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Abstract
Recently, Dallal, Neider, and Tabuada studied a generalization of the classical game-theoretic
model used in program synthesis, which additionally accounts for unmodeled intermittent
disturbances. In this extended framework, one is interested in computing optimally resilient
strategies, i.e., strategies that are resilient against as many disturbances as possible. Dallal,
Neider, and Tabuada showed how to compute such strategies for safety specifications. In
this work, we compute optimally resilient strategies for a much wider range of winning
conditions and show that they do not require more memory than winning strategies in the
classical model. Our algorithms only have a polynomial overhead in comparison to the
ones computing winning strategies. In particular, for parity conditions, optimally resilient
strategies are positional and can be computed in quasipolynomial time.

1 Introduction

Reactive synthesis is an exciting and promising approach to solving a crucial problem, whose
importance is ever-increasing due to ubiquitous deployment of embedded systems: obtaining
correct and verified controllers for safety-critical systems. Instead of an engineer program-
ming a controller by hand and then verifying it against a formal specification, synthesis
automatically constructs a correct-by-construction controller from the given specification (or
reports that no such controller exists).
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Typically, reactive synthesis is modeled as a two-player zero-sum game on a finite graph
that is played between the system, which seeks to satisfy the specification, and its envi-
ronment, which seeks to violate it. Although this model is well understood, there are still
multiple obstacles to overcome before synthesis can be realistically applied in practice. These
obstacles include not only the high computational complexity of the problem, but also more
fundamental ones. Among themost prohibitive issues in this regard is the need for a complete
model of the interaction between the system and its environment, including an accuratemodel
of the environment, the actions available to both players, as well as the effects of these actions.

This modeling task often places an insurmountable burden on engineers as the environ-
ments in which real-life controllers are intended to operate tend to be highly complex or not
fully known at design time. Also, when a controller is deployed in the real world, a common
source of errors is a mismatch between the controller’s intended result of an action and the
actual result. Such situations arise, e.g., in the presence of disturbances, when the effect of
an action is not precisely known, or when the intended control action of the controller cannot
be executed, e.g., when an actuator malfunctions. By a slight abuse of notation from control
theory, such errors are subsumed under the generic term disturbance (cf. [12]).

To obtain controllers that can handle disturbances, one has to yield control over their
occurrence to the environment. However, due to the antagonistic setting of the two-player
zero-sum game, this would allow the environment to violate the specification by causing
disturbances at will. Overcoming this requires the engineer to develop a realistic disturbance
model, which is a highly complex task, as such disturbances are assumed to be rare events.
Also, incorporating such a model into the game leads to a severe blowup in the size of the
game, which can lead to intractability due to the high computational complexity of synthesis.

To overcome these fundamental difficulties, Dallal et al. [12] proposed a conceptually
simple, yet powerful extension of infinite games termed “games with unmodeled intermittent
disturbances”. Such games are played similarly to classical infinite games: two players, called
Player 0 and Player 1, move a token through a finite graph, whose vertices are partitioned
into vertices under the control of Player 0 and Player 1, respectively; the winner is declared
based on a condition on the resulting play. In contrast to classical games, however, the graph
is augmented with additional disturbance edges that originate in vertices of Player 0 and
may lead to any other vertex. Moreover, the mechanics of how Player 0 moves is modified:
whenever she moves the token, her move might be overridden, and the token instead moves
along a disturbance edge. This change in outcome implicitly models the occurrence of a
disturbance—the intended result of the controller and the actual result differ—but it is not
considered to be antagonistic. Instead, the occurrence of a disturbance is treated as a rare
event without any assumptions on frequency, distribution, etc. This approach very naturally
models the kind of disturbances typically occurring in control engineering [12].

As a non-technical example, consider a scenario with three siblings, Alice, Bob, and
Charlie, and their father, Donald. He repeatedly asks Alice to fetch water from a well using a
jug made of clay. Alice has three ways to fulfill that task: she may get the water herself or she
may delegate it to either Bob or Charlie. In a simple model, the outcome of these strategies is
identical: Donald’s request for water is fulfilled. This is, however, unrealistic, as this model
ignores the various ways that the execution of the strategies may go wrong. By modeling the
situation as a game with disturbances, we obtain a more realistic model.

IfAlice gets the jug herself, no disturbance can occur: she controls the outcome completely.
If she delegates the task to Bob, the older of her brothers, Donald may get angry with her
for not fulfilling her duties herself, which should not happen infinitely often. Finally, if she
delegates the task to her younger brother Charlie, he might drop and break the jug, which
would be disastrous for Alice.
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Fig. 1 A (max-) parity game with disturbances. Disturbance edges are drawn as dashed arrows. Vertices are
labeled with both a name and a color. Vertices under control of Player 0 are drawn as circles, while vertices
under control of Player 1 are drawn as rectangles

These strategies canwithstand different numbers of disturbances: the first strategy does not
offer any possibility for disturbances, while infinitelymany (a single) disturbance causeAlice
to lose when using the second (the third) strategy. This model captures the intuition about
Donald’s and Charlie’s behavior: both events occur non-antagonistically and their frequency
is unknown.

This non-antagonistic nature of disturbances is different from existing approaches in the
literature and causes many interesting phenomena that do not occur in the classical theory of
infinite graph-based games. In Fig. 1, we show an example of a parity gamewith disturbances
that already exhibits some of these phenomena. In that parity game, vertices are labeled with
non-negative integers, so-called colors, and Player 0 wins if the highest color seen infinitely
often is even. For the sake of readability and conciseness, the parity game in Fig. 1 does not
model the example given in natural language above, but is rather constructed to showcase
properties of games with disturbances.

Consider, for instance, vertex v2. In the classical setting without disturbances, Player 0
wins every play reaching v2 by simply looping in this vertex forever (since the highest color
seen infinitely often is even). However, this is no longer true in the presence of disturbances:
a disturbance in v2 causes a play to proceed to vertex v1, from which Player 0 can no longer
win. In vertex v7, Player 0 is in a similar, yet less severe situation: she wins every play with
finitely many disturbances but loses if infinitely many disturbances occur. Finally, vertex v9
falls into a third category: from this vertex, Player 0 wins every play even if infinitely many
disturbances occur. In fact, disturbances partition the set of vertices from which Player 0 can
guarantee to win into three disjoint regions (indicated as shaded boxes in Fig. 1): (a) vertices
from which she can win if at most a fixed finite number of disturbances occur, (b) vertices
from which she can win if any finite number of disturbances occurs but not if infinitely many
occur, and (c) vertices from which she can win even if infinitely many disturbances occur.

The observation above gives rise to a question that is both theoretically interesting and
practically important: if Player 0 can tolerate different numbers of disturbances from different
vertices, how should she play to be resilient1 to as many disturbances as possible, i.e., to
tolerate as many disturbances as possible but still win? Put slightly differently, disturbances
induce an order on the space of winning strategies (“a winning strategy is better if it is more
resilient”), and the natural problem is to compute optimally resilient winning strategies,
yielding optimally resilient controllers. Note that this is in contrast to the classical theory of
infinite games, where the space of winning strategies is unstructured.

1 We have deliberately chosen the term resilience so as to avoid confusion with the already highly ambiguous
notions of robustness and fault tolerance.
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Dallal et al. [12] have solved the problem of computing optimally resilient winning strate-
gies for safety games. Their approach exploits the existence ofmaximally permissivewinning
strategies in safety games [2], which allows Player 0 to avoid “harmful” disturbance edges
during a play. In games with more expressive winning conditions, however, this is no longer
possible, as witnessed by vertex v4 in the example of Fig. 1: although Player 0 can avoid a
disturbance edge by looping in v4 forever, she needs to move to v2 eventually in order to
see an even color (otherwise she loses), thereby risking to lose if a disturbance occurs. In
fact, the problem of constructing optimally resilient winning strategies for games other than
safety games has been left open by Dallal, Neider, and Tabuada. In this work, we solve this
problem for a large class of infinite games, including parity games.

1.1 Our contributions

In Sect. 2, we introduce the concept of resilience, which captures for each vertex how many
disturbances need to occur for Player 0 to lose. This generalizes the notion of determinacy
and allows us to derive optimally resilient winning strategies.

Our main result is an algorithm for computing the resilience of vertices and optimally
resilient winning strategies, which we present in Sect. 3. This algorithm requires the game
to have a prefix-independent winning condition, to be determined, and all its subgames to
be (classically) solvable. The latter two conditions are necessary, as resilience generalizes
determinacy and computing optimally resilient strategies generalizes solving games. We
discuss these assumptions in Sect. 4.

The algorithm uses solvers for the underlying game without disturbances as a subroutine,
which it invokes a linear number of times on various subgames. Formanywinning conditions,
the time complexity of our algorithm thus falls into the same complexity class as solving the
original game without disturbances, e.g., we obtain a quasipolynomial algorithm for parity
games with disturbances, which matches the currently best known upper bound for classical
parity games. Stated differently, if the three assumptions above are satisfied by a winning
condition, then computing the resilience and optimally resilient strategies is not harder than
determining winning regions and winning strategies (ignoring a polynomial overhead).

Our algorithm requires the winning condition of the game to be prefix-independent. We
also showhow to overcome this restriction by generalizing the classical notion of game reduc-
tions to the setting of games with disturbances. As a consequence, via reductions, our algo-
rithm can be applied to prefix-dependent winning conditions. We discuss details in Sect. 4.

Altogether, we have generalized the original result of Dallal, Neider, and Tabuada from
safety games to all games which are algorithmically solvable, in particular all ω-regular
games.

Finally, in Sect. 5, we discuss further phenomena that arise in the presence of disturbances.
Amongst others, we illustrate how the additional goal of avoiding disturbanceswhenever pos-
sible affects the memory requirements of strategies. Similarly, we exhibit a tradeoff between
resilience and the (semantic) quality of strategies in quantitative games. Moreover, we raise
the question of how benevolent disturbances can be leveraged to recover from losing a play.
However, an in-depth investigation of these phenomena is outside the scope of this paper and
left for future work.
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Synthesizing optimally resilient controllers 199

2 Preliminaries

For notational convenience, we employ some ordinal notation à la von Neumann: the non-
negative integers are defined inductively as 0 = ∅ and n + 1 = n ∪ {n}. Now, the first limit
ordinal is ω = {0, 1, 2, . . .}, the set of the non-negative integers. The next two successor
ordinals are ω + 1 = ω ∪ {ω} and ω + 2 = ω + 1 ∪ {ω + 1}. These ordinals are ordered by
set inclusion, i.e., we have 0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2. For convenience of
notation, we also denote the cardinality of ω by ω.

2.1 Infinite games with disturbances

An arena (with unmodeled disturbances)A = (V , V0, V1, E, D) consists of a finite directed
graph (V , E), a partition {V0, V1} of V into the set of vertices V0 of Player 0 (denoted by
circles) and the set of vertices of Player 1 (denoted by squares), and a set D ⊆ V0 × V
of disturbance edges (denoted by dashed arrows). Note that only vertices of Player 0 have
outgoing disturbance edges. We require that every vertex v ∈ V has a successor v′ with
(v, v′) ∈ E to avoid finite plays.

A play in A is an infinite sequence ρ = (v0, b0)(v1, b1)(v2, b2) · · · ∈ (V × {0, 1})ω
such that b0 = 0 and for all j > 0: b j = 0 implies (v j−1, v j ) ∈ E , and b j = 1 implies
(v j−1, v j ) ∈ D. Hence, the additional bits b j for j > 0 denote whether a standard or a
disturbance edge has been taken to move from v j−1 to v j , while b0 is always zero. We say ρ

starts in v0. A play prefix (v0, b0) · · · (v j , b j ) is defined similarly and ends in v j . The number
of disturbances in a play ρ = (v0, b0)(v1, b1)(v2, b2) · · · is #d(ρ) = |{ j ∈ ω | b j = 1}|,
which is either some k ∈ ω (if there are finitely many disturbances, namely k) or it is equal
to ω (if there are infinitely many). A play ρ is disturbance-free, if #d(ρ) = 0.

A game (with unmodeled disturbances), denoted by G = (A,Win), consists of an
arena A = (V , V0, V1, E, D) and a winning condition Win ⊆ V ω. A play ρ =
(v0, b0)(v1, b1)(v2, b2) · · · is winning for Player 0, if v0v1v2 · · · ∈ Win, otherwise it is
winning for Player 1. Hence, winning is oblivious to occurrences of disturbances. A winning
condition Win is prefix-independent if for all ρ ∈ V ω and all w ∈ V ∗ we have ρ ∈ Win if
and only if wρ ∈ Win. If Win is not prefix-independent, then it is called prefix-dependent.

In examples, we often use the parity condition, the canonicalω-regular winning condition.
Let � : V → ω be a coloring of a set V of vertices. The (max-) parity condition

Parity(�) = {v0v1v2 · · · ∈ V ω | lim sup�(v0)�(v1)�(v2) · · · is even}
requires the maximal color occurring infinitely often during a play to be even. A
game (A,Win) is a parity game, if Win = Parity(�) for some coloring � of the vertices of
A. In figures, we label a vertex v with color c by v/c.

In our proofs we make use of the safety condition

Safety(U ) = {v0v1v2 · · · ∈ V ω | v j /∈ U for every j ∈ ω}
for a given set U ⊆ V of unsafe vertices. It requires Player 0 to only visit safe vertices,
i.e., Player 1 wins a play if it visits at least one unsafe vertex. Note that due to notational
convenience, we specify a safety condition by giving the unsafe vertices instead of the safe
ones, i.e., V \U , which is more common.

A strategy for Player i ∈ {0, 1} is a function σ : V ∗Vi → V such that (v j , σ (v0 · · · v j )) ∈
E holds for every v0 · · · v j ∈ V ∗Vi . A play (v0, b0)(v1, b1)(v2, b2) · · · is consistent with σ ,
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200 D. Neider et al.

if v j+1 = σ(v0 · · · v j ) for every j with v j ∈ Vi and b j+1 = 0, i.e., if the next vertex is the
one prescribed by the strategy unless a disturbance edge is used.

Remark 1 A strategy σ does not have access to the bits indicating whether a disturbance
occurred or not. However, this is not a restriction for Player 0: let (v0, b0)(v1, b1)(v2, b2) · · ·
be a play with b j = 1 for some j > 0. We say that this disturbance is consequential (w.r.t.
σ ), if v j 	= σ(v0 · · · v j−1), i.e., if the disturbance transition (v j−1, v j ) traversed by the play
did not lead to the vertex the strategy prescribed. Such consequential disturbances can be
detected by comparing the actual vertex v j to σ ’s output σ(v0 · · · v j−1). Hence, the bits b j

denoting consequential disturbances (w.r.t.σ ) can be reconstructed by observing the sequence
of vertices and by having access to the strategy σ .

On the other hand, inconsequential disturbances can just be ignored. In particular, the
number of consequential disturbances is always at most the number of disturbances during
each play.

2.2 Positional and finite-state strategies

Fix a game (A,Win) with A = (V , V0, V1, E, D). A strategy σ for Player i is positional, if
σ(v0 · · · v j ) = σ(v j ) for all v0 · · · v j ∈ V ∗Vi , i.e., the output of σ only depends on the last
vertex.

A memory structure for A is a triple M = (M, Init,Upd) where M is a finite set of
memory states, Init : V → M is the initialization function, and Upd : M × V → M is the
memory update function.

The update function can be extended to finite play prefixes: Upd+(v) = Init(v) and
Upd+(wv) = Upd(Upd+(w), v) for w ∈ V+ and v ∈ V . A next-move function Nxt : Vi ×
M → V for Player i has to satisfy (v,Nxt(v,m)) ∈ E for all v ∈ Vi and allm ∈ M . It induces
a strategy σ for Player i with memory M via σ(v0 · · · v j ) = Nxt(v j ,Upd+(v0 · · · v j )).

We say that a strategy σ is implementable by a memory structure M, if there is a next-
move function Nxt such that M and Nxt induce σ . If σ is implementable by some memory
structure, then we call σ finite-state.

2.3 Infinite games without disturbances

We can characterize the classical notion of infinite games, i.e., those without disturbances,
(see, e.g., [18]) as a special case of games with disturbances. Let G be a game with vertex
set V . A strategy σ for Player i in G is a winning strategy for her from v ∈ V , if every
disturbance-free play that starts in v and that is consistent with σ is winning for Player i .

The winning region Wi (G) of Player i in G contains those vertices v ∈ V from which
Player i has a winning strategy. Thus, the winning regions of G are independent of the
disturbance edges, i.e., we obtain the classical notion of infinite games. We say that Player i
wins G from v, if v ∈ Wi (G). Solving a game amounts to determining its winning regions.
Note that every game has disjoint winning regions. In contrast, a game is determined, if every
vertex is in either winning region.

2.4 Resilient strategies

Let G be a game with vertex set V and let α ∈ ω + 2. A strategy σ for Player 0 in G
is α-resilient from v ∈ V if every play ρ that starts in v, that is consistent with σ , and

123



Synthesizing optimally resilient controllers 201

with #d(ρ) < α, is winning for Player 0. Thus, a k-resilient strategy with k ∈ ω is winning
even under at most k−1 disturbances, anω-resilient strategy is winning even under any finite
number of disturbances, and an (ω + 1)-resilient strategy is winning even under infinitely
many disturbances.

Remark 2 Let v be a vertex.

1. Let α, α′ ∈ ω+2 with α > α′. If a strategy is α-resilient from v, then it is also α′-resilient
from v.

2. Every strategy is 0-resilient from v.
3. A strategy is 1-resilient from v if and only if it is winning for Player 0 from v.

We define the resilience of a vertex v of G as

rG(v) = sup{α ∈ ω + 2 | Player 0 has anα-resilient strategy forG from v}.
Note that the definition is not antagonistic, i.e., it is not defined via strategies of Player 1.
Nevertheless, due to the remarks above, resilient strategies generalize winning strategies.

Lemma 1 Let G be a game and v a vertex of G.

1. rG(v) > 0 if and only if v ∈ W0(G).
2. If G is determined, then rG(v) = 0 if and only if v ∈ W1(G).

Proof (1) The resilience of v is greater than zero if and only if Player 0 has a 1-resilient
strategy from v due to Item 2 of Remark 2. The latter condition is equivalent to Player 0
having a winning strategy for G from v, i.e., to v ∈ W0(G), due to Item 3 of Remark 2.

(2) Due to Items 1 and 3 of Remark 2, the resilience of v is zero if and only if Player 0
has no winning strategy for G from v, i.e., v /∈ W0(G). Due to determinacy, this is equivalent
to v ∈ W1(G). 
�

Note that determinacy is a necessary condition for Item 2. In an undetermined game, the
vertices that are in neither winning region have resilience zero, due to Item 1, but are in
particular not in W1(G).

A strategy σ is optimally resilient, if it is rG(v)-resilient from every vertex v. Every such
strategy is a uniform winning strategy for Player 0, i.e., a strategy that is winning from every
vertex in her winning region. Hence, positional optimally resilient strategies can only exist
in games which have uniform positional winning strategies for Player 0.

Our goal is to determine the mapping rG and to compute an optimally resilient strategy.

3 Computing optimally resilient strategies

To compute optimally resilient strategies, we first characterize the vertices of finite resilience
in Sect. 3.1. All other vertices either have resilience ω or ω+1. To distinguish between these
possibilities, we show how to determine the vertices with resilience ω + 1 in Sect. 3.2. In
Sect. 3.3, we show how to compute optimally resilient strategies using the results of the first
two sections. We only consider prefix-independent winning conditions in Sects. 3.1 and 3.3.
In Sect. 4, we show how to overcome this restriction.
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3.1 Characterizing vertices of finite resilience

Our goal in this section is to characterize vertices with finite resilience in a game with
prefix-independent winning condition, i.e., those vertices from which Player 0 can win even
under k − 1 disturbances, but not under k disturbances, for some k ∈ ω.

To illustrate our approach, consider the parity game in Fig. 1, which is determined and has
a prefix-independent winning condition. The winning region of Player 1 only contains the
vertex v1. Thus, by Lemma 1, v1 is the only vertex with resilience zero, every other vertex
has a larger resilience.

Now, consider the vertex v2, which has a disturbance edge leading into the winning
region of Player 1. Due to this edge, v2 has resilience at most one. This implies, as argued
above, that v2 has resilience precisely one. The unique disturbance-free play starting in v1 is
consistent with every strategy for Player 0 and violates the winning condition. Due to prefix-
independence, prepending the disturbance edge does not change the winner and consistency
with every strategy for Player 0. Hence, this play witnesses that v2 has resilience at most one,
while v2 being in Player 0’s winning region yields the matching lower bound. However, v2
is the only vertex to which this reasoning applies. Now, consider v3: from here, Player 1 can
force a play to visit v2 using a standard edge. Thus, v3 has resilience one as well. Again, this
is the only vertex to which this reasoning is applicable.

In particular, from v4, Player 0 can avoid reaching the vertices for which we have already
determined the resilience by using the self loop. However, this comes at a steep price for her:
doing so results in a losing play, as the color of v4 is odd. Thus, if she wants to have a chance
at winning, she has to take a risk by moving to v2, from which she has a 1-resilient strategy,
i.e., one that is winning if no more disturbances occur. For this reason, v4 has resilience one
as well. The same reasoning applies to v6: Player 1 can force the play to v4 and from there
Player 0 has to take a risk by moving to v2.

The vertices v3, v4, and v6 share the property that Player 1 can either enforce a play violat-
ing the winning condition or reach a vertex with already determined finite resilience. These
three vertices are the only ones currently satisfying this property. They all have resilience one
since Player 1 can enforce to reach a vertex of resilience one, but he cannot enforce reaching
a vertex of resilience zero. Now, we can also determine the resilience of v5: the disturbance
edge from v5 to v3 witnesses it being two.

Afterwards, these two arguments no longer apply to new vertices: no disturbance edge
leads from a vertex v ∈ {v7, . . . , v10} to some vertex whose resilience is already determined
and Player 0 has a winning strategy from each such v that additionally avoids vertices whose
resilience is already determined. Thus, our reasoning cannot determine their resilience. This
is consistent with our goal, as all four vertices have non-finite resilience: v7 and v8 have
resilience ω and v9 and v10 have resilience ω + 1. Our reasoning here cannot distinguish
these two values. We solve this problem in Sect. 3.2.

We now formalize the reasoning sketched above: starting from the vertices in Player 1’s
winning region having resilience zero, we use a so-called disturbance update and a risk update
to determine all vertices of finite resilience. A disturbance update computes the resilience
of vertices having a disturbance edge to a vertex whose resilience is already known (such as
vertices v2 and v5 in the example of Fig. 1). A risk update, on the other hand, determines
the resilience of vertices from which either Player 1 can force a visit to a vertex with known
resilience (such as vertices v3 and v6) or Player 0 needs to move to such a vertex in order to
avoid losing (e.g., vertex v4). To simplify our proofs, we describe both as monotone operators
updating partial rankings mapping vertices to ω, which might update already defined values.
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Synthesizing optimally resilient controllers 203

We show that applying these updates in alternation eventually yields a stable ranking that
indeed characterizes the vertices of finite resilience.

Throughout this section, we fix a game G = (A,Win) with A = (V , V0, V1, E, D)

and prefix-independent Win ⊆ V ω satisfying the following condition: the game (A,Win ∩
Safety(U )) is determined for every U ⊆ V . We discuss this requirement in Sect. 4.

A ranking for G is a partial mapping r : V ��� ω. The domain of r is denoted by dom(r),
its image by im(r). Let r and r ′ be two rankings.We say that r ′ refines r if dom(r ′) ⊇ dom(r)
and if r ′(v) ≤ r(v) for all v ∈ dom(r). A ranking r is sound, if we have r(v) = 0 if and only
if v ∈ W1(G) (cf. Lemma 1).

Let r be a ranking for G. We define the ranking r ′ as

r ′(v) = min
({r(v)} ∪ {r(v′) + 1 | v′ ∈ dom(r) and (v, v′) ∈ D}),

where {r(v)} = ∅ if v /∈ dom(r), and min ∅ is undefined (causing r ′(v) to be undefined). We
call r ′ the disturbance update of r .

Lemma 2 The disturbance update r ′ of a sound ranking r is sound and refines r .

Proof As the minimization defining r ′(v) ranges over a superset of {r(v)}, we have r ′(v) ≤
r(v) for every v ∈ dom(r). This immediately implies refinement. From this inequality, we
also obtain r ′(v) = 0 for every v ∈ W1(G), due to soundness of r . Finally, consider some
v ∈ W0(G). Then, r(v) > 0 by soundness of r . Thus, r ′(v) > 0 as well, as both r(v) and
each r(v′) + 1 are greater than zero. Altogether, r ′ is sound as well. 
�

Again, let r be a ranking for G. For every k ∈ im(r) let

Ak = W1(A,Win ∩ Safety({v ∈ dom(r) | r(v) ≤ k}))
be thewinning region of Player 1 in the gamewhere he either wins by reaching a vertex v with
r(v) ≤ k or by violating the winning condition of G. Now, define r ′(v) = min{k | v ∈ Ak},
where min ∅ is again undefined. We call r ′ the risk update of r .

Lemma 3 The risk update r ′ of a sound ranking r is sound and refines r .

Proof We show r ′(v) ≤ r(v) for every v ∈ dom(r), which implies both refinement and
r ′(v) = 0 for every v ∈ W1(G), as argued in the proof of Lemma 2.

Thus, let v ∈ dom(r). Trivially, v ∈ {v′ ∈ dom(r) | r(v′) ≤ r(v)}. Thus, Player 1 wins
the game (A,Win ∩ Safety({v′ ∈ dom(r) | r(v′) ≤ r(v)})) from v by violating the safety
condition right away. Hence, v ∈ Ar(v) and thus r ′(v) ≤ r(v).

To complete the proof of soundness of r ′, we just have to show r ′(v) > 0 for every
v ∈ W0(G). Towards a contradiction, assume r ′(v) = 0, i.e., v ∈ A0. Thus, Player 1 has a
strategy τ from v that ensures that either the winning condition is violated or that a vertex v′
with r(v′) = 0 is reached, i.e., v′ ∈ W1(G) by soundness of r . Hence, Player 1 has a winning
strategy τv′ for G from every such v′. This implies that he also has a winning strategy from v:
play according to τ until a vertex v′ with r(v′) = 0 is reached. From there, mimic τv′ when
starting from v′. Every resulting disturbance-free play has a suffix that violates the winning
condition Win. Thus, by prefix-independence, the whole play violates Win as well, i.e., it is
winning for Player 1. Thus, v ∈ W1(G), which yields the desired contradiction, as winning
regions are always disjoint. 
�

Let r0 be the unique sound ranking with domainW1(G), i.e., r0 maps exactly the vertices
in Player 1’s winning region to zero, all others are undefined. Starting with r0, we inductively
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define a sequence of rankings (r j ) j∈ω such that r j for an odd (even) j > 0 is the disturbance
(risk) update of r j−1, i.e., we alternate between disturbance and risk updates.

Due to refinement, the r j eventually stabilize, i.e., there is some j0 such that r j = r j0 for
all j ≥ j0. Define r∗ = r j0 . Due to r0 being sound and by Lemmas 2 and 3, each r j , and r∗
in particular, is sound. If v ∈ dom(r∗), let jv be the minimal j with v ∈ dom(r j ); otherwise,
jv is undefined.

Lemma 4 If v ∈ dom(r∗), then r jv (v) = r j (v) for all j ≥ jv .

Proof We show the following stronger result for every v ∈ dom(r∗):
– If jv is odd, then r j (v) = jv+1

2 for every j ≥ jv .

– If jv is even, then r j (v) = jv
2 for every j ≥ jv .

The disturbance update increases the maximal rank by at most one and the risk update
does not increase the maximal rank at all. Furthermore, due to refinement, the rank of v is
set and then it cannot increase. Hence, we obtain r j (v) ≤ jv+1

2 and r j (v) ≤ jv
2 for odd and

even jv , respectively. In the remainder of the proof, we show a matching lower bound.
We say that a vertex v is updated to k ∈ ω in r j if r j (v) = k and either v /∈ dom(r j−1) or

both v ∈ dom(r j−1) and r j−1(v) 	= k (here, r−1 is the unique ranking with empty domain).
Note that as part of the proof, we have to show that the second case never occurs.

Now,we show the following by induction over j , which implies thematching lower bound.

– If j is odd, then no v is updated in r j to some k <
j+1
2 .

– If j is even, then no v is updated in r j to some k <
j
2 .

For j = 0, we have j
2 = 0, and clearly, no vertex is assigned a negative rank by r0.

For j = 1 and j ′ = 2, we obtain j+1
2 = j ′

2 = 1. As r0, r1, and r2 are sound, neither r1 nor r2
update some v to zero.

Now, let j > 2 and first consider the case where j is odd. Towards a contradiction,
assume that v ∈ V is updated in r j to some value less than j+1

2 . Since j is odd, r j is the
disturbance update of r j−1. Further, as v is updated in r j , there exists some disturbance
edge (v, v′) ∈ D such that r j (v) = r j−1(v

′) + 1. Thus, r j−1(v
′) < r j (v) <

j+1
2 , i.e.,

r j−1(v
′) ≤ j+1

2 − 2 = j−3
2 . First, we show r j−3(v

′) = r j−2(v
′) = r j−1(v

′), i.e., the rank
of v′ is stable during the last two updates.

First assume towards a contradiction r j−2(v
′) 	= r j−1(v

′). Then, v′ is updated in r j−1 to
some rank of atmost j−3

2 ,which is in turn smaller than j−1
2 , violating the induction hypothesis

for j − 1. Hence, r j−2(v
′) = r j−1(v

′). The same reasoning yields a contradiction to the
assumption r j−3(v

′) 	= r j−2(v
′). Thus, we indeed obtain r j−3(v

′) = r j−2(v
′) = r j−1(v

′).
Since r j−2 is the disturbance update of r j−3, we obtain r j−2(v) ≤ r j−3(v

′) + 1 =
r j−1(v

′) + 1 = r j (v). Due to refinement, we obtain r j−2(v) ≥ r j (v), i.e., altogether
r j−2(v) = r j−1(v) = r j (v). The latter equality contradicts our initial assumption, namely v

being updated in r j to r j (v).
Now, consider the case where j is even. Again, assume towards a contradiction that v ∈ V

is updated in r j to some value less than j
2 . Since j is even, r j is the risk update of r j−1.

Further, as v is updated in r j , Player 1 wins the game (A,Win ∩ Safety(U )) from v, where
U = {v′ ∈ dom(r j−1) | r j−1(v

′) ≤ r j (v)}. Hence, he has a strategy τ such that every play
starting in v and consistent with τ either violates Win or eventually visits some vertex v′
with r j−1(v

′) ≤ r j (v). We claim r j−2(v
′) = r j−1(v

′) for all v′ ∈ U .
Towards a contradiction, assume r j−2(v

′) 	= r j−1(v
′) for some v′ ∈ U . Note that we

have r j−1(v
′) ≤ r j (v) <

j
2 . Thus, v

′ is updated in r j−1 to some value strictly less than j
2 ,
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which contradicts the induction hypothesis for j − 1. Hence, we indeed obtain r j−2(v
′) =

r j−1(v
′) for all v′ ∈ U .

Thus, there are two types of vertices v′ in U : those for which r j−3(v
′) is defined, which

implies r j−3(v
′) = r j−1(v

′) due to the induction hypothesis and refinement, and those
where r j−3(v

′) is undefined, which implies r j−2(v
′) = r j−1(v

′) due to the claim above.
We claim that Player 1 wins (A,Win ∩ Safety({v′′ ∈ dom(r j−3) | r j−3(v

′′) ≤ r j (v)}))
from v, which implies r j−2(v) = r j (v). This contradicts v being updated in r j , our initial
assumption.

To this end, we construct a strategy τ ′ from v that either violatesWin or reaches a vertex v′′
with r j−3(v

′′) ≤ r j (v) as follows. From v, τ ′ mimics τ until a vertex v′ in U is reached (if
it is at all). If v′ is of the first type, then we have r j−3(v

′) = r j−1(v
′) ≤ r j (v). If v′ is of the

second type, then v′ is updated in r j−2 to some rank r j−2(v
′) = r j−1(v

′) ≤ r j (v). As r j−2 is
the risk update of r j−3, Player 1 has a strategy τv′ from v′ that either violates Win or reaches
a vertex v′′ with r j−3(v

′′) ≤ r j−2(v
′) ≤ r j (v). Thus, starting in v′, τ ′ mimics τv′ from v′

until such a vertex is reached (if it is reached at all). Thus, every play that starts in v and is
consistent with τ ′ either violates Win (as it has a suffix that does) or reaches a vertex v′′ with
r j−3(v

′′) ≤ r j (v), which proves our claim. 
�
Lemma4 implies that an algorithmcomputing the r j does not need to implement the definition
of the two updates as presented above, but can be optimized by taking into account that a
rank is never updated once set. However, for the proofs below, the definition presented above
is more expedient, as it gives stronger preconditions to rely on, e.g., Lemmas 2 and 3 only
hold for the definition presented above.

Also, from the proof of Lemma 4, we obtain an upper bound on the maximal rank of r∗.
This in turn implies that the r j stabilize quickly, as r j = r j+1 = r j+2 implies r j = r∗.

Corollary 1 We have im(r∗) = {0, 1, . . . , n} for some n < |V | and r∗ = r2|V |.

The main result of this section shows that r∗ characterizes the resilience of vertices of
finite resilience.

Lemma 5 Let r∗ be defined for G as above, and let v ∈ V .

1. If v ∈ dom(r∗), then rG(v) = r∗(v).
2. If v /∈ dom(r∗), then rG(v) ∈ {ω,ω + 1}.
Proof (1) We show rG(v) ≤ r∗(v) and rG(v) ≥ r∗(v).

“rG(v) ≤ r∗(v)”: anα-resilient strategy from v is alsoα′-resilient from v for everyα′ ≤ α.
Thus, to prove

rG(v) = sup{α ∈ ω + 2 | Player 0 has an α-resilient strategy for G from v} ≤ r∗(v)

we just have to show that Player 0 has no (r∗(v)+1)-resilient strategy from v. By definition,
for every strategy σ for Player 0, we have to show that there is a play ρ starting in v and
consistent with σ that has at most r∗(v) disturbances and is winning for Player 1. So, fix an
arbitrary strategy σ .

We define a play with the desired properties by constructing longer and longer finite
prefixes before finally appending an infinite suffix. During the construction, we ensure that
each such prefix ends in dom(r∗) in order to be able to proceed with our construction.

The first prefix just contains the starting vertex (v, 0), i.e., the prefix does indeed end
in dom(r∗). Now, assume we have produced a prefix w(v′, b′) ending in some vertex v′ ∈
dom(r∗), which implies that jv′ is defined. We consider three cases:
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If jv′ = 0, then v′ ∈ W1(G) by definition of r0, i.e., Player 1 has a winning strategy τ

from v. Thus, we extend w(v′, b′) by the unique disturbance-free play that starts in v′ and is
consistent with σ and τ , without its first vertex. In that case, the construction of the infinite
play is complete.

Second, if jv′ > 0 is odd, then v′ received its rank r∗(v′) during a disturbance update.
Hence, there is some v′′ such that (v′, v′′) ∈ D with r∗(v′) − 1 = r∗(v′′). In this case, we
extend w(v′, b′) by such a vertex v′′ to obtain the new prefix w(v′, b′)(v′′, 1), which satisfies
the invariant, as v′′ is in dom(r∗). Further, we have jv′′ < jv′ as the rank of v′′ had to be
defined in order to be considered during the disturbance update assigning a rank to v′.

Finally, if jv′ > 0 is even, then v′ received its rank r∗(v′) during a risk update. We claim
that Player 1 has a strategy τv′ that guarantees one of the following outcomes from v′: either
the resulting play violates Win or it encounters a vertex v′′ that satisfies r∗(v′′) ≤ r∗(v′) and
jv′′ < jv′ (which implies v′′ 	= v′).

In that case, consider the unique disturbance-free play ρ′ that starts in v′ and is consistent
with σ and the strategy τv′ as above. If ρ′ violatesWin, thenwe extendw(v′, b′) by ρ′ without
its first vertex. In that case, the construction of the infinite play is complete.

If ρ′ does not violate Win, then we extend w(v′, b′) by the prefix of ρ′ without its first
vertex and up to (and including) the first occurrence of a vertex v′′ in ρ′ satisfying the
properties described above. Note that this again satisfies the invariant.

It remains to argue our claim: v′ was assigned its rank r∗(v′) = r jv′ (v′) because it is in
Player 1’s winning region in the game with winning condition Win ∩ Safety(U ), for

U = {v′′ ∈ dom(r jv′−1) | r jv′−1(v
′′) ≤ r jv′ (v

′)}.
Hence, from v′, Player 1 has a strategy to either violate the winning condition or to reachU .
Thus, r jv′−1(v

′′) = r∗(v′′) for every v′′ ∈ dom(r jv′−1) yields r∗(v′′) ≤ r∗(v′). Finally, we
have jv′′ < jv′ , as the rank of v′ is assigned due to vertices in U already having ranks.

Note that only in two cases, we extend the prefix to an infinite play. In the other two cases,
we just extend the prefix to a longer finite one. Thus, we first show that this construction
always results in an infinite play. To this end, let w0(v0, b0) and w1(v1, b1) be two of the
prefixes constructed above such that w1(v1, b1) is an extension of w0(v0, b0). A simple
induction proves jv1 < jv0 . Hence, as the value can only decrease finitely often, at some
point an infinite suffix is added. Thus, we indeed construct an infinite play.

Finally, we have to show that the resulting play has the desired properties: by construction,
the play starts in v and is consistent with σ . Furthermore, by construction, it has a disturbance-
free suffix that violatesWin. Thus, by prefix-independence, the whole play also violatesWin.
It remains to show that it has at most r∗(v) disturbances. To this end, let w0(v0, b0) and
w1(v1, b1) be two of the prefixes such that w1(v1, b1) is obtained by extending w0(v0, b0)
once. If the extension consists of taking the disturbance edge (v0, v1) ∈ D, then we have
r∗(v1) = r∗(v0) + 1. The only other possibility is the extension consisting of a finite play
prefix that is consistent with the strategy τv0 . Then, by construction, we obtain r∗(v1) ≤
r∗(v0). So, there are at most r∗(v)many disturbances in the play, as the current rank decreases
with every disturbance edge and does not increase with the other type of extension, but is
always non-negative.

“rG(v) ≥ r∗(v)”: Here, we construct a strategy σf for Player 0 that is r∗(v)-resilient from
every v ∈ dom(r∗), i.e., from v, σf has to be winning even under r∗(v) − 1 disturbances. As
every strategy is 0-resilient, we only have to consider those v with r∗(v) > 0.

The proof is based on the fact that r∗ is both stable under the disturbance and under the
risk update, i.e., the disturbance update and the risk update of r∗ are r∗, which yields the
following properties. Let (v, v′) ∈ D be a disturbance edge such that r∗(v) > 0. Then, we
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have r∗(v′) ≥ r∗(v)−1. Also, for every v ∈ dom(r∗)with r∗(v) > 0, Player 0 has a winning
strategy σv from v for the game Gv = (A,Win ∩ Safety({v′ ∈ dom(r∗) | r∗(v′) < r∗(v)}))
(note the strict inequality). Here, we apply determinacy of Gv , as the risk update is formulated
in terms of Player 1’s winning region.

Now, we define σf to always mimic a strategy σvcur for some vcur ∈ dom(r∗), which
is initialized by the starting vertex. The strategy σvcur is mimicked until a consequential
(w.r.t. σvcur ) disturbance edge is taken, say by reaching v′. In that case, the strategy σf

discards the history of the play constructed so far, updates vcur to v′, and begins mimicking
σv′ . This is repeated ad infinitum.

Now, consider a play that starts in dom(r∗), is consistent with σf , and has less than r∗(v)

disturbances. The part up to the first consequential disturbance edge (if it exists at all) is
consistent with σv . Now, let (v0, v′

0) be the corresponding disturbance edge. Then, we have
r∗(v0) ≥ r∗(v), as σv being a winning strategy for the safety condition never visits vertices
with a rank smaller than r∗(v). Thus, we conclude r∗(v′

0) ≥ r∗(v0) − 1 ≥ r∗(v) − 1.
Similarly, the part between the first and the second consequential disturbance edge (if it
exists at all) is consistent with σv′

0
. Again, if (v1, v

′
1) is the corresponding disturbance edge,

then we have r∗(v′
1) ≥ r∗(v1) − 1 ≥ r∗(v) − 2. Continuing this reasoning shows that less

than r∗(v) (consequential) disturbance edges lead to a vertex v′ with r∗(v′) > 0, as the rank
is decreased by at most one for every disturbance edge. The suffix starting in this vertex
is disturbance-free and consistent with σv′ . Hence, the suffix satisfies Win, i.e., by prefix-
independence, the whole play satisfies Win as well. Thus, σf is indeed r∗(v)-resilient from
every v ∈ dom(r∗).

(2) Let X = V \dom(r∗). The disturbance update of r∗ being r∗ implies that every
disturbance edge starting in X leads back to X . Similarly, the risk update of r∗ being r∗
implies X = W0(GX ) for GX = (A,Win∩Safety(V \X)). Thus, from every v ∈ X , Player 0
has a strategy σv such that every disturbance-free play that starts in v and is consistent with σv

satisfies the winning condition Win and never leaves X . Using these properties, we construct
a strategy σω that is ω-resilient from each v ∈ X . Thus, rG(v) ∈ {ω,ω + 1}.

The definition of the strategy σω here is similar to the one above yielding the lower bound
on the resilience. Again, σω always mimics a strategy σvcur for some vcur ∈ X , which is
initialized by the starting vertex. The strategy σvcur is mimicked until a consequential (w.r.t.
σvcur ) disturbance edge is taken, say by reaching the vertex v′. In that case, the strategy σω

discards the history of the play constructed so far, updates vcur to v′, and begins mimicking
σv′ . This is repeated ad infinitum.

Due to the properties of the disturbance edges and the strategiesσv , such a play never leaves
X , even if disturbances occur. Furthermore, if only finitely many disturbances occur, then the
resulting play has a disturbance-free suffix that starts in some v′ ∈ X and is consistent with
σv′ . As σv′ is winning from v′ in GX , this suffix satisfiesWin. Hence, by prefix-independence
of Win, the whole play also satisfies Win. Thus, σω is indeed an ω-resilient strategy from
every v ∈ X . 
�

Combining Corollary 1 and Lemma 5, we obtain an upper bound on the resilience of
vertices with finite resilience.

Corollary 2 We have rG(V ) ∩ ω = {0, 1, . . . , n} for some n < |V |.
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Fig. 2 The rigged game obtained for the game of Fig. 1

3.2 Characterizing vertices of resilience! + 1

Our goal in this section is to determine the vertices of resilience ω+1, i.e., those from which
Player 0 can win even under an infinite number of disturbances. Intuitively, in this setting, we
give Player 1 control over the disturbance edges, as he cannot execute more than infinitely
many disturbances during a play.

In the following, we prove this intuition to be correct. To this end, we transform the arena
of the game so that at a vertex of Player 0, first Player 1 gets to chose whether he wants to
take one of the disturbance edges and, if not, gives control to Player 0, who is then able to
use a standard edge.

Given a game G = (A,Win) with A = (V , V0, V1, E, D), we define the rigged
game Grig = (A′,Win′) with A′ = (V ′, V ′

0, V
′
1, E

′, D′) such that V ′ = V ′
0 ∪ V ′

1 with
V ′
0 = {v | v ∈ V0} and V ′

1 = V , and D′ = ∅. The set E ′ of edges is the union of the
following sets:

– D: Player 1 uses a disturbance edge.
– {(v, v) | v ∈ V0}: Player 1 does not use a disturbance edge and yields control to Player 0.
– {(v, v′) | (v, v′) ∈ E and v ∈ V0}: Player 0 has control and picks a standard edge.
– {(v, v′) | (v, v′) ∈ E and v ∈ V1}: Player 1 takes a standard edge.

Further, Win′ = {ρ ∈ (V ′)ω | h(ρ) ∈ Win} where h is the homomorphism induced by
h(v) = v and h(v) = ε for every v ∈ V .

Figure 2 illustrates the construction of a rigged game for the example game of Fig. 1 (note
that the rigged game is also a parity game in this example). And indeed, the winning region
of Player 0 corresponds to the vertices of resilience ω + 1 in the game of Fig. 1.

The following lemma formalizes the observation that W0(Grig) characterizes the vertices
of resilience ω + 1 in G. Note that we have no assumptions on G here.

Lemma 6 Let v be a vertex of the game G. Then, v ∈ W0(Grig) if and only if rG(v) = ω + 1.

Proof The proof consists of constructing mappings between play prefixes and plays in both
games, which are then used to transfer strategies between the games. This is conceptually
straightforward, but technical due to the presence of the bits indicating whether a disturbance
occurred or not. These have to be reconstructed to obtain proper mappings.

“⇒”: Let Player 0 win Grig from v, say with winning strategy σ ′. We inductively translate
play prefixes w in G into play prefixes t ′(w) in Grig that satisfy the following invariant:
t ′((v0, b0) · · · (v j , b j )) starts in v0 and ends in v j .

For the induction start, we define t ′(v0, b0) = (v0, 0); to define

t ′((v0, b0) · · · (v j , b j )(v j+1, b j+1)),
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we consider several cases:

– If b j+1 = 1, then (v j , v j+1) ∈ D, i.e., the play traverses the disturbance edge (v j , v j+1).
This move is mimicked by defining

t ′((v0, b0) · · · (v j , b j )(v j+1, b j+1)) = t ′((v0, b0) · · · (v j , b j )) · (v j+1, 0).

– If b j+1 = 0, i.e., (v j , v j+1) ∈ E , and v j ∈ V0, then the play did not traverse a disturbance
edge and instead allowed Player 0 to pick a standard edge (v j , v j+1) to traverse. This
move is mimicked by defining

t ′((v0, b0) · · · (v j , b j )(v j+1, b j+1)) = t ′((v0, b0) · · · (v j , b j )) · (v j , 0) · (v j+1, 0).

– If b j+1 = 0, i.e., (v j , v j+1) ∈ E , and v j ∈ V1, then the play traversed the standard
edge (v j , v j+1). This move is mimicked by defining

t ′((v0, b0) · · · (v j , b j )(v j+1, b j+1)) = t ′((v0, b0) · · · (v j , b j )) · (v j+1, 0).

Note that our invariant is satisfied in any case. Also, we lift t ′ to infinite plays by taking limits
as usual.

Let d be the homomorphism induced by mapping (v, b) ∈ V ′ × {0, 1} to v ∈ V ′, i.e., d
removes the bits indicating the occurrence of disturbances. Using the translation t ′, we define
a strategy σ for Player 0 in G via

σ(v0 · · · v j ) = σ ′(d(t ′((v0, b0) · · · (v j , b j ))) · v j ),

where b0 = 0 and where for every j ′ > 0, b j ′ = 1 if and only if v j ′ 	= σ(v0 · · · v j ′−1),
i.e., we reconstruct the consequential disturbances. A straightforward induction shows that
for every play ρ = (v0, b0)(v1, b1)(v2, b2) · · · in G that is consistent with σ , the play t ′(ρ)

is consistent with σ ′. Hence, t ′(ρ) ∈ Win′ for every ρ starting in v. Furthermore, we have
h(t ′(ρ)) = v0v1v2 · · · ∈ Win, as t ′(ρ) ∈ Win′. Thus, ρ = (v0, b0)(v1, b1)(v2, b2) · · · is
winning for Player 0. As we have no restriction on the number of disturbances in ρ, σ is
(ω + 1)-resilient from v. Thus, rG(v) = ω + 1.

“⇐”: Now, let rG(v) = ω + 1, i.e., Player 0 has an (ω + 1)-resilient strategy σ from v

in G. This time, we inductively define a translation t of play prefixes in Grig into play prefixes
in G. Here, it suffices to consider those prefixes that start and end in V ′

1. For these, we satisfy
the following invariant: if w starts in v0 and ends in v j , then t(w) starts in v0 and ends in v j

as well. Note that Grig has no disturbance edges. Hence, the bits indicating whether such an
edge has been traversed are always zero in plays of Grig. Thus, we define t(v0, 0) = (v0, 0)
and consider several cases for the inductive step:

– First, assume we have a prefix of the form (v0, 0) · · · (v j , 0)(v j+1, 0) for some v j ∈ V0,
i.e., Player 1’s move simulates the disturbance edge (v j , v j+1) ∈ D. Then, we define

t((v0, 0) · · · (v j , 0)(v j+1, 0)) = t((v0, 0) · · · (v j , 0)) · (v j+1, 1).

– Next, assume we have a prefix of the form (v0, 0) · · · (v j , 0)(v j+1, 0) for some v j ∈ V1,
i.e., Player 1’s move simulates the standard edge (v j , v j+1) ∈ E . Then, we define

t((v0, 0) · · · (v j , 0)(v j+1, 0)) = t((v0, 0) · · · (v j , 0)) · (v j+1, 0).

– Finally, the last case is a prefix of the form (v0, 0) · · · (v j , 0)(v j , 0)(v j+1, 0) for some
v j ∈ V0, i.e., Player 0’s move simulates the standard edge (v j , v j+1) ∈ E . Then, we
define

t((v0, 0) · · · (v j , 0)(v j , 0)(v j+1, 0)) = t((v0, 0) · · · (v j , 0)) · (v j+1, 0).
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The invariant is satisfied in any case. Also, we can again lift t to infinite plays via limits.
Now, let d be the homomorphism induced bymapping (v, b) ∈ V ×{0, 1} to v ∈ V , i.e., d

again deletes the bits indicating the occurrence of disturbances. Then, we define a strategy σ ′
for Player 0 in Grig via

σ ′(v0 · · · v jv j ) = σ(d(t((v0, 0) · · · (v j , 0)))).

A straightforward induction shows that for every play ρ that is consistent with σ ′, the play
t(ρ) is consistent with σ . Hence, if ρ starts in v, then t(ρ) satisfies the winning condition, as σ

is (ω + 1)-resilient from v. Let t(ρ) = (v0, b0)(v1, b1)(v2, b2) · · · . Then, v0v1v2 · · · ∈ Win.
Now, h(ρ) = v0v1v2 · · · implies ρ ∈ Win′. Thus, σ ′ is a winning strategy for Player 0 from
v. 
�

With an adaption of the rigged game, one can also directly characterize the vertices with
resilience ω. However, since our algorithm and the rigged game already provide an indirect
characterization, we do not present this construction here.

Furthermore, the proof of Lemma 6 also yields the preservation of positional and finite-
state strategies. To this end, consider the first implication proved above. If σ is positional
(finite-state), then σ ′ is positional (finite-state) as well. Thus, applying both implications
yields the following corollary.

Corollary 3 Let G and Grig be defined as above and v a vertex of G.
1. Assume Player 0 has a positional winning strategy for Grig from v. Then, Player 0 has

an (ω + 1)-resilient positional strategy for G from v.
2. Assume Player 0 has a finite-state winning strategy for Grig from v. Then, Player 0 has

an (ω + 1)-resilient finite-state strategy (of the same size) for G from v.

3.3 Computing optimally resilient strategies

This section is concerned with computing the resilience and optimally resilient strategies.
Here, we focus on positional and finite-state strategies, which are sufficient for the majority
of winning conditions in the literature. Nevertheless, it is easy to see that our framework is
also applicable to infinite-state strategies.

In the proof of Lemma 5, we construct strategies σf and σω such that σf is rG(v)-resilient
fromevery vwith rG(v) ∈ ω and such thatσω isω-resilient fromevery vwith rG(v) ≥ ω. Both
strategies are obtained by combiningwinning strategies for some game (A,Win∩Safety(U )).
However, even if thesewinning strategies are positional, the strategies σf and σω are in general
not positional. Nonetheless, we show in the proof of Theorem 1 that such positional winning
strategies and a positional one for Grig can be combined into a single positional optimally
resilient strategy.

Recall the requirements from Sect. 3.1 for a game (A,Win): Win is prefix-independent
and the game GU is determined for everyU ⊆ V , where we write GU for the game (A,Win∩
Safety(U )) for some U ⊆ V . To prove the results of this section, we need to impose some
additional effectiveness requirements: we require that each game GU and the rigged game Grig
can be effectively solved. Also, we first assume that Player 0 has positional winning strategies
for each of these games, which have to be effectively computable as well. We discuss the
severity of these requirements in Sect. 4.

Theorem 1 Let G satisfy all the above requirements. Then, the resilience of G’s vertices and
a positional optimally resilient strategy can be effectively computed.
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To prove this result, we refine the following standard technique that combines positional
winning strategies for games with prefix-independent winning conditions.

Assume we have a positional strategy σv for every vertex v in some set W ⊆ V such that
σv is winning from v. Furthermore, let Rv be the set of vertices visited by plays that start in
v and are consistent with σv . Also, let m(v) = min≺{v′ ∈ V | v ∈ Rv′ } for some strict total
ordering ≺ of W . Then, the positional strategy σ defined by σ(v) = σm(v)(v) is winning
from each v ∈ W , as along every play that starts in some v ∈ W and is consistent with
σ , the value of the function m cannot increase. Thus, after it has stabilized, the remaining
suffix is consistent with some strategy σv′ . Hence, the suffix is winning for Player 0 and
prefix-independence implies that the whole play is winning for her as well.

Here, we have to adapt this reasoning to respect the resilience of the vertices and to handle
disturbance edges. Also, we have to pay attention to vertices of resilience ω + 1, as plays
starting in such vertices have to be winning under infinitely many disturbances.

Proof of Theorem 1 The effective computability of the resilience follows from the effective-
ness requirements on G: to compute the ranking r∗, it suffices to compute the disturbance
and risk updates. The former are trivially effective while the effectiveness of the latter ones
follows from our assumption. Lemma 5 shows that r∗ correctly determines the resilience of
all vertices with finite resilience. Finally, by solving the rigged game, we also determine the
resilience of the remaining vertices (Lemma 6). Again, this game can be solved due to our
assumption.

Thus, it remains to show how to compute a positional optimally resilient strategy. To this
end, we compute a positional strategy σv for every v satisfying the following:

– For every v ∈ V with rG(v) ∈ ω\{0}, the strategy σv is winning for Player 0 from v for
the game (A,Win ∩ Safety({v′ ∈ V | rG(v′) < rG(v)})). We have shown the existence
of such a strategy in the proof of Item 1 of Lemma 5.

– For every v ∈ V with rG(v) = ω, the strategy σv is winning for Player 0 from v for the
game (A,Win ∩ Safety({v′ ∈ V | rG(v′) ∈ ω})). We have shown the existence of such
a strategy in the proof of Item 2 of Lemma 5.

– For every v ∈ V with rG(v) = ω + 1, the strategy σv is (ω + 1)-resilient from v. The
existence of such a strategy follows from Item 1 of Corollary 3, as we assume Player 0
to win Grig with positional strategies.

– For every v ∈ V with rG(v) = 0, we fix an arbitrary positional strategy σv for Player 0.

Furthermore, we fix a strict linear order ≺ on V such that v ≺ v′ implies rG(v) ≤ rG(v′),
i.e., we order the vertices by ascending resilience. For v ∈ V with rG(v) 	= ω+1, let Rv be the
set of vertices reachable via disturbance-free plays that start in v and are consistent with σv .
On the other hand, for v ∈ V with rG(v) = ω + 1, let Rv be the set of vertices reachable via
plays with arbitrarily many disturbances that start in v and are consistent with σv .

We claim Rv ⊆ {v′ ∈ V | rG(v′) ≥ rG(v)} for every v ∈ V (∗). For v with rG(v) 	= ω+1
this follows immediately from the choice of σv . Thus, let v with rG(v) = ω + 1. Assume σv

reaches a vertex v′ of resilience rG(v′) 	= ω + 1. Then, there exists a play ρ′ starting in v′
that is consistent with σv , has less than ω + 1 many disturbances and is losing for Player 0.
Thus, the play obtained by first taking the play prefix to v′ and then appending ρ′ without its
first vertex yields a play starting in v, consistent with σv , but losing for Player 0. This play
witnesses that σv is not (ω + 1)-resilient from v, which contradicts our assumption and thus
concludes the proof of the claim for the case rG(v) = ω + 1.

Let m : V → V be given as m(v) = min≺{v′ ∈ V | v ∈ Rv′ } and define the positional
strategyσ asσ(v) = σm(v)(v). By our assumptions,σ can be effectively computed. It remains
to show that it is optimally resilient.
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To this end, we apply the following two properties of edges (v, v′) that may appear during
a play that is consistent with σ , i.e., we either have v ∈ V0 and σ(v) = v′ (which implies
(v, v′) ∈ E), or v ∈ V1 and (v, v′) ∈ E , or v ∈ V0 and (v, v′) ∈ D:

1. If (v, v′) ∈ E , then we have rG(v) ≤ rG(v′) and m(v) ≥ m(v′). The first property
follows from minimality of m(v) and (∗) while the second follows from the definition of
Rv .

2. If (v, v′) ∈ D, then we distinguish several subcases, which all follow immediately from
the definition of resilience:

– If rG(v) ∈ ω, then rG(v′) ≥ rG(v) − 1.
– If rG(v) = ω, then rG(v′) = ω, and
– If rG(v) = ω + 1, then rG(v′) = ω + 1 andm(v) ≥ m(v′) (here, the second property

follows from the definition of Rv for v with rG(v) = ω + 1, which takes disturbance
edges into account).

Now, consider a playρ = (v0, b0)(v1, b1)(v2, b2) · · · that is consistentwithσ . If rG(v0) =
0 then we have nothing to show, as every strategy is 0-resilient from v.

Now, assume rG(v0) ∈ ω\{0}. We have to show that if ρ has less than rG(v0) disturbances,
then it is winning for Player 0. An inductive application of the above properties shows that
in that case the last disturbance edge leads to a vertex of non-zero resilience. Furthermore, as
the values m(v j ) are only decreasing afterwards, they have to stabilize at some later point.
Hence, there is some suffix of ρ that starts in some v′ with non-zero resilience and that is
consistent with the strategy σv′ . Thus, the suffix is winning for Player 0 by the choice of σv′
and prefix-independence implies that ρ is winning for her as well.

Next, assume rG(v0) = ω. We have to show that if ρ has a finite number of disturbances,
then it is winning for Player 0. Again, an inductive application of the above properties shows
that in that case the last disturbance edge leads to a vertex of resilienceω orω+1. Afterwards,
the values m(v j ) stabilize again. Hence, there is some suffix of ρ that starts in some v′ with
non-zero resilience and that is consistent with the strategy σv′ . Thus, the suffix is winning
for Player 0 by the choice of σv′ and prefix-independence implies that ρ is winning for her
as well.

Finally, assume rG(v0) = ω + 1. Then, the above properties imply that ρ only visits
vertices with resilience ω + 1 and that the values m(v j ) eventually stabilize. Hence, there
is a suffix of ρ that is consistent with some (ω + 1)-resilient strategy σv′ , where v′ is the
first vertex of the suffix. Hence, the suffix is winning for Player 0, no matter how many
disturbances occur. This again implies that ρ is winning for her as well. 
�

The algorithm determining the vertices’ resilience and a positional optimally resilient
strategy first computes r∗ and the winner of the rigged game. This yields the resilience of
G’s vertices. Furthermore, the strategy is obtained by combining winning strategies for the
games GU and for the rigged game as explained above.

Next, we analyze the complexity of the algorithm sketched above in somemore detail. The
inductive definition of the r j can be turned into an algorithm computing r∗ (using the results
of Lemma 4 to optimize the naive implementation), which has to solve O(|V |) many games
(and compute winning strategies for some of them) with winning conditionWin∩Safety(U ).
Furthermore, the rigged game,which is of sizeO(|V |), has to be solved andwinning strategies
have to be determined. Thus, the overall complexity is in general dominated by the complexity
of solving these tasks.
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We explicitly state one complexity result for the important case of parity games, using the
fact that each of these games is then a parity game as well. Also, we use a quasipolynomial
time algorithm for solving parity games [8,15,20,22] to solve the games GU and Grig.

Theorem 2 Optimally resilient strategies in parity games are positional and can be computed
in quasipolynomial time.

Using similar arguments, one can also analyze games where positional strategies do not
suffice. As above, assume G satisfies the same assumptions on determinacy and effectiveness,
but only require that Player 0 has finite-state winning strategies for each game with winning
condition (A,Win∩Safety(U )) and for the rigged game Grig. Then, one can show that she has
a finite-state optimally resilient strategy. In fact, by reusing memory states, one can construct
an optimally resilient strategy that it is not larger than any constituent strategy.

4 Discussion

In this section, we discuss the assumptions required to be able to compute positional (finite-
state) optimally resilient strategies with the algorithm presented in Sect. 3. Here, we only
consider the case of positional strategies. The case of finite-state strategies is analogous.

To this end, fix a game G = (A,Win) with vertex set V and recall that Grig is the corre-
sponding rigged game and that we defined GU = (A,Win ∩ Safety(U )) for U ⊆ V . Now,
the assumptions on G that need to be satisfied for Theorem 1 to hold are as follows:

1. The game GU is determined for every U ⊆ V .
2. Player 0 has a positional winning strategy from every vertex in her winning regions in

the GU and in the game Grig.
3. Each GU and the game Grig can be effectively solved and positional winning strategies

can be effectively computed for each such game.
4. Win is prefix-independent.

First, consider the determinacy assumption. ForW ⊆ V letA\W denote the arenaobtained
from A by removing all vertices from W , as well as all edges from or to vertices in W . It is
easy to show that A\W has no terminal vertices, if W is the winning region of Player 1 in a
safety game played in A. Now, it is straightforward to show

W0(GU ) = W0(A\W ,Win ∩ (V \W )ω)

and

W1(GU ) = W ∪ W1(A\W ,Win ∩ (V \W )ω)

where W = W1(A,Safety(U )). Thus, one can remove the winning region of Player 1 in
the safety game and then consider the subgame of G played in Player 0’s winning region
of the safety game. Thus, all subgames of G being determined suffices for the determinacy
requirement being satisfied. The winning conditions one typically studies, e.g., parity and in
fact all Borel ones [24], satisfy this property.

The next requirement concerns the existence of positional winning strategies for the
games GU and Grig. For the GU , this requirement is satisfied if Player 0 has positional win-
ning strategies for all subgames of G, as argued above. As every positional optimally resilient
strategy is also a winning strategy in a certain subgame, this condition is necessary. Now,
consider Grig, whose winning condition can be written as h−1(Win) for the homomorphism h
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W0
v v Wink = {v0v1v2 · · · ∈ V ω | |{j | vj = v}| ≤ k}

Fig. 3 Counterexample for requiring only the implication from right to left from the definition of prefix-
independence for the computation of resilience

W0 W1
v v Win = V ω \ {(v )ω}

Fig. 4 Counterexample for requiring only the implication from left to right from the definition of prefix-
independence for the computation of resilience

from Sect. 3.2. The winning conditions one typically studies, e.g., the Borel ones, are closed
w.r.t. such supersequences. If G is from a class of winning conditions that allows for posi-
tional winning strategies for Player 0, then this class typically also contains Grig. Also, the
assumption on the effective solvability and computability of positional strategies is obvi-
ously necessary, as we solve a more general problem when determining optimally resilient
strategies.

Finally, let us consider prefix-independence. If the winning condition is not prefix-
independent, then the algorithm presented in Sect. 3 does not compute the resilience of
vertices correctly. In fact, recall that a winning condition Win is prefix-independent if, for all
plays ρ and all play prefixes w, we have ρ ∈ Win if and only if wρ ∈ Win. We show that
neither implication of this equivalence suffices on its own for the algorithm from Sect. 3 to
compute the correct resilience of vertices.

First, consider the family Gk = (A,Wink) of games shown in Fig. 3. In Gk , it is the goal
of Player 0 to avoid more than k visits to v. Hence, for all plays ρ and all play prefixes w we
have that wρ ∈ Win implies ρ ∈ Win.

In each of theGk , a visit to v only occurs via a disturbance or if the initial vertex is v. Hence,
we have rGk (v) = k and rGk (v

′) = k + 1. If we apply the algorithm from Sect. 3, however,
the initial ranking function r0 has an empty domain, since we have W1(Gk) = ∅. Thus, the
computation of the r j immediately stabilizes, yielding r∗ with empty domain. Hence, that
algorithm does, in general, not compute the correct resilience if only the implication from
right to left from the definition of prefix-independence is satisfied.

Conversely, consider the game G shown in Fig. 4. The winning condition of this game
satisfies that, for all play prefixesw and all plays ρ, we have that ρ ∈ Win implieswρ ∈ Win.
If we apply the algorithm from Sect. 3, however, the initial ranking r0 has the domain {v′}
with r0(v′) = 0, due toW1(G) = {v′}. The disturbance update of r0 then yields the ranking r1
with r1(v) = 1 due to the single disturbance edge of G and with r1(v′) = 0. At this point,
the rankings stabilize and we obtain r∗ = r1.

While we indeed have rG(v′) = 0 = r∗(v′), we furthermore have rG(v) = ω + 1 	=
r∗(v), as every play starting in vertex v satisfies the winning condition. Hence, this example
showcases that the implication from left to right from the definition of prefix-independence
also does not suffice for the algorithm from Sect. 3 to correctly compute the resilience. Thus,
we indeed require full prefix-independence of the winning condition as a precondition for
the correctness of that algorithm.

In the following section, we show that one can still leverage our algorithm from Sect. 3
in order to compute the resilience of a wide range of games with prefix-dependent winning
conditions. To this end, we extend the framework of game reductions to games with dis-

123



Synthesizing optimally resilient controllers 215

turbances, in such a way that the existence of α-resilient strategies is preserved. Using this
framework shows that Player 0 has a finite-state optimally resilient strategy in every game
with ω-regular winning condition.

4.1 Prefix-dependent winning conditions

We begin by introducing some notation regarding game reductions. An arena A =
(V , V0, V1, E, D) and a memory structure M = (M, Init,Upd) for A induce the expanded
arenaA×M = (V×M, V0×M, V1×M, E ′, D′)where E ′ is defined via ((v,m), (v′,m′)) ∈
E ′ if and only if (v, v′) ∈ E and Upd(m, v′) = m′. The disturbance edges D′ are defined
analogously, i.e., ((v,m), (v′,m′)) ∈ D′ if and only if (v, v′) ∈ D and Upd(m, v′) = m′.
Every play (v0, b0)(v1, b1)(v2, b2) · · · in A has a unique extended play

ext(ρ) = ((v0,m0), b0)((v1,m1), b1)((v2,m2), b2) · · ·
inA×Mdefined bym0 = Init(v0) andm j+1 = Upd(m j , v j+1), i.e.,m j = Upd+(v0 · · · v j ).
Play prefixes are translated analogously.

Remark 3 Let ρ be a play in G. Then, #d(ρ) = #d(ext(ρ)).

A game G = (A,Win) is reducible to G′ = (A′,Win′) via M, written G ≤M G′, if
A′ = A × M and every play ρ in G is won by the same player that wins ext(ρ) in G′.

Lemma 7 Let G ≤M G′. Then, rG(v) = rG′(v, Init(v)) for all vertices v of G.

Proof We show that Player 0 has an α-resilient strategy σ ′ for G′ from (v, Init(v)) if and only
if she has an α-resilient strategy σ for G from v, which implies our claim. The translation of
the strategies is the same as in the disturbance-free setting (see, e.g., [21]), but here we have
to argue about resilience instead of just winning.

“⇐”: Given a strategy σ for G, we define σ ′ for G′ via

σ ′((v0,m0) · · · (v j ,m j )) = σ(v0 · · · v j ) .

Consider a play ρ′ = ((v0,m0), b0)((v1,m1), b1)((v2,m2), b2) · · · consistent with σ ′. If
m0 = Init(v0), then ρ′ = ext(ρ) for ρ = (v0, b0)(v1, b1)(v2, b2) · · · , which is consistent
with σ . Hence, ρ′ and ρ have the same winner and the same number of disturbances. Hence,
if σ is α-resilient from a vertex v, then σ ′ is α-resilient from (v, Init(v)).

“⇒”: Given a strategy σ ′ for G′, we define σ for G via σ(v0 · · · v j ) = v, if
σ ′((v0,m0) · · · (v j ,m j )) = (v,m) for some m ∈ M , where m j ′ = Upd+(v0 · · · v j ′).

A straightforward induction shows that a play in G is consistent with σ if and only if its
extended play in G′ is consistent with σ ′. Thus, these plays have the same winner and the
same number of disturbances. Thus, again, if σ ′ is α-resilient from a vertex (v, Init(v)) then
σ is α-resilient from v. 
�

As usual for game reductions, we obtain a finite-state strategy for G when starting with
a positional strategy in G′. To this end, consider the proof of the second implication above.
If σ is positional, then the strategy σ ′ is implemented byM and the next-move function Nxt
given by Nxt(v,m) = v′, if σ(v,m) = (v′,m′) for some m′ ∈ M .

A similar construction works in case σ ′ is finite-state, say implemented by M′. Then, σ
is implemented by the product of M and M′, which is defined as expected (we refer to,
e.g., [21] for a formal definition). Altogether, we obtain the following result.

123



216 D. Neider et al.

Corollary 4 Let G ≤M G′.

1. If Player 0 has an α-resilient positional strategy from (v, Init(v)) in G′, then she has an
α-resilient finite-state strategy from v in G, which is implemented by M.

2. If Player 0 has an α-resilient finite-state strategy from (v, Init(v)) in G′, say implemented
byM′, then she has an α-resilient finite-state strategy from v in G, which is implemented
by the product of M and M′.

Now, we can formulate the main theorem of this section, which shows that prefix-
dependence is not a restriction, as long as the game is reducible to a prefix-independent
one. Note that this is in particular true for every ω-regular winning condition (see, e.g., [18]):
every such condition is recognized by a deterministic parity automaton, which can be turned
into a memory structure which allows to reduce the original game to a parity game.

Theorem 3 Let G ≤M G′ so that G′ has a prefix-independent winning condition, can be
effectively computed from G, and satisfies the assumptions from Sect. 3.3 (with finite-state
strategies).

Then, the resilience of G’s vertices and a finite-state optimally resilient strategy can be
effectively computed.

Proof This is a direct consequence of Lemma 7 and Theorem 1. To obtain an optimally
resilient strategy, we apply Corollary 4 for finite-state strategies. 
�

Recall the family of games shown in Fig. 3 in which Player 0 aims to prevent more than k
visits to the vertex v1 for some parameter k ∈ ω. Such a game can be reduced to a parity
game using a memory structure implementing a counter up to k+1. Such a memory structure
has k + 1 memory states, and a straightforward pumping argument shows that there is no
smaller memory structure.

Thus, we obtain an optimally resilient strategy for Player 0 that is implemented by a
memory structure with k + 1 states. While this strategy is indeed optimally resilient, it is not
of minimal size: in fact, the unique strategy for Player 0 in Gk is positional and optimally
resilient. Thus, the approach of computing optimally resilient strategies for gameswith prefix-
dependent winning conditions via reductions to prefix-independent winning conditions is
not optimal in that sense, as it may yield unnecessarily large optimally resilient strategies.
In current research, we study how to synthesize minimal optimally resilient strategies for
games with prefix-dependent winning conditions.

Moreover, in the case of prefix-dependent winning conditions, the question arises whether
or not optimally resilient strategies may be necessarily larger than winning ones. It is easy
to construct a game in which Player 0 has a positional winning strategy, but an optimally
resilient one requires an infinite amount of memory. One example is a game with a dedicated
vertex v with a self-loop, such that using the self-loop ad infinitum is winning for Player 0.
Furthermore, there is a disturbance edge leading from v into a disturbance-free subgame in
which Player 0 needs an infinite amount of memory to win.

However, this example is not very useful, as Player 0 needs infinite memory to win
the game from some vertex of her winning region. A more interesting question for further
research is whether a result similar to Theorem 1 holds true for prefix-dependent games
with positional winning strategies, e.g., weak parity games [9] or bounded parity games [11].
However, for both of these conditions, monotonicity arguments allow to transform finite-state
optimally resilient strategies into positional ones (similar to the construction in [16, Section
5]). However, these arguments rely onmonotonicity properties of the parity condition and are

123



Synthesizing optimally resilient controllers 217

W1W0

v0/0 v1/1

v2/1

v2/1

v3/0

Fig. 5 Intuitively, moving from v1 to v′
2 is preferable for Player 0, as it allows her to possibly “recover” from

a first disturbance with the “help” of a second one

therefore unlikely to be generalizable. On the other hand, we are not aware of an example of
a class of winning conditions that always allow for positional winning strategies for Player 0,
but requirememory to implement optimally resilient strategies. In future work, we investigate
whether the blowup introduced by the reduction can be avoided.

5 Outlook

We have developed a fine-grained view on the quality of strategies: instead of evaluating
whether or not a strategy is winning, we compute its resilience against intermittent dis-
turbances. While this measure of quality allows constructing “better” strategies than the
distinction between winning and losing strategies, there remain aspects of optimality that
are not captured in our notion of resilience. In this section we discuss these aspects and
give examples of games in which there are crucial differences between optimally resilient
strategies. In further research, we aim to synthesize optimal strategies with respect to these
criteria.

As a first example, consider the parity game shown in Fig. 5. Vertices v0 and v3 have
resilience 1 and ω+1, respectively, while vertices v1, v2, and v′

2 have resilience 0. Player 0’s
only choice consists ofmoving tov2 or tov′

2 fromv1. Letσ andσ ′ be strategies forPlayer 0 that
alwaysmove to v2 and v′

2 from v1, respectively. Both strategies are optimally resilient. Hence,
the algorithm from Sect. 3 may yield either one, depending on the underlying parity game
solver used. Intuitively, however, σ ′ is preferable for Player 0, as a play prefix ending in v′

2
may proceed to her winning region if a single disturbance occurs. All plays encountering v2
at some point, however, are losing for her. Hence, another interesting avenue for further
research is to study how to recover from losing, i.e., how to construct strategies that leverage
disturbances in order to leave Player 1’s winning region. For safety games, this has been
addressed by Dallal et al. [12].

The previous example shows that Player 0 can still make “meaningful” choices even if
the play has moved outside her winning region. The game G shown in Fig. 6 demonstrates
that she can do so as well when remaining in vertices of resilience ω. Every vertex in G has
resilience ω, since every play with finitely many disturbances eventually remains in vertices
of color 0. Moreover, the only choice to be made by Player 0 is whether to move to vertex v1
or to vertex v′

1 from vertex v0. Let σ and σ ′ be positional strategies that implement the former
and the latter choice, respectively.

First consider a scenario in which visiting an odd color models the occurrence of some
undesirable event, e.g., that a request has not been answered. In this case, Player 0 should
aim to prevent visits to v′

3 in G, the only vertex of odd color. Hence, the strategy σ should be
more desirable for her, as it requires two disturbances in direct succession in order to visit
v′
3. When playing consistently with σ ′, however, a single disturbance suffices to visit v′

3.
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W0

v0/0

v1/0 v2/0 v3/0

v1/0 v2/0 v3/1

Fig. 6 Moving from v0 to v1 allows Player 0 to minimize visits to odd colors, while moving to v′
1 allows her

to minimize the occurrence of disturbances

W1W0
v0/1v2/2v1/1

Fig. 7 Additional memory allows Player 0 to remain in v1 longer and longer, thus decreasing the potential for
disturbances

On the other hand, consider a setting in which Player 0’s goal is to avoid the occurrence of
disturbances. In that case, σ ′ is preferable over σ , as it allows for fewer situations in which
disturbances may occur, since no disturbances are possible from vertices v2 and v3.

Note that the goals of minimizing visits to vertices of odd color and minimizing the
occurrence of disturbances are not contradictory: if both events are undesirable, it may be
optimal for Player 0 to combine the strategies σ and σ ′. In general, it is interesting to study
how to how to best brace for a finite number of disturbances.

Recall that, due to Theorem 2, optimally resilient strategies for parity games do not require
memory. In contrast, the game shown in Fig. 7 demonstrates that additionalmemory can serve
to further improve such strategies. Any strategy for Player 0 that does not stay in v1 from
some point onwards is optimally resilient. However, every visit to v2 risks a disturbance
occurring, which would lead the play into a losing sink for Player 0. Hence, it is in her
best interest to remain in vertex v1 for as often as possible, thus minimizing the possibility
for disturbances to occur. This behavior does, however, require memory to implement, as
Player 0 needs to count the visits to v1 in order to not remain in that state ad infinitum.
Even worse, for each optimally resilient strategy σ with finite memory there exists another
optimally resilient strategy that uses more memory, but visits v2 more rarely than σ , reducing
the possibilities for disturbances to occur. Hence, it is interesting to study how to balance
avoiding disturbances with satisfying the winning condition. This is particularly interesting
if there is some cost assigned to disturbances.

In quantitative games, there is a further tradeoff between resilience and the semantic
quality of strategies. As a simple example, consider the parity game in Fig. 8 and assume,
for the sake of argument, that Player 0 aims to maximize the maximal color seen infinitely
often. Thus, when it comes to semantic quality of strategies, Player 0 prefers moving to v2
over moving to v0, when starting in v1. However, v2 has resilience one while v0 has resilience
two. Hence, in this aspect, Player 0 prefers moving to v0 over moving to v2. In general, it
is an interesting question to determine the tradeoff between resilience and semantic quality
and to compute strategies that optimize both aspects, if possible.

Finally, another important and interesting aspect, which falls outside the scope of this
paper, is to provide general guidelines and best practices on how tomodel synthesis problems
by games with disturbances. We will address these problems in future research.
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W0 W1

v1/1

v0/0

v2/2

v0/0

v3/3

Fig. 8 A tradeoff between resilience and semantic quality (measured in the maximal color occurring infinitely
often)

6 Related work

The notion of unmodeled intermittent disturbances in infinite games has recently been formu-
lated by Dallal, Neider, and Tabuada [12]. In that work, the authors also present an algorithm
for computing optimally resilient strategies for safety games with disturbances, which is an
extension of the classical attractor computation [18]. Due to the relatively simple nature of
such games, however, this algorithm cannot easily be extended to handle more expressive
winning conditions, and the approach presented in this work relies on fundamentally different
ideas.

Resilience is not a novel concept in the context of reactive systems synthesis. It appears,
for instance, in the work by Topcu et al. [28] as well as Ehlers and Topcu [14]. A notion
of resilience that is very similar to the one considered here has been proposed by Huang
et al. [19], where the game graph is augmented with so-called “error edges”. However, this
setting differs from the one studied in this work in various aspects. Firstly, Huang et al.
work in the framework of concurrent games and model errors as being under the control of
Player 1. This contrasts to the setting considered here, in which the players play in alternation
and disturbances are seen as rare events rather than antagonistic to Player 0. Secondly, Huang
et al. restrict themselves to safety games, whereaswe consider amuch broader class of infinite
games. Finally, Huang et al. compute resilient strategies with respect to a fixed parameter k,
thus requiring to repeat the computation for various values of k to find optimally resilient
strategies. In contrast, our approach computes an optimal strategy in a single run. Hence, they
consider a more general model of interaction, but only a simple winning condition, while the
notion of disturbances considered here is incomparable to theirs.

Related to resilience are various notions of fault tolerance [1,7,13,17] and robustness [3–
6,23,26,27].

For instance, Brihaye et al. [7] consider quantitative games under failures, which are
a generalization of sabotage games [29]. The main difference to our setting is that Bri-
haye et al. consider failures—embodied by a saboteur player—as antagonistic, whereas we
consider disturbances as non-antagonistic events. Moreover, solving a parity game while
maintaining a cost associated with the sabotage semantics below a given threshold is Exp-
Time-complete, whereas our approach computes optimally resilient controllers for parity
conditions in quasipolynomial time.

Besides fault tolerance, robustness in the area of reactive controller synthesis has also
attracted considerable interest in the recent years, typically in settings with specifications of
the form ϕ ⇒ ψ stating that the controller needs to fulfill the guaranteeψ if the environment
satisfies the assumption ϕ. A prominent example of such work is that of Bloem et al. [3],
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in which the authors understand robustness as the property that “if assumptions are violated
temporarily, the system is required to recover to normal operation with as few errors as
possible” and consider the synthesis of robust controllers for the GR(1) fragment of Linear
Temporal Logic [6]. Other examples include quantitative synthesis [4], where robustness
is defined in terms of payoffs, and the synthesis of robust controllers for cyber-physical
systems [23,26]. For amore in-depth discussion of related notions of resilience and robustness
in reactive synthesis, we refer the interested reader to Dallal, Neider, and Tabuada’s section
on related work [12, Section I]. Moreover, a survey of a large body of work dealing with
robustness in reactive synthesis has been presented by Bloem et al. [5].

Finally, note that for the special case of parity games, we can also characterize vertices of
finite resilience (cf. Sect. 3.1) by a reduction to finding optimal strategies in energy parity
games [10], which yields the same complexity as our algorithm (though such a reduction
would not distinguish between vertices with resilience ω and vertices with resilience ω + 1.
Also, it is unclear if and how this reduction can be extended to other winning conditions
and if custom-made solutions would be required for each new class of game. By contrast,
our refinement-based approach works for any class of infinite games that satisfies the mild
assumptions discussed in Sect. 4.

7 Conclusion

We presented an algorithm for computing optimally resilient strategies in games with distur-
bances that is applicable to any game that satisfies some mild (and necessary) assumptions.
Thereby, we have vastly generalized the work of Dallal, Neider, and Tabuada, who only con-
sidered safety games. Furthermore, we showed that optimally resilient strategies are typically
of the same size as classical winning strategies. Finally, we have illustrated numerous novel
phenomena that appear in the setting with disturbances but not in the classical one. Studying
these phenomena is a very promising direction of future work.

As part of future work, we are currently implementing our proposed method on top of
the parity game solver Oink [30] and SCOTS [25], a tool for the synthesis of controllers
in the context of dynamic and cyber-physical systems. Besides developing an end-to-end
synthesis tool for controllers of dynamic and cyber-physical systems, a major part of this
effort is to evaluate the impact of the polynomial overhead as compared to classical parity
game solvers. Preliminary experiments with this prototype implementation suggest that the
additional overhead does not impact the overall performance much.
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