
ar
X

iv
:1

40
5.

38
17

v3
 [

cs
.D

S]
 2

5
O

ct
 2

01
6

Acta Informatica manuscript No.
(will be inserted by the editor)

Online Edge Coloring of Paths and Trees with a Fixed

Number of Colors

Lene M. Favrholdt · Jesper W. Mikkelsen

the date of receipt and acceptance should be inserted later

Abstract We study a version of online edge coloring, where the goal is to color
as many edges as possible using only a given number, k, of available colors.
All of our results are with regard to competitive analysis. Previous attempts
to identify optimal algorithms for this problem have failed, even for bipartite
graphs. Thus, in this paper, we analyze even more restricted graph classes,
paths and trees. For paths, we consider k = 2, and for trees, we consider any
k ≥ 2.

We prove that a natural greedy algorithm called First-Fit is optimal
among deterministic algorithms, on paths as well as trees. For paths, we give
a randomized algorithm, which is optimal and better than the best possible
deterministic algorithm. For trees, we prove that to obtain a better competi-
tive ratio than First-Fit, the algorithm would have to be both randomized
and unfair (i.e., reject edges that could have been colored), and even such
algorithms cannot be much better than First-Fit.

A preliminary version of this paper appeared in 12th Workshop on Approximation and
Online Algorithms (WAOA 2014), LNCS 8952: 181-192, 2014.
This work was partially supported by the Villum Foundation and the Danish Council for
Independent Research, Natural Sciences.

Lene M. Favrholdt (�)
Department of Mathematics and Computer Science, University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark
Tel.: +45 65 50 23 41
E-mail: lenem@imada.sdu.dk

Jesper W. Mikkelsen
Department of Mathematics and Computer Science, University of Southern Denmark
Campusvej 55, 5230 Odense M, Denmark
E-mail: jesperwm@imada.sdu.dk

http://arxiv.org/abs/1405.3817v3

2 Lene M. Favrholdt, Jesper W. Mikkelsen

1 Introduction

In the classical edge coloring problem, the edges of a graph must be colored
using as few colors as possible, under the constraint that no two adjacent edges
receive the same color. There is a natural dual version of the problem where
a fixed number, k, of colors is given and the goal is to color as many edges as
possible, using at most k colors. Sometimes the classical problem is called the
minimization version and the dual problem is called the maximization version
of the problem.

In this paper, we study the following online version of the maximization
problem [9]: The edges of the graph arrive one by one (in any order), each
specified by its endpoints. Immediately upon receiving an edge, the algorithm
must either color the edge with one of the k colors or reject the edge. The
decision of which of the k colors to use or to reject the edge is irrevocable.
We call this problem Edge-k-Coloring. For any class, Class, of graphs,
we let Edge-k-Coloring(Class) denote the problem of Edge-k-Coloring
restricted to graphs of class Class. For instance, Edge-2-Coloring(Path)
is the online problem of properly coloring as many edges as possible in a path
using only two colors.

Quality measure. We measure the quality of an online algorithm,A, for Edge-
k-Coloring using the standard notion of competitive ratio [12,16]. The com-
petitive ratio compares the performance of A to that of an optimal offline
algorithm, Opt. We denote by A(σ) the number of edges colored by A when
given a sequence, σ, of edges. Similarly, Opt(σ) is the number of edges in
σ colored by Opt. The algorithm A is said to be C-competitive if there ex-
ists a constant b such that A(σ) ≥ C ·Opt(σ) − b for any input sequence σ.
The competitive ratio, CA(k), of A is the supremum over all C for which A is
C-competitive. The competitive ratio of A for Edge-k-Coloring(Class) is
denoted by CClass

A (k).

Note that by this definition, 0 ≤ CA(k) ≤ 1. In particular, upper bounds
on the competitive ratio are negative results and lower bounds are positive
results.

If the inequality above holds even when b = 0, we say that A is strictly C-
competitive. This gives rise to the notion of strict competitive ratio. The results
in this paper are strongest possible in the sense that all positive results hold
for the strict competitive ratio and all negative results hold for the competitive
ratio.

For randomized algorithms, a similar definition of competitive ratio is used
but A(σ) is replaced by the expected value E[A(σ)].

Notation and terminology. We label the k colors 1, 2, . . . , k. For 1 ≤ i ≤ j ≤ k,
define Ci,j = {i, i+1, . . . , j}. At any fixed point in the processing of the input
sequence, we denote by Cv the set of colors used at edges incident to the vertex
v. A color i ∈ C1,k is said to be available at v if i /∈ Cv. Two colorings of a graph

Online Edge Coloring of Paths and Trees with a Fixed Number of Colors 3

are said to be equivalent if one can be obtained from the other by renaming
the colors.

If v is a vertex in the input graph, we denote by d(v) the number of edges
incident to v. An isolated edge e = (v, u) is an edge such that d(v) = d(u) = 1
at the time when e is revealed. For any m, we let 〈e1, e2, . . . , em〉 denote a
path with m edges labeled such that, for 2 ≤ i ≤ m− 1, ei is adjacent to ei−1

and ei+1. A star with m edges is the complete bipartite graph K1,m.

Algorithms. An algorithm is called fair if it never rejects an edge unless all
of the k colors have already been used on adjacent edges. In [9], the following
two fair deterministic algorithms were studied:

First-Fit (FF) uses the lowest available color for each edge. It can be
viewed as the natural greedy strategy.

Next-Fit (NF) remembers the last used color clast. For each edge, it uses
the first available color in the ordered sequence 〈clast + 1, . . . , k, 1, . . . , clast〉.
For the very first edge, it uses the color 1.

For Edge-2-Coloring(Path), we introduce a new family of randomized
algorithms: For 1

2 ≤ p ≤ 1, Randp is defined as follows. Whenever an isolated
edge is revealed,Randp uses the color 1 with probability p and the color 2 with
probability 1− p. All non-isolated edges are colored (with the only remaining
color) if possible. Note that Rand1 is identical to First-Fit.

Previous results. In [9] it is shown that any fair algorithm for Edge-k-Coloring
has a competitive ratio of at least 2

√
3 − 3 ≈ 0.46, and at most 1

2 if it is
deterministic. The lower bound is tight in the sense that Next-Fit has a
competitive ratio of exactly 2

√
3−3. The competitive ratio of First-Fit is at

most 2
9 (
√
10 − 1) ≈ 0.48. It remains an open problem whether there is an al-

gorithm with a competitive ratio better than 2
√
3−3. It is also shown that no

algorithm (even when allowing randomization) has a competitive ratio better
than 4

7 ≈ 0.57.

The problem Edge-k-Coloring(k-Colorable) is also studied in [9].
When the input graph is k-colorable, any fair algorithm is shown to have
a competitive ratio of at least 1

2 . Again, the lower bound is tight because
Next-Fit has a competitive ratio of 1

2 . The competitive ratio of First-Fit is

shown to be k
2k−1 . An upper bound of 2

3 is given for deterministic algorithms
in this case.

We remark that all of the negative results mentioned above hold even if
the input graph is bipartite. Thus, contrary to offline edge coloring, the online
Edge-k-Coloring problem does not appear to be significantly easier when
restricted to bipartite graphs.

It is well known that for k = 1 (i.e., for the matching problem), the greedy
algorithm is an optimal deterministic algorithm with a competitive ratio of 1

2 .

The relative worst order ratio [4, 5] of both the maximization and mini-
mization version of online edge coloring is studied in [8]. For the maximization

4 Lene M. Favrholdt, Jesper W. Mikkelsen

version, it is shown that First-Fit and Next-Fit are not (strictly) compa-
rable. This is true even when the input is restricted to bipartite graphs. For
the minimization version, First-Fit is proven better than Next-Fit.

The minimization version of online edge coloring is studied in [2]. If an
online algorithm never introduces a new color unless forced to do so, it will
never use more than 2∆− 1 different colors on graphs of maximum degree ∆.
It is shown in [2] that no (randomized) online algorithm can do better than
this, even if the input graph is restricted to being a forest. On any graph,
an optimal offline algorithm uses at most ∆+1 colors, and on trees, ∆ colors
suffice. Hence, any algorithm that introduces a new color only when necessary,
has a competitive ratio of 2, and this is optimal.

The problem of online vertex coloring has received much attention in the
minimization version (see [13] for a survey). For interval graphs, it has also
been studied in the maximization version: It follows from a result in [6] that no
deterministic fair algorithm can have a competitive ratio strictly greater than
0, even on interval graphs. In that paper it is also shown that, on k-colorable
interval graphs, any fair algorithm has a competitive ratio of at least 1

2 . In [1],
it is shown that for deterministic algorithms, this lower bound is tight, i.e.,
any deterministic fair algorithm has a competitive ratio of exactly 1

2 on k-
colorable interval graphs. Since edge coloring is equivalent to vertex coloring
of line graphs, our results and those of [9] and [8] can also be seen as results
on vertex coloring of (subclasses of) line graphs. In particular, edge coloring a
path of m edges is equivalent to vertex coloring a path of m vertices.

A study of approximation algorithms for the offline maximization version
of edge coloring for multigraphs was initiated in [10]. This line of work has
been continued in [7, 11, 14, 15] for both simple graphs and multigraphs.

Our contribution. For Edge-2-Coloring(Path), we give a 4
5 -competitive

randomized algorithm and prove that this is optimal. We also show that no de-
terministic algorithm can be better than 2

3 -competitive and observe that this
upper bound is tight, since First-Fit is 2

3 -competitive. Finally, Next-Fit
turns out to be a worst possible fair algorithm with a competitive ratio of 1

2 .

For Edge-k-Coloring(Tree) where k ≥ 2, we prove that First-Fit
is k−1

k
-competitive and that no deterministic or fair algorithm can be better

than this. Thus, an algorithm would have to be both randomized and unfair
to achieve a better competitive ratio than First-Fit. However, we show that
even such algorithms cannot be better than k

k+1 -competitive. We also show

that any fair algorithm is 2
√
k−2

2
√
k−1

-competitive and that the competitive ratio

of Next-Fit is no better than this if k is a square number. This implies that
the competitive ratio of any fair algorithm goes to 1 as k goes to infinity.

Path andTree are the first examples of graph classes for which an optimal
deterministic algorithm for Edge-k-Coloring has been identified. Path is
the first graph class for which an optimal randomized algorithm has been iden-
tified. It is also the first class for which it has been proven that a randomized
algorithm can be better than a best possible deterministic algorithm.

Online Edge Coloring of Paths and Trees with a Fixed Number of Colors 5

We remark that all of our results for path extend to collections of paths.
Similarly, all results for tree extend to forests. This is so because our positive
results are always for the strict competitive ratio, and because our algorithms
will color a single path in a collection of paths exactly as if only the edges of
that path had been revealed (similarly for trees).

2 A Charging Technique for Proving Positive Results

We will now describe a simple charging technique for proving lower bounds on
the competitive ratio. The technique was first used for deterministic algorithms
in [9]. For some C, 0 ≤ C ≤ 1, our goal is to prove that a given (possibly
randomized) algorithm A is C-competitive. Assume that the edges of a graph
G = (V,E) have been given in some order, σ, and let EOpt ⊆ E be the set of
edges colored in some optimal solution.

The initial value vi(e) of an edge, e ∈ E, is vi(e) = Pr[e is colored by A].
For deterministic algorithms, vi(e) ∈ {0, 1} for all e ∈ E. Note that by linearity
of expectation, we have E[A(σ)] =

∑
e∈E vi(e).

The surplus v+(e) of an edge, e ∈ E, (with respect to C) is

v+(e) =

{
vi(e)− C, if e ∈ EOpt

vi(e), if e /∈ EOpt

We let E+ ⊆ E and E− ⊆ E denote the sets of edges with positive and negative
surplus, respectively. Clearly, E− ⊆ EOpt. For deterministic algorithms, E− is
exactly those edges in EOpt that are not colored by the algorithm, and E+ is
the set of edges colored by the algorithm (assuming C < 1). The total positive
surplus

∑
e∈E+

v+(e) will be redistributed among the edges in E− according
to some strategy. This strategy is what needs to be defined when applying the
technique.

The final value vf(e) of an edge e ∈ EOpt is the total value of e after the
redistribution of surplus. Since only surplus value is redistributed, vf(e) ≥ C
for all e ∈ EOpt \E−. Thus, if it can be proven that vf(e) ≥ C for all e ∈ E−,
then

E[A(σ)] =
∑

e∈E

vi(e)

=
∑

e∈E

vf(e)

≥
∑

e∈EOpt

vf(e), since vf(e) ≥ 0 for all e ∈ E

≥ C ·Opt(σ).

Thus, it follows that A is (strictly) C-competitive.

6 Lene M. Favrholdt, Jesper W. Mikkelsen

3 Coloring of Paths

In this section, we study the Edge-k-Coloring problem when the input
graph is a path. This is only interesting if k ≤ 2, since for k ≥ 3, any fair
algorithm colors all edges of any path. In this paper, we consider solely the
case where k = 2, but we remark that one can use similar techniques to obtain
tight bounds on the competitive ratio when k = 1. Also, the results for Path
can be extended to graphs of maximum degree 2.

For Edge-2-Coloring(Path), our main result is a randomized algorithm
with a competitive ratio of 4

5 and a proof that this is optimal. Before consid-
ering randomized algorithms, we give tight lower and upper bounds on the
competitive ratio of deterministic algorithms.

For 2-colorable graphs, the ratios of Propositions 1 and 2 both follow
from [9]. Clearly, the positive results carry over to paths, but for k = 2, the
graphs used in [9] for the negative results are not connected. We give simple
proofs that the negative results are also valid when the graph is a path.

Proposition 1 For Edge-2-Coloring(Path), Next-Fit is a worst possi-
ble fair algorithm with

CPath
NF (2) =

1

2
.

Proof The lower bound for fair algorithms follows, since each rejected edge is
adjacent to exactly two colored edges, and each colored edge is adjacent to at
most two rejected edges.

For the upper bound, consider a path 〈e1, . . . , e2m+1〉 with 2m+ 1 edges.
The adversary first reveals the odd-numbered edges in order of increasing
indices. Next-Fit will alternate between the two colors. Afterwards, the ad-
versary reveals all the even-numbered edges. These edges must all be rejected
byNext-Fit. Thus, the competitive ratio of Next-Fit is at most m+1

2m+1 which

tends to 1
2 as m tends to infinity. ⊓⊔

Proposition 2 For Edge-2-Coloring(Path), First-Fit is an optimal de-
terministic algorithm with

CPath
FF (2) =

2

3
.

Proof Since a path is 2-colorable, the lower bound for First-Fit follows from
a result in [9] stating that the competitive ratio of First-Fit is k

2k−1 for the
Edge-k-Coloring(k-Colorable) problem. It also follows from Lemma 2
below, with p = 1.

For the upper bound, let D be a deterministic algorithm and let n ∈ N.
The adversary first gives n disjoint paths of length two. Call these the initial
paths. Let F = {f1, . . . , fn1

} be the set of those initial paths in which both
edges have been colored by D and let U = {u1, . . . , un2

} be the set of those
initial paths in which at least one edge has been rejected.

In each path in F , both colors 1 and 2 are represented. The adversary
reveals an edge connecting the edge with the color 1 in the path fi to the edge

Online Edge Coloring of Paths and Trees with a Fixed Number of Colors 7

with the color 2 in the path fi+1, for 1 ≤ i < n1. These connecting edges must
be rejected by D so the number of colored edges in this component is at most
2n1. The adversary also reveals an edge connecting ui to ui+1, for 1 ≤ i < n2.
Even if all of these connecting edges can be colored, the number of colored
edges in this component is at most 2n2 − 1.

Finally, if both F and U are non-empty, the adversary connects the two
constructed paths by a single edge which may possibly be colored. It follows
that the number of colored edges can be at most 2n1+(2n2−1)+1 = 2n. Since
the total number of edges is 3n−1, we get an upper bound on the competitive
ratio of 2n

3n−1 which tends to 2
3 as n tends to infinity. ⊓⊔

Knowing that no deterministic algorithm can be better than 2
3 -competitive,

a natural question to ask is how good a randomized algorithm can be. To this
end, we analyze the family of fair, randomized algorithms, Randp, defined in
the introduction.

Lemma 1 Let 1
2 ≤ p ≤ 1. Then,

CPath
Randp

(2) ≤ min

{
p2 − p+ 1,

2

3
(−p2 + p+ 1)

}
.

Proof The adversary will reveal the edges of a path P = 〈e1, . . . , em〉 with m
edges. Consider the following two adversary strategies for doing so:

(i) The adversary first reveals all edges ei with i ≡ 1 (mod 3), followed by
all edges ei with i ≡ 0 (mod 3). Finally, all the remaining edges are
revealed.

(ii) The adversary first reveals all the odd numbered edges and thereafter all
the even numbered edges.

If the adversary uses strategy (i), it chooses m such that 3 divides m− 1.
Note that each edge ei with i ≡ 2 (mod 3) has probability p(1− p) + (1− p)p
of being colored. It follows that

E[Randp(P)] =

(
1

3
(m− 1) + 1

)
+

1

3
(m− 1) +

2

3
(m− 1)(1− p)p

=
2

3
(−p2 + p+ 1)(m− 1) + 1.

If the adversary uses strategy (ii), it makes sure that the number, m, of edges
in P is odd. Note that each even numbered edge has probability p2 + (1− p)2

of being colored. It follows that

E[Randp(P)] =

(
1

2
(m− 1) + 1

)
+

1

2
(m− 1)(p2 + (1 − p)2)

= (p2 − p+ 1)(m− 1) + 1.

Thus, if 2
3 (−p2 + p+ 1) ≤ p2 − p + 1, the adversary uses strategy (i) and

otherwise it uses strategy (ii). By choosing m sufficiently large, this proves the
upper bound. ⊓⊔

8 Lene M. Favrholdt, Jesper W. Mikkelsen

Lemma 2 Let 1
2 ≤ p ≤ 1. Then,

CPath
Randp

(2) ≥ min

{
p2 − p+ 1,

2

3
(−p2 + p+ 1)

}
.

Proof Let P be a path and assume that the edges of P are given to Randp in
some order. Consider an edge e at the time of its arrival. If two edges adjacent
to e have already been revealed, we say that e is a critical edge. Denote by
Ecrit the critical edges of P . Note that since Randp is fair, it will never reject
an edge which is not critical.

We let C = min
{
p2 − p+ 1, 23 (−p2 + p+ 1)

}
and apply the charging tech-

nique described in Section 2. That is, we will define a strategy for distributing
the total surplus among the edges of the path such that all edges receive a
final value of at least C. This will imply that Randp is C-competitive. Note
that all non-critical edges have an initial value of 1 and, hence, a surplus of
1− C. Thus, E− ⊆ Ecrit.

Let e be a non-critical edge. Consider the largest connected component Pe

induced by edges from E \Ecrit containing e. Let efirst be the edge in Pe which
was revealed first. We define l(e) to be the length of the shortest path in Pe

containing e and efirst. If e is revealed as an isolated edge, then l(e) = 1. We
say that e is odd if l(e) is odd and that e is even if l(e) is even. The following
fact is easily proven by induction on l(e).

Fact: If e is odd, the probability of e being colored with the color 1 is p.
If e is even, the probability of e being colored with the color 1 is 1− p.

Let ecrit be a critical edge. Denote by el and er the two edges adjacent to
ecrit. These must both be non-critical and thus must be colored by Randp.
The edge ecrit will be colored if and only if el and er are colored with the
same color. Note that the random variable denoting the color received by el
is independent of the random variable denoting the color received by er. We
consider two cases:

Case 1: el and er are both odd or both even. By the fact stated above, the
probability of ecrit being colored is p2 + (1− p)2. It follows that

vi(ecrit) = p2 + (1− p)2 = 2p2 − 2p+ 1 .

Since el and er are non-critical, they both have a surplus of at least 1−C. We
will transfer a value of 1

2 (1 − C) from each of them to the critical edge ecrit.
Thus, the final value of ecrit is

vf(ecrit) ≥ (2p2 − 2p+ 1) + (1 − C)

= 2(p2 − p+ 1)− C

≥ C, since C ≤ p2 − p+ 1

Online Edge Coloring of Paths and Trees with a Fixed Number of Colors 9

Case 2: One of el and er is odd and the other is even. Without loss of gener-
ality, assume that el is odd and that er is even. By the fact stated above, the
probability of ecrit being colored is p(1− p) + (1− p)p. Thus,

vi(ecrit) = 2p(1− p) = 2(−p2 + p) .

Since er is even, it must be adjacent to at least one non-critical edge e′r. We
transfer a value of 1

2 (1 − C) from each of el and e′r to ecrit and a value of
1−C from er to ecrit. Transferring the entire surplus of 1−C from er to ecrit
is possible, since e′r is non-critical and therefore ecrit is the only critical edge
adjacent to er. Thus, the final value of ecrit is

vf(ecrit) = 2(−p2 + p) + 2(1− C)

= 2(−p2 + p+ 1− C)

≥ C, since C ≤ 2

3
(−p2 + p+ 1)

⊓⊔

Lemmas 1 and 2 immediately imply the following theorem.

Theorem 1 Let 1
2 ≤ p ≤ 1. Then,

CPath
Randp

(2) = min

{
p2 − p+ 1,

2

3
(−p2 + p+ 1)

}
.

Theorem 1 shows that, for p = ϕ/
√
5 ≈ 0.7236, Randp has a competitive

ratio of 4
5 (where ϕ = (1 +

√
5)/2 is the golden ratio). In practice, one might

prefer that p is, e.g., a dyadic rational (a rational of the form a/2b for a, b ∈ N).
It follows from Theorem 1 that the competitive ratio of Randp can be made
arbitrarily close to 4

5 by choosing a dyadic rational p sufficiently close to the

irrational number ϕ/
√
5.

We will now show that 4
5 is the best possible competitive ratio of any algo-

rithm. In fact, we show that this is true even if the algorithm knows the length
of the path in advance (so that only the ordering of the edges is unknown). We
will use Yao’s minimax principle [3,17]. Informally, this principle allows us to
prove an upper bound of c on the achievable randomized competitive ratio by
exhibiting a probability distribution over permutations of the edges of a path
and showing that no deterministic algorithm can, in expectation, color more
than a fraction of c of the edges of the path.

Theorem 2 If R is a (possibly randomized) algorithm for the problem Edge-
2-Coloring(Path), then

CPath
R (2) ≤ 4

5
.

10 Lene M. Favrholdt, Jesper W. Mikkelsen

Proof Let M ∈ N be a large even integer and consider a path P consisting of
5
2M + 1 edges. We will define a probability distribution over all permutations
of the edges of P by describing a randomized adversary.

The adversary reveals the edges of P as follows: First, it reveals M + 1
isolated edges {e1, . . . , eM+1}. Afterwards, the adversary picks uniformly at
random a set of indices S ⊆ {2, . . . ,M +1} such that |S| = M

2 . For each index
i ∈ S, the adversary reveals a single edge, e, connecting ei and ei−1 (so that
〈ei−1, e, ei〉 becomes a subpath of P). Let S = {1, 2, . . . ,M + 1} \ S. For each
index i ∈ S, the adversary reveals two edges, e and e′, connecting ei and ei−1

(so that 〈ei−1, e, e
′, ei〉 becomes a subpath of P). Note that the resulting path

P has M + 1 + M
2 +M = 5

2M + 1 edges.
Let D be any deterministic algorithm, and let E[D(P)] denote the ex-

pected number of edges colored by D when the edges of P are revealed as
described above. We will show that E[D(P)] is at most 4

5 Opt(P) + 1. Since
by Yao’s principle, CPath

R (2) ≤ E[D(P)]/Opt(P) (and E[D(P)] can be arbi-
trarily large), this will complete the proof.

We first introduce some terminology to describe a coloring produced by D.
For any i, 2 ≤ i ≤ M + 1, we say that ei−1 is the previous isolated edge of ei.
The set of isolated edges is partitioned into the following four sets:

Es: Isolated edges colored with the same color as the previous isolated edge.
Ed: Isolated edges colored differently from the previous isolated edge.
Er: Isolated edges that are rejected.
Ec: Isolated edges that are colored but whose previous isolated edge is rejected.

Clearly, |Ec| ≤ |Er|.
Let X be a random variable denoting the total number of edges rejected

by D. We will give a lower bound on E[X]. For each isolated edge ei with
2 ≤ i ≤ M + 1, consider the probability of at least one of ei and the edge(s)
connecting ei to ei−1 being rejected. For each edge in Es, the algorithm D
makes a rejection with probability 1

2 , since it will be forced to do so if i ∈
S. Conversely, for each edge in Ed, the algorithm D makes a rejection with
probability 1

2 , since it is forced to do so if i ∈ S. Also, for each edge in
Er, the algorithm D makes a rejection with probability 1. Combining these
observations with the linearity of expectation, we get that

E[X] ≥
(
1

2
|Es|+ 1

2

∣∣Ed
∣∣ + |Er|

)

≥ 1

2

(
|Es|+

∣∣Ed
∣∣+ |Er|+ |Ec|

)
, since |Er| ≥ |Ec|

≥ M

2
.

Finally, since Opt can color all 5
2M + 1 edges of the path, we get that

E[D(P)] ≤ 2M + 1 <
4

5
Opt(P) + 1 .

Since M can be arbitrarily large, this proves the theorem. ⊓⊔

Online Edge Coloring of Paths and Trees with a Fixed Number of Colors 11

Theorems 1 and 2 together give the following corollary.

Corollary 1 For p = ϕ√
5
, Randp is optimal for Edge-2-Coloring(Path)

with
Cpath

Randp
(2) =

4

5
.

4 Coloring of Trees

We will now consider the Edge-k-Coloring problem when the input graph is
a tree. Our main result is a proof that First-Fit is optimal among determin-
istic as well as fair algorithms. We also show that even randomized algorithms
that are not fair can only be slightly better that First-Fit. Finally, we show
that, for any fixed k ≥ 4, First-Fit has a better competitive ratio than
Next-Fit.

First, we give a general upper bound for algorithms that are deterministic
and/or fair.

Theorem 3 If A is a deterministic or fair algorithm and k ≥ 2, then

CTree
A (k) ≤ k − 1

k
.

Proof The adversary reveals the edges of a tree in N steps, for some large
N ∈ N. The set of edges revealed in the ith step constitute a star, Si, with k+1
edges and center vertex ci. If at least one edge in Si−1 is colored, the adversary
chooses ci = x for some colored edge (ci−1, x) in Si−1. Otherwise, it chooses
ci = x for an arbitrary edge (ci−1, x) in Si−1. Note that the adversary is clearly
able to identify a colored edge in Si−1, if one exists: If A is deterministic, this
is trivially true, and if A is fair, the first k − 1 edges of Si−1 will be colored.

The algorithm A may color k edges of S1. For all other values of i, there
are two possibilities:

– If A colors even a single edge of Si−1, then it can color at most k− 1 edges
of Si.

– Even if A rejects all edges of Si−1, then it can color at most k edges of Si.

Let N0 denote the number of stars where A colors no edges. Then, A colors at
most (N0+1)k+(N−2N0−1)(k−1) = N(k−1)−(k−2)N0+1 ≤ N(k−1)+1
edges. On the other hand, in each star, Opt colors the k edges not incident
to other stars, in total Nk edges. Since N can be arbitrarily large, this shows
that the competitive ratio of A is at most k−1

k
. ⊓⊔

Using the charging technique of Section 2, we will show that Theorem 3
is tight by proving a matching lower bound for First-Fit. To this end, we
introduce some terminology related to deterministic algorithms.

Let A be a deterministic algorithm for Edge-k-Coloring, let G = (V,E)
be a graph, and suppose that A has been given the edges of G in some order.
Recall that, since A is deterministic, E+ denotes the set of edges colored by A,

12 Lene M. Favrholdt, Jesper W. Mikkelsen

and E− denotes the set of edges colored by Opt only. We partition E+ into the
set, Ed

+, of edges colored by bothA andOpt (double colored edges) and the set,
Es

+, of edges colored by A only (single colored edges). Thus, EOpt = E−∪Ed
+.

For x ∈ V , let E+(x) be the edges in E+ incident to x and let d+(x) = |E+(x)|.
Define E−(x), Ed

+(x), E
s
+(x), d−(x), d

d
+(x) and ds+(x) similarly.

Theorem 4 For k ≥ 2, First-Fit is an optimal deterministic algorithm for
Edge-k-Coloring(Tree) with

CTree
FF (k) =

k − 1

k
.

Proof Fix a tree T = (V,E) and assume that the edges of E have been revealed
to First-Fit in some order. For the analysis, we will view T as a rooted tree
by choosing an arbitrary vertex to be the root. When writing e = (x, y) ∈ E,
we imply that x is the parent vertex of y.

Following Section 2, we set C = k−1
k

. An edge in Ed
+ then has a surplus of

1− C = 1
k
and an edge in Es

+ has a surplus of 1. On the other hand, an edge
in E− has an initial value of zero.

We will define a strategy to distribute the total positive surplus obtained
by First-Fit among the edges in E− such that each edge gets a final value of
at least C. For ease of presentation, the strategy will be described in a stepwise
manner (see Fig. 1 for an illustration of how the strategy works):

Step 1: Consider in turn all edges e = (v, u) ∈ E+. Let c be the color assigned
to e by First-Fit and let e′ = (w, v) be the parent edge of e (if it
exists).
(a) If e′ ∈ Ed

+ and e′ has been colored with a color c′ > c, then e
transfers a value of 1

k
to w.

(b) Any surplus remaining at e is transferred to v.
For each vertex v, let m(v) denote the value transferred to v in this
step.

Step 2: Consider in turn all vertices v ∈ V .
(a) If the vertex v has a parent edge e′ ∈ E−, then v transfers a value

of min
{
m(v), k−1

k

}
to e′.

(b) Any value remaining at v is distributed equally among the child
edges of v belonging to E−.

For each edge e, let mv(e) denote the value transferred from v to e in
this step.

The following simple but useful properties of the strategy defined above
will be used to prove the theorem. Each of the four facts gives a lower bound
on the value transferred from an edge e+ = (v, u) ∈ E+ to its parent vertex, v.
Let c denote the color of e+. We first state the four facts and then give short
proofs.

Let e′ = (w, v) be the parent edge of e+ (if it exists). If e′ ∈ E+, let c′

denote the color of e′.

Online Edge Coloring of Paths and Trees with a Fixed Number of Colors 13

3

21

1 3 3

1

1

3
1 0 0

1

3

1

3

1

3

1

1

3
1 0 0

0
1

3

1

3

0

00 0 0

0 0 0

0

00 1

3
0

0 0 0

0

00 7

6

5

6

0 0 0

Es
+ Ed

+
E

−

First-Fit coloring Surplus of edges

Step 1(a)

1

3

Step 1(b)

5

3

1

0
1

3

1

3
0

Step 2(a)

5

3

1

00
1

3
0

Step 2(b)

0

1

00
1

3
0

Fig. 1 Illustration of the steps of the strategy defined in the proof of Theorem 4. In this
example, the number of colors is k = 3.

14 Lene M. Favrholdt, Jesper W. Mikkelsen

Fact 1: Assume that e+ ∈ Es
+.

If e′ /∈ Ed
+, e

′ does not exist, or c ≥ c′, then e+ contributes a value of
1 to m(v).
If e′ ∈ Ed

+, then e+ contributes a value of at least k−1
k

to m(v).
Fact 2: If e′ 6∈ E+ or e′ does not exist, then m(v) ≥ c

k
.

Fact 3: Assume that e+ ∈ Ed
+.

If e′ /∈ Ed
+, then e+ contributes a value of 1

k
to m(v).

In order to state the next fact, we need to introduce some new terminology.
For v ∈ V , let ĉv = max

(
Cv ∪ {0}

)
. That is, ĉv is the largest color available

at v (and ĉv = 0 if no colors are available). If an edge incident to v is colored
with a color c > ĉv, the edge is said to be a high-colored edge (with respect to
v). There must be exactly k − ĉv high-colored edges incident to v.

Fact 4: Assume that e+ ∈ Ed
+.

If e+ is high-colored with respect to v, then the colored child edges of

e+ contribute a total value of at least k−d+(v)
k

to m(v).

Proof of Fact 1: If e′ /∈ Ed
+, e

′ does not exists, or c ≥ c′, then e+ transfers
a value of 1 to v in Step 1(b). If e′ ∈ Ed

+, then e+ transfers a value of at most
1
k
to w in Step 1(a) and hence e+ transfers a value of at least k−1

k
to v in Step

1(b).
Proof of Fact 2: If e+ ∈ Es

+, this follows from Fact 1. Otherwise, note that
by the definition of First-Fit, it must hold that C1,c ⊆ Cv ∪Cu. In Step 1,
the edges incident to v and u colored with a color in C1,c each transfer a value
of at least 1

k
to v.

Proof of Fact 3: This follows, since e+ does not transfer any value to w in
Step 1(a).

Proof of Fact 4: Since e+ is high-colored, it follows from the definition of
First-Fit that all colors in Cv are represented at child edges of u. Thus, e+
has at least

∣∣Cv

∣∣ = k − d+(v) child edges with lower colors than the color of
e+. Since e+ ∈ Ed

+, each of these child edges transfers a value of 1
k
to v in Step

1(a).
We will combine these facts to show that any edge e = (x, y) ∈ E− gets a

final value of at least k−1
k

.
If Cx = C1,k, then ĉx = 0. Otherwise, ĉx ∈ Cy, since First-Fit is fair.

Hence, Fact 2 implies that m(y) ≥ ĉx
k
. Thus, e receives a value of at least

min{k−1
k

, ĉx
k
} from y. In particular, we will assume that ĉx < k − 1, since

otherwise we are done. Thus,

my(e) ≥
ĉx
k

We will now turn to proving that mx(e) ≥ k−ĉx−1
k

. This will finish the proof,

since it means that e gets a final value of mx(e)+my(e) ≥ k−ĉx−1
k

+ ĉx
k

= k−1
k

.
Let e′ = (z, x) be the parent edge of x (if it exists). The rest of the proof

is split into three cases depending on which of the sets Ed
+, E

s
+, and E− (if

any) that contains e′.

Online Edge Coloring of Paths and Trees with a Fixed Number of Colors 15

Case 1: e′ ∈ Ed
+. Recall that there are k − ĉx high-colored edges incident

to x. Thus, x has at least k − ĉx − 1 high-colored child edges, and at least
k − ĉx − 1 − ds+(x) of them belong to Ed

+. By Fact 4, x receives a value of at

least k−d+(x)
k

from the child edges of each of these at least k− ĉx − 1− ds+(x)
edges. Moreover, by Fact 1, each of the ds+(x) child edges of e′ belonging to

Es
+ contributes a value of k−1

k
to m(x). Thus,

m(x) ≥ (k − ĉx − 1− ds+(x))
k − d+(x)

k
+ ds+(x)

k − 1

k

= (k − ĉx − 1− ds+(x))
k − d+(x)

k
+ ds+(x)

(
k − d+(x)

k
+

d+(x)− 1

k

)

= (k − ĉx − 1)
k − d+(x)

k
+ ds+(x)

d+(x) − 1

k

≥ (k − ĉx − 1)
k − d+(x)

k
+ ds+(x)

k − ĉx − 1

k

= (k − d+(x) + ds+(x))
k − ĉx − 1

k

= (k − dd+(x))
k − ĉx − 1

k

≥ d−(x)
k − ĉx − 1

k

Hence, since no value is transferred from x to e′ in Step 2(a), each child edge
of x belonging to E− receives a value of at least k−ĉx−1

k
from x in Step 2(b).

In particular,

mx(e) ≥
k − ĉx − 1

k

Case 2: e′ ∈ Es
+ or e′ does not exist. In this case, since e′ 6∈ Ed

+, x has at least
k− ĉx−ds+(x) high-colored child edges belonging to Ed

+. By Fact 4, x receives

a value of at least k−d+(x)
k

from the child edges of each of these edges. Note
that this value comes solely from child edges of x’s high-colored child edges,
not from the high-colored edges themselves. Therefore, by Fact 3, there is also
a contribution of 1

k
from each of x’s child edges belonging to Ed

+. Finally, there
are at least ds+(x) − 1 child edges of x belonging to Es

+ (if e′ exists, there are
ds+(x) − 1 such edges, and otherwise there are ds+(x) such edges). By Fact 1,

16 Lene M. Favrholdt, Jesper W. Mikkelsen

each of these edges transfers a value of 1 to x. Thus,

m(x) ≥ (k − ĉx − ds+(x))
k − d+(x)

k
+ (ds+(x) − 1) +

dd+(x)

k

= (k − ĉx − ds+(x))
k − d+(x)

k
+ (ds+(x) − 1)

(
k − d+(x)

k
+

d+(x)

k

)
+

dd+(x)

k

= (k − ĉx)
k − d+(x)

k
− ds+(x)

k − d+(x)

k
+ ds+(x)

k − d+(x)

k
− k − d+(x)

k

+ (ds+(x) − 1)
d+(x)

k
+

dd+(x)

k

= (k − ĉx − 1)
k − d+(x)

k
+ (ds+(x) − 1)

d+(x)

k
+

dd+(x)

k

= (k − ĉx − 1)
k − d+(x)

k
+ (ds+(x) − 1)

d+(x)− 1

k
+

ds+(x)− 1 + dd+(x)

k

= (k − ĉx − 1)
k − d+(x)

k
+ (ds+(x) − 1)

d+(x)− 1

k
+

d+(x)− 1

k

= (k − ĉx − 1)
k − d+(x)

k
+ ds+(x)

d+(x) − 1

k

≥ d−(x)
k − ĉx − 1

k
, as in Case 1

Hence, since no value is transferred from x to e′ in Step 2(a), each child edge
of x belonging to E− receives a value of at least k−ĉx−1

k
from x in Step 2(b).

Thus,

mx(e) ≥
k − ĉx − 1

k

Case 3: e′ ∈ E−. The only difference to Case 2 is that x has exactly ds+(x)
child edges belonging to Es

+. Thus,

m(x) ≥ (k − ĉx − ds+(x))
k − d+(x)

k
+ ds+(x) +

dd+(x)

k

≥ d−(x)
k − ĉx − 1

k
+ 1, using the same calculations as in Case 2

Hence, since the value transferred from x to e′ is smaller than 1, each child
edge of x belonging to E− receives a value larger than k−ĉx−1

k
from x. Thus,

again,

mx(e) ≥
k − ĉx − 1

k

⊓⊔

By Theorems 3 and 4, an algorithm for Edge-k-Coloring(Tree) can
only be better than First-Fit, if it is both randomized and unfair. However,
the next result shows that even such algorithms cannot do much better than
First-Fit.

Online Edge Coloring of Paths and Trees with a Fixed Number of Colors 17

Theorem 5 If R is a (possibly randomized) algorithm for Edge-k-Coloring
and k ≥ 2, then

CTree
R (k) ≤ k

k + 1
.

Proof The adversary first reveals the edges of a path P = 〈e1, . . . , em〉, for
some large m ∈ N. Let v1, . . . , vm+1 be the vertices in the path such that
ei = (vi, vi+1), for 1 ≤ i ≤ m. If E[R(P)] ≤ k

k+1m, the adversary reveals no

more edges. If E[R(P)] > k
k+1m, then for each i, 1 ≤ i ≤ m+1, the adversary

reveals k edges constituting a star, Si, with center vertex vi. Let S be the set
consisting of the edges of every star Si for 1 ≤ i ≤ m+ 1.

If the adversary only reveals the edges of the path P , then E[R(P)] ≤ k
k+1m

and so E[R(P)] ≤ k
k+1 Opt(P). Indeed, Opt can color all m edges in P , since

k ≥ 2 and so Opt(P) = m. Assume now that the adversary also reveals the
stars. In this case, Opt rejects all edges of the path and instead colors the
k edges of each star. Thus, Opt(P ∪ S) = k(m + 1). Note that each of the
edges ei = (vi, vi+1) is incident to the center vertices of both Si and Si+1.
This implies that E[R(S)] ≤ k(m + 1) − 2E[R(P)]. Using the assumption
E[R(P)] > k

k+1m, we get that

E[R(P ∪ S)] = E[R(P)] + E[R(S)]

≤ E[R(P)] + k(m+ 1)− 2E[R(P)]

≤ k(m+ 1)− k

k + 1
m

=
k(km+ k + 1)

k + 1

=
k

k + 1
k(m+ 1) +

k

k + 1

=
k

k + 1
Opt(P ∪ S) +

k

k + 1

Since m can be arbitrarily large, this shows that R cannot be better than
k

k+1 -competitive. ⊓⊔

We now show that the competitive ratio of any fair algorithm tends to 1
as k tends to infinity.

Theorem 6 If F is a fair algorithm, then for any k ≥ 2,

CTree
F (k) ≥ 2

√
k − 2

2
√
k − 1

.

Proof Assume first that F is a deterministic algorithm. Let T = (V,E) be a
tree and assume that the edges of T have been revealed to F in some order.
For the analysis, we will view T as a rooted tree by choosing an arbitrary
vertex to be the root. As in the proof of Theorem 4, we let e = (x, y) imply
that x is the parent of y.

18 Lene M. Favrholdt, Jesper W. Mikkelsen

We will apply the charging technique from Section 2 to show that F is

C-competitive, where C = 2
√
k−2

2
√
k−1

. We will use the notation introduced just

before Theorem 4. Recall that all edges in E+ have an initial value of 1. Edges
in Ed

+ have a surplus of 1 − C and edges in Es
+ have a surplus of 1. Edges in

E− have an initial value of 0. The goal is to distribute the surplus from E+

among the edges in E− so that all of them get a final value of at least C. To
this end, we use the following strategy:

Step 1: Each edge (v, u) ∈ E+ transfers its surplus to its parent vertex, v.
For each vertex v, let m(v) denote the value transferred to v in this
step.

Step 2: Consider in turn all vertices v ∈ V .
(a) If the vertex v has a parent edge e′ ∈ E−, then v transfers a value

of min {m(v), C} to e′.
(b) Any value remaining at v is distributed equally among the child

edges of v belonging to E−.
For each edge e, let mv(e) denote the value transferred from v to e in
this step.

This finishes the description of the strategy.
Fix an edge e = (x, y) ∈ E−. In Step 1, y receives m(y) = d+(y)−Cdd+(y).

Thus, in Step 2(a), e receives

my(e) = min{C, d+(y)− Cdd+(y)}

from y. We will show that mx(e) +my(e) ≥ C. If my(e) ≥ C, this is clearly
true. Thus, we may assume that d+(y)− Cdd+(y) < C. Note that

d+(y)− Cdd+(y) < C ⇒ d+(y) < C(dd+(y) + 1) < dd+(y) + 1

⇒ d+(y)− dd+(y) < 1

⇒ d+(y) = dd+(y).

It follows that we only need to consider the case where d+(y) = dd+(y), meaning
that all of the edges incident to y which have been colored by F have also been
colored by Opt. This implies that the value transferred to e from its colored
child edges is

my(e) = (1 − C)d+(y) .

When calculating a lower bound on mx(e), we consider four cases. In each
case, we use the following two simple facts.

Fact 1: dd+(x) + d−(x) ≤ k.
Fact 2: d+(x) + d+(y) ≥ k.

Proof of Fact 1: Note that dd+(x) + d−(x) is exactly the number of edges
incident to x that are colored by Opt. Thus, Fact 1 follows trivially, since no
algorithm can color more than k edges incident to x.

Online Edge Coloring of Paths and Trees with a Fixed Number of Colors 19

Proof of Fact 2: This follows from the fact that the edge (x, y) is rejected
by the fair algorithm F.

In what follows, we will rely on the following elementary fact: Consider a
quadratic polynomial ax2+bx+c with a, b, c ∈ R and a > 0. If the discriminant
D = b2 − 4ac = 0, then the polynomial is non-negative.

Case 1: The parent edge of x belongs to E−. In this case,

mx(e) ≥
m(x) − C

d−(x) − 1
=

d+(x) − Cdd+(x) − C

d−(x)− 1

≥ d+(x) − Cdd+(x) − C

k − dd+(x) − 1
, by Fact 1. (1)

Thus, we obtain the following, where the second inequality follows from Fact 2,
and the third inequality comes from dd+(x) ≤ d+(x):

mx(e) +my(e) ≥
d+(x)− Cdd+(x) − C

k − dd+(x) − 1
+ (1 − C)d+(y)

≥ d+(x) − Cdd+(x)− C

k − dd+(x)− 1
+ (1− C)(k − d+(x))

=
d+(x) − Cdd+(x)− C + (k − dd+(x)− 1)(1− C)(k − d+(x))

k − dd+(x) − 1

≥ d+(x) − Cdd+(x)− C + (k − d+(x)− 1)(1− C)(k − d+(x))

k − dd+(x) − 1

=
d+(x) − Cdd+(x)− C + (1− C)(k − d+(x))

2 + (C − 1)(k − d+(x))

k − dd+(x)− 1

=
(1− C)(k − d+(x))

2 + (C − 2)(k − d+(x)) + (1 − C)k

k − dd+(x)− 1
+ C

≥ C. (2)

Here, the final inequality (2) holds since the numerator of the fraction is a
quadratic polynomial in (k − d+(x)) whose discriminant is zero:

(C − 2)2 − 4 · (1− C) · (1− C)k =

(
−2

√
k

2
√
k − 1

)2

− 4k
(
2
√
k − 1

)2 = 0.

Case 2: The parent edge of x belongs to Es
+. In this case,

mx(e) =
m(x)

d−(x)
=

(d+(x)− 1)− Cdd+(x)

d−(x)

≥ d+(x) − Cdd+(x)− 1

k − dd+(x)
, by Fact 1.

20 Lene M. Favrholdt, Jesper W. Mikkelsen

Thus, we obtain the following, where the second inequality follows from Fact 2
and the third inequality comes from dd+(x) = d+(x)− ds+(x) ≤ d+(x)− 1:

mx(e) +my(e) ≥
d+(x) − Cdd+(x) − 1

k − dd+(x)
+ (1− C)d+(y)

≥ d+(x) − Cdd+(x) − 1

k − dd+(x)
+ (1− C)(k − d+(x))

=
d+(x) − Cdd+(x) − 1 + (1− C)(k − d+(x))(k − dd+(x))

k − dd+(x)

≥ d+(x) − Cdd+(x) − 1 + (1− C)(k − d+(x))(k − d+(x) + 1)

k − dd+(x)

=
(1− C)(k − d+(x))

2 − C(k − d+(x)) + k − 1− Cdd+(x)

k − dd+(x)

=
(1− C)(k − d+(x))

2 − C(k − d+(x)) + (1− C)k − 1

k − dd+(x)
+ C

≥ C. (3)

Here, the final inequality (3) holds since the numerator of the fraction is a
quadratic polynomial in (k − d+(x)) whose discriminant is zero:

C2 − 4(1− C)((1 − C)k − 1) = C2 − 4
1

2
√
k − 1

(
(
√
k − 1)2

2
√
k − 1

)

= C2 − 4
(
√
k − 1)2

(2
√
k − 1)2

= 0.

Case 3: The parent edge of x belongs to Ed
+. In this case, we have

mx(e) =
m(x)

d−(x)
=

(d+(x)− 1)− C(dd+(x) − 1)

d−(x)

≥ d+(x) − Cdd+(x) + C − 1

k − dd+(x)
, by Fact 1.

Recall that my(e) = d+(y)(1 − C). Thus, if d+(y)(1 − C) ≥ C, we are done.

Hence, we assume from now on that d+(y) < C
1−C

= 2
√
k − 2. By Fact 2,

this implies that d+(x) > k − (2
√
k − 2). Therefore, (1 − C)(k − d+(x)) <

(1−C)(2
√
k − 2) = C which implies the second to last inequality below. The

second inequality below follows from Fact 2 and the third inequality comes

Online Edge Coloring of Paths and Trees with a Fixed Number of Colors 21

from dd+(x) ≤ d+(x).

mx(e) +my(e) ≥
d+(x) − Cdd+(x) + C − 1

k − dd+(x)
+ (1− C)d+(y)

≥ d+(x) − Cdd+(x) + C − 1

k − dd+(x)
+ (1− C)(k − d+(x)), by Fact 2

=
d+(x) − Cdd+(x) + C − 1 + (1− C)(k − d+(s))(k − dd+(x))

k − dd+(x)

≥ d+(x) − Cdd+(x) + C − 1 + (1− C)(k − d+(x))(k − d+(x))

k − dd+(x)

>
d+(x) − Cdd+(x) − 1 + (1− C)(k − d+(x))(k − d+(x) + 1)

k − dd+(x)

≥ C. (4)

Here, the final inequality (4) follows exactly as in Case 2.

Case 4: The parent edge of x does not exist. In this case,

mx(e) =
m(x)

d−(x)
=

d+(x)− Cdd+(x)

d−(x)
>

d+(x)− Cdd+(x) + C − 1

k − dd+(x)
.

Thus, mx(e) +my(e) ≥ C follows as in Case 3.

Randomized algorithms. Assume now that F is a randomized algorithm. The
above analysis holds for any coloring that Fmay produce. Hence, for any color-
ing produced by F, the number of colored edges is at least (2

√
k−2)/(2

√
k−1)

times the number of edges colored by Opt. Clearly, this means that the ex-
pected number of edges colored by F is at least (2

√
k − 2)/(2

√
k − 1) times

the number of edges colored by Opt. ⊓⊔

We will show that the lower bound of Theorem 6 is essentially tight by
providing a matching upper bound on the competitive ratio ofNext-Fit when
k is a square number. To this end, we will use the following result from [9].

Lemma 3 (Favrholdt and Nielsen [9]) If the edges of a graph are colored
in such a way that each color is used exactly n or n+1 times for some n ∈ N,
then there exists an ordering of the edges such that Next-Fit produces an
equivalent coloring.

The following corollary follows easily from Lemma 3.

Corollary 2 Consider a graph, G = (V,E), and a coloring, C , of all edges
of G using at most k colors. Let H be a graph consisting of k disjoint copies
of G. There exists an ordering of the edges of H such that, for each of the k
copies of G in H, the coloring produced by Next-Fit is equivalent to C .

22 Lene M. Favrholdt, Jesper W. Mikkelsen

Proof Let G1, G2, . . . , Gk denote the k copies of G. Furthermore, let C 1, C 2,
. . . , C k be the k colorings that can be obtained from C by cyclic permutations
of the colors 1, 2, . . . , k. If, for 1 ≤ i ≤ k, Gi is assigned the coloring C i, we
obtain a coloring of H where all colors are used the same number of times.
The result now follows from Lemma 3. ⊓⊔

Note that Corollary 2 implies that if G is some family of graphs and G is
closed under disjoint union, then Next-Fit has the worst possible competitive
ratio among fair algorithms for Edge-k-Coloring(G). This can be seen in
the following way: For any graph, G, and any coloring, C , of G produced by
a fair algorithm, the adversary can do the following:

– Make k copies of G, resulting in a graph H .
– Give the edges of H corresponding to the colored edges of C . According to

Corollary 2, these edges can be given in order, such that the edges of each
copy of G receives a coloring equivalent to C .

– Give the edges of H corresponding to edges that were not colored by C .
Since C was produced by a fair algorithm, Next-Fit will not be able to
color any of these edges.

Hence, for any sequence, EG, of edges and any fair algorithm F, there is a
sequence, EH , of edges, such that Next-Fit uses just as many colors on EH

as F does on EG, and the optimal number of colors is the same for both
sequences.

Even though Tree is not closed under disjoint union, a forest consisting
of k trees may be made into a single tree by revealing k − 1 edges connecting
the k trees. Since this will add at most k − 1 to the number of edges colored
by Next-Fit, we may still apply Corollary 2 for the class Tree.

Theorem 7 For k ≥ 4,

CTree
NF (k) ≤

k

⌈
√
k⌉ + ⌈

√
k⌉ − 2

k

⌈
√
k⌉ + ⌈

√
k⌉ − 1

.

In particular, if k = n2 for some integer n ≥ 2, then Next-Fit is a worst
possible fair algorithm with

CTree
NF (k) =

2
√
k − 2

2
√
k − 1

.

Proof The lower bound for the case where k is a square number follows from
Theorem 6. For the upper bound, we define a tree T = (V,E) and a subset
E′ ⊂ E. We specify a coloring, C , of E′ with the property that each edge in
E \E′ is adjacent to edges of all k colors.

We first describe E′ and C . The tree T contains N bunches of stars, for
some large N . Each bunch consists of a set of stars:

– One large star with k − ⌈
√
k⌉ edges colored with C1,k−⌈

√
k⌉.

The center vertex of the large star in bunch i, 1 ≤ i ≤ N , is called vi.

Online Edge Coloring of Paths and Trees with a Fixed Number of Colors 23

– ⌈
√
k⌉ − 1 small stars, each with ⌈

√
k⌉ edges colored with C

k−⌈
√
k⌉+1,k .

We now describe E \ E′. For each i, 1 ≤ i ≤ N , E \ E′ contains an edge
between vi and the center vertex of each of the small stars in bunch i. For
1 ≤ i < N , there is an edge from vi+1 to the center vertex of one of the small
stars in the ith bunch. Note that, after assigning the coloring C to E′, none
of the edges in E \ E′ can be colored.

The adversary will use k disjoint copies, T1 = (V1, E1), . . . , Tk = (Vk, Ek),
of T . For each Ti, let E

′
i denote the set of edges corresponding to E′ and let

T ′
i = (Vi, E

′
i). If the edges of E′

i ∪E′
2 ∪ . . . ∪E′

k are given first, it follows from
Corollary 2 that they can be given an order such that the coloring produced
by Next-Fit on each T ′

i is equivalent to C . Afterwards, no other edges can
be colored.

Finally, the k disjoint trees are connected, using k−1 edges between vertices
that have degree one in the trees. The resulting tree is called T .

Since k ≥ 4, we must have ⌈
√
k⌉ + 2 ≤ k and so the maximum degree of

the graph is k. Thus, since the graph has no cycles, Opt colors all edges of
the graph.

Next-Fit colors

NF(T) = kN
(
k − ⌈

√
k⌉+ (⌈

√
k⌉ − 1)⌈

√
k⌉
)
+ k − 1

= kN
(
k + ⌈

√
k⌉2 − 2⌈

√
k⌉
)
+ k − 1

edges and rejects k
(
N(⌈

√
k⌉ − 1) +N − 1

)
= kN⌈

√
k⌉ − k edges. Since Opt

colors all edges in the graph,

Opt(T) = kN
(
k + ⌈

√
k⌉2 − ⌈

√
k⌉
)
− 1 .

Thus,

NF(T) ≤ k + ⌈
√
k⌉2 − 2⌈

√
k⌉

k + ⌈
√
k⌉2 − ⌈

√
k⌉

Opt(T) + k

=

k

⌈
√
k⌉ + ⌈

√
k⌉ − 2

k

⌈
√
k⌉ + ⌈

√
k⌉ − 1

Opt(T) + k

Since N can be arbitrarily large, the result follows. ⊓⊔

Theorem 7 shows that the bound of Theorem 6 is tight whenever k is
a square number. We will briefly consider the case where k is not a square
number. Any fair algorithm for Edge-1-Coloring(Tree) is just the greedy
matching algorithm. It is observed in several papers that this algorithm is
1
2 -competitive (for all input graphs) and that no deterministic algorithm can
do better, even when the input graph is a tree. If k ≥ 2, but not a square
number, then the lower bound from Theorem 6 can be slightly improved by
using the fact that d+(x) must be an integer. In particular, for k = 2, it follows
from Theorem 3.1 in [9] that any fair algorithm is 1

2 -competitive on any class

24 Lene M. Favrholdt, Jesper W. Mikkelsen

of graphs. Combining this result with Theorem 3 shows that on trees, the
competitive ratio of any fair algorithm is exactly 1

2 . We show in Theorems 8
and 9 that any fair algorithm for Edge-3-Coloring(Tree) is 5

8 -competitive,
and the competitive ratio of Next-Fit is exactly 5

8 . Thus, for k ≤ 4, we have
completely tight bounds. For k ≥ 5, the difference between our upper and
lower bounds is less than 0.0153 and tends to 0 as k tends to infinity. Also, we
get that First-Fit has a strictly better competitive ratio than Next-Fit on
trees whenever k ≥ 3.

Theorem 8 If F is a fair algorithm, then CTree
F (3) ≥ 5

8 .

Proof In order to prove that all fair algorithms are 5
8 -competitive on trees when

k = 3, we modify Step 1 of the strategy used in Theorem 6 for distributing
the surplus. Step 2 is unmodified, but for convenience, we give both steps. Let
C = 5

8 .

Step 1: Each edge (v, u) ∈ Es
+ transfers a value of 7

8 to its parent vertex, v,
and a value of 1

8 to its child vertex, u. Each edge (v, u) ∈ Ed
+ transfers

its surplus of 1− C = 3
8 to its parent vertex, v.

For each vertex v, let m(v) denote the value transferred to v in this
step.

Step 2: Consider in turn all vertices v ∈ V .
(a) If the vertex v has a parent edge e′ ∈ E−, then v transfers a value

of min {m(v), C} to e′.
(b) Any value remaining at v is distributed equally among the child

edges of v belonging to E−.
For each edge e, let mv(e) denote the value transferred from v to e in
this step.

This finishes the description of the strategy.
Fix an edge e = (x, y) ∈ E−. We need to show that mx(e) +my(e) ≥ C =

5
8 . First, note that if ds+(y) ≥ 1, then m(y) ≥ 7

8 and we are done. Also, if
dd+(y) ≥ 2, then m(y) ≥ 2(1− C) = 6

8 , and again we are done. Thus, we may
assume that ds+(y) = 0 and dd+(y) ≤ 1. We now show that e receives a value
of at least 5

8 in all such cases.

Case 1: d+(y) = 1. In this case, my(e) = 3
8 , so we just need to show that

mx(e) ≥ 2
8 . Note that d+(x) ≥ k − d+(y) = 2. Thus, x has at least one child

edge belonging to E+.

– Case 1.1: The parent edge of x belongs to Es
+. In this case, the parent edge

of x contributes a value of 1
8 to m(x).

– Case 1.1.1: d−(x) = 3. In this case, ds+(x) = d+(x) ≥ 2, and therefore
at least one child edge of x belongs to Es

+. It follows that mx(e) ≥
1
3 (

1
8 + 7

8) =
1
3 > 2

8 .
– Case 1.1.2: d−(x) ≤ 2. Since x has at least one child edge in E+,

mx(e) ≥ 1
2 (

1
8 + 3

8) =
2
8 .

Online Edge Coloring of Paths and Trees with a Fixed Number of Colors 25

– Case 1.2: The parent edge of x belongs to Ed
+. Since in this case, dd+(x) ≥ 1,

it follows that d−(x) ≤ 2. Thus, we have only the following two subcases:
– Case 1.2.1: d−(x) = 2. At least one child edge of x must belong to Es

+.
Thus, mx(e) ≥ 1

2 · 7
8 > 3

8 .
– Case 1.2.2: d−(x) = 1. Since at least one child edge of x belongs to E+,

mx(e) ≥ 3
8 .

– Case 1.3: The parent edge of x belongs to E−. In this case, x has at most two
child edges belonging two E−. Furthermore, x has at least two child edges in
E+ and at least one of them belongs to Es

+. Thus,mx(e) ≥ 1
2 (

3
8+

7
8− 5

8) >
2
8 .

– Case 1.4: x has no parent edge. Since d+(x) ≥ 2, mx(e) ≥ 1
3 · 2 · 3

8 = 2
8 .

Case 2: d+(y) = 0. In this case, d+(x) = 3, so x has at least two child edges
belonging to E+. Furthermore, ds+(x) ≥ 1. We show that mx(e) ≥ 5

8 in all
subcases.

– Case 2.1: The parent edge of x belongs to Es
+.

– Case 2.1.1: d−(x) = 3. In this case, ds+(x) = 3, and hence mx(e) =
1
3 (

1
8 + 2 · 7

8) =
5
8 .

– Case 2.1.2: d−(x) = 2. In this case, ds+(x) ≥ 2, and hence, mx(e) ≥
1
2 (

1
8 + 7

8 + 3
8) >

5
8 .

– Case 2.1.2: d−(x) = 1. Two child edges of x must belong to E+ and so
mx(e) ≥ 1

8 + 2 · 3
8 > 5

8 .
– Case 2.2: The parent edge of x belongs to Ed

+. In this case, d−(x) ≤ 2.
Thus, mx(e) ≥ 1

2 (
7
8 + 3

8) =
5
8 .

– Case 2.3: The parent edge of x belongs to E−. In this case, x has at least
three child edges in E+, and at least two of them belong to Es

+. Moreover,
x has at most two child edges belonging to E−. Thus, mx(e) ≥ 1

2 (2 · 7
8 +

3
8 − 5

8) =
6
8 .

– Case 2.4: x has no parent edge.
– Case 2.4.1: d−(x) = 3. In this case, ds+(x) = 3. Thus, mx(e) =

1
3 ·3 · 78 =

7
8 .

– Case 2.4.2: d−(x) ≤ 2. Since ds+(x) ≥ 1, mx(e) ≥ 1
2 (

7
8 + 2 · 3

8) >
6
8 .

⊓⊔

We now show that the analysis in Theorem 8 is tight by showing that
CTree

NF (3) = 5
8 . This is done by creating an adversary graph which combines

the two cases (cases 1.1.2 and 2.1.1) from the proof of Theorem 8 for which
the strategy used for distributing the surplus could only guarantee a value of
exactly 5

8 .

Theorem 9 CTree
NF (3) = 5

8 .

Proof The lower bound follows from Theorem 8. For the upper bound, let N
be an integer divisible by 3. The adversary graph for N = 3 is illustrated in
Fig. 2. The adversary first reveals 2N isolated edges (shown as the top vertical
edges in Fig. 2). For 1 ≤ i ≤ 3, denote by Mi the subset of these 2N edges
colored with the color i by Next-Fit. Then, the adversary reveals a path

26 Lene M. Favrholdt, Jesper W. Mikkelsen

e1 e2 e3 e4

v

u3u2

u′

1

u4

u1

y′y

x x′

Fig. 2 The adversary graph used in the proof of Theorem 9 when N = 3. Solid edges are
colored by Next-Fit and dashed edges are rejected by Next-Fit.

P = 〈e1, . . . , eN+1〉 consisting of N + 1 new edges, revealing the edges from
left to right. An inner vertex of P is a vertex of degree 2. For each inner
vertex v of P , the adversary reveals four edges (v, u1), . . . , (v, u4). Note that
Next-Fit colors (v, u1) with the unique color c ∈ C1,3 \ Cv at v and rejects
the other three edges. The adversary then reveals an edge (u1, u

′
1) which is

colored with the color (c+1) mod 3 by Next-Fit. Finally, the adversary picks
two distinct isolated edges (x, y), (x′, y′) ∈ M(c+2) mod 3 and reveals two new
edges (u1, y) and (u1, y

′). Next-Fit rejects both of these edges. The adversary
continues with the next inner vertex (unless v was the last inner vertex) and
repeats the above procedure. Note that for each c ∈ C1,3, there are N/3 inner
vertices on the path for which C1,3 \ Cv = {c}. Thus, the adversary does not
run out of edges to pick from Mc (in fact, it uses all 2

3N of them). This finishes
the description of the adversary strategy.

Next-Fit colors the 2N isolated edges, the N + 1 edges of the path P ,
and for each inner vertex v it colors (v, u1) and (u1, u

′
1). Thus, NF(I) =

2N + (N + 1) + 2N = 5N + 1. On the other hand, Opt rejects all edges of
the path P . Furthermore, for each inner vertex v, Opt rejects (v, u1). The
remaining edges form a graph with maximum degree 3 and hence, Opt can
color all of these 8N edges. It follows that NF(I) = 5

8 Opt(I) + 1. This shows
that Next-Fit cannot be better than 5

8 -competitive. ⊓⊔

5 Open Problems

Finding optimal online algorithms for Edge-k-Coloring in general and on
other classes of graphs is an interesting open problem. We believe that the
techniques used in the proofs of Theorems 4 and 6 can be generalized to, e.g.,
graphs of bounded degeneracy. In particular, graphs of bounded degeneracy
can be oriented so that each vertex has bounded outdegree and the resulting
digraph is acyclic. This makes it possible to use strategies for redistributing
the surplus similar to the ones we have used for trees.

Online Edge Coloring of Paths and Trees with a Fixed Number of Colors 27

Deciding whether there is an algorithm better than First-Fit on trees
would also be interesting. Such an algorithm could only be significantly better
for small values of k, and it would have to be both randomized and unfair.

Acknowledgment. The authors would like to thank the anonymous reviewers
for helpful comments on this work and its presentation.

References

1. Eric Bach, Joan Boyar, Leah Epstein, Lene M. Favrholdt, Tao Jiang, Kim S. Larsen,
Guo-Hui Lin, and Rob van Stee. Tight bounds on the competitive ratio on accommo-
dating sequences for the seat reservation problem. Journal of Scheduling, 6(2):131–147,
2003.

2. Amotz Bar-Noy, Rajeev Motwani, and Joseph (Seffi) Naor. The greedy algorithm is
optimal for on-line edge coloring. Information Processing Letters, 44(5):251–253, 1992.

3. Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

4. Joan Boyar and Lene M. Favrholdt. The relative worst order ratio for online algorithms.
ACM Transactions on Algorithms, 3(2):22, 2007.

5. Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. The relative worst-order ratio
applied to paging. Journal of Computer and System Sciences, 73:818–843, 2007.

6. Joan Boyar and Kim S. Larsen. The seat reservation problem. Algorithmica, 25(4):403–
417, 1999.

7. Zhi-Zhong Chen, Sayuri Konno, and Yuki Matsushita. Approximating maximum edge
2-coloring in simple graphs. Discrete Applied Mathematics, 158(17):1894–1901, 2010.

8. Martin R. Ehmsen, Lene M. Favrholdt, Jens S. Kohrt, and Rodica Mihai. Comparing
first-fit and next-fit for online edge coloring. Theoretical Computer Science, 411(16-
18):1734–1741, 2010.

9. Lene M. Favrholdt and Morten Nyhave Nielsen. On-line edge-coloring with a fixed
number of colors. Algorithmica, 35(2):176–191, 2003.

10. Uriel Feige, Eran Ofek, and Udi Wieder. Approximating maximum edge coloring in
multigraphs. In Proceedings of the 5th International Workshop on Approximation Al-

gorithms for Combinatorial Optimization, volume 2462 of LNCS, pages 108–121, 2002.
11. Marcin Kamiński and Lukasz Kowalik. Beyond the vizing’s bound for at most seven

colors. SIAM Journal of Discrete Mathematics, 28(3):1334–1362, 2014.
12. Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel Dominic Sleator. Com-

petitive snoopy caching. Algorithmica, 3:77–119, 1988.
13. Hal A Kierstead. Coloring graphs on-line. In Online Algorithms, pages 281–305.

Springer, 1998.
14. Adrian Kosowski. Approximating the maximum 2- and 3-edge-colorable subgraph prob-

lems. Discrete Applied Mathematics, 157(17):3593 – 3600, 2009.
15. Romeo Rizzi. Approximating the maximum 3-edge-colorable subgraph problem. Dis-

crete Mathematics, 309(12):4166 – 4170, 2009.
16. Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging

rules. Communications of the ACM, 28(2):202–208, 1985.
17. Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of com-

plexity (extended abstract). In Proceedings of the 18th Annual Symposium on Founda-

tions of Computer Science, pages 222–227, 1977.

	1 Introduction
	2 A Charging Technique for Proving Positive Results
	3 Coloring of Paths
	4 Coloring of Trees
	5 Open Problems

