temporary fulfillment t
rw for it, and a set of

requests R, we say that R is visible in p rw, t
rwq if and only if rwr|t

rw|s “ R and
t
rwr|t rw|s “ H, and we say that R is invisible in p rw, t

rwq if and only if t
rwr|t rw|s ‰ H,

|ti : i ď |t
rw| ^ rwris “ Ru| “ |ϕ|2 ´ |ϕ|, and |ti : rwris “ Ru| “ |ϕ|2 ´ |ϕ| ` 1.

We are now ready to define states and transitions of the VASS.

Metric Propositional Neighborhood Logic with an Equivalence Relation 19

A state of the VASS is a tuple pR, rw, t
rw, f„, PR,mq, where R can be either visible

or invisible in p rw, t
rwq and 1 ď m ď M , M being the number of possible different

pairs p rw, t
rwq. The set of initial states Qi contains those states pR, rw, t

rw, f„,H, 1q
such that xAyψ R R, for all xAyψ P Trϕ, rwr1s “ R, |t

rw| “ 1, t
rwr1s “ H, f„pRq “ 1,

and f„pR
1
q “ 0, for all R1 ‰ R. The set of final states Qf consists of those states

pR, rw, t
rw, f„, PR,Mq such that rwr|t

rw|s “ R, xAyψ R R, for all xAyψ P Trϕ, and the
pair p rw, t

rwq as well as all pairs p rw1, t
rw1q P PR are final.

The transition relation is the set union ∆M,1Y
Ť

1ďkďM ∆k,kY
Ť

1ďkăM ∆k,k`1

Y∆fM,M , denoted by ∆. The sets ∆M,1, ∆k,k, ∆k,k`1, and ∆fM,M consists of triples

of the form pq, U, q1q, which are defined as follows.

Transitions in ∆M,1 model the addition of a new point at position x ` 1,
labelled with a set of requests R1, as a successor of the point at position x, la-
belled with R. These transitions can change the current state of the automaton
pR, rw, t

rw, f„, PR,Mq into a new state pR1, rw1, t
rw1 , f

1
„, P

1
R, 1qq (all the components of

the state may change) on the basis of the application of some update U .

Formally, a triple ppR, rw, t
rw, f„, PR,Mq, U, pR

1, rw1, t
rw1 , f

1
„, P

1
R, 1qq belongs to

∆M,1 if and only if it satisfies the following four conditions:

1. First, we check whether a point labelled with R1 can be inserted as the immedi-
ate successor of a point labelled with R as well as a (not immediate) successor
of all predecessors of x belonging to rxs„ (if any), that is, we check whether
there exists a way of labelling intervals rx1, x` 1s, with x1 ď x and x1 P rxs„.
Formally, let n “ |t

rw|, if R is visible; n “ |t
rw|`1 otherwise. There must exist n

interval tuples p rwr1s, F pre1 , R1q, . . . , p rwrn´ 1s, F pren´1, R
1
q, pR,F pren , R1q such that

(i) for each 1 ď i ď n ´ 1, len1 R F
pre
i , (ii) for each 1 ď i ď n, „P F prei if and

only if xAyplen1^ „q P R, and (iii) len1 P F
pre
n .

We distinguish two cases. Case (i): x ` 1 P rxs„ (i.e., xAyplen1^ „q P R). We
let rw “ rw1 and, for each 1 ď i ď |t

rw|, t
1
rwris “ t

rwris Y txAyψ P Trϕ : ψ P F prei u. If
R1 is visible in p rw1, t

rw1q, then |t
rw1 | “ |t rw| ` 1; |t

rw1 | “ |t rw| otherwise. Case (ii):
x`1 R rxs„ (i.e., xAyplen1^ „q R R). Let n1 “ |t

rw1 |´1, if R1 is visible in p rw1, t
rw1q;

n1 “ |t
rw1 | otherwise. There must exist a temporary fulfillment t1

rw1 for rw1, with
|t1

rw1 | ď |t rw1 |, and n1 interval tuples p rw1r1s, F 11, R
1
q, . . . , p rw1rn1s, F 1n1 , R

1
q such that,

for each 1 ď i ď n1, len1,„P F
1
i and t

rw1 ris “ t1
rw1 ris Y txAyψ P Trϕ : ψ P F 1iu.

2. Then, we check whether the past requests of the new point can be satisfied.
In fact, the satisfaction of some of them comes for free from the fulfillment of
condition 1. We must guarantee the satisfaction of the remaining ones.

Let RA “
Ť

1ďiďntxAyψ : ψ P F prei u, if x ` 1 P rxs„; RA “
Ť

1ďiďn txAyψ :

ψ P F prei u Y
Ť

1ďiďn1txAyψ : ψ P F 1iu otherwise (x` 1 R rxs„). There must exist
m ď |ϕ| ´ 1 pairs p rwp1 , t rwp

1
q, . . . , p rwpm, t

rwp
m
q (at most one for each past request

not belonging to RA) such that (i) for each 1 ď i ď m, there exist |t
rwp
i
| interval

tuples p rwpi rjs, F
p
i,j , R

1
q such that len1,„R F

p
i,j , for each 1 ď j ď |t

rwp
i
| (consistency

conditions), and (ii) for each xAyψ P R1zRA, there exist i, j such that ψ P F pi,j
(fulfilling conditions).
For each 1 ď i ď m, let t1

rwp
i

be a temporary fulfilment such that t
rwp
i
ď t1

rwp
i

and, for each 1 ď j ď |t
rwp
i
|, t1

rwp
i
rjs “ t

rwp
i
rjs Y txAyψ P Trϕ : ψ P F pi,ju. We

put PR “ tp rwpi , t
1
rwp
i
q : 1 ď i ď mu if x ` 1 P rxs„; PR “ tp rwpi , t

1
rwp
i
q : 1 ď i ď

20 Angelo Montanari et al.

mu Y tp rw, t
rwpre

qu, where |t
rwpre

| “ |t
rw| and, for each 1 ď i ď |t

rw|, t rwpre
ris “

t
rwris Y txAyψ P Trϕ : ψ P F prei u otherwise (x` 1 R rxs„).

3. Next, we guarantee that the fuction f„ can be consistently updated.
For all R2 P Rϕ, if R2 ‰ R1, then f 1„pR

2
q “ f„pR

2
q. Otherwise, if R2 “ R1,

f 1„pR
1
q “ 1 if either f„pR

1
q “ 0 or f„pR

1
q “ 1 and there exists 1 ď i ă |t

rw1 | such
that rw1ris “ R1; f 1„pR

1
q “ ` otherwise. Moreover, for all R2 P Rϕ, if f„pR

2
q “ `

or f„pR
2
q “ 1, R2 ‰ R, and, for each 1 ď i ă |t

rw1 |, rw1ris ‰ R2, then there exists
an interval tuple pR2, F,R1q such that both len1 R F and „R F .

4. Finally, we suitably constrain the decrease and the increase of the values of the
involved counters. This is done by means of the preemption multi-set.
Once more, we distinguish two cases. If x`1 P rxs„, then U “ tc

rw2,t
Ăw2
`PRp rw

2,

t
rw2q : c

rw2,t
Ăw2
P PRu Y tc

rw2,t
Ăw2
´ P 1Rp rw

2, t
rw2q : c

rw2,t
Ăw2
P P 1Ru; otherwise, U “

tc
rw2,t

Ăw2
` PRp rw

2, t
rw2q : c

rw2,t
Ăw2
P PRu Y tc

rw,t
Ăw
` 1u Y tc

rw2,t
Ăw2
´ P 1Rp rw

2, t
rw2q :

c
rw2,t

Ăw2
P P 1RuYtc rw1,t1

Ăw
´1u (since PR is a multi-set, we use the standard notation

Npaq for such objects, where N is a multiset and a an object, which returns
the number of elements a contained in N).

The transitions in ∆k,k model counter updates which are not directly dealt
with by the transitions in ∆M,1. A triple ppR, rw, t

rw, f„, PR, kq, U, pR, rw, t rw, f„, PR,

kqq belongs to ∆k,k if and only if U “ tc
rw1,t

Ăw1
´ 1, c

rw1,t1
Ăw1
` 1u, p rw1, t

rw1q is the k-th

element in the order ăR, and t
rw1

R
ÝÑ t1

rw1 .
The transitions in ∆k,k`1 are simply used to make one step forward with

respect to the ordering ăR. Formally, ∆k,k`1 consists of all and only the triples
of the form ppR, rw, t

rw, f„, PR, kq,H, pR, rw, t rw, f„, PR, k ` 1qq.

Finally, the transitions in ∆fM,M , together with the acceptance conditions of the
automaton, are used to guarantee that, at the end of the computation, all classes
are final, and thus the formula is satisfiable. A triple ppR, rw, t

rw, f„, PR,Mq, U, pR, rw,

t
rw, f„, PR,Mqq belongs to ∆fM,M if and only if rAs len1 P R, p rw, t

rwq as well as all

p rw1, t
rw1q P PR are final, and U “ tc

rw2,t
Ăw2
´ 1u, where p rw2, t

rw2q is final.
The next two propositions respectively prove the soundness and the complete-

ness of the proposed reduction. Their proofs are given in the appendix.

Proposition 1 Let ϕ be an MPNL„formula. If Vϕ has a 0-0 computation, then ϕ is

satisfiable over the class of finite linear orders.

Proposition 2 Let ϕ be an MPNL„formula. If ϕ is satisfiable over the class of finite

linear orders, then Vϕ has a 0-0 computation.

Decidability of finite satisfiability for MPNL„ is formally stated by the follow-
ing theorem, which is an immediate consequence of the two previous propositions.

Theorem 3 Let ϕ be an MPNL„formula. The problem of deciding whether ϕ is sat-

isfiable over the class of finite linear orders is decidable.

5 Conclusions

The paper consists of two main parts. In the first one, we proved that the satisfi-
ability problem for PNL, over finite linear orders, extended with one equivalence

Metric Propositional Neighborhood Logic with an Equivalence Relation 21

relation „ is still NEXPTIME-complete. First, we showed that the size of ev-
ery equivalence class of a minimal model of a PNL formula ϕ is exponentially
bounded in its length |ϕ|; then, we provided an exponential bound to the num-
ber of equivalence classes in a minimal model. The existence of an exponential
upper bound to the cardinality of a small model for PNL„ easily follows. Since
the polynomial reductions from PNL to FO2

răs and from FO2
răs to PNL can be

easily extended to analogous reductions between PNL„ and FO2
ră, „s, decidabil-

ity and NEXPTIME-completeness of FO2
ră,„s immediately follow (notice that

FO2
ră,„s has the same complexity as weaker fragments like FO2, FO2

r„s, and
FO2

răs). In the second part of the paper, we showed that decidability is preserved
if a metric component is added to PNL„. However, proof techniques turn out to be
much more complex and computational complexity bounds increase significantly.

We are currently working at the solution of the last missing tile of the puzzle,
namely, the satisfiability problem for PNL extended with two equivalence relations
„1 and „2, or, equivalently, FO2

ră,„1,„2s, over finite linear orders (the undecid-
ability of the extension of MPNL with two equivalence relations, or, equivalently,
that of FO2

ră,`1,„1,„2s, immediately follows from the undecidability of finite
satisfiability for FO2

pă,`1,„1,„2q proved by Bojańczyk et al. in [2]).

References

1. M. Bojańczyk. Weak MSO with the unbounding quantifier. Theory of Computing Systems,
48(3):554–576, 2011.

2. M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic
on data words. ACM Transactions on Computational Logic, 12(4):27, 2011.

3. D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. Metric proposi-
tional neighborhood logics on natural numbers. Software and System Modeling, 12(2):245–
264, 2013.

4. D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval neigh-
borhood logics: Expressiveness, decidability, and undecidable extensions. Annals of Pure
and Applied Logic, 161(3):289–304, 2009.

5. D. Bresolin, A. Montanari, and P. Sala. An optimal tableau-based decision algorithm
for propositional neighborhood logic. In Proc.of the 24th STACS, volume 4393 of LNCS,
pages 549–560. Springer, 2007.

6. D. Bresolin, A. Montanari, and G. Sciavicco. An optimal decision procedure for Right
Propositional Neighborhood Logic. Journal of Automated Reasoning, 38(1-3):173–199,
2007.

7. Davide Bresolin, Angelo Montanari, Pietro Sala, and Guido Sciavicco. Optimal decision
procedures for MPNL over finite structures, the natural numbers, and the integers. The-
oretical Computer Science, 493:98–115, 2013.

8. S. Demri and R. Lazic. LTL with the freeze quantifier and register automata. ACM
Transactions on Computational Logic, 10(3), 2009.

9. V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval neighborhood tempo-
ral logics. Journal of Universal Computer Science, 9(9):1137–1167, 2003.

10. E. Grädel, P. G. Kolaitis, and M. Y. Vardi. On the decision problem for two-variable
first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

11. J. E. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional vector
addition systems. Theoretical Computer Science, 8(2):135–159, 1979.

12. R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and
System Sciences, 3(2):147–195, 1969.

13. E. Kieronski, J. Michaliszyn, I. Pratt-Hartmann, and L. Tendera. Two-variable first-order
logic with equivalence closure. In Proc. of the 27th LICS, pages 431–440. IEEE, 2012.

14. E. Kieronski and M. Otto. Small substructures and decidability issues for first-order logic
with two variables. In Proc. of the 20th LICS, pages 448–457. IEEE, 2005.

22 Angelo Montanari et al.

15. E. Kieronski and L. Tendera. On finite satisfiability of two-variable first-order logic with
equivalence relations. In Proc. of the 24th LICS, pages 123–132. IEEE, 2009.

16. S. R. Kosaraju. Decidability of reachability in vector addition systems (preliminary ver-
sion). In Proc. of the 14th STOC, pages 267–281. ACM, 1982.

17. R. J. Lipton. The reachability problem requires exponential space. Technical Report 62,
Department of Computer Science, Yale University, 1976.

18. A. Montanari, G. Puppis, P. Sala, and G. Sciavicco. Decidability of the interval temporal
logic ABB̄ on natural numbers. In Proc. of the 27th STACS, pages 597–608, 2010.

19. A. Montanari and P. Sala. Adding an equivalence relation to the interval logic ABB:
Complexity and expressiveness. In Proc. of the 28th LICS, pages 193–202. IEEE, 2013.

20. M. Mortimer. On languages with two variables. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 21:135–140, 1975.

21. M. Otto. Two variable first-order logic over ordered domains. Journal of Symbolic Logic,
66(2):685–702, 2001.

22. J. Ouaknine and J. Worrell. On the decidability and complexity of metric temporal logic
over finite words. Logical Methods in Computer Science, 3(1), 2007.

23. D. Scott. A decision method for validity of sentences in two variables. Journal of Symbolic
Logic, 27(4):377, 1962.

24. Y. Venema. A modal logic for chopping intervals. Journal of Logic and Computation,
1(4):453–476, 1991.

Appendix

The polynomial reduction from FO2
răs to PNL

In the following, we briefly show how to turn the exponential reduction from
FO2

răs to PNL given in [4] into a polynomial one. We recall that a polynomial

reduction from a logic L to a logic L1 is a polynomial-time procedure that receives
a formula α of L as input and returns a formula β of L1 as output such that α is
(finitely) satisfiable if and only if β is (finitely) satisfiable. In our case, the resulting
formula β ” σspαq is obtained by the direct translation of the formula α by means
of the transformation χ described in the table below. The final formula used in
the reduction will be presented in Theorem 4.

Basic formulas Non-basic formulas
χx,ypx “ xq :“ χx,ypy “ yq “ J χx,yp αq :“ χx,ypαq
χx,ypx “ yq :“ χx,ypy “ xq “ π χx,ypφ_ ψq :“ χx,ypφq _ χx,ypψq

χx,ypy ă xq :“ K χx,ypDxψq :“ xAyχy,xpψq _ rAsxAyχx,ypψq

χx,ypP px, xqq :“ xAypπ ^ pď ^ pěq χx,ypDyψq :“ xAyχy,xpψq _ rAsxAyχx,ypψq
χx,ypP py, yqq :“ xAypπ ^ pď ^ pěq
χx,ypP px, yqq :“ pď

χx,ypP py, xqq :“ pě

The translation of FO2răs formulas into PNL ones.

We now introduce a model transformation ζ that univocally translates each
model of FO2

răs into a model of PNL.

Definition 2 Let A “ xD, VAy be a relational first-order model on a vocabulary
τ Y tďu (without loss of generality, we assume that τ contains only symbols with
arity 2), where ďA is a linear order on D. The corresponding interval model ζpAq
on Prop “ tpď, pě : P P τu is a pair xIpDq, VζpAqy such that, for any binary relation

P P τ and any interval ra, bs, ra, bs P VζpAqpp
ď
q if and only if pa, bq P VApP q and

ra, bs P VζpAqpp
ě
q if and only if pb, aq P VApP q.

Metric Propositional Neighborhood Logic with an Equivalence Relation 23

The next lemma proves the correctness of the transformation χ using the model
transformation ζ.

Lemma 7 For every FO2
răs-formula αpx, yq, every FO2

răs-model A “ xD, VAy,
and every pair a, b P D, with a ď b, the following hold: (i) A (αpa, bq if and only if

ζpAq, ra, bs (χx,ypαq and (ii) A (αpb, aq if and only if ζpAq, ra, bs (χy,xpαq.

Proof The proof is a straightforward induction on the complexity of the formula
α. [\

Let the formula sync be defined as sync ”
Ź

pď,pě rU spπ Ñ ppď Ø pěqq, where
rU sψ is the universal modality, which can be defined in PNL as follows:

rU sϕ ::“ rAsrAsrAsϕ^ rAsrAsrAsϕ^ rAsrAsrAsϕ^ rAsrAsrAsϕ.

The constraint sync will be exploited by the formula σspαq to force each model of
its to agree (be synchronized) on the value of every interval point (for every pair of
symbols pď, pě in Prop). This is needed to prove the right-to-left implication of
the next theorem since, otherwise, there could be models of σspαq that would not
be mappable to an FO2

răs-model according to inverse transformation of ζ.

Theorem 4 For every FO2
răs-formula α, α is (finitely) satisfiable if and only if the

PNL-formula

σspαq ” sync^ pχx,ypϕq _ χy,xpϕqq

is (finitely) satisfiable.

Proof The claim is a direct consequence of Lemma 7. [\

Note that the above reduction is exponential because of the computational
explosion caused by nested quantifiers. To turn it into a polynomial reduction,
we can apply first the Scott’s normal form to the formula α (in polynomial time)
to obtain a formula α1, which is equi-satisfiable with α and whose level of nested
quantifiers does not exceed two, and then apply σs to α1.

Proposition 1. Let ϕ be an MPNL„formula. If Vϕ has a 0-0 computation, then ϕ is

satisfiable over the class of finite linear orders.

Proof Let C “ pq0, 0q Ñ . . .Ñ pqn, 0q be a 0-0 computation of the VASS Vϕ, where
q0 P Qi and qn P Qf . According to the definition of ∆, the computation can be
splitted in two parts. In the first part (prefix), it alternates between transitions
in ∆M,1 and (sequences of) transitions in ∆k,k and ∆k,k`1 until it reaches a final
state qf “ pR, rw, t rw, f„, PR,Mq for the first time. Since rAs len1 P R (by definition
of final state), no further transitions in ∆M,1 can be fired. In the second part
(suffix), the computation is thus forced to remain in qf and only two types of
transition can be executed. Let p rw1, t

rw1q be the M-th pair in the order ăR. By
construction, either a transition pqf , tc rw1,t

Ăw1
´ 1, c

rw1,t1
Ăw1
` 1u, qf q in ∆M,M or a

transition pqf , tc rwf ,t
Ăwf
u ´ 1, qf q P ∆fM,M , for some final pair p rwf , t

rwf
q, can be

fired in qf . Since the computation ends with the values of counters equal to 0,
for each fired transition pqf , tc rw1,t

Ăw1
´ 1, c

rw1,t1
Ăw1
` 1u, qf q, the pair p rw1, t1

rw1q is final.

Moreover, for all pairs p rw, t
rwq such that there exists no transition of the form

24 Angelo Montanari et al.

pqf , tc rw,t
Ăw
´ 1, c

rw,t1
Ăw
` 1u, qf q in ∆fM,M , either c

rw,t
Ăw
“ 0 the first time we reach qf

or the pair p rw, t
rwq is final, as only counters relative to final pairs are decreased

and counters reach the value 0 at the end of the computation.
Now, let Cpre “ pq0, 0q Ñ . . . Ñ pqm, vmq be the computation prefix and let

pqk, vkq be the result of the last application of a transition in ∆k,k in Cpre. We
build a LIS L “ pD,Lq from Cpre by a suitable iterative process. L is obtained
as the result of a number of iteration steps, being Li “ pDi,Liq, where Li is not
necessarily defined for all points in Di, the output of the i-th step. Let D„i be a
minimal subset of points in Di such that for each x P Di there exists x1 P D„i with
x P rx1s„. Minimality of D„i guarantees that in D„i there is exactly one witness for
each class in Di.

In order to define an invariant for the iterative construction, we introduce the
following functions:

– ffALi
: Di Ñ 2Di , that maps each x P Di into a set of points ffALi

pxq such that,

for each ψ P reqApxq, there exists x1 ă x in ffALi
pxq with ψ P Lprx1, xsq;

– f iW : D„i Ñ ĂWϕ, that maps each x P D„i into its class word rwrxs„ ;

– f iT : D„i Ñ T , that maps each x P D„i into its temporary fulfillment at step i;
– f iCpre

: D„i Ñ T , that maps each x P D„i into its temporary fulfillment in the
computation Cpre.

We would like to briefly explain the role of the last two functions, namely, f iT
and f iCpre

, that map a given equivalence class (that is, an element of D„i) into
the LIS Li and the computation Cpre, respectively. Intuitively, the execution of a
transition in ∆M,1 corresponds to the insertion of a new point x, with reqpxq “ R,
in Li as the successor of the largest point of Di. As we already pointed out, the
control of the automaton only provides the labeling for the subset of intervals that
end at points belonging to rxs„ (the class of x), to the class of the predecessor of
x (if any), or to the classes rx1s„ p‰ rxs„q which are used to satisfy the A requests
in R. As for the points belonging to the remaining classes, it may happen that the
automaton executes some, but not all, transitions in ∆k,k, that is, some “active”
(that is, executable) transitions in ∆k,k are possibly not executed (recall that the
control of the automaton cannot execute any zero-test operation). However, the
fact that not all active transitions are actually executed by the automaton does not
introduce any inconsistency in Li, as the function f„ guarantees the existence of a
consistent labeling of the intervals beginning at these points and ending at x. What
happens is simply that the addition of a point x, which turns out to completely
invisible to the computation, can force an expansion of the temporary words of
some classes in Li. It immediately follows that, at each step i, the temporary
words in Li are supersets of those in the computation, that is, for all x P Di,
f iCpre

pxq ď f iT pxq. However, this is not a problem, because being the computation
successful guarantees that all the temporary words in the automaton will be sooner
or later saturated and thus all the requests in the resulting LIS L will be satisfied.

Let qi “ pRi, rwi, t
rwi , f i„, P

i
R, k

i
q. We show that, at each iteration of the con-

struction process, the truth of the following invariant is guaranteed:

1. for all x P Di, it holds that f iW pxq “ f i`1
W pxq and ffALi

pxq “ ffALi`1
pxq;

2. for all x, x1 P Di, with x1 ă x and x ‰ maxpDiq, Liprx1, xsq is defined and, for
each xAyψ P reqApxq, there exists x2 P Di such that ψ P Lprx2, xsq;

Metric Propositional Neighborhood Logic with an Equivalence Relation 25

3. for all x P D„i , it holds that f iCpre
pxq ď f iT pxq;

4. for all p rw, t
rwq, it holds that |tx P D„i : f iCpre

pxq “ t
rw ^ rxs„ X ff

A
Li
pmaxpDiqq “

Hu| “ c
rw,t

Ăw
;

5. for all x P D„i , either Liprx1,maxpD„i qsq is defined for all x1 „ x in Di or it is
not defined for any x1 „ x in Di;

6. for all x P D„i such that rxs„Xff
A
Li
pmaxpDiqq “ H, if Liprx,maxpDiqsq is defined

and p rw1, t
rw1q is the ki-th element in the order ăRi , then pf iW pxq, f

i
Cpre

pxqq ăRi

p rw1, t
rw1q;

7. for all x P Di, with x „ x1, for some x1 P D„i with f iW px
1
q “ rw and f iT px

1
q “ t

rw,
if pos„pxq ą |ϕ

2
| ´ |ϕ| and rwrjs ‰ reqpxq for all j ą |t

rw|, then, for all x2 P Di,
with x2 ą maxpreqpxq, rx1s„q, Liprx, x2sq “ Liprmaxpreqpxq, rx1s„q, x

2
sq;

8. for all R P Rϕ, it holds that f i„pRq “ #i
R, if #i

R ď 1, and f i„pRq “ ` otherwise,
where #i

R “ |tx P D
„
i : Dx1 „ xpreqpx1q “ Rqu|;

9. for all p rw, t
rwq, it holds that P iRp rw, t rwq “ CP iRp rw, t rwq, if p rw, t

rwq ‰ p rwi, t
rwiq,

and P iRp rw, t rwq “ CP iRp rw, t rwq ` 1 otherwise, where CP iRp rw, t rwq “ |trx
1
s„ : x1 P

ffALi
pmaxpDiqq ^ f

i
W px

1
q “ rw ^ f iCpre

px1q “ t
rwu|.

Let q0 “ pf„, R, rw, t
rw,H, 1q be the initial state of the computation. We put

D0 “ tx0u, reqpx0q “ R, f0W px0q “ rw, f0Cpre
px0q “ f0T px0q “ t

rw, and ffAL0
px0q “ H.

It is easy to check that it satisfies the invariant conditions.
Let us now consider the generic step i` 1. Let qi “ pR

i, rwi, t
rwi , f i„, P

i
R, k

i
q and

assume that Li satisfies the invariant conditions 1´9. We show how to build Li`1 in
such a way that it satisfies them as well. Let ppRi, rwi, t

rwi , f i„, P
i
R, kiq, Ui, pR

i`1, rwi`1,

t
rwi`1 , f i`1

„ , P i`1
R , ki`1qq be the fired transition. We must distinguish among three

cases, depending on its type.

- Case (i): the fired transition belongs to ∆M,1.
We first complete the labeling of the intervals ending in maxpDiq. Let the la-
beling Liprx,maxpDiqsq, for some x P Di, with x ă maxpDiq, be not defined. By
condition 5 of the invariant, the labeling Liprx1,maxpDiqsq is not defined for all
x1 „ x. Let tx1, . . . , xmu be the set of all points in rxs„ belonging to Di. By defi-
nition of f i„ and by condition 8 of the invariant (that links it to the current LIS),
for each 1 ď j ď m, there exists an interval tuple preqpxjq, Fj , reqpmaxpDiqqq,
with len1,„R Fj . It is not difficult to check that, for all 1 ď j ď j1 ď m, if
reqpxjq “ reqpxj1q, then we can safely assume Fj “ Fj1 . This guarantees that
condition 7 of the invariant is preserved. We define Li`1prxj ,maxpDiqsq “ Fj ,
for all 1 ď j ď m.
We proceed in this way until we define the labeling Li`1prx

1,maxpDiqsq for all
x1 for which it was not already defined.
Now, we extend Di with a new point x̂, that is, we put Di`1 “ Di Y tx̂u, with
x̂ ą x for all x P Di. Let reqpx̂q “ Ri`1. The labeling Li`1 for the intervals
ending in x̂ and beginning at some point belonging to rmaxpDiqs„ (case 1),
rx̂s„ (case 2), or the classes of the past far friends of x̂ (case 3) is defined as
follows.

1. Let n “ |t
rwi |, if Ri is visible in p rwi, t

rwiq; n “ |t
rwi | ` 1, otherwise. By defi-

nition of ∆M,1, there exist n interval tuples p rwir1s, F pre1 , Ri`1
q, . . . , p rwirn´

1s, F pren´1, R
i`1
q, pRi, F pren , Ri`1

q such that (i) for all 1 ď j ď n, „P F prej if

and only if xAyplen1^ „q P R
i, (ii) len1 P F

pre
n , and (iii) len1 R F

pre
j , for all

26 Angelo Montanari et al.

1 ď j ă n. By the invariant conditions 4 and 9, it holds that f iW pmaxpDiqq “
rwi and f iT pmaxpDiqq “ t

rwi . Moreover, for all x2 P rmaxpDiqs„, if x2 is mean-
ingful, then there exists 1 ď j ď n such that j “ |tx3 P rmaxpDiqs„ : x3 ă
x2^ x3 is meaningfulu| and we put Li`1prx

2, x̂sq “ F prej . If x2 is not mean-

ingful, two cases are possible. If rwirj1s ‰ reqpx2q for all j1 ą |t
rwi |, then the

point x3 that, at the end of the construction, will turn out to be the largest
point in rmaxpDiqs„ with set of requests equal to reqpx2q has been already
introduced in Di. Since x2 is not meaningful, it holds that x3 ą x2. Then,
we put Li`1prx

2, x̂sq “ Li`1prx
3, x̂sq, since we have already defined Li`1

for meaningful points. On the contrary, if there exists j1 ą |t
rwi | such that

rwirj1s “ reqpx2q, we can conclude that the above-defined point x3 has not
been introduced yet. Since x2 is not meaningful, there are exactly |ϕ|2´|ϕ|
meaningful points x3 ă x2 in rmaxpDiqs„, with reqpx3q “ reqpx2q. We
take one of these points x3 and we put Li`1prx

2, x̂sq “ Li`1prx
3, x̂sq, since

we have already defined Li`1 for meaningful points. Finally, being maxpDiq
meaningful or not, we put LprmaxpDiq, x̂sq “ F pren .

2. If |t
rwi`1 | “ 1, then x̂ is the first point in its class, and then we skip this

step. Similarly, if xAyplen1^ „q P R
i, then the labeling of the intervals that

begin at a point in rx̂s„ and end at x̂ has been already defined (case 1),
and thus we skip this step as well. Let n “ |t

rwi`1 | ´ 1, if Ri`1 is visible in
p rwi`1, t

rwi`1q, that is, Ri`1 has been added to the temporary word (at step
i`1); n “ |t

rwi`1 | otherwise, that is, Ri`1 has not be added to the temporary
word as it is not visible. By case (ii) of condition 1 of the definition of ∆M,1,
there exist a temporary fulfillment t1

rwi`1 for rwi`1 and n interval tuples

p rwi`1
r1s, F i`1

1 , Ri`1
q, . . . , p rwi`1

rns, F i`1
n , Ri`1

q such that for each 1 ď j ď

n, len1,„P F
i`1
j and t

rwi`1 rjs “ t1
rwi`1 rjs Y txAyψ P TRpϕq : ψ P F i`1

j u.

Then, by condition 4 or condition 9 of the invariant, there exists x1 in D„i
with f iW px

1
q “ rwi`1 and f iCpre

px1q “ t1
rwi`1 . More precisely, if there exists

a point x2 P ffALi
pmaxpDiqq, with f iW px

2
q “ rwi`1 and f iCpre

px2q “ t1
rwi`1 ,

then we take x1 “ x2 (condition 9 of the invariant); otherwise, the existence
of such a point x1 is guaranteed by condition 4 of the invariant. For each
x2 P rx1s„ if x2 is meaningful, then there exists 1 ď j ď n such that
j “ |tx3 P rx1s„ : x3 ă x2^ x3 is meaningful u|, and we put Li`1prx

2, x̂sq “

F i`1
j . If x2 is not meaningful, there are two possible situations (as in case

1). If rwi`1
rj1s ‰ reqpx2q for all j1 ą |t

rwi`1 |, then the point x3 that, at the
end of the construction, will turn out to be the largest point in rx1s„ with
set of requests equal to reqpx2q has been already introduced in Di. Since
x2 is not meaningful, it holds that x3 ą x2. Then, we put Li`1prx

2, x̂sq “

Li`1prx
3, x̂sq, since we have already defined Li`1 for meaningful points. On

the contrary, if there exists j1 ą |t
rwi`1 | such that rwi`1

rj1s “ reqpx2q, we
can conclude that the above-defined point x3 has not been introduced yet.
Since x2 is not meaningful, there are exactly |ϕ|2 ´ |ϕ| meaningful points
x3 ă x2 in rx1s„ with reqpx3q “ reqpx2q. We take one of these points
x3 and we put Li`1prx

2, xsq “ Li`1prx
3, xsq, since we have already defined

Li`1 for meaningful points.
3. Let n “ |t

rwi`1 | ´ 1, if Ri`1 is visible in p rwi`1, t
rwi`1q, n “ |t

rwi`1 | otherwise,
and let n1 “ |t

rwi |, if Ri is visible in p rwi, t
rwiq, n1 “ |t

rwi | ` 1, otherwise.

Metric Propositional Neighborhood Logic with an Equivalence Relation 27

Moreover, let RA “
Ť

1ďjďntxAyψ : ψ P F prej u, if xAyplen1^ „q P R
i, and

RA “
Ť

1ďjďn txAyψ : ψ P F prej u Y
Ť

1ďjďn1txAyψ : ψ P F i`1
j u otherwise.

By condition 2 of the definition of ∆M,1, there are m ď |ϕ| ´ 1 pairs
p rwp1 , t rwp

1
q, . . . , p rwpm, t

rwp
m
q such that (i) for each 1 ď i1 ď m, there are |t

rwp

i1
|

interval tuples p rwpi1 rjs, F
p
i1,j , R

i`1
q with len1,„R F

p
i1,j for each 1 ď j ď |t

rwp

i1
|

(consistency conditions), and (ii) for each xAyψ P Ri`1
zRA, there are i1, j

such that ψ P F pi1,j (fulfilling conditions). By the same condition, it also

holds that PRi`1 “ tp rw
p
j , t

1
rwp
j
q : 1 ď j ď mu, if xAyplen1^ „q P R

i; PRi`1 “

tp rwpj , t
1
rwp
j
q : 1 ď j ď mu Y tp rwi, t

rwpre
qu, with |t

rwpre
| “ |t

rwi | and t
rwpre

rj1s “

t
rwi rj1s Y txAyψ P TRpϕq : ψ P F prej1 u, for all 1 ď j1 ď |t

rwi |, otherwise.

By condition 4 of the definition of ∆M,1 (definition of U), Ui “ tc
rw2,t

Ăw2
`

PRip rw2, t
rw2q : c

rw2,t
Ăw2
P PRiuYtc

rw2,t
Ăw2
´PRi`1p rw2, t

rw2q : c
rw2,t

Ăw2
P PRi`1u, if

xAyplen1^ „q P R
i; Ui “ tc

rw2,t
Ăw2
`PRip rw2, t

rw2q : c
rw2,t

Ăw2
P PRiu Y tc

rwi,ti
Ăw
`

1uYtc
rw2,t

Ăw2
´PRi`1p rw2, t

rw2q : c
rw2,t

Ăw2
P PRi`1uYtc

rwi`1,ti`1
Ăw
´1u otherwise.

Since we have already dealt with the class of x̂ and the class of its prede-
cessor, we can restrict our attention to the update tc

rw2,t
Ăw2
`PRip rw2, t

rw2q :

c
rw2,t

Ăw2
P PRiu Y tc

rw2,t
Ăw2
´ PRi`1p rw2, t

rw2q : c
rw2,t

Ăw2
P PRi`1u. By a simple

counting argument, which makes use of conditions 4 and 9 of the invari-
ant (that hold for Li by the inductive hypothesis), we can conclude that,
for each pair p rw, t

rwq, |tj : p rwpj , t rwp
j
q “ p rw, t

rwqu| ď |tx1 P D„i : f iCpre
px1q “

t
rw ^ f

i
W px

1
q “ rwu| “ ci

rw,t
Ăw
` |PRip rw, t

rwq|.
Now, we can choose x1, . . . , xm distinct points in D„i such that, for each
1 ď j ď m, f iW pxjq “ rwj , f

i
Cpre

pxjq “ t
rwj

, xj  x̂, and xj  maxpDiq.
In analogy with cases 1 and 2, we can define the labeling of the intervals
that begin at points belonging to rx1s„, . . . , rxms„ iteratively. The labeling
procedure consists of two nested loops, the external one is indexed by j,
with 1 ď j ď m, and it ranges over the classes; the internal one is indexed
by j1, with 1 ď j1 ď |t

rwj
|, and it ranges over the meaningful elements of

rxjs„. Let us consider the j-th iteration step of the external loop. At each
step j1, we take the j1-th meaningful point x1 P rxjs„, that is, j1 “ |tx2 P
rxjs„ : x2 ă x1 ^ x2 is meaningfulu|, and we put Li`1prx

1, x̂sq “ F pj,j1 . At
the end of the external loop, we only need to define the labeling of the non-
meaningful points x1 P rxjs„, for all 1 ď j ď m. To this end, a single loop on
the classes rx1s„, . . . , rxms„ suffices. Once more, for each non-meaningful
point x1 P rxjs„, two cases are possible. If rwjrj1s ‰ reqpx1q for all j1 ą |t

rwj |,
then the point x2 that, at the end of the construction, will turn out to be
the largest point in rxjs„ with set of requests equal to reqpx1q has been
already introduced in Di. Since x1 is not meaningful, it holds that x2 ą x1.
Then, we put Li`1prx

1, x̂sq “ Li`1prx
2, x̂sq, since we have already defined

Li`1 for for the pair px2, x̂q. On the contrary, if there exists j1 ą |t
rwj | such

that rwjrj1s “ reqpx1q, we can conclude that the above-defined point x2

has not been introduced yet. Since x1 is not meaningful, there are exactly
|ϕ|2 ´ |ϕ| meaningful points x2 ă x1 in rxjs„, with reqpx2q “ reqpx1q. We
take one of these points x2 and we put Li`1prx

1, x̂sq “ Li`1prx
2, x̂sq, since

we have already defined Li`1 for the pair px2, x̂q.

28 Angelo Montanari et al.

It can be easily checked that, at the end of this step, the invariant conditions
are satisfied by the LIS Li`1.

- Case (ii): the fired transition belongs to ∆k,k, for some 1 ď k ďM .

By definition of ∆k,k, Ri “ Ri`1, rwi “ rwi`1, t
rwi “ t

rwi`1 , f i„ “ f i`1
„ , P iR “ P i`1

R ,
ki “ ki`1, and Ui “ tc

rw,t
Ăw
´ 1, c

rw,t1
Ăw
` 1u for some word rw and some pair of its

temporary fulfillments t
rw and t1

rw. Moreover, by definition of t
rw

R
ÝÑ t

rw1 , t rw ď t
rw1

and, for each 1 ď j ď |t rw|, there is an interval tuple p rwrjs, Fj , R
i
q such that

len1,„R Fj and t1
rwrjs “ t

rwrjs Y txAyψ P rwrjs : ψ P Fju. By conditions 4-6 of the

invariant, there is x P D„i such that (i) for all x1 „ x, x1 R ffALi
pmaxpDiqq and the

labeling Liprx1,maxpDiqsq is undefined, (ii) f iW pxq “ rw, and (iii) f iCpre
pxq “ t

rw.
Let x0 ă . . . ă xm be all the points in rxs„. For each 1 ď j ď m, we proceed as
follows:
(i) if pos„pxjq ď |ϕ|

2
´|ϕ|, then we put Li`1prxj ,maxpDiqsq “ Fj1 where j1 is the

minimal index satisfying Rj
1

“ reqpxjq and |tj2 ď j1 : rwrj2s “ reqpxjqu| “

pos„pxjq;
(ii) if pos„pxjq ě |ϕ|2 ´ |ϕ| ` 1, rwrj2s ‰ reqpxjq, for all j2 ą |t

rw|, and xj “

maxptxj1 : reqpxj1q “ reqpxjquq, then we put Li`1prxj ,maxpDiqsq “ Fj1 ,

where j1 is the maximal index for which Rj
1

“ reqpxjq;
(iii) if pos„pxjq ě |ϕ|2 ´ |ϕ| ` 1 and there is j2 ą |t

rw| such that rwrj2s “

reqpxjq, then we take any xj1 ă xj , with pos„pxj1q ď |ϕ|
2
´|ϕ| and reqpxj1q

“ reqpxjq, and we put Li`1prxj ,maxpDiqsq “ Li`1prxj1 ,maxpDiqsq (notice
that the labeling Li`1prxj1 ,maxpDiqsq has been defined in (i));

(iv) if pos„pxjq ě |ϕ|
2
´ |ϕ| ` 1, rwrj2s ‰ reqpxjq, for all j2 ą |t

rw|, and xj ‰

maxptxj1 : reqpxj1q “ reqpxjquq, then we take xj2 “ maxptxj1 : reqpxj1q “

reqpxjquq, and we put Li`1prxj ,maxpDiqsq “ Li`1prxj2 ,maxpDiqsq (notice
that the labeling Li`1prxj2 ,maxpDiqsq has been defined in (ii)).

At the end of the procedure, it holds that f i`1
Cpre

px1q “ f iCpre
px1q and f i`1

T px1q

“ f iT px
1
q for all x1 ‰ x in D„i , and thus condition 3 of the invariant is satisfied by

these points. It remains to check that such a condition is satisfied by x as well.
By definition of f iCpre

, it holds that f iCpre
pxq “ t

rw and f i`1
Cpre

pxq “ t1
rw. Moreover,

by definition of∆k,k, for each 1 ď j ď |t
rw|, t

1
rwrjs “ t

rwrjsYtxAyψ P rwrjs : ψ P Fju.

By the above construction, it holds that f i`1
T pxqrjs “ f iT pxqrjs Y txAyψ P rwrjs :

ψ P Fju for all 1 ď j ď |t
rw|. Finally, by condition 3 of the invariant, it holds

that t
rw ď f iT pxq and thus t1

rw “ f i`1
Cpre

pxq ď f i`1
T pxq. This allows us to conclude

that all the conditions of the invariant are satisfied.
- Case (iii): the fired transition belongs to ∆k,k`1, for some 1 ď k ăM .

We simply put Li`1 “ Li, thus leaving everything unchanged.

This basically concludes the proof, because at step |Cpre|, by the invariant condi-
tions, it holds that L|Cpre|

is a consistent LIS for which the A-requests of each point
are satisfied. Moreover, the A-requests of meaningful points are satisfied thanks
to condition 3 of the invariant and to the fact that after step |Cpre| only counters
cp rw,t

Ăwq
, where p rw, t

rwq is final, are decreased. Finally, the fulfillment of A-requests

for the points in D|Cpre|, which are not meaningful, is guaranteed by condition 7
of the invariant. [\

Metric Propositional Neighborhood Logic with an Equivalence Relation 29

Proposition 2. Let ϕ be an MPNL„ formula. If ϕ is satisfiable over the class of finite

linear orders, then Vϕ has a 0-0 computation.

Proof Since ϕ is satisfiable, by Lemma 5, there exists a saturated well-match
pL, ffLq, with L “ pD,Lq, for it. We show how to obtain a 0-0 computation
C “ pq0, 0q Ñ . . . Ñ pqn, 0q, with q0 P Qi and qn P Qf , that mimics the be-
havior of L. Given a point x P D, let prepxq (resp., nextpxq) be the immedi-
ate predecessor (resp., successor) of x in the finite linear order D. Moreover, let
Dx “ tx

1
P D : x1 ď xu.

For each x P D, we define the function

fx„pRq “

$

’

’

&

’

’

%

` Dx1 ă x2 ď x
´

reqpx1q “ reqpx2q “ R^ x1  x2
¯

1 Dx1 ă x
´

reqpx1q “ R^ @x2 ď x preqpx2q “ RÑ x2 „ x1q
¯

0 otherwise.

We build the 0-0 computation C of the VASS Vϕ by the following iterative pro-
cedure. Let pqi, viq be the i-th configuration of C, with qi “ pR

i, rwi, t
rwi
, f i„, PRi , kq,

and let tpiq be the number of transitions in ∆M,1 executed in C, restricted to the
steps 0, . . . , i´1. Now, let tpiq “ x, that is, let x be the tpiq-th element in the linear
order D. For each 0 ď i ď n, we choose a minimal set Outi Ď Dtpiq that satisfies the

condition: @x1 P DtpiqpDx
2
P Outipx

1
„ x2q_x1 P rxs„Yrprepxqs„Y

Ť

x2PffA
L pxq

rx2s„q.

The minimality constraint forces OutiXprxs„Yrprepxqs„Y
Ť

x2PffA
L pxq

rx2s„q to be

empty, which amounts to say that the class of x, the class of the predecessor of x,
and the classes of all the past far friends of x are not witnessed in Outi.

We associate two sets yOuti and }Outi, with yOutiY}Outi “ Outi and yOutiX}Outi “

H, with each step i and we guarantee the following three invariant conditions:

1. Let P “ ffAL pxqzrxs„ “ tx1, . . . , xhu (observe that h ă |ϕ|). It holds that
Ri “ reqpxq, rwi “ rwrxs„ , t

rwi “ t
rwrxs„

, f i„ “ fx„, and PRi “ tp rwrx1s„
, t

rwrx1s„,x
q,

. . . , p rwrxhs„
, t

rwrxhs„,x
qu, if x “ minpDq or prepxq  x; PRi “ tp rwrx1s„

, t
rwrx1s„,x

q,

. . . , p rwrxhs„
, t

rwrxhs„,x
qu Y tp rwrprepxqs„ , t rwrprepxqs„,x

qu otherwise.

2. For all x1 P yOuti, it holds that t
rwrx1s„,prepxq

‰ t
rwrx1s„,x

and k ď k1, where k1 is

the position of the pair p rwrx1s„ , t rwrx1s„,prepxq
q in the order ăRi .

3. For all pairs p rw, t
rwq, virp rw, t rwqs “ |tx1 P yOuti : p rwx

1

, t
rwrx1s„,prepxq

q “ p rw, t
rwqu|

`|tx1 P }Outi : p rwx
1

, t
rwrx1s„,x

q “ p rw, t
rwqu|.

We define the initial configuration of the computation C as the pair pq0, 0q,

where q0 “ preqpminpDqq, rwrminpDqs„ , t rwrminpDqs„,minpDq, f
minpDq
„ ,H, 1q, and we

initialize both yOut0 and }Out0 to H. It can be easily checked that it satisfies the
invariant conditions.

Let us consider now the step i`1. Let pqi, viq, with qi “ pR
i, rwi, t

rwi , PRi , f i„, kq,
be the current configuration, that satisfies the invariant conditions. We proceed as
follows.

1. If yOuti “ H, we directly move to the next step. Otherwise, let x1 P yOuti be such
that p rwrx1s„ , t rwrx1s„,prepxq

q is the smallest element in tp rwrx2s„ , t rwrx2s„,prepxqq :

x2 P yOutiu with respect to ăRi . W.l.o.g., we can assume p rwrx1s„ , t rwrx1s„,prepxq
q

30 Angelo Montanari et al.

to be the k-th element in the order ăRi . As a matter of fact, if it was not the
case, by condition 2 of the invariant, it would not be the k1-th element in the
order, for some k1 ă k (and thus, k1 ą k). We execute a number of transitions
in ∆k,k`1 until we reach a state qi1 “ pR

i, rwi, t
rwi , PRi , f i„, k

1
q, which coincides

with qi apart from the replacement of k by k1. Since all these transitions do
nothing, the invariant is trivially preserved.

Since pL, ffLq is a saturated well-match, t
rwrx1s„,prepxq

R
ÝÑ t

rwrx1s„,x
and thus

the transition ppRi, rwi, t
rwi , PRi , f i„, kq, tc

rwrx1s„ ,tĂwrx1s„,prepxq
´1, c

rwrx1s„ ,tĂwrx1s„,x
`

1u, pRi, rwi, t
rwi , PRi , f i„, kqq belongs ∆k,k. We execute such a transition. Con-

dition 1 of the invariant is trivially satisfied by the i ` 1-th configuration. To
satisfy conditions 2 and 3 of the invariant, it suffices to let yOuti`1 “

yOutiztx
1
u

and }Outi`1 “
}Outi Y tx

1
u. If yOuti`1 ‰ H, we repeat this step; otherwise,

(yOuti “ H), we move to the next one.
2. If tpiq “ maxpDq, we terminate the procedure. Otherwise, (tpiq ‰ maxpDq), we

proceed as follows. W.l.o.g., we can assume that k “ M . If this was not case,
as in step 1, we execute a number of transitions in ∆k,k`1 until we reach a

state qi1 “ pR
i, rwi, t

rwi , PRi , f i„,Mq. Since all these transitions do nothing, the
invariant is trivially preserved. Let x “ nextptpiqq.
We can execute a transition pqi, Ui, qi`1q, where qi`1 “ preqpxq, rwrxs„t rwrxs„,x

,

PRi`1 , fx„, 1q, with PRi`1p rw, t
rwq “ |trx

1
s„ : rw “ rwrx1s„ ^ t

rw “ t
rwrx1s„,x

^ x1 

x ^ pprepxq P rx1s„ _ rx
1
s„ X ffAL pxq ‰ Hqu| for each pair p rw, t

rwq. By the def-
inition of transitions in ∆M,1, the values of Ri, rwi, t

rwi , PRi , Ri`1, rwi`1, t
rwi`1 ,

and PRi`1 univocally determine the update U . It is easy to check that con-
dition 1 of the invariant is satisfied. In order to satisfy conditions 2 and 3
of the invariant, we put }Outi`1 “ tx

1
P Outi`1 : t

rwrx1s„,prepxq
“ t

rwrx1s„,x
u and

yOuti`1 “ Outi`1z
}Outi`1, where, by definition, Outi`1 is a minimal set that sat-

isfies the condition @x1 P Dtpi`1qpDx
2
P Outi`1px

1
„ x2q_x1 P rxs„Yrprepxqs„Y

Ť

x2PffA
L pxq

rx2s„q. Finally, we increment i by 1 and we go back to step 1.

The procedure terminates in a configuration pqi, viq, with yOuti “ H and tpiq “

maxpDq. W.l.o.g., we can assume that k “ M . Once more, if this was not the
case, we execute a number of transitions in ∆k,k`1 until we reach a state qi1 “

pRi, rwi, t
rwi , PRi , f i„, Mq. Since all these transitions do nothing, the invariant is

trivially preserved. By condition 3 of the invariant, for each pair p rw, t
rwq, it holds

that virp rw, t
rwqs “ |trxs„ : x P D ^ rwrxs„ “ rw ^ t

rwrxs„,maxpDq
“ t

rwu|. Since L

is fulfilling, for each x P D, p rwrxs„ , t rwrxs„,maxpDq
q is final. The only components

of vi that can be greater than 0 are those relative to pairs (class word,temporary
fulfilment) which are final. If there is any such pair, we execute suitable transitions

in ∆fM,M until we reach the configuration pqi, 0q. [\

