
1 23

Acta Informatica

ISSN 0001-5903

Acta Informatica
DOI 10.1007/s00236-016-0257-2

Dynamic controllability via Timed Game
Automata

Alessandro Cimatti, Luke Hunsberger,
Andrea Micheli, Roberto Posenato &
Marco Roveri

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Acta Informatica
DOI 10.1007/s00236-016-0257-2

ORIGINAL ARTICLE

Dynamic controllability via Timed Game Automata

Alessandro Cimatti1 · Luke Hunsberger2 · Andrea Micheli1 ·
Roberto Posenato3 · Marco Roveri1

Received: 26 January 2015 / Accepted: 19 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Temporal networks are data structures for representing and reasoning about tem-
poral constraints on activities. Many kinds of temporal networks have been defined in the
literature, differing in their expressiveness. The simplest kinds of networks have polynomial
algorithms for determining their temporal consistency or different levels of controllability,
but corresponding algorithms for more expressive networks (e.g., those that include obser-
vation nodes or disjunctive constraints) have so far been unavailable. This paper introduces a
new approach to determine the dynamic controllability of a very expressive class of temporal
networks that accommodates observation nodes and disjunctive constraints. The approach is
based on encoding the dynamic controllability problem into a reachability game for Timed
Game Automata (TGAs). This is the first sound and complete approach for determining the
dynamic controllability of such networks. The encoding also highlights the theoretical rela-
tionships between various kinds of temporal networks and TGAs. The new algorithms have
immediate applications in the design and analysis of workflow models being developed to
automate business processes, including workflows in the health-care domain.

This paper is an extended version of two earlier papers [9,10].

B Andrea Micheli
amicheli@fbk.eu

Alessandro Cimatti
cimatti@fbk.eu

Luke Hunsberger
hunsberg@cs.vassar.edu

Roberto Posenato
roberto.posenato@univr.it

Marco Roveri
roveri@fbk.eu

1 Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy

2 Vassar College, 124 Raymond Ave., Box 444, Poughkeepsie, NY, USA

3 University of Verona, via le Grazie 15, 37134 Verona, Italy

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-016-0257-2&domain=pdf

A. Cimatti et al.

Keywords Dynamic controllability · Temporal networks · Timed Game Automata

1 Introduction

Constraint-based temporal reasoning has been widely used in many different applications
across many different domains. Over the years, different formalisms have been presented
to address specific requirements that frequently arise in real-world applications. The most
commonly used formalism is probably the Simple Temporal Network (STN), in which a
set of real-valued variables, called time-points, are subject to convex, binary difference con-
straints [19]. Recently, a significant amount of research has focused on temporal reasoning
in the presence of uncertainty. Temporal uncertainty arises, for example, in AI planning
when the durations of some activities (i.e., the durations of some temporal intervals) are not
controlled by the plan executor (or agent), but instead are only observed in real time as the
activities complete. In such settings, the executor seeks a dynamic strategy for executing
the controllable time-points such that all relevant constraints will necessarily be satisfied no
matter how the uncertain durations turn out. To accommodate this kind of uncertainty, STNs
have been augmented to include contingent links, where each contingent link represents
an interval whose duration is bounded but uncontrollable; the resulting network is called a
Simple Temporal Network with Uncertainty (STNU) [46].

An STNU can be viewed as a data structure for representing certain kinds of knowledge
about a situation. Given some STNU, different kinds of questions can be asked. In the
literature, three types of controllability have been identified—strong, dynamic and weak—
that make different assumptions about when the durations of the contingent links become
known to the executor [46].

This paper focuses ondynamic controllability (DC)—that is,whether there exists a strategy
for executing the controllable time-points that depends only on past observations of the
outcomes of uncontrollable durations, and that guarantees that all relevant constraints will be
satisfied no matter how the durations of the contingent links turn out. Polynomial algorithms
for checking the dynamic controllability of STNUs [25,33,34,36] and run-time algorithms
for generating an execution strategy in real-time [23,24] have been presented in the literature.

Although STNUs have been successful in some domains, many other domains require a
richer set of constraints and features. For example, in the health-care domain, where work-
flow management systems are being developed to automate medical-treatment processes,
medical tests for any given patient frequently generate information in real time that can
affect which treatment pathway the patient will follow [13]. The system must guarantee
that any possible execution of the workflow strictly satisfies all specified temporal con-
straints no matter which test outcomes are observed. The Conditional Simple Temporal
Network with Uncertainty (CSTNU) has been introduced to represent the temporal features
of workflows, and the dynamic controllability property—which captures the temporal safety
of workflows—has been defined for CSTNUs [26]. Although some progress has been made
toward a DC-checking algorithm for arbitrary CSTNUs [15], a sound-and-complete DC-
checking algorithm for CSTNUs has not yet been found.

Disjunctive constraints also arise in workflow management systems, for example, when
two tests cannot be done simultaneously, but can be done in either order. Strong, dynamic and
weak controllability have been defined for Disjunctive Temporal Networks with Uncertainty
(DTNUs) [38,42], and algorithms for checking the strong and weak controllability properties

123

Author's personal copy

Dynamic controllability via Timed Game Automata

for DTNUs have been proposed [11,12,38]; however, a dynamic controllability algorithm
has only been presented for a subclass of DTNUs [42].

This paper makes the following contributions. First, it summarizes the characteristics of
STNUs, CSTNUs and DTNUs and then it combines them within a single, unifying formal-
ism calledConditionalDisjunctive Temporal NetworkwithUncertainty (CDTNU). Second, it
presents a novel approach for checking the dynamic controllability of such networks whereby
any given CDTNU is translated into a Timed Game Automaton (TGA) [32] such that the
dynamic controllability problem for the CDTNU is equivalent to a reachability game for the
generated TGA. The reachability game is then solved using off-the-shelf software that is able
to synthesize a viable execution strategy or determine that no such strategy exists [5]. This
paper presents different instantiations of this approach that address the contingent links and
observation time-points of CSTNUs, and the disjunctive constraints of DTNUs. The result is
the first sound-and-complete DC-checking algorithm for temporal networks having contin-
gent links, disjunctive constraints andobservation time-points in any combination. Finally, the
encoding of such networks into TGAs highlights important theoretical relationships between
the different kinds of temporal reasoning frameworks and the TGA framework.

1.1 Related work

Starting from the seminal paper ofDechter et al. [19] describing the SimpleTemporal Problem
(STP) and the Temporal Constraint Satisfaction Problem (TCSP), researchers have explored
a variety of techniques for solving temporal problems in the face of uncertainty.1 Vidal et
al. [45–48] introduced the Simple Temporal Problem under Uncertainty (STPU), and defined
three different kinds of controllability: weak, dynamic and strong. The dynamic controlla-
bility (DC) problem for STNUs, which is the most relevant to real-world applications, has
been widely studied, yielding a variety of DC-checking algorithms and techniques for man-
aging the execution of DC networks [22–25,33,35,36]. Venable and colleagues have defined
extensions of the STPU that include disjunction and preferences [38,39,42,43]. Cimatti et
al. [11,12] focus on strong and weak controllability, while also allowing disjunctive con-
straints.

Tsamardinos et al. [41] introduced the Conditional Temporal Problem (CTP), an extension
of the STP that includes observation nodes. Each observation node has a corresponding
Boolean propositional variable. The execution of the observation node determines the truth
value of its corresponding propositional variable. In addition, time-points can be labeled with
arbitrary conjunctions of (positive or negative) propositional variables; time-points need only
be executed in scenarioswhere the correspondingBoolean label is true. The authors presented
a formal semantics for the dynamic consistency problem: to determine if there exists a strategy
for executing the time-points in the network that guarantees that all of the constraints will
be satisfied no matter how the observations turn out. They also showed how to convert the
semantic constraints from the definition of dynamic consistency into a DTP, which enabled
them to solve the dynamic consistency problem using an off-the-shelf DTP solver, albeit in
exponential time.

Hunsberger et al. [26] defined a Conditional Simple Temporal Network with Uncertainty
(CSTNU) that combines the contingent links from STNUs with the observation nodes from

1 Some authors choose to distinguish the network data structure from the problem being solved, giving rise
to parallel notations such as STN versus STP, CSTN versus CTP, STNU versus STPU, DTN versus DTP, and
so on. This is useful given that one can pose a variety of problems for a given network structure (e.g., strong
controllability vs. weak controllability for STNUs). This paper primarily uses the “N” notation, the major
exceptions being when describing the work of other authors who have tended to use the “P” notation.

123

Author's personal copy

A. Cimatti et al.

the CTP. They defined the dynamic controllability property for CSTNUs in a way that gen-
eralizes both the dynamic controllability of STNUs and the dynamic consistency of the CTP.
Combi et al. [15] introduced a sound-but-not-complete DC-checking algorithm for CSTNUs
based on a variety of constraint-propagation rules. Preliminary empirical results suggest that
that algorithm can be practically efficient, even if its time complexity is exponential in the
worst case. A complete DC-checking algorithm for CSTNUs following that approach has
not yet been presented.

Thework that ismost closely related to ours is due toVidal [44]. In that work, TimedGame
Automata (TGAs) are used to check the dynamic controllability of a variant of STNUs called
Contingent Temporal Constraint Networks (CTCNs). The algorithm incrementally constructs
a TGA, interleaving checks for winning TGA strategies along the way. The most significant
drawback is that the resulting TGA has exponential size, compared to the linear-sized TGAs
generated by our approach. Moreover, the approach presented in this paper goes beyond the
STNU formalism by accommodating both disjunctive constraints and observation nodes.

Orlandini and colleagues [7,37] have used TGAs to validate timeline-based plans. In
that work, each plan is encoded as a TGA that includes an uncontrollable observer that
plays the role of the environment. The observer checks the controllability of the plan and
synthesizes a controller. Their plan-to-TGA approach deviates from the standard definition of
dynamic controllability by allowing a free time-point to be scheduled instantaneously upon
the observation of an uncontrollable execution event. In addition, their approach is limited
to non-disjunctive, non-conditional temporal constraints [37].

Recently, Cheikhrouhou et al. [8] proposed the use of TGAs for analyzing temporal con-
straints in business processes represented as an extended version of the Business Process
Model Notation (BPMN). Their proposal does not consider uncertainty and uses TGAs only
for verifying a subset of possible temporal constraints—the duration of activities (i.e. the dura-
tion constraints) and the time between events (i.e. the temporal dependency constraints)—in
sequential or parallel branches.

Abdeddaim et al. [1] use STNUs to represent strategies for a subclass of TGAs—the exact
opposite of our approach. In their work, an executor needs to be able to solve theDC-checking
problem (e.g., using an on-line algorithm) to generate a TGA strategy.

As already mentioned, many researchers have addressed the DC decision problem [33,
36] and the problem of managing the execution of DC networks using on-line reasoning
algorithms [24,33]. However, none of them have addressed the problem of synthesizing
directly executable strategies.

Recently, Morris [34] presented an algorithm that not only checks the dynamic control-
lability property for STNUs in O(N 3) time, but also can be used to generate a dispatchable
network from any dynamically controllable network. The dispatchable network can be exe-
cuted with minimal constraint propagation using a greedy dispatcher.

1.2 Paper structure

Thepaper is structured as follows. Section 2 introduces the healthcareworkflows thatmotivate
this work and provides a running example for the rest of the paper. Section 3 formally presents
four classes of temporal networks that accommodate different kinds of temporal uncertainty:
STNU, CSTNU, DTNU and CDTNU. For each type of network, the dynamic controllability
problem is addressed. Section 4 analyzes the different features of the temporal networks
under analysis and for each of them presents a formal encoding of the dynamic controllability
problem as a TGA reachability game. Finally, Sect. 5 discusses the features and limitations
of the presented approach and highlights promising lines of research for the future.

123

Author's personal copy

Dynamic controllability via Timed Game Automata

2 Motivating example: healthcare workflows

A workflow is an abstract model for representing, coordinating and controlling complex
processes. A workflow management system is a software suite that supports the automatic
execution ofworkflows [21]. Althoughworkflows are being applied to a variety of businesses,
the research presented in this paper has been motivated by the use of workflows to automate
medical-treatment processes in the healthcare domain [4]. Theworkflow technologymayhelp
to plan and manage the executions of medical-treatment processes that can be very different
due the presence of many possibilities and combinations of events, even in situations having
a general pattern to be followed. Moreover, planning in advance and constantly monitoring
the process in an automatic way may help identifying previously unforeseen courses of
development.

In a workflow management system, the management of temporal aspects is critical. The
literature contains many proposals for extending workflow models to represent and manage
the most important kinds of temporal constraints that arise in various domains [14,17,20].
This paper focuses on the conceptual model proposed by Combi et al. [16], where a workflow
is specified by aworkflow schema: a directed graph where nodes represent activities, and arcs
represent control flows that define dependencies among activities, including constraints on
the order of execution. Figure 1 illustrates a small portion of a workflow schema (or graph).

There can be two types of activities in a workflow graph: tasks and connectors. Tasks
represent elementary work units to be executed by external agents (e.g., doctors); connectors
represent internal activities executed by the workflow management system to coordinate the
execution of tasks. In the graph, each task is represented by a box containing a name (e.g.,
Neurological Evaluation) and a range (e.g., [5, 10]) that constrains the task’s duration during
execution. Each connector is represented by a diamond that, similarly,may contain a temporal
range constraining its duration. Additional information associated with a connector depends
on its type—split or join—as discussed below.

1

Cardiological
Evaluation

[5,20]

Neurological
Evaluation

[5,10]

2
Emerg.?

Age

> 70

Elder Emergency
Treatment
[10,20]

Emergency
Treatment

[8,10]

Standard
Treatment
[10,30]

yes
[0,1]

no
[0,10]

no
[0,5]

yes
[0,10]

E[7,14]E

E[10,25]E

Disjunctive Conditional

Fig. 1 An excerpt of a simplified triage workflow schema. The example is composed of two parts, labeled as
“Disjunctive” and “Conditional” with braces, that will be referenced in the paper

123

Author's personal copy

A. Cimatti et al.

The arcs in a workflow graph are labeled directed edges that impose ordering constraints
among nodes and, optionally, temporal delays. For example, an arc from a predecessor node
N1, to a successor node N2, with the label [5,10], specifies that N2 must start between 5 and
10 time units after the completion of N1. A split connector has one incoming arc andmultiple
outgoing arcs. After the execution of the split connector node, one or more successor nodes
must be considered for execution, depending on whether the split connector type is parallel,
alternative or conditional. Join connectors are the dual of split connectors, having multiple
incoming arcs but only one outgoing arc. Join connectors effectively close branching paths
opened by split connectors.

The workflow in Fig. 1 represents a simplified triage process for a hospital emergency
room. In the figure, all temporal ranges are in minutes; parallel connectors are identified by+
and conditional connectors by×; and each connector is presumed to have a temporal range
of [0,0]. According to this workflow, an incoming patient is first evaluated from cardiological
and neurological points of view: two parallel tasks that can be done in either order, but
cannot overlap. The subsequent treatment path depends on the observation of two Boolean
conditions: (1) whether it is an emergency (Emerg.?); and (2) whether the patient is old
(Age > 70?). In the non-emergency case, the patient is given a Standard Treatment. But for an
emergency, depending on the patient’s age, the patient is given either Emergency Treatment
or Elder Emergency Treatment. In other words, the conditional connectors, ×Emerg.? and×(Age>70), each split the flow into alternative pathways based on the observation of their
corresponding Boolean conditions.

Finally, some activitiesmaybe subject to important timing conditions, thereforeworkflows
also include dashed edges that represent temporal constraints. Such constraints may relate the
starting or ending times of the source and target nodes in any combination. For example, the
dashed edge labeled by E[7,14]E specifies that the end of the Emergency Treatment task must
occur between 7 and 14min after the end of the×Emerg.? connector. The other dashed edge
similarly specifies that the end of the Elder Emergency Treatment task must occur between 10
and 25min after the end of the×Emerg.? connector.

Once a workflow schema is defined, many questions can arise regarding its possible exe-
cutions: is there sufficient time for executing it? Which resources are necessary for executing
it?, etc. Among all, one question seems to be the fundamental one: is there a strategy for
executing the possible instances of the schema that guarantees that all structural, temporal,
and resource constraints will not be violated? Even considering only the temporal constraints
described above, the number of possible instances of a schema can be very large, depending
on both the conditional connectors (each of which splits a flow into at least two alternative
flows) and the temporal durations of the tasks. Indeed, if the duration of a task cannot be
fixed prior to execution, but only observed after its completion (e.g., as in the case of medical
tests), then there may be many different instances of a single schema corresponding to the
different possible task durations.

In order to answer the fundamental question, a careful analysis of the workflow schema
is needed. In fact, we must determine whether all the possible instances can be successfully
executed despite the uncertainty associated with conditional connectors and task durations.

3 The dynamic controllability of temporal networks

A workflow can be viewed as a constraint system that involves a rich variety of temporal
constraints and features. Over the years, a number of formalisms have been presented in

123

Author's personal copy

Dynamic controllability via Timed Game Automata

STN/STP [19]

DTP [40] STNU [47] CTP [41]

CSTNU [15]DTNU [38]

CDTNU

Fig. 2 An overview of the different kinds of temporal networks, with corresponding citations. Arrows
represent expressiveness subsumption. The CDTNU box is highlighted since it constitutes an original contri-
bution of this paper. Dashed boxes indicate networks that are not discussed in this paper

the literature to address different kinds of temporal information. Most of those formalisms
are constraint networks in which real-valued variables called time-points are subject to var-
ious kinds of constraints. This section presents the relevant background for several kinds of
temporal networks along with the corresponding dynamic controllability problems. It then
introduces a new kind of network, called a Conditional Disjunctive Temporal Network with
Uncertainty (CDTNU), that subsumes all of the features of the preceding networks. The
CDTNU formalism enables a unified view of a substantial portion of the temporal problems
that have been addressed in the literature. Figure 2 previews the temporal networks that are
relevant to this paper.

Each of the temporal networks presented in this section includes a set of real-valued
variables called time-points, and a set of binary difference constraints on those variables.
In a Simple Temporal Network (STN), the scheduler (or agent) is presumed to control the
execution of all of the time-points [19]. Thus, the most important property of an STN is
whether it is consistent (i.e., whether there exists an assignment to the time-points that satisfies
all of the constraints). Thus, the Simple Temporal Problem (STP) is a kind of constraint
satisfaction problem. Against that background, this paper addresses uncertainty in temporal
networks that arises from two sources.
Tasks with uncertain durations

One source of uncertainty arises when the duration of a task is not under the control of
the scheduler, although that duration may have known bounds. Such tasks are represented
by contingent links [46]. Each contingent link specifies bounds on the duration of a temporal
interval between a starting time-point and an ending time-point. While the scheduler may
control the execution of the starting time-point, it does not control the duration of the inter-
val; thus, it does not control the execution of the ending time-point. To accommodate this
difference, the time-points in a network with contingent links are partitioned into two classes:
free and uncontrollable. Typically, the starting time-point of a contingent link is free, while
the ending time-point is uncontrollable.2 The name for a network accommodating this kind
of uncertainty is typically given the suffix with Uncertainty [e.g., Simple Temporal Network
with Uncertainty (STNU) or Disjunctive Temporal Network with Uncertainty (DTNU)].

2 Contingent links may also form chains or trees, in which case only the starting time-point for the entire
chain or tree is free, while the rest of the time-points are uncontrollable.

123

Author's personal copy

A. Cimatti et al.

For networks with this kind of uncertainty, the most important property is not consistency,
but controllability. In particular, is there a strategy for executing the free (i.e., controllable)
time-points such that all of the constraints in the networkwill necessarily be satisfied nomatter
how the uncertain durations turn out? Three levels of controllability have been defined: weak,
strong and dynamic [46]. They differ according to when the scheduler becomes aware of the
durations of the contingent links.

A network is strongly controllable if there is a fixed, unconditioned, non-reactive assign-
ment for the free time-points that will satisfy all of the constraints in the network, regardless
of how the uncontrollable durations of the contingent links subsequently turn out. In effect,
the scheduler must choose all execution times before learning the duration of any contingent
link. Such a solution corresponds to a time-triggered program, where activities are started at
fixed times that are determined in advance of execution.

In sharp contrast, a network is weakly controllable if there is a strategy that assigns values
to the free time-points as a function of the uncontrollable durations of all contingent links.
Although the values for the uncontrollable durations need not be known when generating
the strategy, this version of controllability presumes that all durations are provided to the
executor in advance of execution.

This paper focuses on dynamic controllability, which is widely viewed as the most rel-
evant version of controllability for most real-world applications. A network is dynamically
controllable if it has a dynamic execution strategy that can react, in real time, to contingent
durations—but only after some positive delay. In other words, the values that the execution
strategy assigns to the free time-points may depend on uncontrollable events—namely, the
execution of contingent time-points—but only if that information has already been observed
in real time. It cannot depend on advance knowledge of future uncontrollables.
Observations with uncertain outcomes

Another source of uncertainty arises from actions that generate information. For example,
a doctor measuring the blood pressure of a patient only discovers whether the patient has
high blood pressure after the measurement is taken. Temporal networks accommodate this
kind of uncertainty by including observation time-points [41]. Each observation time-point
has a corresponding Boolean propositional letter. The execution of an observation time-
point generates a truth value for the corresponding propositional letter, in real time. Thus,
an observation time-point represents a Boolean condition that can be observed at run time.
For this reason, networks modeling this kind of uncertainty are called Conditional Temporal
Networks [e.g., Conditional Simple Temporal Networks (CSTNs) or Conditional Simple
Temporal Networks with Uncertainty (CSTNUs)]. In Conditional Temporal Networks, some
time-points and constraints may be applicable only in certain scenarios (e.g., if a patient has
high blood pressure and is in critical condition).

For Conditional Temporal Networks, themost important property has been called dynamic
consistency [41]. Intuitively, such a network is dynamically consistent if there exists a
dynamic strategy for executing its time-points such that all relevant constraints will be sat-
isfied no matter which combination of outcomes is observed in real time. The execution
decisions made by such a strategy may depend on the outcomes of observation time-points
that have occurred in the past, but not on advance knowledge of such outcomes.

Some of the networks in this section accommodate both kinds of uncertainty described
above (i.e., contingent links and observation time-points). For such networks, the property
of dynamic controllability is defined in a way that subsumes the dynamic controllability of
networks with contingent links and the dynamic consistency of networks with observation
time-points. This version of dynamic controllability intuitively corresponds to the fundamen-
tal query presented earlier for workflows. In particular, the existence of a dynamic strategy for

123

Author's personal copy

Dynamic controllability via Timed Game Automata

Fig. 3 An STNU and its
graphical representation.
Contingent links are indicated by
dashed arrows. Note that the
terminus of any contingent link is
an uncontrollable (i.e.,
contingent) time-point, indicated
with doubly-circled solid nodes

A1 C1

A2 C2

X
[1, 3]

[1, 10]

[−3, 8]

[6, 12]

Tf = {A1, A2, X}; Tu = {C1, C2}
C = {C1 − C2 ∈ [−3, 8], C1 − X ∈ [6, 12]}
L = {(A1, 1, 3, C1), (A2, 1, 10, C2)}

scheduling the free time-points corresponds to the existence of a feasible tactic for executing
the tasks of the workflow regardless of which paths are taken through the flow and which
durations are subsequently observed. This parallel has already been analyzed elsewhere [26].
On top of that, the new CDTNU formalism also accommodates disjunctive constraints. The
section concludes by defining the dynamic controllability problem for CDTNUs.

3.1 Simple Temporal Networks with Uncertainty

A Simple Temporal Network with Uncertainty (STNU) is a data structure for representing
and reasoning about temporal knowledge in domains where some time-points are controlled
by the executor (or agent) while others are controlled by the environment.3 All temporal
constraints in an STNU are simple (i.e., binary and convex difference constraints).

Definition 1 A Simple Temporal Network with Uncertainty (STNU) is a tuple (T , C,L)

where:

1. T is a set of real-valued variables, called time-points, that is partitioned into the sets, T f

and Tu , of free and uncontrollable time-points;
2. C is a set of simple temporal constraints, each of the form, Y −X ≤ δ, for some X, Y ∈ T

and δ ∈ R; and
3. L is a set of contingent links, each of the form, (A, �, u,C), where A ∈ T , C ∈ Tu, and

0 < � < u < ∞.

An expression, Y − X ∈ [a, b], abbreviates the pair of constraints, Y − X ≤ b and X −Y ≤
−a.Acontingent link, (A, �, u,C), represents a temporal interval from A toC whoseduration
is uncontrollable, but bounded by C − A ∈ [�, u]. A is called the activation time-point; C is
called the contingent time-point. Figure 3 shows a sample STNU.

Dynamic Controllability of STNUs. Informally, an STNU is dynamically controllable (DC)
if there exists a strategy for executing the free (or controllable) time-points such that all con-
straints in the network will be satisfied no matter what durations the environment “chooses”
for the contingent links—within their specified bounds. The decisions that constitute such a
strategy can depend only on execution events that occurred in the past; however, the strategy
can be dynamic in that it may react—after a positive delay—to observations of contingent

3 The agent and environment are not part of the formal semantics for STNUs; they are used here for expository
convenience.

123

Author's personal copy

A. Cimatti et al.

time-points executing. Such strategies are called dynamic execution strategies [35]. Thus,
for an STNU, (T , C,L), the agent seeks a dynamic execution strategy for executing the free
time-points in T f ⊆ T such that all constraints in C will necessarily be satisfied no matter
how the durations of the contingent links in L turn out—within their specified bounds.

An agent’s execution strategy can be compactly defined in terms of real-time execution
decisions (RTEDs), where each RTED has one of two forms: wait or (T, χ f) [22]. A wait
decision can be glossed as “wait until some contingent time-point happens to execute.” A
(T, χ f) decision can be glossed as “if nothing happens before time T (i.e., if no contingent
time-point happens to execute before time T), then I shall execute the (free) time-points in
the set χ f at time T .” The outcomes for an RTED specify the range of execution events that
could happen next, given the limited information available to the agent. For example, one
outcome of a (T, χ f) decision might be that a contingent time-point happens to execute at
some time ρ < T . In such a case, the agent might choose to react by adopting a new decision.
Another outcome might be that no contingent time-points execute before time T , in which
case the time-points in χ f would be executed at time T .

In the case of the STNU in Fig. 3, the agent seeks a strategy for executing the free
time-points, A1, A2 and X , that will guarantee that the constraints among C2,C1 and X are
satisfied, no matter what durations the environment happens to “choose” for the contingent
links, (A1, 1, 3,C1) and (A2, 1, 10,C2). For example, the agentmight decide to execute A2 at
time 0, and X at time 1, and then wait. Should the environment happen to “choose” a duration
of 5 for the contingent link, (A2, 1, 10,C2), the agent would observe, at time 5, the execution
of C2. The agent might then react—after some positive delay—by, for example, deciding to
execute A1 at time 7. Later, the agent might observe the environment choosing to execute C1

at 9. In this example, after all time-points have executed, C1 − C2 = 9 − 5 = 4 ∈ [−3, 8]
and C1 − X = 9 − 1 = 8 ∈ [6, 12]; thus, all constraints in C are satisfied and the agent has
succeeded. It can be checked that this STNU is dynamically controllable (i.e., there exists
a strategy for the agent that ensures success no matter how the environment behaves). The
formal semantics for the dynamic controllability of STNUs is given in “Appendix 1”.

3.2 Conditional Simple Temporal Networks with Uncertainty

A Conditional Simple Temporal Network with Uncertainty (CSTNU) augments an STNU to
include observation time-points, each of which has a corresponding propositional letter. The
propositional letters represent Boolean conditions whose truth values are observed in real
time, during execution.4 In particular, the execution of an observation time-point generates a
truth value for its corresponding propositional letter. A scenario represents one possible set
of truth values for all of the propositional letters. A partial scenario specifies the truth values
of the propositional letters that have been observed so far.

Propositional labels comprising conjunctions of (positive or negative) propositional letters
can be attached to time-points and temporal constraints in a CSTNU. A time-point with a
propositional label � is only executed in scenarios where � is true. Similarly, a constraint
labeled by � only applies in scenarios where � is true.

Definition 2 (Labels [41]) Given a set P of propositional letters, a label is any (possibly
empty) conjunction of (positive or negative) literals from P . The label universe of P , denoted
by P∗, is the set of all labels with literals drawn from P .

4 The “C” in CSTNU stands for “Conditional”, as in the Conditional Temporal Problem (CTP) introduced
by Tsamardinos et al. [41]. A CSTNU extends both Conditional Simple Temporal Networks (CSTNs) and
STNUs.

123

Author's personal copy

Dynamic controllability via Timed Game Automata

Definition 3 (CSTNU [26]) A Conditional Simple Temporal Network with Uncertainty
(CSTNU) is a tuple, (T , C, L ,OT ,O, P,L), where:

1. P is a set of propositional letters;
2. T is a set of time-points;
3. OT ⊆ T is a set of observation time-points;
4. O : P → OT is a bijection between observation time-points and propositional letters;
5. L : T → P∗ is a function assigning labels to time-points;
6. C is a set of labeled temporal constraints of the form, 〈Y − X ≤ δ, �〉, where X, Y ∈ T ,

δ ∈ R, and � ∈ P∗; and
7. Ignoring any labels, (T , C,L) is an STNU.5

For the subclass of workflow schemata having no disjunctive constraints (like the two
parallel, non-overlapping tasks of Fig. 1), Hunsberger et al. [26] presented a method of
encoding the temporal information from each workflow schema into a CSTNU with the aim
of rigorously analyzing and validating the temporal safety of the workflow. In particular, the
CSTNU for a given workflow schema is obtained as follows. First, each task is represented
by a contingent link. Second, each connector is represented by a pair of (starting and ending)
time-points, linked by a duration constraint. Third, each arc is represented by a duration
constraint. Fourth, the ending time-point for each conditional split connector is represented
by an observation time-point for a proposition whose possible values correspond to the
different branching decisions of that connector.6 Fifth, the propositional label for each time-
point is obtained by accumulating the propositional literals along the relevant pathway. Sixth,
the propositional label for each temporal constraint is obtained by conjoining the labels on
the associated time-points. Finally, if the duration range of a connector is [0, 0], then the
connector can be represented by a single time-point.

Figure 4 shows the CSTNU obtained in this way for the portion of the workflow
from Fig. 1 that excludes the disjunctive Cardiological Evaluation and Neurological Eval-
uation tasks. To facilitate comparison with the original workflow, the contingent links
derived from the three workflow tasks have been highlighted in rounded gray rectangles.
The observation time-point E yields the proposition p (i.e., Emerg?); and A yields the
proposition q (i.e., Age > 70?). The contingent link (ETs, 8, 10, ETe) corresponds to the
Emergency Treatment task; (EETs, 10, 20, EETe) corresponds to Elder Emergency Treatment;
and (STs, 10, 30, STe) corresponds to Standard Treatment. The CSTNU formalism is useful
when themodeled situation hasmultiple possible evolutions depending on observationsmade
at runtime. While STNUs are suitable for representing temporal plans, CSTNUs can be used
to model conditional temporal plans.

Dynamic Controllability of CSTNUs. Hunsberger et al. [26] define the critical property
of dynamic controllability for CSTNUs, generalizing both the dynamic controllability of
STNUs [35] and the dynamic consistency of a CTP [41]. In brief, a CSTNU is dynamically
controllable if there exists a strategy for executing the free time-points in the network such
that all constraints in C are guaranteed to be satisfied no matter how the durations of the
contingent links turn out, and no matter how the observations of the various propositions
turn out, in real time—with the caveat that in any given scenario, only the time-points whose
labels are true in that scenario need to be executed, and only the constraints whose labels

5 There are some additional “well-definedness” conditions on CSTNUs that are omitted for expository con-
venience [26].
6 Without loss of generality, this paper considers only binary branching in CSTNUs.

123

Author's personal copy

A. Cimatti et al.

E : p

A : q ETs ETe

EETs EETe

STs STe

[8, 10]

[10, 20]

[10, 30]

[0,
1],

p

[0, 5], p¬q

[0, 10], pq

[0, 10],¬p

[10, 25], pq

[7, 14],
p¬q

pp ¬q p¬q

qpqp

¬p ¬p

Fig. 4 The CSTNU obtained from the “Conditional” portion of the workflow from Fig. 1. Circles represent
time-points (or nodes); each observation node includes a time-point:proposition indicator (e.g.,
A : q); propositional labels for time-points are written below the time-points; and rounded rectangles are used
to highlight the contingent links derived from workflow tasks

are true in that scenario need to be satisfied. Subsequent work yielded a variety of constraint
propagation rules for CSTNUs, which led to a sound-but-not-complete DC-checking algo-
rithm for CSTNUs [15]. Since the temporal safety of a workflow schema corresponds directly
to the dynamic controllability of the underlying CSTNU, providing a sound-and-complete
DC-checking algorithm for CSTNUs remained an important open problem.

3.3 Disjunctive Temporal Networks with Uncertainty

Another important way of extending STNUs is to include disjunctive constraints. Disjunc-
tions frequently arise in practice. For example, workflows in the healthcare domain frequently
involve activities whose executions cannot overlap due to conflicting requirements, as illus-
trated in Fig. 1, where the Cardiological Evaluation and Neurological Evaluation tasks can be
executed in any order, but cannot overlap. To retain maximal flexibility, it is desirable to
constrain these tasks to be non-overlapping without imposing any a priori order on them.
An STNU cannot accommodate such disjunctive constraints. However, similarly to the Dis-
junctive Temporal Problem (DTP) [40], Disjunctive Temporal Networks with Uncertainty
(DTNUs) [43] can accommodate arbitrary disjunctions in the free constraints and binary
disjunctions in the contingent constraints.

Definition 4 (DTNU) A DTNU is a triple, (T , C,L), where:

1. T is a set of real-valued variables called time-points, partitioned into the sets, T f and Tu ,
of free and uncontrollable time-points;

2. C is a set of constraints, each obtained as the arbitrary Boolean combination of atoms in
the form, Y − X ≤ δ, for some X, Y ∈ T and δ ∈ R; and

3. L is a set of contingent links, each of the form, (A,B,C), where A ∈ T , C ∈ Tu, and B
is a finite set of pairs (�, u) such that 0 < � < u < ∞; and for any distinct pairs, (�i , ui)
and (� j , u j) in B, either �i > u j or ui < � j .

123

Author's personal copy

Dynamic controllability via Timed Game Automata

Fig. 5 The DTNU obtained from
the “Disjunctive” portion of the
workflow from Fig. 1. The two
constraints (Ne − Cs ≤ 0) and
(Ce − Ns ≤ 0) are part of a
single disjunctive free constraint

Cs Ce

Ns Ne

[5, 20]

[5, 10]

[0,∞)
[0,

∞)

∨

Generalizing the contingent links in an STNU, a contingent link (A,B,C) in a DTNU
represents a temporal interval from A toC whose duration,C−A, is uncontrollable, but guar-
anteed to lie within a union of disjoint intervals. In particular, ifB = {(�1, u1), · · · , (�n, un)},
then C − A is guaranteed to fall somewhere within the set [�1, u1] ∪ · · · ∪ [�n, un]. Although
contingent durations in a DTNU can be disjunctive in this way, the execution semantics
ensures that the choices made by the environment for distinct contingent durations are inde-
pendent.

This is useful for modeling periodic activities whose windows of opportunity have certain
degrees of uncertainty. An STNU is the particular case of a DTNU in which all of the B
sets are singletons, and conjunction is the only allowed Boolean operator in the constraints
belonging to C.

The example of the parallel Cardiological Evaluation and Neurological Evaluation tasks can
be encoded as a DTNU (T f ∪ Tu, C,L) as depicted in Fig. 5. First, let Cs,Ce, Ns and Ne be
the starting and ending times for these two tasks; then, T f =̇ {Cs, Ns} and Tu =̇ {Ce, Ne}.
The constraint set C contains just one disjunctive constraint:

C =̇ {(Ne − Cs ≤ 0) ∨ (Ce − Ns ≤ 0)}.
Finally the set of contingent links is given by:

L =̇ {(Cs, {[5, 20]},Ce), (Ns, {[5, 10]}, Ne)}.
Dynamic Controllability of DTNUs. The dynamic controllability problem for DTNUs is
defined analogously to the STNU case [38,42]. Disjunctive free constraints simply give more
freedom to the agent, while disjunctions in contingent constraints allow the environment to
choose from among a set of intervals. However, these extensions do not dramatically change
the semantics of dynamic controllability.

3.4 Conditional Disjunctive Temporal Networks with Uncertainty

The CSTNU and DTNU formalisms extend STNUs in different directions. On the one hand,
a CSTNU includes observation time-points to model discrete observations at run-time; on
the other hand, a DTNU allows disjunctive constraints that can model non-convex durations,
non-overlapping durations, and all of the other temporal relations from Allen’s interval
algebra [2]. These two extensions are both interesting and useful from a practical standpoint,
as illustrated by Fig. 1. Therefore, this paper introduces a new formalism that accommodates
all of the features frombothCSTNUs andDTNUs and, thus, is expressive enough to faithfully
represent all of the temporal information from the workflow depicted in Fig. 1.

123

Author's personal copy

A. Cimatti et al.

Cs

S

Ce

Ns Ne

E : p

A : q ETs ETe

EETs EETe

STs STe

[8, 10]

[10, 20]

[10, 30]

[0,
1],

p

[0, 5], p¬q

[0, 10], pq

[0, 10],¬p

[10, 25], pq

[7, 14],
p¬q

pp ¬q p¬q

qpqp

¬p ¬p

[5, 20]

[5, 10]

[0,∞)
[0,

∞)

∨

[0,∞
)

[0,∞)

[0,∞)

[0,∞
)

Fig. 6 TheCDTNUobtained from the completeworkflow fromFig. 1. The newly introducednode S represents
the start of the workflow

The new formalism is called a Conditional Disjunctive Temporal Network with Uncer-
tainty (CDTNU), defined below. It is devised in such a way that it directly subsumes both
CSTNUs and DTNUs. Thus, every CSTNU is a CDTNU, and every DTNU is a CDTNU.

Definition 5 (CDTNU) A Conditional Disjunctive Temporal Network with Uncertainty
(CDTNU) is a tuple, (T , C, L ,OT ,O, P,L), where:

1. P is a set of propositional letters;
2. T is a set of time-points;
3. OT ⊆ T is a set of observation time-points;
4. O : P → OT is a bijection between observation time-points and propositional letters;
5. L : T → P∗ is a function that assigns propositional labels to time-points;
6. C is a set of labeled, disjunctive temporal constraints of the form, 〈φ, �〉, where � ∈ P∗,

and φ is an arbitrary Boolean combination of atoms, each of the form, Y − X ≤ δ, for
some X, Y ∈ T and δ ∈ R; and

7. Ignoring any labels, (T , C,L) is a DTNU.

Figure 6 depicts a CDTNU that effectively models the workflow from Fig. 1. Note that
edges with no label are required to hold in every scenario; and disjunctive constraints can be
labeled, although the sample CDTNU does not show this possibility.

Dynamic Controllability of CDTNUs. The dynamic controllability problem for CDTNUs is
analogous to the DC problem for CSTNUs, with the important difference that a CDTNU can
have non-convex binary disjunctions in the contingent links (as in a DTNU) that need to be
considered for dynamic execution strategies. A complete formalization of the DC problem
for CDTNUs is given in “Appendix 2”.

4 Reducing dynamic controllability to TGA reachability

This section presents a general approach to solve the dynamic controllability problem for
all of the temporal networks discussed above. The basic idea is to reduce the DC-checking

123

Author's personal copy

Dynamic controllability via Timed Game Automata

problem for a temporal network to a reachability game for a Timed Game Automaton (TGA)
obtained via a linear encoding procedure. Since the reachability problem for TGAs is decid-
able and algorithms have been developed to solve it, this reduction constitutes a viable and
novel solution approach for the open problems of determining the dynamic controllability of
CSTNUs, DTNUs and CDTNUs.

This section begins by introducing the relevant background from the TGA literature. It
then presents, for each kind of temporal network, an encoding of that network into a TGA
such that the temporal network is dynamically controllable if and only if the reachability
game for the corresponding TGA is solvable.

4.1 Timed Game Automata

A finite automaton [31] comprises a finite set of states (or locations) and a finite set of labeled
transitions (or actions). One of the states is called the initial (or starting) state; a distinguished
subset of states comprise the final (or accepting) states. Each labeled transition specifies a
legal move from one state to another.

A Timed Automaton (TA) [3] augments a finite automaton to include real-valued clocks.
Each transition in a TA may include temporal constraints, called guards, that disable the
transition if the current clock values do not satisfy those constraints. Each transition may
also include clock resets that cause specified clocks to be reset to 0 whenever the transition
is taken. Finally, each location may include an invariant—that is, a constraint specifying the
conditions under which the automaton may stay in that location. Definition 6 formalizes this
structure.

Definition 6 (Timed Automaton) A Timed Automaton (TA) is a tuple, A = (L , l0,Act,X , E,

Inv), where:

1. L is a finite set of locations;
2. l0 ∈ L is the initial location;
3. Act is a set of actions;
4. X is a finite set of real-valued clocks;
5. E ⊆ L × H∩

k (X) × Act × 2X × L is a finite set of transitions; and
6. Inv : L → H∩

k (X) associates an invariant to each location.

Elements inH∩
k (X) are conjunctions of constraints of the form, x
� k or y − x
� k, where

x, y ∈ X , k is an integer, and
� is one of <,≤,=,> or ≥.

Figure 7 shows a sample TA. The TA has one clock, cC. The entering arrow with no
predecessor node indicates that X is the initial location. X ’s invariant is cC ≤ 3. Each
transition has a label, 〈G; N ; R〉, where G is the guard, N is a name for the transition,
and R is the set of clocks it resets. A run starts in the initial location, X , with cC = 0. X ’s
invariant, cC ≤ 3, and the guard, cC ≥ 1, on the pass transition, together ensure that the
TA must take the transition from X to Y at some time when 1 ≤ cC ≤ 3. When taken, that
transition resets cC to 0. Afterward, the gain transition, whose guard is cC ≥ 5, could be

Fig. 7 A sample timed
automaton

X Y

cC ≥ 1; pass; {cC

cC ≥ 5; gain; {cC

cC ≤ 3

123

Author's personal copy

A. Cimatti et al.

veraagnesgoal
cC < ĉ; win;

; pass; {cδ

cδ > 0; gain;

cC = ĉ ∧ cA < ĉ; sC; {cCcA = ĉ; sA; {cA

Fig. 8 A sample Timed Game Automaton. Controllable transitions (belonging to Actc) are solid, while
uncontrollable transitions (belonging to Actu) are dashed

taken back to X at any time for which cC ≥ 5. If taken, the gain transition also resets cC
to 0. However, since Y has no invariant, the TA could instead remain at Y forever.

A Timed Game Automaton (TGA) in turn generalizes a TA by partitioning the set of
transitions into controllable and uncontrollable transitions. A TGA can be used to model
a two-player game between an agent and the environment, where the agent controls the
controllable transitions, and the environment controls the uncontrollable transitions. TGAs
are formally defined in Definition 7.

Definition 7 (Timed Game Automaton) A Timed Game Automaton (TGA) is a Timed
Automatonwhose set of actions,Act, is partitioned into controllable (Actc) and uncontrollable
(Actu) actions.

Figure 8 shows a TGAwith three locations: agnes, vera and goal, where vera is the
initial location. It has four clocks: cA,cC, ĉ and cδ . The solid arrows represent controllable
transitions; the dashed arrow represents the one uncontrollable transition. For example, the
transition from agnes to itself has the label, 〈cA = ĉ; sA; {cA}〉, which specifies that
it can only be taken if cA and ĉ have the same value; and that taking this transition resets
cA to 0. Consider the following possible run of this TGA. It begins at the initial location
vera, with all clocks set to 0. Five units of time later, when all clocks read 5, the agent
takes the gain transition to agnes. (The guard is satisfied; and no clocks are reset.) Then,
at time 6, the agent takes the sA transition, which causes cA to be reset to 0. Then, at time 7,
the agent takes the pass transition back to vera, which resets cδ back to 0. At this point,
cδ = 0;cA = 1; and cC = ĉ = 7. Thus, the environment can take the sC transition from
vera to itself, resetting cC to 0. Then, at time 10, the agent takes the gain transition back
to agnes, and at 11 the win transition to the goal state.

In what follows, the common practice of labeling certain locations urgent is used. An
urgent location is one in which players are prevented from waiting. Making a location �

urgent is equivalent to: (1) introducing a new clock c that is reset by every transition entering
�; and (2) conjoining a new invariant, c ≤ 0, to �.

For any TGA, different kinds of games can be modeled [6]. In a reachability game, the
controller (or agent) seeks to move the TGA into one of the winning locations within a finite
amount of time. In the avoidance game, the controller seeks to prevent the TGA from entering
a certain set of locations. In this paper we use memory-less strategies, since they have been
shown to be sufficient for reachability and avoidance games [6,32]. Intuitively, a memory-
less strategy associates a state of the system to either an action to be executed or a special
symbol λ that stands for “wait”: the controller shall not take any controllable transition, it
just needs to wait the opponent move (i.e., do nothing, wait until an uncontrollable transition
is taken by the opponent).

123

Author's personal copy

Dynamic controllability via Timed Game Automata

Definition 8 For a TGA, (L , l0,Act,X , E, Inv), a memory-less strategy is a mapping f :
L ×RX

>=0 → Actc ∪ λ.

Further details on the semantics for TGAs are available from Maler et al. [32].

4.2 TGA encodings

This section presents a series of TGA encodings, one for each class of temporal network
introduced in Sect. 3.

4.2.1 STNU-to-TGA encoding

Given any STNU S = (T , C,L), the goal is to generate a corresponding TGA TS =
(L , l0,Act,X , E, Inv), and a winning condition φ, such that the STNU S is dynamically
controllable if and only if the TGA TS admits a counter-strategy for φ. An important—and
unexpected—part of this STNU-to-TGA encoding is that uncontrollable TGA transitions are
used to model the execution of the free time-points in S, and controllable TGA transitions
are used to model the execution of the uncontrollable time-points in S. Thus, the traditional
use of TGAs where the environment is associated with uncontrollable transitions has been
inverted. (That is why a counter-strategy is sought.) The underlying reason is that according
to the STNU semantics, when both players attempt to make transitions at the same time,
Agnes (the agent) must play before Vera (the environment), whereas in the TGA semantics,
the uncontrollable transition would go first.

For this encoding, the set of locations is: L =̇ {agnes,vera,goal}, where agnes
is marked urgent. Note that L has only three locations, regardless of the number of time-
points in the STNU. Intuitively, agnes represents a state in which Agnes can execute one
or more free time-points; vera represents a state in which Vera can execute one or more
contingent time-points; and goal represents a state in which all of the constraints have been
satisfied and the game is over (and agnes wins, having successfully scheduled all of the
time-points, while satisfying all of the constraints). The initial location of the TGA is vera
(i.e., l0 =̇ vera).

The set of clocks is: X =̇ {ĉ,cδ} ∪ {cX | X ∈ T }. All clocks start at 0. The clock ĉ is
never reset; it simply measures global time. The clock cδ is used to ensure that there will
always be a positive delay between the execution of any contingent time-point (by Vera) and
any reaction by Agnes, which is crucial for capturing the STNU semantics. Finally, for each
time-point X ∈ T , there is a corresponding clock cX. That clock is reset at most once each
run, at the instant X is executed. It follows that any time-point X has been executed if and
only if cX < ĉ. (Since the initial state is vera, no time-point can be executed at 0.) Also,
after being executed, the execution time for X is forever equal to ĉ − cX.

The sets of controllable and uncontrollable actions are defined as follows. First, the con-
trollable actions (for Vera) consist of one action for each contingent time-point in S, as
follows: Actc =̇ {exX | X ∈ Tu}. Each action in this set represents the execution of the
corresponding time-point. The uncontrollable actions (for Agnes) include more options:
Actu =̇ A1 ∪ A2 ∪ A3, where:

A1 = {exX | X ∈ T f };
A2 = {cvC | (A, �, u,C) ∈ L}; and

A3 = {gain,pass,win}.

123

Author's personal copy

A. Cimatti et al.

veraagnesgoal
Ψ ; win;

; pass; {cδ

cδ > 0; gain;

Σ(cC1, cA1, ĉ); exC1 ; {cC1, cδ

Σ(cC2, cA2, ĉ); exC2 ; {cC2, cδ

cA1 = ĉ; exA1 ; {cA1 cX = ĉ; exX; {cX

cA2 = ĉ; exA2 ; {cA2

Φ(cC1, cA1, ĉ); cvC1 ;

Φ(cC2, cA2, ĉ); cvC2 ;

Fig. 9 Encoding the STNU from Fig. 3 into a TGA. Solid arrows represent controllable transitions (for Vera);
dashed arrows uncontrollable transitions (for Agnes). The doubly-circled agnes location is urgent; the initial
location is vera

A1 contains one execution action for each free time-point. A2 contains one action for each
contingent link; these actions are only enabled if Vera violates the bounds on any of her
contingent links. gain and pass model the interplay between the execution of time-points
by Agnes and Vera; win is used at the end when all time-points have been executed and all
constraints have been satisfied.

The transition relation, E , for the TGA encoding of an STNU is demonstrated in Fig. 9,
using the sample STNU from Fig. 3. For each free time-point X , there is a transition from
agnes to agnes labeled by 〈cX = ĉ; exX; {cX}〉, which represents the execution of X by
Agnes. The guard, cX = ĉ (i.e., X not yet executed), ensures that this transition will be taken
at most once per run. The set, {cX}, stipulates that the clock cXwill be reset by this transition,
signalling that X has been executed. Similarly, for each contingent link, (A, �, u,C), there is a
transition from vera to vera labeled by 〈Σ(cC,cA, ĉ); exC; {cC,cδ}〉, which represents
the execution of C by Vera. The guard, Σ(cC,cA, ĉ) =̇ (cA < ĉ) ∧ (cC = ĉ) ∧ (cA ≥
�)∧(cA ≤ u), ensures that this transition can only be takenwhen the link is currently activated
and its duration would fall within [�, u]. In addition, for each contingent link, (A, �, u,C),
there is a transition from agnes to goal labeled by 〈ΦC (cA,cC, ĉ); cvC; ∅〉, enabling
Agnes to move to goal should Vera ever violate the bounds on that link by failing to execute
C . Its guard is:ΦC (cA,cC, ĉ) =̇ (cA < ĉ)∧(cA > u)∧(cC = ĉ). Next, if t is the vector of
clockscX such that X ∈ T , the transition fromagnes togoal labeled by 〈Ψ (t, ĉ); win; ∅〉
signals the end of the game. Ψ (t, ĉ) models that all time-points have been executed and all
constraints are satisfied:Ψ (t, ĉ)=̇ ∧

x∈T (cX < ĉ)∧∧
Y−X≤k(cX−cY ≤ k). Last, to model

the interplay between the players, there are two more transitions. The transition from vera
to agnes labeled by 〈cδ > 0; gain; ∅〉 enables Agnes to gain control for the purpose of
executing some free time-points—but only after some positive delay since Vera last executed
a contingent time-point. The transition from agnes to vera labeled by 〈�; pass; {cδ}〉
enables Agnes to immediately pass back to vera, once she has finished executing her chosen
time-points. Crucially, no time elapses from the instant Agnes leaves vera to the instant she
returns, because agnes is an urgent state. From Vera’s perspective, the winning condition
φ of the (safety) game is to avoid the goal state. A counter-strategy for Agnes foils Vera by
ensuring that goal can be reached.

The correctness of the STNU-to-TGA encoding is proven in “Appendix 3”.

123

Author's personal copy

Dynamic controllability via Timed Game Automata

4.2.2 CSTNU-to-TGA encoding

We now consider CSTNUs and extend the STNU encoding to accommodate observations
and Boolean propositions. We retain the structure of the STNU encoding, by modifying only
the way free constraints are represented and by adding a suitable encoding for the Boolean
propositions that are decided by Vera. A CSTNU instance can be seen as an STNU in which
some parts can be disabled depending on the observations that become visible during the
execution. As described in Sect. 3.2, an observation node is a time-point whose execution
generates a truth value for an associated proposition (equivalently, a Boolean variable). For
example, let X be an observation time-point whose execution establishes the truth value of
the proposition p. Note that, before X is executed (i.e., while cX = ĉ), the truth value of p is
unknown, but after p is executed, its truth value must be either true or false. This feature can
be accommodated in a TGA by introducing a new clock bP (which stands for “Boolean p”),
whose value is meaningful only after X has been executed. After X has executed, if bP = ĉ,
then p shall be interpreted as being true; but if bP < ĉ (i.e., if bP has been reset), then p
shall be interpreted as being false.

As shown in Fig. 10, at the instant X is executed by Agnes, the guard on the resetP
transition (a loop at vera) gives Vera precisely one opportunity to reset bP (i.e., to make p
false). The guard on resetP is:

Υ (cX, ĉ,bP) =̇ (cX < ĉ) ∧ (cX = 0) ∧ (bP = ĉ)

which represents that X has been executed now, but bP has not yet been reset. If Vera does
not take this opportunity, then bP shall forever be equal to ĉ (i.e., p shall forever be true).

Next, the win transition that represents the “all time-points executed and all constraints
satisfied” condition is changed so that it emanates not from the agnes location, but from the
vera location—and with a guard that includes the constraint cδ > 0. This is done to ensure
that Vera always gets her opportunity to set the truth value of any proposition corresponding
to a just executed observation time-point. (Otherwise, Agnes might surreptitiously execute
an observation time-point and then take the win transition before Vera has a chance to set
the truth value of the corresponding proposition.)

Finally, since the nodes and constraints in a CSTNU can be labeled by conjunctions of
(positive or negative) propositional letters, the “all time-points executed and all constraints
satisfied” condition must be represented in a new way. To see this, consider the following
example. Suppose that the time-points, R and S, and the constraint, S − R ≤ 5, are labeled

veraagnes

; pass; {cδ

cδ > 0; gain;

Υ (cX, ĉ, bP); resetP; {bP

cX = ĉ; exX; {cX

Fig. 10 An observation node X whose associated proposition is p. The loop in agnes executes the time
point X , while the one in vera sets p to false. It is up to the environment to decide whether to take the loop
in vera or not

123

Author's personal copy

A. Cimatti et al.

by p¬q (i.e., p ∧ (¬q)). Suppose further that X and Y are the observation time-points for
p and q , respectively. Then, in any scenario in which X and Y are both executed, and p is
true, and q is false, success requires that both R and S be executed, and that S − R ≤ 5 be
satisfied. This can be represented by the following conditional constraint:

((cX < ĉ) ∧ (cY < ĉ) ∧ (bP = ĉ) ∧ (bQ < ĉ))

→ ((cR < ĉ) ∧ (cS < ĉ) ∧ (cR − cS ≤ 5))

which is equivalent to:

¬(cX < ĉ) ∨ ¬(cY < ĉ) ∨ ¬(bP = ĉ) ∨
¬(bQ < ĉ) ∨ ((cR < ĉ) ∧ (cS < ĉ) ∧ (cR − cS ≤ 5))

Given that no clock’s value can ever exceed that of the global clock ĉ, this further simplifies
to:

(cX = ĉ) ∨ (cY = ĉ) ∨ (bP < ĉ) ∨ (bQ = ĉ) ∨ ((cR < ĉ) ∧ (cS < ĉ) ∧ (cR − cS ≤ 5))

Since the guards on TGA transitions do not allow disjunctions, the above condition can be
represented using five separate transitions, one for each disjunct, as illustrated in Fig. 11.

In general, suppose that �1, �2, . . . , �M are the M distinct labels that appear in some
CSTNU. (Typically, M is much smaller than the number of labels in the label universe, P∗.)
For each i , let τi be the set of time-points labeled by �i , and Ci the set of constraints labeled
by �i . In addition, for each i , let θi be the conditional constraint that can be glossed as:
“In scenarios where �i is true, all of the time-points in τi must be executed, and all of the
constraints in Ci must be satisfied,” as discussed in the preceding example. The desired “all
time-points executed and all constraints satisfied” condition is then the conjunction: ∧M

i=1 θi .
This conjunction of conditional constraints can be effectively accommodated in the TGA
using a sequence of (M + 1) urgent locations starting from L0 = vera, and ending at
LM = goal, as follows:

(vera = L0) � L1 � L2 � . . . � (LM = goal)

For each i , there is a set of transitions from Li−1 to Li that together represent the conditional
constraint θi , as illustrated in Fig. 12. If, in some scenario, Agnes can follow a path through
this network of transitions from vera to goal, then all of the relevant time-points must
have been executed, and all of the relevant constraints must have been satisfied.

Figure 13 illustrates the TGA that is obtained in this way from the sample CSTNU seen
earlier in Fig. 4. In the figure, the sequence of locations, Li , have been renamed to show the
associated labels, as follows:

Fig. 11 The transitions
capturing the sample “all
time-points executed and all
constraints satisfied” constraint in
the scenario p¬q, discussed in
the text

vera goal

(cR < ĉ) ∧ (cS < ĉ) ∧ (cR − cS ≤ 5); sat5;

cX = ĉ; sat1;

cY = ĉ; sat2;

bP < ĉ; sat3;

bQ = ĉ; sat4;

123

Author's personal copy

Dynamic controllability via Timed Game Automata

vera · · · L0 L1 L2 LM−1 LM · · · goal· · · · · · · · ·· · ·

Fig. 12 Using a sequence of locations in a TGA to accommodate the “all time-points executed and all
constraints satisfied” condition for a CSTNU

vera � L∅ � L p � L p¬q � L pq � (L¬p = goal)

In addition, to reduce the clutter, only the guards are shown on the transitions in this sequence.

4.2.3 DTNU-to-TGA encoding

DTNUsgeneralize STNUs in twodifferent dimensions. First, the durations of contingent links
can be constrained to lie within a union of disjoint intervals. Second, the free constraints can
comprise arbitrary Boolean combinations of difference constraints. This section shows how
a DTNU (T , C,L) can be translated into an equivalent TGA by making two modifications to
the STNU-to-TGA translation presented in Sect. 4.2.1. First, if the duration for a contingent
link is constrained to lie within one of n disjoint intervals, then there will be n corresponding
loops at the vera location, where the guard for each loop effectively specifies one of the
allowed intervals for that contingent duration. Second, the “all time-points executed and all
constraints satisfied” transition to the goal location is represented by alternative pathways
through a sequence of locations from vera to goal, using a technique that generalizes that
shown for CSTNUs in the preceding section.

To begin, as for an STNU, each free time-point X will have a corresponding transition,
(agnes,cX = cG,exX, {cX},agnes), that represents the execution of X by Agnes. How-
ever, for each disjunctive contingent link, (A,B,C), where B =̇ {(�1, u1), · · · , (�n, un)},
there are n loop transitions: (vera,Σ(cC,cA,cG, li , ui),exC, {cC,cδ},vera), for i ∈
[1, n]. They represent the possible executions of C by Vera. The respective guards,

Σ(cC,cA,cG, li , ui) =̇(cA < cG) ∧ (cC = cG) ∧ (cA ≥ li) ∧ (cA ≤ ui)

ensure that (one of) these transitions can be taken only when the link is currently
activated and its duration would fall within one of the allowed intervals of B. In
addition, for each contingent constraint, there is a transition, (agnes, ΦC (cA,cC,cG,

maxi (ui)),cvC,∅,goal) that allows Agnes to win the game if Vera refuses to schedule
an uncontrollable time-point within the maximum allowed bound, maxi (ui). The guard is
expressed by ΦC (cA,cC,cG, u) =̇ (cA < cG) ∧ (cA > u) ∧ (cC = cG), as in the STNU
case. The interplay between the players, governed by the pass and gain transitions, is
identical to the STNU case.

Next, the TGA must accommodate the arbitrary Boolean combinations of constraints in
C. In principle, we would like to have a transition, (agnes,Ω(c,cG),win, ∅,goal) that
signals the end of the game, where Ω(c,cG) encodes the fact that all time-points have been
executed and all constraints satisfied, and c is the set of clocks associatedwith the time-points.

First, let Λ =̇ ∧|C|
i=1 Ci be the first-order logic formula encoding all the constraints in

C. Then, let Ω(c,cG) be the formula that results from replacing each atomic constraint,

123

Author's personal copy

A. Cimatti et al.

a
g
n
e
s

v
e
r
a

g
o
a
l

L
∅

L
p
q

L
p
¬q

L
p

;
p
a
s
s
;

{ c
δ

c
δ

>
0;

g
a
i
n
;

c
E
E
T
s

<
ĉ

∧
c
E
E
T
s

>
20

∧
c
E
E
T
e
=

ĉ

c
E
T
s

<
ĉ

∧
c
E
T
s

>
10

∧
c
E
T
e
=

ĉ

c
S
T
s

<
ĉ

∧
c
S
T
s

>
30

∧
c
S
T
e
=

ĉ

c
E

<
ĉ

∧
c

δ
>

0

b
P

<
ĉc
A

<
ĉ

∧
c
E

−
c
A

≥
0

∧
c
E

−
c
A

≤
1

c
E
T
s

<
ĉ

∧
c
E
T
e

<
ĉ
∧

c
A

−
c
E
T
s

≥
0

∧
c
A

−
c
E
T
s

≤
5∧

c
E

−
c
E
T
e

≥
7

∧
c
E

−
c
E
T
e

≤
14

c
A
=

ĉ

b
P

<
ĉ

b
Q
=

ĉ

c
E
E
T
s

<
ĉ

∧
c
E
E
T
e

<
ĉ
∧

c
A

−
c
E
E
T
s

≥
0

∧
c
A

−
c
E
E
T
s

≤
10

∧
c
E

−
c
E
E
T
e

≥
10

∧
c
E

−
c
E
E
T
e

≤
25

cA
=
ĉ

bP
<
ĉ

b
Q

<
ĉ

c
S
T
s

<
ĉ

∧
c
S
T
e

<
ĉ
∧

c
E

−
c
S
T
s

≥
0

∧
c
E

−
c
S
T
s

≤
10

b
P
=

ĉ

c
E
=

ĉ
;
e
x
E
;

{c
E

c
A
=

ĉ
;
e
x
A
;

{c
A

cS
Ts

=
ĉ;

ex
ST

s
;

{c
ST

s

c
E
T
s
=

ĉ
;
e
x
E
T
s
;

{c
E
T
s

c
E
E
T
s
=

ĉ
;
e
x
E
E
T
s
;

{c
E
E
T
s

c
E
T
s

<
ĉ

∧
c
E
T
e
=

ĉ
∧
c
E
T
s

≥
8

∧
c
E
T
s

≤
10

;
e
x
E
T
e
;

{c
E
T
e
,c

δ

c
E
E
T
s

<
ĉ

∧
c
E
E
T
e
=

ĉ
∧
c
E
E
T
s

≥
10

∧
c
E
E
T
s

≤
20

;
e
x
E
E
T
e
;

{c
E
E
T
e
,c

δ

c
S
T
s

<
ĉ

∧
c
S
T
e
=

ĉ
∧
c
S
T
s

≥
10

∧
c
S
T
s

≤
30

;
e
x
S
T
e
;

{c
S
T
e
,c

δ

c
E

<
ĉ

∧
c
E
=

0
∧
b
P
=

ĉ
;
r
e
s
e
t
P
;

{b
P
,c

δ

c
A

<
ĉ

∧
c
A
=

0
∧
b
Q
=

ĉ
;
r
e
s
e
t
Q
;

{b
Q
,c

δ

F
ig
.1

3
T
he

T
G
A
de
ri
ve
d
fr
om

th
e
sa
m
pl
e
C
ST

N
U
fr
om

Fi
g.

4.
In

tr
an
si
tio

ns
le
ad
in
g
fr
om

v
e
r
a
to

g
o
a
l
,a
nd

fr
om

a
g
n
e
s
to

g
o
a
l
,t
he

na
m
es

an
d
cl
oc
k
re
se
ts
ha
ve

be
en

om
itt
ed

123

Author's personal copy

Dynamic controllability via Timed Game Automata

agnes goal

cCs < ĉ ∧ · · · ∧ cNe < ĉ ∧ cCs − cNe ≤ 0, t1,

cCs < ĉ ∧ · · · ∧ cNe < ĉ ∧ cNs − cCe ≤ 0, t2,

Fig. 14 The DNF encoding of the guards on constraints from agnes to goal for the sample DTNU in Fig. 5

X −Y ≤ δ, with the equivalent clock constraint, cY−cX ≤ δ, while preserving the Boolean
structure of the formula:7

Ω(c,cG) =̇ Λ[(X − Y ≤ δ)/(cY − cX ≤ δ)].
For the DTNU from Fig. 1 that represents the non-overlapping cardiological and neuro-

logical evaluation tasks, Λ consists solely of the one constraint in C:

Λ =̇ (Ne − Cs ≤ 0) ∨ (Ce − Ns ≤ 0).

Therefore, Ω(cCs,cCe,cNs,cNe,cG) is equal to:

(cCs − cNe ≤ 0) ∨ (cNs − cCe ≤ 0).

However, it is not always possible to directly use the formula Ω(c,cG) as a guard for the
transition from agnes to goal because the definition of a TGA restricts the language of the
guards to be purely conjunctive. For this reason, we aim at building a piece of automaton—
possibly adding new locations—that connects agnes to goal in such a way that the free
constraints are equivalent to the disjunction of the conjunction of the guards along each path
from agnes to goal. There are several ways in which this can be done.

Disjunctive Normal Form. Similarly to what has been done for CSTNUs, we can create a set
of transitions from agnes to goal such that each pathway from agnes to goal can be
taken if and only ifΩ(c,cG) is satisfied. This is always possible, since alternative transitions
emanating from a single location are equivalent to a single transition with a disjunctive guard.
Thus, all we have to do is convert Ω(c,cG) into Disjunctive Normal Form (DNF) and create
a separate transition from agnes to goal for every disjunct. In this setting, negation of
atomic constraints is not a problem because ¬(cY− cX ≤ δ) is equivalent to cY− cX > δ,
which is allowed in the guards of a TGA. As for the names of the actions, we assign to each
action a unique new name. It is easy to see that there exists a path from agnes to goal if
and only if the free constraints are satisfied, because one disjunct of the DNF is satisfied. The
main drawback of this technique is that, for a general formula, the number of disjuncts in
the DNF is exponential, and thus the encoding is exponential. Nevertheless, this constitutes
a sound-and-complete encoding for (constructively) deciding the dynamic controllability of
DTNU.

Considering again the running example, the encoding of the constraints between agnes
and goal is composed of only two transitions, as Ω is already in DNF. The transitions are
depicted in Fig. 14.

7 Here we use the classical notation φ[x/y] for the substitution of the term x for the term y in the formula
φ. However, we slightly abuse the notation by assuming that the substitution is applied to all atoms of the
formula.

123

Author's personal copy

A. Cimatti et al.

φ1 φ2 · · · φn

Fig. 15 Encoding the conjunction φ1 ∧ φ2 ∧ · · · ∧ φn . �φ� stands for the recursive encoding of φ

Fig. 16 Encoding the
conjunction φ1 ∨ φ2 ∨ · · · ∨ φn .
�φ� stands for the recursive
encoding of φ

φ1

φ2

· · ·

φn

Negative Normal Form. If we allow for the introduction of new (urgent) locations in the
TGA, we can encode Ω(c,cG) linearly, thus obtaining a linear size of the overall DTNU-to-
TGA encoding. The idea comes from the following observation. Suppose we have a piece of
automaton that encodes a formula φ1 in such a way that it is possible to move from location
Ls
1 to Le

1 if and only if φ1 is satisfied, and suppose that we have an analogous encoding for
another formula φ2 with starting and ending locations Ls

2 to Le
2. We can encode the formula

φ1 ∧ φ2 by “concatenating” the two automata. That is, we introduce a transition from Le
1 to

Ls
2 with the tautological guard �. Now, in order to move from Ls

1 to Le
2 the formula φ1 ∧ φ2

must be satisfied.8 Similarly, if we consider the formula φ1 ∨ φ2 we can introduce two extra
locations Ls∨ and Le∨ and introduce four transitions with the guard �: one from Ls∨ to Ls

1,
one from Ls∨ to Ls

2, one from Le
1 to Le∨, and one from Le

2 to Le∨. In this way, we create a
“diamond” with two paths from Ls∨ to Le∨; one path encodes φ1, the other encodes φ2. This
construction is simple and correct, even though it introduces many unneeded locations. In
fact it is also possible to compress this encoding by merging locations instead of linking
them with tautological transitions and it is possible to merge sequences of guards in a single
conjunctive guard. However, we decided to explain the simplest version for clarity.

Given a rewriting of Ω(c,cG) that only has disjunctions and conjunctions (but no nega-
tions)we can recursively create a piece of automaton that encodes the formula. This is done by
constructing an automaton in which disjunctions and conjunctions are recursively encoded
as shown in Figs. 15 and 16. It is well known [27] that we can syntactically and linearly
transform Ω(c,cG) into Negative Normal Form (NNF) and transform the negations of the
atoms into positive atoms as before, by exploiting the fact that¬(cY−cX ≤ δ) is equivalent
to cY − cX > δ.

Figure 17 depicts the running example encoded using the NNF decomposition of the free
constraints optimized by compressing the conjunction of the cX < cG in a single guard and
by avoiding the unneeded tautological guards. In the running example, Ω is already in NNF
as there are no negations.

8 We are assuming that all the locations of the automata pieces are urgent, so the clocks are frozen and no
time can elapse.

123

Author's personal copy

Dynamic controllability via Timed Game Automata

agnes goal
cCs < ĉ ∧ · · · ∧ cNe < ĉ, t1,

cCs − cNe ≤ 0, t2,

cNs − cCe ≤ 0, t3,

Fig. 17 NNF constraints between agnes and goal for the sample DTNU in Fig. 5

vera · · · · · · goal

cR
<
ĉ;
t
5 ;

cS < ĉ; t6;
cR

−
cS

≤
4;
t7

;

cR
−
cS

≥
8;
t8

;

bQ = ĉ; t4;

bP < ĉ; t3;

cY = ĉ; t2;

cX = ĉ; t1;

Fig. 18 Encoding of the example disjunctive labeled free constraint in TGA

Even though the NNF decomposition is always more succinct than the DNF, the effort
of dealing with disjunctions is moved from the encoding to the TGA solver, so we are in a
trade-off condition.

4.2.4 CDTNU-to-TGA encoding

The encoding of a CDTNU into a TGA is accomplished by combining the techniques used in
the previous encodings. The main observation is that the encodings of contingent constraints
and observation time-points can be combined without any modifications; however, there
needs to be a way of constructing a path leading to the goal location such that that path
can be traversed if and only if all of the free constraints are satisfied and all of the relevant
time-points have been executed.

To do so, the features from the CSTNU and DTNU encodings are combined, as follows.
First, each propositional letter p is given a dedicated clock bP. Next, note that Boolean
labels are essentially logical implications for constraints. In particular, if a constraint φ

is labeled with �1, �2 · · · , �n from P∗, then that constraint can be expressed as a single
implication �1∧�2∧· · ·∧�n → φ. This follows from the semantics of dynamic controllability
for CSTNUs: a labeled constraint need only be satisfied in scenarios in which its label is
true. Given this observation, an appropriate piece of automaton can be built using the NNF
technique described above, where implications are rewritten as disjunctions (e.g., A → B ≡
¬A ∨ B), each positive literal p is encoded as bP = ĉ, and each negative literal ¬p is
encoded as bP < ĉ.

For example, consider a disjunctive constraint, (S − R ≤ 4) ∨ (S − R ≥ 8) labeled by
p¬q , where the observation time-point X generates a truth value for p, and Y generates a
truth value for q . That constraint is logically equivalent to the following implication:

(p ∧ ¬q) → ((S − R ≤ 4) ∨ (S − R ≥ 8)).

123

Author's personal copy

A. Cimatti et al.

a
g
n
e
s

v
e
r
a

g
o
a
l

L
∅

L
p
q

L
p
¬q

L
p

;
p
a
s
s
;

{c
δ

c
δ

>
0;

g
a
i
n
;

c
E
E
T
s

<
ĉ

∧
c
E
E
T
s

>
20

∧
c
E
E
T
e
=

ĉ

c
E
T
s

<
ĉ

∧
c
E
T
s

>
10

∧
c
E
T
e
=

ĉ

c
S
T
s

<
ĉ

∧
c
S
T
s

>
30

∧
c
S
T
e
=

ĉ

c
C
s

<
ĉ

∧
c
C
s

>
20

∧
c
C
e
=

ĉ

c
N
s

<
ĉ

∧
c
N
s

>
10

∧
c
N
e
=

ĉ

c
E

<
ĉ

∧
c
C
s

<
ĉ

∧
c
C
e

<
ĉ

∧
c
N
s

<
ĉ

∧
c
N
e

<
ĉ

∧
c
S

<
ĉ

∧
c

δ

c
C
s

−
c
N
e

≤
0

c
N
s

−
c
C
e

≤
0

b
P

<
ĉ

c
A

<
ĉ

∧
c
E

−
c
A

≥
0∧

c
E

−
c
A

≤
1

c
E
T
s

<
ĉ

∧
c
E
T
e

<
ĉ
∧

c
A

−
c
E
T
s

≥
0

∧
c
A

−
c
E
T
s

≤
5∧

c
E

−
c
E
T
e

≥
7

∧
c
E

−
c
E
T
e

≤
14

c
A
=

ĉ

b
P

<
ĉ

b
Q
=

ĉ

c
E
E
T
s

<
ĉ

∧
c
E
E
T
e

<
ĉ
∧

c
A

−
c
E
E
T
s

≥
0

∧
c
A

−
c
E
E
T
s

≤
10

∧
c
E

−
c
E
E
T
e

≥
10

∧
c
E

−
c
E
E
T
e

≤
25

cA
=

ĉ
bP

<
ĉ

b
Q

<
ĉ

c
S
T
s

<
ĉ

∧
c
S
T
e

<
ĉ
∧

c
E

−
c
S
T
s

≥
0

∧
c
E

−
c
S
T
s

≤
10

b
P
=

ĉ

c
E
=

ĉ
;
e
x
E
;

{c
E

c
S
=

ĉ
;
e
x
S
;

{c
S

c
A
=

ĉ
;
e
x
A
;

{c
A

cS
T
s
=

ĉ;
ex

ST
s;

{c
ST

s c
N
S
=

ĉ
;
e
x
N
S
;

{c
N
S

c
C
S
=

ĉ
;
e
x
C
S
;

{c
C
S

c
E
T
s
=

ĉ
;
e
x
E
T
s
;

{c
E
T
s

cE
ET

s
=

ĉ;
ex

EE
T s
;

{c
EE
T s

c
N
s

<
ĉ

∧
c
N
e
=

ĉ
∧
c
N
s

≥
5

∧
c
N
s

≤
10

;
e
x
N
e
;

{c
N
e
,c

δ

c
C
s

<
ĉ

∧
c
C
e
=

ĉ
∧
c
C
s

≥
5

∧
c
C
s

≤
20

;
e
x
C
e
;

{c
C
e
,c

δ

c
E
T
s

<
ĉ

∧
c
E
T
e
=

ĉ
∧
c
E
T
s

≥
8

∧
c
E
T
s

≤
10

;
e
x
E
T
e
;

{c
E
T
e
,c

δ

c
E
E
T
s

<
ĉ

∧
c
E
E
T
e
=

ĉ
∧
c
E
E
T
s

≥
10

∧
c
E
E
T
s

≤
20

;
e
x
E
E
T
e
;

{c
E
E
T
e
,c

δ

c
S
T
s

<
ĉ

∧
c
S
T
e
=

ĉ
∧
c
S
T
s

≥
10

∧
c
S
T
s

≤
30

;
e
x
S
T
e
;

{c
S
T
e
,c

δ

c
E

<
ĉ

∧
c
E
=

0
∧
b
P
=

ĉ
;
r
e
s
e
t
P
;

{b
P
,c

δ

c
A

<
ĉ

∧
c
A
=

0
∧
b
Q
=

ĉ
;
r
e
s
e
t
Q
;

{b
Q
,c

δ

F
ig
.1
9

T
G
A
en
co
di
ng

of
th
e
C
D
T
N
U
in

Fi
g.

6.
In

tr
an
si
tio

ns
le
ad
in
g
fr
om

v
e
r
a
to

g
o
a
l
an
d
fr
om

a
g
n
e
s
to

g
o
a
l
th
e
na
m
es

an
d
re
se
ts
ha
ve

be
en

om
itt
ed

123

Author's personal copy

Dynamic controllability via Timed Game Automata

This formula can translated into a TGA using the NNF technique, as follows.

((cX = ĉ) ∨ (cY = ĉ) ∨ (bP < ĉ) ∨ (bQ = ĉ)) ∨
((cR < ĉ) ∧ (cS < ĉ) ∧ ((cR − cS ≤ 4) ∨ (cR − cS ≥ 8)))

This formula results in the automaton structure shown in Fig. 18 by applying the construction
explained in Sect. 4.2.3. The CDTNU example presented in Fig. 6 is encoded into the TGA
shown in Fig. 19.

5 Conclusion

This paper presented a summary of a variety of temporal network formalisms that have been
widely used to represent different kinds of temporal constraints and related information. The
paper combined all of the features from those networks into a single, unifying formalism,
called a Conditional Disjunctive Temporal Network with Uncertainty (CDTNU). It then
presented a way of encoding the dynamic controllability problem for any CDTNU into a
reachability game for a linear-size Timed Game Automaton, thereby generating, for the
first time, a sound and complete algorithm for determining the dynamic controllability of
CSTNUs, DTNUs and CDTNUs.

Strategy extraction. One interesting characteristic of the algorithms for checking TGA reach-
ability [6] is the possibility of obtaining a strategy for winning the game or an unbeatable
counter-strategy for the opponent. This feature is useful also in the context of temporal net-
works, as a counter-strategy for the TGAobtained from a network, corresponds to the strategy
for scheduling the controllable time-points required by the dynamic controllability problem
definition. In practice, one can use the counter-strategy generated from the TGA encoding to
schedule time-points, as each controllable time point has a single transition associated with
it: when the counter-strategy prescribes to take that transition, then it is time to schedule the
time point.

CDTNU and temporal workflows models. As discussed in Sects. 1.1 and 2, in the literature
there are different formal proposals about how to extend workflow models or process-aware-
system models in order to allow them to represent and manage significant kinds of temporal
aspects [8,14,16,17,20,28,29]. Each of such formal models defines which kinds of temporal
aspects/constraints can be represented in each component of themodel and characterizes how
any workflow/process instance execution has to satisfy the specified temporal constraints in
order to be a successful execution of the instance. In other words, each formalmodel proposes
an extension of the temporal consistency/controllability concept at model level. Moreover,
some of such proposals presents also algorithms to verify the consistency/controllability of
a workflow/process instance. Such algorithms usually transform the input workflow/process
instance into an equivalent or quasi-equivalent STN/STNU /CSTNU instance in order to
exploit the well-known consistency/controllability checking algorithms for such temporal
models.

However, this translation is not always straightforward, because the temporal behavior of
someworkflowpatterns can be represented only by using disjunctive or conditional constrains
that cannot be represented as STN/STNU /CSTNU sub-networks. For example, temporal
aspects regarding the workflow temporized parallel join connector or the workflow multiple
temporized receive pattern [21] have to be expressed as disjunctive constraints [13]. In

123

Author's personal copy

A. Cimatti et al.

related work [13,28], the authors proposed to override the CSTNU limitation concerning
disjunctive constraints by considering and checking multiple CSTNU sub-networks (two
for each translated join connector/multiple temporized receive pattern) for determining some
upper bounds that have to be used in the final CSTNU translation. Another approach [18] uses
Hyper Temporal Networks (HyTNs), an extension of STNs, in order to directly represent these
kind of disjunctive constraints while maintaining an efficient consistency check. Currently,
HyTNs cannot represent conditional or contingent constraints.

For such workflow/process-aware models, the adoption of the CDTNU model as the
internal temporal model would allow a significant simplification of the translation phase
because the above workflow patterns can be directly represented without any preliminary
analysis or restrictions. Moreover, CDTNU adoption allows the representation of temporal
characterizations in other more sophisticated workflow patterns. Such patterns have not yet
been considered [30] due to the difficulty of representing their temporal features only using
STNs, STNUs or CSTNUs.

Future work. There are many avenues for future work. First, there needs to be an extensive
empirical evaluation of our approach, especially since there are many different options for
translating CSTNUs and DTNUs into TGAs.Which options will yield the most efficient DC-
checking algorithm is an open question. Moreover, given the peculiar nature of the encoding,
itmay be possible to specialize TGA-solving algorithms using dedicated heuristics or pruning
techniques that exploit the particular features of the CDTNU-to-TGA encoding.

Appendix 1: The semantics of dynamic controllability for STNUs

Although the intuitive description of the execution semantics for STNUs given in Sect. 3.1
makes reference to both the agent and the environment, formal treatments of the execution
semantics have so far only defined execution strategies for the agent; strategies available to
the environment have only been implicitly determined by the sets of possible outcomes of
the agent’s decisions [22,35]. Thus, the semantics of dynamic controllability for STNUs has
effectively described a one-player game where the outcomes of the agent’s decisions are non-
deterministic. This appendix introduces a novel formulation of the execution semantics for
STNUs as a two-player game between Agnes (the agent) and Vera (the environment), where
Agnes controls the execution of free time-points and Vera controls the contingent durations.
Agnes seeks an execution strategy that will ensure the satisfaction of all constraints in C no
matter what durations Vera chooses; Vera seeks a strategy that will ensure that at least one
constraint in C is unsatisfied no matter what Agnes does. As will be seen, this formulation
highlights an important asymmetry in the execution semantics: Agnes is not able to react
instantaneously to observations of contingent time-points executing, but Vera is able to react
instantaneously to executions of free time-points.

Previous semantics for the dynamic controllability of STNUs

The literature contains two equivalent versions of the semantics of dynamic controllability of
STNUs [22,35]. This section summarizes the version presented by Hunsberger [22], which is
expressed in terms of real-time execution decisions (RTEDs). For convenience, the following
description presumes an agent named Agnes.

To begin, a partial schedule represents the current state of affairs from the agent’s
perspective—namely, the time-points that have been executed so far.

123

Author's personal copy

Dynamic controllability via Timed Game Automata

Definition 9 (Partial Schedule [22]) A partial schedule for an STNU, (T , C,L), is a set, ψ ,
of assignments to time-points in T .

• TPs(ψ) ⊂ T denotes the set of time-points appearing in ψ ;
• Vals(ψ) ⊂ R denotes the set of values appearing in ψ ;
• for any X ∈ TPs(ψ), ψ(X) denotes the value assigned to X ; and
• nowψ = max{v | v ∈ Vals(ψ)} is the time of the latest execution event in ψ .

(If ψ = ∅, let nowψ = −∞.)

Time-points in TPs(ψ) are said to be executed. A partial schedule is called respectful if its
assignments do not violate the bounds on any contingent link.

Intuitively, a partial schedule ψ assigns a real value to a subset of the time-points in the
network, and represents an execution history: the (free or uncontrollable) time-points in ψ

are the ones that have already been executed, and the assigned values are the times at which
they were executed. The time-points that are not in ψ are the ones that have not yet been
executed.

Given a partial schedule ψ , Agnes must decide what to do next. She has two options:
(1) wait for something to happen (i.e., wait for some contingent time-point to execute); or
(2) conditionally commit to executing a set of free time-points at some time, T f > nowψ .
For example, givenψ = {(A2, 0), (X, 1)}, for which nowψ = 1, Agnes could decide to wait
until the contingent time-point C2 eventually executes. Alternatively, she could decide that
“if nothing happens before time 7, I shall execute A1 at time 7.” The decisions available to
Agnes are called real-time execution decisions (RTEDs).

Definition 10 (RTED, for Agnes [22]) Let ψ be a respectful partial schedule. An RTED
for Agnes has one of two forms: wait or (T f , χ f). A wait decision is applicable if at
least one contingent time-point, C , is active in ψ (i.e., C’s activation time-point has already
been executed, butC has not). A (T f , χ f) decision (i.e., “If nothing happens before time T f ,
execute the time-points in χ f at time T f ”) is applicable if T f > nowψ and χ f is a non-empty
subset of unexecuted free time-points (i.e., χ f �= ∅ and χ f ∩ TPs(ψ) = ∅).
Given a partial schedule ψ and some RTED Δ, the outcome of the decision Δ typically
depends on the range of possible durations for one or more contingent links, as follows.

Definition 11 (Situations [35]) Let L = {(A1, �1, u1,C1), . . . , (Ak, �k, uk,Ck)} be the set
of contingent links in a given STNU S. Then the space of situations for S is the set, Ω =
[�1, u1]× [�2, u2]× . . .×[�k, uk]; and any ω = (ω1, ω2, . . . , ωk) ∈ Ω is called a situation.
A situationω is respected by a partial scheduleψ if the durations specified inω are consistent
with not only the execution times in ψ , but also the constraint that all time-points that are
unexecuted in ψ must occur after nowψ [22].

Note that if ψ is a partial schedule that respects a situation ω, and Ai ∈ TPs(ψ), but its
corresponding contingent time-point Ci /∈ TPs(ψ) (i.e., Ci is active in ψ), then it follows
that nowψ < ψ(Ai) + ωi , since Ci must be executed after nowψ .

Definition 12 (Outcome of a wait decision [22]) Let ψ be a partial schedule for which
at least one contingent time-point is active, and let ω be a situation that is respected by ψ .
The outcome of the wait decision in that context depends on: (1) tnc(ψ, ω), the time of
the next contingent execution according to ψ and ω; and (2) χ∗(ψ, ω), the set of contingent
time-points that will execute next (i.e., at the time tnc(ψ, ω)). In particular:

tnc(ψ, ω) = min{ψ(Ai) + ωi | Ai ∈ TPs(ψ),Ci /∈ TPs(ψ)}; and

123

Author's personal copy

A. Cimatti et al.

χ∗(ψ, ω) = {Ci | Ai ∈ TPs(ψ),Ci /∈ TPs(ψ), ψ(Ai) + ωi = tnc(ψ, ω)}.
The outcome of the wait decision is notated O(ψ, ω,wait) and is given by:

O(ψ, ω,wait) = ψ ∪ {(Ci , tnc(ψ, ω)) | Ci ∈ χ∗(ψ, ω)}
Definition 13 (Outcome of a (T f , χ f) Decision [22]) Let ψ be a partial schedule for which
at least one free time-point is unexecuted, and let ω be a situation that is respected by ψ .
For convenience, let t = tnc(ψ, ω) (or t = ∞ if no contingent time-points are active in
ψ), and let χ∗ = χ∗(ψ, ω). The outcome of a (T f , χ f) decision in that context, notated
O(ψ, ω, (T f , χ f)), depends on the relationship between t and T f . In particular:

O(ψ, ω, (T f , χ f)) = ψ ∪
⎧
⎨

⎩

{(Ci , t) | Ci ∈ χ∗}, if t < T f

{(X, t) | X ∈ χ f }, if T f < t
{(Y, t) | Y ∈ χ f ∪ χ∗}, if T f = t

In the first case, some contingent time-points happened to execute before the time T f arrived;
in the second case, only the time-points inχ f were executed; in the third case, rarely expected
in practice, some contingent time-points happened to execute precisely at the time T f and,
thus, both contingent and free time-points were executed simultaneously.

Definition 14 (RTED-based Strategy [22]) An RTED-based strategy for an STNU S is a
mapping R from respectful partial schedules to real-time execution decisions. Thus, if ψ is
a respectful partial schedule, then R(ψ) is an RTED.

Lemma 1 If R is an RTED-based strategy for an STNU S, and ω is any situation, then R
and ω together determine a unique (complete) schedule, notated ψ(R, ω), that results from
following the strategy R in the situation ω [22].

Definition 15 (Dynamic Controllabilty for an STNU) An STNU S = (T , C,L) is dynami-
cally controllable if there exists an RTED-based strategy R for S such that for each situation
ω, the complete schedule ψ(R, ω) that results from following the strategy R satisfies all of
the constraints in C.

Dynamic controllability for STNUs as a two-player game

This section provides an alternative characterization of the semantics of dynamic controlla-
bility for STNUs by explicitly representing the decisions available to the environment. For
convenience, the environment is represented by an agent Vera. In any given context, a pair
of decisions—one by Agnes and one by Vera—together determine a unique outcome.

The kinds of decisions available to Vera are different from those available to Agnes in two
important respects. First, Vera’s version of an RTED—called an RTED�—allows a decision
of the form, “if nothing happens before or at time Tu , then I shall execute the contingent
time-points in the set χu ⊆ Tu at time Tu .” Note that when time Tu arrives, should Vera
observe Agnes executing any time-points at time Tu , Vera has the option of instantaneously
changing her mind. Second, in such cases, Veramay instantaneously react by executing some
other contingent time-points at time Tu . Such decisions are called instantaneous reactions.
For example, suppose Vera had decided that “if nothing happens before or at time 7, then
I shall execute C2 at time 7”, but when time 7 arrived, she observed Agnes executing some
time-point(s). Vera could withdraw her decision to execute C2 and instantaneously react by
deciding to execute some other contingent time-point(s) at time 7.

123

Author's personal copy

Dynamic controllability via Timed Game Automata

ψ

Op(ψ, (Tf , χf), Δu)

ψ

Execute time points in χf

at time Tf

Execute time points in Υu

at time Tf

Execute time points in χu at time Tu

Fig. 20 Deriving the outcome ψ ′ of decisions by Agnes and Vera from the partial schedule ψ

Definition 16 (RTED�, for Vera) Letψ be a respectful partial schedule.A before-or-at RTED
(RTED�) has one of two forms: wait or (Tu, χu). A wait decision is only applicable if
no contingent time-points are currently active in ψ . A (Tu, χu) decision (i.e., “If nothing
happens before-or-at time Tu , I shall execute the time-points in χu at time Tu”) is applicable
only if Tu > nowψ , and χu is a non-empty subset of currently-activated contingent time-
points each of whose execution window includes Tu ; and all other contingent time-points
that are unexecuted in ψ are either unactivated in ψ or have execution windows that extend
beyond Tu .

Definition 17 (Instantaneous reaction, for Vera) Let ψ be a respectful partial schedule.
Let χ◦ be the set of contingent time-points that are currently active in ψ whose execution
windows happen to terminate precisely at nowψ ; and let χ� be any (possibly empty) subset
of the contingent time-points that are currenlty active inψ whose execution windows include
nowψ , but also extend beyond nowψ . An instantaneous reaction is a decision (by Vera) to
execute the contingent time-points in the set χ◦ ∪ χ� at the time nowψ .

To accommodate Vera’s ability to react instantaneously, the outcome for a pair of
decisions—one by Agnes, one by Vera—is defined in two stages: partial and full.

Definition 18 (Partial Outcome) Let ψ be a respectful partial schedule; let Δ f be an RTED
forAgnes; and letΔu be anRTED� for Vera. The partial outcome,Op(ψ,Δ f ,Δu), is defined
as follows.9

(1a) Op(ψ,wait, (Tu, χu)) = ψ ∪ {(C, Tu) | C ∈ χu}.
(1b) Op(ψ, (T f , χ f), (Tu, χu)) = ψ ∪ {(C, Tu) | C ∈ χu}, if Tu < T f .
(2a) Op(ψ, (T f , χ f),wait) = ψ ∪ {(X, T f) | X ∈ χ f }.
(2b) Op(ψ, (T f , χ f), (Tu, χu)) = ψ ∪ {(X, T f) | X ∈ χ f }, if T f ≤ Tu .

Note that in cases (1a) and (1b), the partial outcome includes only the execution of the
contingent time-points in χu at time Tu . Cases (2a) and (2b) are analogous, in that the partial
outcome includes only the execution of the free time-points in χ f at time T f , except that
Vera is also able to instantaneously react by executing one or more contingent time-points,
also at time T f , as described below.

Definition 19 (Full Outcome) Let ψp = Op(ψ,Δ f ,Δu) be a partial outcome, as described
above; and let Υu be a set of contingent time-points that constitute an instantaneous reaction
to ψp . The full outcome,O(ψ,Δ f ,Δu, Υu), is the same as ψp , except that in cases (2a) and
(2b), the schedule is augmented to include the execution of the time-points in Υu at time T f .

Figure 20 illustrates the possible pathways from a partial schedule ψ to the full outcome
ψ ′ = O(ψ,Δ f ,Δu, Υu). Note that nowψ ′ is either T f or Tu , depending on which pathway

9 Note that a wait decision cannot be simultaneously applicable for both Agnes and Vera.

123

Author's personal copy

A. Cimatti et al.

Table 1 The outcomes ψ ′ for
sample decisions by Agnes and
Vera for the STNU from Fig. 3

ψ = {(A2, 0), (X, 1)}; Δ f = (7, {A1}); Δu = (6, {C2})
ψ ′ = {(A2, 0), (X, 1), (C2, 6)}; Υu irrelevant

ψ = {(A2, 0), (X, 1)}; Δ f = (7, {A1}); Δu = (8, {C2})
ψ ′ = {(A2, 0), (X, 1), (A1, 7), (C2, 7)}, where Υu = {C2}
ψ = {(A2, 0), (X, 1)}; Δ f = (7, {A1}); Δu = (8, {C2})
ψ ′ = {(A2, 0), (X, 1), (A1, 7)}, where Υu = ∅

is taken. Note, too, that the full outcome,ψ ′, is typically a partial schedule, except at the very
end when all of the time-points have been executed. Table 1 shows the outcomes that result
from sample decisions by Agnes and Vera in the case of the STNU from Fig. 3. In each case,
ψ ′ = O(ψ,Δ f ,Δu, Υu).

Definition 20 (RTED�-based Strategy forVera)AnRTED�-based strategy (forVera) is a pair
of mappings, (f1, f2), where f1 is a mapping from respectful partial schedules to RTED�s;
and f2 is a mapping from respectful partial schedules to instantaneous reactions.

Definition 21 (Outcomes of Strategy Pairs) Let ψ be a respectful partial schedule; R an
RTED-based strategy; and R� = (f1, f2) an RTED�-based strategy. The one-step outcome,
O1(ψ, R, R�), is defined by:

O1(ψ, R, R�) = O(ψ, R(ψ), f1(ψ), f2(Op(ψ, R(ψ), f1(ψ)))).

The terminal outcome, O∗(R, R�), is the complete schedule that results from the following
recursive definition: ψ0 = ∅ and ψi+1 = O1(ψi , R, R�).

The constraints on the decisions generated by R�—namely, thatVeramust observe the bounds
on the contingent durations—ensure that each ψi in the sequence will be respectful, given
that ψ0 = ∅ is trivially respectful.

Given the above execution semantics for STNUs, the corresponding definition of dynamic
controllability is straightforward.

Definition 22 (Dynamic Controllability) An STNU, (T , C,L), is dynamically controllable
if there exists an RTED-based strategy R, such that for all RTED�-based strategies R�, the
variable assignments in the complete schedule,O∗(R, R�), satisfy all of the constraints in C.

Theorem 1 Definition 22 is equivalent to the prior definition of dynamic controllability (Def-
nition 15).

Proof Let S = (T , C,L) be any STNU. First, suppose that S is dynamically controllable
according to theRTED-based semantics. Then there exists anRTED-based execution strategy
R such that for any situation ω, the full schedule that results from following R in ω satisfies
all of the constraints in C. Let that strategy R be the one chosen by Agnes in the two-player
game semantics. Let R∗ = (f1, f2) be any strategy for Vera. It will be shown that the
terminal outcome O∗(R, R∗) that results from Agnes and Vera playing these two strategies
against each other necessarily satisfies the constraints in C. In particular, it will be shown by
induction that each (partial or full) schedule obtained at any point during the execution phase
by following R and R∗ according to the two-player game semantics can also be obtained by
following R in some situation in the RTED-based semantics.

123

Author's personal copy

Dynamic controllability via Timed Game Automata

Base Case. Let ψ0 be the empty partial schedule. This is the starting partial schedule in
either semantics.
Recursive Case. Let ψ be any partial schedule obtained by following R and R∗ in the
two-player game semantics. There are three sub-cases to consider.

• R(ψ) = wait; R∗(ψ) = (Tu, χu). In this case, the partial outcome involves the
execution of the contingent time-points in χu at the time Tu . Since the applicability
conditions for Vera’s RTED∗ decision requires the execution times for contingent
time-points to respect the lower and upper bounds on the corresponding contingent
links, the resulting partial outcome is a partial schedule obtainable from any situation
ω that is respected by ψ and includes the durations specified by the contingent time-
points in χu .

• R(ψ) = (T f , χ f); R∗(ψ) = (Tu, χu), where Tu < T f . This case is essentially the
same as the first case, since Tu < T f .

• R(ψ) = (T f , χ f); R∗(ψ) = wait. In this case, the partial outcome involves the
execution of the executable time-points in χ f . Since Vera can only use the wait
decision when the partial scheduleψ does not contain any currently active contingent
links, this must be the outcome in the RTED-based semantics, too. There can be no
instantaneous reaction by Vera in this case.

• R(ψ) = (T f , χ f); R∗(ψ) = (Tu, χu), where T f ≤ Tu . This case is the same as
the preceding case except that Vera may choose to react instantaneously (i.e., f2(ψ)

may not be empty). The applicability conditions of instantaneous reactions require
the contingent time-points in f2(ψ) to be currently active in ψ , and such that their
execution windows include the time nowψ . In addition, any contingent time-points
that happen to have their execution window terminate precisely at nowψ must be
included in f2(ψ). Thus, the full outcome is the same as in the preceding case
except that some contingent time-points may also execute at the time T f . Again,
this corresponds to any situation ω that is respected by ψ , while also respecting the
contingent durations determined by the executuion of the contingent time-points in
f2(ψ).

For the other direction, suppose that S is not dynamically controllable according to the
RTED-based semantics. In other words, for any RTED-based strategy R, there is a situation
ωR such that the outcomeO∗(R, ωR) that results from following the strategy R in the situation
ωR does not satisfy the constraints in C. (Any situationwith this propertywill be said to thwart
the strategy R.) It will be shown that there must be a strategy R∗ = (f1, f2) for Vera that will
ensure that Agnes loses the two-player game. The proof is by induction. The proposition to
prove is the following:

Letψ be any partial schedule that can be reached by following any RTED-based strategy
R in any thwarting situation ωR , according to the RTED-based semantics. Then there is
an RTED∗ decisionΔu (that depends only onψ , not on R) and an instantaneous reaction
Υu for Vera such that the full outcome obtained from R(ψ),Δu and Υu according to the
two-player game semantics is a schedule that is identical to one obtained by following
R in some thwarting situation ωR .

Let ψ be a partial schedule that can be reached by following some RTED-based execution
strategy R in some thwarting situation ωR , according to the RTED-based semantics. Now,
if no contingent time-points are currently active in ψ , then Agnes must choose a (T f , χ f)

decision, and Vera must choose the wait decision. But in that case, the outcome is fully

123

Author's personal copy

A. Cimatti et al.

determined: the time-points in χ f will be executed at time T f . Furthermore, the outcome is
the same whether using the RTED-based semantics or the two-player game semantics.

On the other hand, suppose that at least one contingent time-point is currently active inψ .
LetΘψ be the set of RTED-based execution strategies for Agnes that can generate the partial
schedule ψ at some point during the execution of the network, if followed in some thwarting
situation. For each t > nowψ , letΘ(t) be the subset ofΘψ that contains all strategies θ whose
decisions, θ(ψ), specify execution times greater than t. Now, for any strategy θ ∈ Θ(t),
there must be a situation ωθ that thwarts θ ; however, that situation may involve the execution
of contingent time-point(s) at some time before t (i.e., at some time ρ, where now < ρ < t).
Of particular interest are the values of t > nowψ for which all of the strategies in Θ(t) can
be thwarted by situations that do not involve executing any contingent time-points before
time t . In particular, let Γ be the set of real numbers t > nowψ for which every strategy
θ ∈ Θ(t) can be thwarted by a situation that is consistent with no new contingent executions
occurring before time t (i.e., at any time ρ such that nowψ < ρ < t).

Now, suppose that Γ = ∅. Let Agnes adopt the following strategy: wait until some
contingent time-point happens to execute. Let t > nowψ be the time of that next contingent
execution. Since t /∈ Γ , there must be some strategy, θ ∈ Θ(t), that could only be thwarted
by situations that involve the execution of contingent time-points before time t . Since no
contingent time-points executed before time t , that strategy is not thwarted by the current
situation and, thus, is a winning strategy for Agnes, which is a contradiction. Thus, Γ �= ∅.

Next, let Tu = inf{t | t > nowψ and t /∈ Γ }. Now, Tu is well defined since Γ is non-
empty and bounded below by nowψ . Consider the possibility that Tu = nowψ . This implies
that for any time t > nowψ , there is a time t ′ ∈ (nowψ, t) such that t ′ /∈ Γ . But then a
similar argument as that used to show that Γ is not empty can be used to show that Tu cannot
equal nowψ . In this case, given the time t of the next contingent execution, there must be
a time t ′ ∈ (nowψ, t) such that t ′ /∈ Γ and, hence, some strategy θ ∈ Θ(t ′) that could
only be thwarted by contingent executions before time t ′ < t . Since no such executions
occurred, that strategy could be followed by Agnes as a winning strategy, a contradiction.
Thus, Tu > nowψ . It remains to be seen whether Tu ∈ Γ .

Next, letΓ ∗ be the subset of (nowψ, Tu] such that for each t ∈ Γ ∗, there exists a (possibly
empty) set χ(t) of contingent time-points such that every strategy θ ∈ Θ(t) can be thwarted
by a situation that is consistent with (1) no new contingent executions before time t ; and (2)
the execution of all of the contingent time-points in χ(t) at time t . Now, suppose Γ ∗ were
empty. Then let t ∈ (nowψ, Tu) ⊆ Γ be arbitrary; and consider the following strategy for
Agnes: wait until the time t , or the execution of the next contingent time-point, whichever
happens first. If no contingent time-points happen to execute before time t , then let t ′ = t ;
otherwise, let t ′ be the time at which the first contingent time-point executed. In either case,
since t ′ ∈ Γ , but t ′ /∈ Γ ∗, there could not be a single set χ(t ′) as described earlier. Therefore,
there would have to be at least two strategies, θ1 and θ2, in Θ(t ′) whose thwarting would
require two different sets of contingent time-points executing at time t ′. Agnes could then
choose to follow whichever strategy, θ1 or θ2, was not thwarted by the execution events that
occurred at time t ′. Since that chosen strategy could only have been thwarted by execution
events which did not occur, it must be a winning strategy, which is a contradiction. Therefore
Γ ∗ �= ∅.

Next, let T ∗
u = inf{t | t > nowψ and t /∈ Γ ∗}. Consider the possibility that T ∗

u = nowψ .
Then for any t > nowψ , there exists a t ′ such that nowψ < t ′ < t and t ′ /∈ Γ ∗. Let
Agnes wait until the time of the next contingent execution, say at time t > nowψ . Then
there exists a time t ′ strictly between nowψ and t such that t ′ /∈ Γ ∗. In that case, there exist
strategies θ1 and θ2 in Θ(t ′) whose thwarting situations required different sets of contingent

123

Author's personal copy

Dynamic controllability via Timed Game Automata

executions at time t ′ < t . Since no such contingent executions occurred, Agnes can simply
choose whichever strategy has thereby become a winning strategy, yielding a contradiction.
Therefore, T ∗

u > nowψ .
There are now three cases to consider:

Case 1: T ∗
u = Tu , but Tu /∈ Γ . Suppose that for all t ∈ (nowψ, Tu), χ(t) = ∅. In

other words, for each t ∈ (nowψ, Tu), every θ ∈ Θ(t) can be thwarted by situations in
which no contingent time-points execute at or before time t . But that implies that every
θ ∈ Θ(Tu) can be thwarted by situations in which no contingent time-points execute
before time Tu and, hence, that Tu ∈ Γ , a contradiction. Therefore, it must be that for
some t∗ ∈ (nowψ, Tu), χ(t∗) �= ∅. Let Vera’s RTED∗ decision be (t∗, χ(t∗)).
Case 2: T ∗

u = Tu ∈ Γ . Suppose that T ∗
u /∈ Γ ∗. Then there must be two strategies, θ1

and θ2, in Θ(T ∗
u) that can only be thwarted by situations involving two different sets of

contingent time-points at time T ∗
u . But then Agnes could simply wait until time T ∗

u to
see which of the two strategies was not thwarted, to yield a winning strategy. But that is
a contradiction. Therefore, T ∗

u ∈ Γ .
Now, suppose that χ(T ∗

u) = ∅. That is, every strategy in Θ(T ∗
u) can be thwarted by

situations that do not involve any new contingent executions at or before T ∗
u . Let Agnes

employ the following strategy: wait until the next contingent execution. Suppose it hap-
pens at some time t > T ∗

u . By the definition of Tu and the fact that Tu ∈ Γ , it follows that
there must be some t ′ strictly between Tu and t such that t ′ /∈ Γ . But then there must be
a strategy θ ∈ Θ(t ′) whose thwarting requires the execution of a contingent time-point
before time t ′ < t . Since no such execution occurred, Agnes can employ θ as a winning
strategy, which is a contradiction. Thus, χ(T ∗

u) �= ∅. Vera’s RTED∗ decision can then be
(T ∗

u , χ(T ∗
u)).

Case 3: T ∗
u < Tu . As in Case 2, it follows here that T ∗

u ∈ Γ ∗. Now, let t be any time
such that T ∗

u < t < Tu . Let Agnes wait until the next contingent execution or the time
t , whichever comes first. Let t† be that time. By the definition of T ∗

u as an infemum,
and the fact that T ∗

u ∈ Γ ∗, it follows that there is some t ′ strictly between T ∗
u and t†

such that t ′ /∈ Γ ∗, but t ′ ∈ Γ (since t ′ < Tu). But then there exist strategies θ1 and
θ2 in Θ(t ′) whose thwarting situations require different sets of contingent time-points
to execute at time t ′ < t† ≤ t . Since no such contingent executions occurred, Alice
can simply choose whichever strategy has thereby become a winning strategy, yielding
a contradiction. Therefore, it cannot be that T ∗

u < Tu .

Only Cases 1 and 2 avoid a contradiction; and in each of those cases generates a decision
for Vera of the form Δu = (t, χ), where χ is a set of contingent time-points that are to be
executed at time t if Agnes does not execute any time-points at or before t . It remains to
show that all possible outcomes of the decisions of Agnes and Vera result in a schedule that
can be obtained by following a strategy R in some thwarting situation ωR .

First, suppose Agnes uses a wait decision. In that case, the contingent time-points in
χ will be executed at time t . By the construction of the χ set (cf. the definition of Γ ∗), it
follows that all strategies in Θ(t), of which wait is one, can be thwarted by situations that
are consistent with this outcome. Similar remarks apply to Agnes using a (T f , χ f) decision
where T f > t .

Second, suppose Agnes uses a (T f , χ f) decision where T f ≤ t . Then the partial outcome
will involve the execution of the executable time-points in χ f at time T f ≤ t , but not the
contingent time-points in χ . Now, since T f ≤ t , it follows that T f ≤ T ∗

u . Thus, for each time
t ′ < T f , all strategies in Θ(t ′)—of which, Agnes’ (T f , χ f) is one—must be thwartable by
situations involving no new contingent time-points before time t ′. But then, for any t† < T f ,

123

Author's personal copy

A. Cimatti et al.

there is some t ′ such that t† < t ′ < T f , from which it follows that no contingent time-points
need be executed at or before t†. Thus, no contingent time-points need be executed before
time T f . However, thwarting the strategies that involve the execution of the time-points in
χ f at time T f may require the execution of some contingent time-points at time T f . A single
set of such time-points must be sufficient; otherwise, it would contradiction the thwartability
of those strategies. That set of time-points constitutes an instantaneous reaction by Vera.

Thus, in all cases, Vera has a decision (t, χ) available—that only depends on ψ , not on
R—that, together with a possible instantaneous reaction, generates an outcome according to
the two-player game semantics that is identical to an outcome that is obtained by following
an RTED-based strategy in a thwarting situation. ��

Appendix 2: The semantics of dynamic controllability for CDTNUs

In this section, the dynamic execution semantics for STNUs is extended to accommodate the
features of CSTNUs and DTNUs, resulting in a dynamic execution semantics for CDTNUs.
For a CDTNU, (T , C, L ,OT ,O, P,L), the agent seeks a strategy for executing the free
time-points in T f ⊆ T whose labels are in accordance with the current scenario, such that
all constraints in C will necessarily be satisfied no matter what durations the environment
“chooses” for the contingent links in L, and no matter which truth values the environment
“chooses” for the propositions in P . The decisions that constitute such a strategy can depend
only on execution events that occurred in the past; however, the strategy can be dynamic in
that it may react—after a positive delay—to observations of contingent time-points executing
or propositional letters being assigned truth values.

First, the partial schedules from Defnition 9 are extended to accommodate observation
time-points. In this context, an extended partial schedule is not only a possibly partial assign-
ment of values to time-points, but also a possibly partial assignment of truth values to
propositional letters.

Definition 23 (Extended Partial Schedule) An extended partial schedule for a CDTNU,
(T , C, L ,OT ,O, P,L)), is (ψ, σ), where ψ is a partial schedule (i.e., a partial assignment
to time-points in T , as in Definition 9), and σ is a set of tuples of the form (X, b) where
X ∈ OT ∩ TPs(ψ) is an already-executed observation time-point, and b is either � or ⊥
(i.e., true or false). The label for the extended partial schedule, (ψ, σ), is the conjunction of
literals determined by the truth values in σ . For example, if p is true in σ , and q is false, and
those are the only Boolean variables that have been observed so far according to ψ and σ ,
then the label for (ψ, σ) is p¬q .

Intuitively,ψ records the execution times for those time-points that have already executed;
and σ records the truth values of the propositional letters corresponding to observation time-
points that have already executed. In short, the extended partial schedule represents all of the
information on which execution decisions may depend.

The RTEDs available to Agnes in the case of a CDTNU are essentially the same as in
the case of STNUs with one minor condition: the time-points in the set χ f must have labels
that are subsumed by the label associated with the current extended partial schedule. In other
words, the labels on the time-points must be true given the label for the extended partial
schedule. For example, if the label of (ψ, σ) is p¬q , then the labels of any time-points in
the set χ f must be one of: the empty label, p, ¬q , or p¬q .

123

Author's personal copy

Dynamic controllability via Timed Game Automata

Definition 24 (RTED, for Agnes, in a CDTNU) Let (ψ, σ) be an extended partial schedule,
where ψ is respectful. An RTED for Agnes has one of two forms: wait or (T f , χ f). A
wait decision is applicable if at least one contingent time-point, C , is active in ψ (i.e., C’s
activation time-point has already been executed, but C has not). A (T f , χ f) decision (i.e.,
“If nothing happens before time T f , execute the time-points in χ f at time T f ”) is applicable
if T f > nowψ , χ f is a non-empty subset of unexecuted free time-points (i.e., χ f �= ∅ and
χ f ∩ TPs(ψ) = ∅) and for each X ∈ χ f , the label L(X) is subsumed by the label of (ψ, σ).

For Vera, there are two significant changes:

(1) For an RTED�: the execution times for contingent time-points must accommodate the
case of contingent durations that may fall anywhere within a union of disjoint intervals.

(2) For an instantaneous reaction: in cases where the partial outcome of the decisions by
Agnes and Vera includes the execution of observation time-points, then for each such
observation time-point, Vera must instantaneously specify a truth value for the corre-
sponding Boolean propositional letter.

In the case of an RTED�, it is convenient to call the union of distinct intervals for a given
contingent duration an extended execution window.

Definition 25 (RTED�, for Vera, in a CDTNU) Let (ψ, σ) be an extended partial sched-
ule, where ψ respects at least one situation. A before-or-at RTED (RTED�) has one of two
forms: wait or (Tu, χu). A wait decision is only applicable if no contingent time-points
are currently active inψ . A (Tu, χu) decision (i.e., “If nothing happens before-or-at time Tu ,
I shall execute the time-points in χu at time Tu”) is applicable only if Tu > nowψ ; χu is a
non-empty subset of currently-activated contingent time-points each of whose extended exe-
cution window includes Tu ; and the extended execution window for each currently-activated
contingent time-point that is not in χu extends beyond the time Tu .

Definition 26 (Instantaneous reaction, for Vera, in a CDTNU) Let (ψ, σ) be an extended
partial schedule inwhich at least one contingent time-pointC is activated andwhose extended
execution window includes nowψ (i.e., one of the possible durations for C would result in
C executing at nowψ). An instantaneous reaction is a decision (by Vera) to: (1) execute a
set of such time-points at time nowψ ; and (2) assign truth values for each of the observation
time-points in ψ that are not yet assigned in σ . If nowψ happens to be the last possible time
at which a currently-activated contingent time-point C can execute, then the instantaneous
reaction must include C .

The partial and full outcomes for these augmented decisions for Agnes and Vera are
analogous to those in the case of an STNU. The principal difference is that if a partial outcome
involves the execution of an observation time-point, then Vera’s instantaneous reaction must
assign a truth value to the corresponding Boolean propositional letter.

Note that the disjunctive constraints that may appear within the set C of constraints in
the CDTNU do not affect the execution semantics at all. In other words, they do not affect
the execution decisions that are available to either Agnes or Vera. Instead, they represent
constraints that Agnes wants to satisfy.

With these changes, the definition of dynamic controllability for CDTNUs is analogous
to that for STNUs.

123

Author's personal copy

A. Cimatti et al.

Appendix 3: Proof of correctness for the STNU-to-TGA encoding

This section presents the theoretical results that confirm the correctness of the STNU-to-TGA
encoding given in Sect. 4.2.1. It also explicates the correspondence between strategies for
STNUs and their TGA counterparts.

Theorem 2 Let S = (T , C,L) be any STNU; and let Θ be the encoding of S as a TGA, as
described in Sect. 4.2.1. ThenΘ correctly captures the execution semantics for S in the sense
that any sequence of partial schedules that can be generated for S according to the execution
semantics for STNUs corresponds to a run for Θ that can be generated by following its
transitions according to the TGA semantics.

Proof The following invariant is proved by induction. Each respectful partial scheduleψ that
can be generated for S corresponds to a state of Θ in which the location is vera, cδ = 0,
nowψ = ĉ, for each executed time-point X , ψ(X) = ĉ− cX , and for each unexecuted time-
point Y , ψ(Y) = ĉ. For the base case, the initial partial schedule, ψ0 = ∅, corresponds to
the initial state of Θ in which the location is vera, all clocks are at zero, and all time-points
are unexecuted. Note that ψ0 is trivially respectful.

Now, suppose that ψ is a respectful partial schedule that can be generated according to
the execution semantics for STNUs, and that satisfies the hypothesized invariant. Let θ be
the corresponding state of the TGA. Since cδ = 0, the only transitions that are immediately
enabled are the loops whereby contingent time-points are executed. These transitions, if
taken, correspond to the instantaneous reaction decisions for Vera, in which a set Υu of one
or more contingent time-points can be executed simultaneously. However, suppose that Vera
does not make any such transitions at cδ = 0. Once cδ > 0, both Agnes and Vera have
transitions that they could make at any time. For example, Vera might decide to execute one
or more contingent time-points when cδ = 3. That would correspond to an RTED�-based
decision, (Tu, χu), where Tu = nowψ + 3 and χu contains the time-points to be executed.
Since each transition by Vera resets cδ to 0, Agnes is unable to interrupt Vera’s simultaneous
execution of contingent time-points. The resulting outcomes are equivalent to the partial
schedules that arise in Cases (1a) and (1b) of Definition 18. The guards on Vera’s transitions,
which enforce the duration bounds for the contingent links, ensure that the resulting partial
schedule is respectful. Also, when Vera’s sequence of “simultaneous” transitions complete,
ĉ equals the time of the most recent execution (i.e., nowψ + 3). In addition, for each newly
executed time-point, C , the clock cC is set to 0, ensuring that ĉ − cC equals the execution
time of C . Since both clocks will never again be reset, this difference remains fixed forever.

On the other hand, suppose that Agnes decided to execute the time-points in χ f at an
earlier time, say, nowψ + 2. This would correspond to her making the transition to the
agnes location and instantaneously executing the time-points in χ f at that time and, then,
immediately returning to the vera location. Since agnes is an urgent state, the global
clock equals nowψ + 2 when the return transition is made. This sequence of transitions
corresponds to the partial outcomes in Cases (2a) and (2b) in Definition 18, where Agnes’
decision is (T f , χ f), where T f = nowψ +2. Furthermore, if Vera chooses to instantaneously
execute some contingent time-points at that same time, nowψ + 2, that will correspond to
an instantaneous reaction, as specified in Definition 17.

Finally, if at time nowψ , Agnes and Vera both decided to execute some time-points at
time nowψ + 1, then the STNU semantics ensures that Agnes’ time-points will be executed,
and that Vera will be able to instantaneously react, if she chooses. This corresponds to
Agnes’ transition having priority over Vera’s transition. Agnes transitions to the agnes

123

Author's personal copy

Dynamic controllability via Timed Game Automata

state, executes her time-points, and returns to the vera state, with the global clock ending
up at nowψ + 1.

Since, in all cases, the resulting state of the TGA satisfies the desired invariant property,
the result is proven. ��
Theorem 3 Let S be any STNU; let Θ be the encoding of S; and let σ be a winning TGA
counter-strategy for Agnes. Then there is an equivalent RTED-based strategy for Agnes that
will ensure the satisfaction of all constraints in S no matter how the contingent durations
turn out.

Proof Let S,Θ and σ be as described in the statement above. Therefore, σ : L ×RX
>=0 →

Actu ∪ {λ}, where Actu is the set of uncontrollable actions (for Agnes).
Suppose the TGA has just entered the state, (vera, v), where v represents the vector

of clock values. As has already been noted, for any time-point X and associated clock cX:
(1) before X executes, cX = ĉ; and (2) after X executes, cX < t̂ and the fixed difference,
t̂ − cX, equals the time at which X executed. Thus, the vector of clock values specifies a
partial schedule, ψ . Now, suppose that nowψ < ĉ (i.e., that some positive time has elapsed
since the last execution event in ψ). The only way that could have happened is if the state
(vera, v) had been preceded by one or more useless loops (i.e., loops using only the gain
and pass transitions to go back and forth between vera and agneswithout executing any
time-points). Let (vera, v′) be the state immediately preceding the first such useless loop.
Then for some positive ε, v = v′ + ε (i.e., the clock values in v are ε units larger than their
corresponding values in v′). And by construction, nowψ = v′(ĉ).

Next, let D be the minimum time that can elapse from v before the strategy σ recommends
a non-trivial transition to the agnes location. That is: D = min{d | σ(vera, v′ + d) �= λ,
σ(agnes, v′+d) �= pass}. Letv0 = v′+D. The unique sequence of execution transitions at
the agnes location is: τ1 = σ(agnes, v0), τ2 = σ(agnes, v1), τ3 = σ(agnes, v2), . . .,
where each vi+1 is the same as vi , except that the clock for the just-executed time-point
is 0 in vi+1. This sequence must terminate, since there are only finitely many time-points,
and each can be executed only once. If τm is the last execution transition, it follows that
pass = σ(agnes, vm). That transition leads back to the state, (vera, vm), where vm is the
same as v′, except that the clocks for the time-points executed by the transitions, τ1, . . . , τm ,
are all zero in vm .

Next, let T f = v0(ĉ) be the global time at which σ recommends its first non-trivial
transition to agnes; and let χ f be the set of time-points that correspond to the execution
transitions, τ1, . . . , τm . Then (T f , χ f) is an RTED forψ that corresponds to what the strategy
σ recommends at (vera, v′). Note thatVeramaydecide to instantaneously react by executing
some contingent time-points also at time T f , an outcome that is sanctioned by the execution
semantics for STNUs. Finally, it may happen that Vera decides to intervene before time T f

arrives, by executing one or more contingent time-points and effectively generating a new
partial schedule, ψ∗. In that case, the same procedure could be applied to ψ∗ to generate an
appropriate RTED. Since the guard on the transition from vera to agnes requires a positive
time delay, that RTED is properly prohibited from any kind of instantaneous reaction (by
Agnes).

This procedure provides a mapping from any (vera, v) state that is reachable following
the winning strategy σ . In addition, the sequences of partial schedules generated by following
the RTEDs correspond to runs that can be produced by σ . Thus, the complete schedules gen-
erated by the RTEDs are guaranteed to satisfy all STNU constraints assuming Vera observes
the bounds on all contingent links. ��

123

Author's personal copy

A. Cimatti et al.

References

1. Abdeddaim, Y., Asarin, E., Sighireanu, M.: Simple algorithm for simple timed games. In: TIME, pp.
99–106 (2009)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)
3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
4. Augusto, J.C.: Temporal reasoning for decision support inmedicine. Artif. Intell.Med. 33(1), 1–24 (2005)
5. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K., Lime, D.: Uppaal-Tiga: time for playing

games!. In: Damm, W., Hermanns, H. (eds.) Proceedings of the 19th Conference on Computer Aided
Verification (CAV-2007). Lecture Notes in Computer Science, vol. 4590, pp. 121–125. Springer, Berlin
(2007)

6. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis
of timed games. In: CONCUR, pp. 66–80 (2005)

7. Cesta, A., Fratini, S., Orlandini, A., Finzi, A.: Flexible plan verification: feasibility results. Fundam.
Inform. 107(2–3), 111–137 (2011)

8. Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: Toward a time-centric modeling of busi-
ness processes in BPMN 2.0. In: International Conference on Information Integration and Web-based
Applications and Services, pp. 154–163. ACM (2013)

9. Cimatti, A., Hunsberger, L., Micheli, A., Posenato, R., Roveri, M.: Sound and complete algorithms for
checking the dynamic controllability of temporal networks with uncertainty, disjunction and observation.
In: Cesta, A., Combi, C., Laroussinie, F. (eds.) 21st International Symposium on Temporal Representation
and Reasoning, TIME 2014, Verona, Italy, September 8–10, 2014, pp. 27–36. IEEE Computer Society
(2014). doi:10.1109/TIME.2014.21

10. Cimatti, A., Hunsberger, L., Micheli, A., Roveri, M.: Using timed game automata to synthesize execution
strategies for simple temporal networks with uncertainty. In: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, July 27–31, 2014, Québec City, Québec, Canada, pp. 2242–2249
(2014)

11. Cimatti, A., Micheli, A., Roveri, M.: Solving temporal problems using SMT: weak controllability. In:
AAAI, pp. 448–454 (2012)

12. Cimatti, A., Micheli, A., Roveri, M.: Solving strong controllability of temporal problems with uncertainty
using SMT. Constraints 20(1), 1–29 (2015)

13. Combi, C., Gambini,M.,Migliorini, S., Posenato, R.: Representing business processes through a temporal
data-centric workflow modeling language: an application to the management of clinical pathways. IEEE
Trans. Syst. Man Cybern. Syst. 44(9), 1182–1203 (2014). doi:10.1109/TSMC.2014.2300055

14. Combi, C., Gozzi, M., Posenato, R., Pozzi, G.: Conceptual modeling of flexible temporal workflows.
ACM Trans. Autono. Adapt. Syst. (TAAS) 7(2), 19 (2012). doi:10.1145/2240166.2240169

15. Combi, C., Hunsberger, L., Posenato, R.: An algorithm for checking the dynamic controllability of a
conditional simple temporal network with uncertainty. In: Filipe, J., Fred, A.L.N. (eds.) ICAART 2013—
Proceedings of the 5th International Conference on Agents and Artificial Intelligence, vol. 2, Barcelona,
Spain, 15–18 February, 2013, pp. 144–156. SciTePress (2013)

16. Combi, C., Posenato, R.: Controllability in temporal conceptual workflow schemata. In: Dayal, U., Eder,
J., Koehler, J., Reijers, H.A. (eds.) Business Process Management, 7th International Conference, BPM
2009, Ulm, Germany, September 8–10, 2009. Proceedings, Lecture Notes in Computer Science, vol.
5701, pp. 64–79. Springer (2009). doi:10.1007/978-3-642-03848-8_6

17. Combi, C., Pozzi, G.: Architectures for a temporal workflow management system. In: Proceedings of the
2004 ACM Symposium on Applied Computing (SAC-2004), pp. 659–666. ACM, New York (2004)

18. Comin, C., Posenato, R., Rizzi, R.: A tractable generalization of simple temporal networks and its relation
to mean payoff games. In: Cesta, A., Combi, C., Laroussinie, F. (eds.) 21st International Symposium on
Temporal Representation and Reasoning, TIME 2014, Verona, Italy, September 8–10, 2014, pp. 7–16.
IEEE Computer Society (2014). doi:10.1109/TIME.2014.19

19. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49, 61–95 (1991)
20. Eder, J., Panagos, E., Rabinovich, M.: Time constraints in workflow systems. In: Jarke, M., Oberweis,

A. (eds.) Advanced Information Systems Engineering, LNCS, vol. 1626, pp. 286–300. Springer, Berlin
(1999)

21. Hollingsworth, D.: The workflow reference model. http://www.wfmc.org/standards/model.htm (1995)
22. Hunsberger, L.: Fixing the semantics for dynamic controllability and providing a more practical charac-

terization of dynamic execution strategies. In: Lutz, C., Raskin, J. (eds.) TIME 2009, 16th International
Symposium on Temporal Representation and Reasoning, Bressanone-Brixen, Italy, 23–25 July 2009,
Proceedings, pp. 155–162. IEEE Computer Society (2009). doi:10.1109/TIME.2009.25

123

Author's personal copy

http://dx.doi.org/10.1109/TIME.2014.21
http://dx.doi.org/10.1109/TSMC.2014.2300055
http://dx.doi.org/10.1145/2240166.2240169
http://dx.doi.org/10.1007/978-3-642-03848-8_6
http://dx.doi.org/10.1109/TIME.2014.19
http://www.wfmc.org/standards/model.htm
http://dx.doi.org/10.1109/TIME.2009.25

Dynamic controllability via Timed Game Automata

23. Hunsberger, L.: A fast incremental algorithm for managing the execution of dynamically controllable
temporal networks. In: Markey, N., Wijsen, J. (eds.) TIME 2010–17th International Symposium on Tem-
poral Representation and Reasoning, Paris, France, 6–8 September 2010, pp. 121–128. IEEE Computer
Society (2010). doi:10.1109/TIME.2010.16

24. Hunsberger, L.: A faster execution algorithm for dynamically controllable stnus. In: Sánchez, C., Venable,
K.B., Zimányi, E. (eds.) 2013 20th International Symposium on Temporal Representation and Reasoning,
Pensacola, FL, USA, September 26–28, 2013, pp. 26–33. IEEE Computer Society (2013). doi:10.1109/
TIME.2013.13

25. Hunsberger, L.: A faster algorithm for checking the dynamic controllability of simple temporal networks
with uncertainty. In: Duval, B., van den Herik, H.J., Loiseau, S., Filipe, J. (eds.) ICAART 2014 - Pro-
ceedings of the 6th International Conference on Agents and Artificial Intelligence, vol. 1, ESEO, Angers,
Loire Valley, France, 6–8 March, 2014, pp. 63–73. SciTePress (2014). doi:10.5220/0004758100630073

26. Hunsberger, L., Posenato, R., Combi, C.: The dynamic controllability of conditional STNs with uncer-
tainty. In: Proceedings of the Workshop on Planning and Plan Execution for Real-World Systems:
Principles and Practices (PlanEx) at ICAPS-2012, pp. 1–8 (2012). arXiv:1212.2005

27. Kleene, S.: Mathematical Logic. Wiley, Hoboken (1967)
28. Lanz, A., Posenato, R., Combi, C., Reichert, M.: Controllability of time-aware processes at run time.

In: Meersman, R., Panetto, H., Dillon, T.S., Eder, J., Bellahsene, Z., Ritter, N., Leenheer, P.D., Dou, D.
(eds.)On theMove toMeaningful Internet Systems:OTM2013Conferences—Confederated International
Conferences: CoopIS, DOA-Trusted Cloud, and ODBASE 2013, Graz, Austria, September 9–13, 2013.
Proceedings, Lecture Notes in Computer Science, vol. 8185, pp. 39–56. Springer (2013). doi:10.1007/
978-3-642-41030-7_4

29. Lanz, A., Posenato, R., Combi, C., Reichert, M.: Simple temporal networks with partially shrinkable
uncertainty. In: Loiseau, S., Filipe, J., Duval, B., van den Herik, H.J. (eds.) ICAART 2015—Proceedings
of the International Conference on Agents and Artificial Intelligence, vol. 2, Lisbon, Portugal, 10–12
January, 2015, pp. 370–381. SciTePress (2015)

30. Lanz, A., Weber, B., Reichert, M.: Workflow time patterns for process-aware information systems. In:
Mylopoulos, J., Sadeh, N.M., Shaw, M.J., Szyperski, C., Bider, I., Halpin, T., Krogstie, J., Nurcan, S.,
Proper, E., Schmidt, R., Ukor, R. (eds.) Enterprise, Business-Process and Information Systems Modeling
11th International Workshop, BPMDS 2010, and 15th International Conference, EMMSAD 2010, pp.
94–107. Springer, Berlin (2010)

31. Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation, 2nd edn. Prentice-Hall Inc,
Upper Saddle River (1998)

32. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: STACS,
pp. 229–242 (1995)

33. Morris, P.: A structural characterization of temporal dynamic controllability. In: Principles and Practice
of Constraint Programming (CP-2006), Lecture Notes in Computer Science, vol. 4204, pp. 375–389.
Springer (2006)

34. Morris, P.: Dynamic controllability and dispatchability relationships. In: Simonis, H. (ed.) Integration
of AI and OR Techniques in Constraint Programming—11th International Conference (CPAIOR-2014),
Lecture Notes in Computer Science, vol. 8451, pp. 464–479. Springer (2014)

35. Morris, P., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal uncertainty. In: Nebel, B.
(ed.) Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI-2001), pp.
494–499. Morgan Kaufmann (2001)

36. Morris, P.H.,Muscettola,N.: Temporal dynamic controllability revisited. In:AAAI, pp. 1193–1198 (2005)
37. Orlandini, A., Finzi, A., Cesta, A., Fratini, S.: TGA-based controllers for flexible plan execution. In: KI,

no. 7006 in LNAI, pp. 233–245. Springer (2011)
38. Peintner, B., Venable, K.B., Yorke-Smith, N.: Strong controllability of disjunctive temporal problems

with uncertainty. In: Principles and Practice of Constraint Programming (CP-2007), pp. 856–863 (2007)
39. Rossi, F., Venable, K.B., Yorke-Smith, N.: Uncertainty in soft temporal constraint problems: a general

framework and controllability algorithms for the fuzzy case. J. Artif. Intell. Res. 27, 617–674 (2006)
40. Tsamardinos, I., Pollack,M.E.: Efficient solution techniques for disjunctive temporal reasoning problems.

Artif. Intell. 151, 43–89 (2003)
41. Tsamardinos, I., Vidal, T., Pollack, M.: CTP: a new constraint-based formalism for conditional, temporal

planning. Constraints 8(4), 365–388 (2003)
42. Venable, K.B., Volpato, M., Peintner, B., Yorke-Smith, N.: Weak and dynamic controllability of temporal

problems with disjunctions and uncertainty. In: Proceedings of the Workshop on Constraint Satisfaction
Techniques for Planning and Scheduling Problems (COPLAS-2010) in ICAPS-2010, pp. 50–59 (2010)

43. Venable, K.B., Yorke-Smith, N.: Disjunctive temporal planning with uncertainty. In: Proceedings of the
19th International Joint Conference on Artificial Intelligence (IJCAI-2005), pp. 1721–1722 (2005)

123

Author's personal copy

http://dx.doi.org/10.1109/TIME.2010.16
http://dx.doi.org/10.1109/TIME.2013.13
http://dx.doi.org/10.1109/TIME.2013.13
http://dx.doi.org/10.5220/0004758100630073
http://arxiv.org/abs/1212.2005
http://dx.doi.org/10.1007/978-3-642-41030-7_4
http://dx.doi.org/10.1007/978-3-642-41030-7_4

A. Cimatti et al.

44. Vidal, T.: Controllability characterization and checking in contingent temporal constraint networks. In:
KR, pp. 559–570 (2000)

45. Vidal, T., Fargier, H.: Contingent durations in temporal CSPS: from consistency to controllabilities. In:
Proceedings of the 4th International Symposium on Temporal Representation and Reasoning (TIME-
1997) (1997)

46. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from consistency to con-
trollabilities. J. Exp. Theor. Artif. Intell. 11(1), 23–45 (1999)

47. Vidal, T., Ghallab, M.: Temporal constraints in planning: free or not free? In: Proceedings of the Interna-
tional Workshop on Constraint-Based Reasoning (CONSTRAINT-1995) in FLAIRS-1995 (1995)

48. Vidal, T., Ghallab, M.: Dealing with uncertain durations in temporal constraint networks dedicated to
planning. In: Wahlster, W. (ed.) Proceedings of the 12th European Conference on Artificial Intelligence
(ECAI-1996), pp. 48–54. Wiley, Chichester (1996)

123

Author's personal copy

	Dynamic controllability via Timed Game Automata
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Paper structure

	2 Motivating example: healthcare workflows
	3 The dynamic controllability of temporal networks
	3.1 Simple Temporal Networks with Uncertainty
	3.2 Conditional Simple Temporal Networks with Uncertainty
	3.3 Disjunctive Temporal Networks with Uncertainty
	3.4 Conditional Disjunctive Temporal Networks with Uncertainty

	4 Reducing dynamic controllability to TGA reachability
	4.1 Timed Game Automata
	4.2 TGA encodings
	4.2.1 STNU-to-TGA encoding
	4.2.2 CSTNU-to-TGA encoding
	4.2.3 DTNU-to-TGA encoding
	4.2.4 CDTNU-to-TGA encoding

	5 Conclusion
	Appendix 1: The semantics of dynamic controllability for STNUs
	Previous semantics for the dynamic controllability of STNUs
	Dynamic controllability for STNUs as a two-player game

	Appendix 2: The semantics of dynamic controllability for CDTNUs
	Appendix 3: Proof of correctness for the STNU-to-TGA encoding
	References

