
Acta Informatica (2020) 57:403–438
https://doi.org/10.1007/s00236-020-00372-9

ORIG INAL ART ICLE

Translating betweenmodels of concurrency

David Mestel1 · A. W. Roscoe2

Received: 22 April 2019 / Accepted: 3 February 2020 / Published online: 6 May 2020
© The Author(s) 2020

Abstract
Hoare’s Communicating Sequential Processes (CSP) (Hoare in Communicating Sequential
Processes, Prentice-Hall Inc, Upper Saddle River, 1985) admits a rich universe of semantic
models closely related to the van Glabbeek spectrum. In this paper we study finite observa-
tional models, of which at least six have been studied for CSP, namely traces, stable failures,
revivals, acceptances, refusal testing and finite linear observations (Roscoe in Understanding
concurrent systems. Texts in computer science, Springer, Berlin, 2010). (Others are known.)
We show how to use the relatively recently-introduced priority operator (Roscoe in Under-
standing concurrent systems. Texts inComputer Science, Springer, Berlin, 2010) to transform
refinement questions in these models into trace refinement (language inclusion) tests. Fur-
thermore, we are able to generalise this to any (rational) finite observational model. As
well as being of theoretical interest, this is of practical significance since the state-of-the-art
refinement checking tool FDR4 (Gibson-Robinson et al. in Int J Softw Tools Technol Transf
18(2):149–167, 2016) currently only supports two such models. In particular we study how it
is possible to check refinement in a discrete version of the Timed Failures model that supports
Timed CSP.

1 Introduction

In this paper we re-examine part of the Linear-Time spectrum that forms part of the field of
study of van Glabbeek in [31,32], specifically the part characterised by finite linear observa-
tions.

A number of different forms of process calculus have been developed for the modeling
of concurrent programs, including Hoare’s Communicating Sequential Processes (CSP) [7],
Milner’s Calculus of Communicating Systems (CCS) [12], and the π-calculus [13]. Unlike
the latter two, CSP’s semantics are traditionally given in behavioural semanticmodels coarser
than bisimulation, normally ones that depend on linear observations only. Thus, while the

B A. W. Roscoe
Bill.Roscoe@cs.ox.ac.uk

David Mestel
david.mestel@uni.lu

1 Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg, Luxembourg

2 Department of Computer Science, University of Oxford, Oxford, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-020-00372-9&domain=pdf
http://orcid.org/0000-0001-7557-3901

404 D. Mestel, A. W. Roscoe

immediate range of options possible from a state can be observed, only one of them can be
followed in a linear observation and so branching behaviour is not recorded.

In this paper, we study finite1 linear-time observational models for CSP; that is, models
where all observations considered can be determined in a finite time by an experimenter
who can see the visible events a process communicates and the sets of events it can offer in
any stable state.2 While the experimenter can run the process arbitrarily often, he or she can
only record the results of individual finite executions. Thus each behaviour recorded can be
deduced from a single finite sequence of events and the visible events that link them, together
with the sets of events accepted in stable states during and immediately after this trace. The
representation in the model is determined purely by the set of these linear behaviours that it
is possible to observe of the process being examined. We do not introduce new models, but
rather introduce a method of embedding them all in the simplest, the traces model.

At least six such models have been actively considered for CSP, but the state-of-the art
refinement checking tool, FDR4 [4,5],3 currently only supports two, namely traces and stable
failures. FDR4 also supports the (divergence-strict) failures-divergences model, which is not
finite observational.

The question we address in this paper supposes that we have an automated proof tool
such as FDR that answers questions about how a process is represented in model A, and asks
under what circumstances it is possible to answer questions posed in model B, especially the
core property of refinement.

It seems intuitive that if model A records more details than model B, then by looking
carefully at how A codes the details recorded in B, the above ought to be possible. We will
later see some techniques for achieving this. However it does not intuitively seem likely that
we can do the reverse. Surprisingly, however, we find it can be done by the use of process
operators for which the coarser model B is not compositional. Sometimes we can use such
operators to transform observable features of behaviour that B does not see into ones that it
does.

The operator we choose in the world of CSP is the relatively new priority operator.
While simple to define in operational semantics, this is only compositional over the finest
possible finite-linear-observation model of CSP. Priority is not part of “standard” CSP, but
is implemented in the model checker FDR4 and greatly extends the expressive power of the
notation.

We present first a construction which produces a context C such that refinement questions
in the well-known stable failures model correspond to trace refinement questions under the
application of C. We then generalise this to show (Theorem 1) that a similar construction

1 Models that use amixture of finite and infinite linear behaviours are also frequently used, the latter involving,
inter alia, divergences and infinite traces.
2 The word stable here emphasises that the refusal components of failures are only recorded in stable (namely
τ -free) states. This distinguishes it both from other models where failures are recorded for other reasons: van
Glabbeek (private correspondence) argues that there is in fact an unstable failures model (though anything but
finite observation), citing [2] as evidence, and several versions have included failures on divergent traces or
because of divergence-strictness. We emphasise that all of the models considered in this paper only observe
acceptances and refusals in stable states.
This restriction of models to stable refusals and acceptances has been standard in CSP since the earliest days of
its theories, and it leads to straightforwardmodels in which one can be comfortable that one is not losing crucial
detail by using an LTS as an abstraction of what may well be a concurrent state. We make this assumption
here mainly because it is the general practice in the CSP models we are setting out to relate.
3 See https://www.cs.ox.ac.uk/projects/fdr/. At the time of writing there is no major academic paper as a
source for FDR4 as opposed to its predecessor FDR3. However the two versions of the tool are the same for
the purposes discussed in the present paper.

123

https://www.cs.ox.ac.uk/projects/fdr/

Translating between models of concurrency 405

is possible not only for the six models which have been studied, but also for any sensible
finite observational model (where ‘sensible’ means that the model can be recognised by a
finite-memory computer, in a sense which we shall make precise). In fact we can seemingly
handle any equivalence determined in a compact way by finitary observations, even though
not a congruence.

While at a high level this paper introduces a strategy for translating between differently
abstract theories of the same language, in practical terms it is grounded in CSP and Timed
CSP, both of which already have substantial literatures, and whose relationships with other
ways of studying concurrency have been much studied, not least in van Glabbeek’s work as
discussed above.

1.1 Summary of paper

We first briefly describe the language of CSP, concentrating particularly on the less familiar
priority operator and its nuances. We next (Sect. 3) give an informal description of our
construction for the stable failuresmodel. To prove the result in full generalitywefirst (Sect. 4)
give a formal definition of a finite observational model, and of the notion of rationality. We
then describe our general constructions (Sect. 5) before examining the implementation and
performance (Sect. 6) of model shifting on some standard FDR examples: we compare the
performance of FDR’s native stable failures implementation against the new reduction to
traces.

In a major case study (Sect. 7) we consider D, the discrete version of the timed failures
model of Timed CSP, a closely related notation which already depends on priority thanks to
its need to enforce the principle of maximal progress. For that we show not only how model
shifting can obtain exactly what is needed but also show how timed failures checking can be
reduced to its close relative refusal testing. For that (Sect. 8) we use a Timed CSP version of
the Sliding Window Protocol as our main example, using it to discuss various specification,
performance and optimisation issues.

Finally in theConclusionswe step back and discuss how the frameworkwe have developed
depends crucially on non-compositionality andmight be applicable for notations remote from
CSP.

The present paper is a revised and extended version of [11], with the main additions being
the study of Timed CSP and the model translation options available there, plus a description
of how to include CSP termination �.

2 The CSP language

We provide a brief outline of the language, largely taken from [20]; the reader is encouraged
to consult [21] for a more comprehensive treatment.

Throughout,Σ is taken to be a finite nonempty set of communications that are visible and
can only happen when the observing environment permits via handshaken communication.
The actions of every process are taken from Σ ∪ {τ }, where τ is the invisible internal action
that cannot be prevented by the environment. We extend this to Σ ∪ {τ,�} if we want the
language to allow the successful termination process SKIP and sequential compositions as
described below.� is different fromother events, because it is observable but not controllable:
in that sense it is between a regular Σ event and τ . It only ever appears at the end of traces
and from a state which has refusal set Σ and acceptance set {�}, although that state is not

123

406 D. Mestel, A. W. Roscoe

stable in the usual sense. It thus complicates matters a little, so the reader might prefer to
ignore it when first studying this paper. We will later contemplate a second visible event with
special semantics: tock signifying the passage of time.

The constant processes of our core version of CSP are:

– STOP which does nothing—a representation of deadlock.
– div which performs (only) an infinite sequence of internal τ actions—a representation

of divergence or livelock.
– CHAOS which can do anything except diverge, though this absence of divergence is

unimportant when studying finite behaviour models for the simple reason that these
models do not record divergence.

– SKIP which terminates successfully.

The prefixing operator introduces communication:

– a → P communicates the event a before behaving like P .

There are two main forms of binary choice between a pair of processes:

– P � Q lets the process decide to behave like P or like Q: this is nondeterministic or
internal choice.

– P � Q offers the environment the choice between the initial Σ-events of P and Q. If the
one selected is unambiguous then it continues to behave like the one chosen; if it is an
initial event of both then the subsequent behaviour is nondeterministic. The occurence
of τ in one of P and Q does not resolve � (unlike CCS +). This is external choice.

A further form of binary choice is the asymmetric P�Q, sometimes called sliding choice.
This offers any initial visible action of P from an unstable (in the combination) state and can
(until such an action happens) perform a τ action to Q. It can be re-written in terms of prefix,
external choice and hiding. It represents a convenient shorthand way of creating processes in
which visible actions happen from an unstable state, so this is not an operator one is likely to
use much for building practical systems, rather a tool for analysing how systems can behave.
As discussed in [21], to give a full treatment of CSP in any model finer than stable failures,
it is necessary to contemplate processes that have visible actions performed from unstable
states.

We only have a single parallel operator in our core language since all the usual ones of
CSP can be defined in terms of it as discussed in Chapter 2 etc. of [21].

– P ‖
X
Q runs P and Q in parallel, allowing each of them to perform any action in Σ − X

independently, whereas actions in X must be synchronised between the two.

There are two operators that change the nature of a process’s communications.

– P\X , for X ⊆ Σ , hides X by turning all P’s X -actions into τ s.
– P�R� applies the renaming relation R ⊆ Σ × Σ to P: if (a, b) ∈ R and P can perform

a, then P�R� can perform b. The domain of R must include all visible events used by
P . Renaming by the relation {(a, b)} is denoted �a/b�.

– Sequential composition P; Q allows P to run until it terminates successfully (�). P’s
� is turned into τ and then Q is started. So if P and Q respectively have traces s^〈�〉
and t , then P; Q has the trace s^t .

There is another operator that allows one process to follow another:

– P Θa:A Q behaves like P until an event in the set A occurs, at which point P is shut
down and Q is started. This is the throw operator, and it is important for establishing
clean expressivity results.

123

Translating between models of concurrency 407

The final core CSP construct is recursion: this can be single or mutual (including mutual
recursions over infinite parameter spaces), can be defined by systems of equations or (in the
case of single recursion) in-line via the notation μ p.P , for a term P that may include the
free process identifier p. Recursion can be interpreted operationally as having a τ -action
corresponding to a single unwinding. Denotationally, we regard P as a function on the space
of denotations, and interpret μ p.P as the least (or sometimes provably unique) fixed point
of this function.

We also make use of the interleaving operator �, which allows processes to perform
actions independently and is equivalent to ‖

∅
, and the process RUNX , which always offers

every element of the set X and is defined by

RUNX = �x∈X x → RUNX

This completes our list of operators other than priority. While others, for example �
(interrupt) are sometimes used, they are all expressible in terms of the above (see ch. 9 of
[21]).

2.1 Priority

The priority operator is introduced and discussed in detail inChapter 20 of [21] aswell as [24].
It allows us to specify an ordering on the set of visible events Σ , and prevents lower-priority
events from occuring whenever a higher-priority event or τ is available.

The operator is described in [21] and implemented in FDR4 [4]. In these places it has a
number of different presentations. Roscoe [21], which we will chiefly follow, parametrises
it by a partial order on the augmented event set Στ� which satisfies the properties that

A τ and (where used) � have equal priority which is maximal in the order: no action in
Σ dominates them and neither dominates the other. Not to follow this restriction would
invalidate the principles (i) that in CSP the process which performs τ and becomes P
(which we abuse notation and write as τ → P) is observationally equivalent in all
contexts to P , and (ii) any � action can be replaced harmlessly with the combination of
a τ (from whatever state the � came from) leading to an unconditional �.

B If b < a for a, b ∈ Σ then b < τ (and therefore b < �). Otherwise (b → STOP) � (a →
STOP) and (b → STOP) � (τ → a → STOP) would be observationally different when
the given priority was applied, contrary to the same principle discussed above.

The operational semantics of (b → STOP) � (a → STOP) and (b → STOP) � (τ → a →
STOP) are illustrated in Fig. 1. We want these to look the same as each other externally
whatever priority operator is applied, and this would not be the case if a, b > τ (for (A)) or
a > b (for (B)) and b and τ are incomparable.

We will call such an order on Στ or Στ,� a priority order
In implementing priority for FDR our group was conscious of not expecting the user

necessarily to have a detailed understanding of τ and preferring to avoid expressing τ and �
in the CSPM language. (This would be necessary to tabulate partial orders involving them.)

Thus the first (FDR2) implementation of anything like the full priority operator simply
allowed the user to give a ranked series of sets of members of Σ with successively lower
priority, with the first (which could be empty) being the prioritised events incomparable to
τ,�, and any event not appearing in any of the sets being unaffected by priority. Thus is was
written

priori tise(P, A1, . . . , An)

123

408 D. Mestel, A. W. Roscoe

Fig. 1 Two processes that should
have the same traces in every
context

so that, for example priori tise(P,∅, {c}) is the process where c is banned from happening
from an unstable state: onewhich can perform τ or�. This operator continues to be supported
in FDR4 except that the operator is now better typed (in the sense that it fits in with the CSPM

type checker introduced in FDR3): it has become priori tise(P, 〈A1, . . . , An〉).
While it is possible, using multiple layers of this operator, to express a general priority

order on Στ�, it is scarcely intuitive or efficient to do so. Therefore FDR4 implements
an operator priori tisepo with exactly the same expressive power as the general one by
representing a priority order as the combination of a partial order ≤ on Σ and a subset X
of the maximal elements of Σ under it: the ones incomparable to τ and �. Such a pair
(≤, X) corresponds to the priority order ≤′ in which x <′ y if and only if either x < y or
x ∈ Σ − X ∧ y ∈ {τ,�}.

It should be clear that this correspondence between the permitted pairs (≤, X) and the
orders ≤′ on Στ� satisfying (A) and (B) is bijective. In the rest of this paper we will most
often use the prioritise(P,≤, X) format since it relates most closely to the FDR4 syntax,
though in defining semantics it is often useful to have the corresponding ≤′ around also, as
in the following basic definition of the operational semantics.

P x−→P ′

prioritise(P,≤, X) x−→prioritise(P ′,≤, X)
(x ∈ {τ,�}

P a−→P ′ ∧ ∀x �= a.a ≤′ x ⇒ x /∈ initials(P)

prioritise(P,≤, X) a−→prioritise(P ′,≤, X)

In other words, priority never blocks τ or � actions, and if a is any other action it is
blocked when P can perform a higher (as judged by ≤′) priority action.

prioritise makes enormous contributions to the expressive power of CSP as explained in
[24], meaning that CSP+prioritise can be considered a universal language for a much wider
class of operational semantics than the CSP-like class described in [21,22].

It should not therefore be surprising that prioritise is not compositional over denotational
finite observation models other than the most precise model, as we will discuss below. So
we think of it as an optional addition to CSP rather than an integral part of it; when we refer
below to particular types of observation as giving rise to valid models for CSP, we will mean
CSP without priority.

123

Translating between models of concurrency 409

3 Example: the stable failures model

We introduce ourmodel shifting construction using the stable failuresmodel: wewill produce
a context C such that for any processes P, Q, we have that Q refines P in the stable failures
model if and only C[Q] refines C[P] in the traces model.

3.1 The traces and failures models

The tracesmodel T is familiar from both process algebra and automata theory, and represents
a process by the set of (finite) strings of events it is able to accept. Thus, for the time being
ignoring�, each process is associated (for fixed alphabetΣ) to a subset ofΣ∗ the set of finite
words overΣ (plus words of the formw〈�〉 if we allow SK I P and sequential composition).
The stable failures model F also records sets X of events that the process is able to stably
refuse after a trace s (that is, the process is able after trace s to be in a state where no τ

events are possible, and where the set of initial events is disjoint from X). Thus a process is
associated to a subset of Σ∗ × (P(Σ) ∪ {•}), where • represents the absence of a recorded
refusal set.4 We would add the symbol � to this set of possible second components when
including termination. Note that recording • does not imply that there is no refusal to observe,
simply that we have not observed stability. The observation of the refusal ∅ implies that the
process can be stable after the present trace, whereas observing • does not.

In any model M, we say that Q M-refines P , and write P �M Q, if the set associated
to Q is a subset of that corresponding to P .

Because � can be seen, but happens automatically, we need to distinguish a process like
SKIP which must terminate from one that can but may not like STOP � SKIP. After all if
these are substituted for P in P; Q we get processes equivalent to Q and STOP�Q. However
the state that accepts � can be thought of as being able to refuse the rest of the visible events
Σ , since it can terminate all by itself.

3.2 Model shifting for the stable failures model

We first consider this without �. The construction is as follows:

Lemma 1 For each finite alphabet Σ there exists a context C (over an expanded alphabet)
such that for any processes P and Q we have that P �F Q if and only if C[P] �T C[Q].

Proof Step 1 We use priority to produce a process (over an expanded alphabet) that can
communicate an event x ′ if and only if the original process P is able to stably refuse x .

This is done by expanding the alphabet Σ to Σ ∪Σ ′ (where Σ ′ contains a corresponding
primed event x ′ for every event x ∈ Σ), and prioritisingwith respect to the partial orderwhich
prioritises each x over the corresponding x ′ and makes τ incomparable to x and greater than
x ′.

We must also introduce an event stab to signify the observation of stability (i.e. no τ is
possible in this state) without requiring any refusals to be possible. This is necessary in order
to be able to record an empty refusal set. The priority order ≤1 is then the above (i.e. x ′ < x
for all x ∈ Σ) extended by making stab less than only τ and independent of all x and x ′.

4 This is equivalent to the standard presentation in which a process is represented by a subset of Σ∗ and one
of Σ∗ × P(Σ): the trace component is just {s : (s, •) ∈ F(P)}.

123

410 D. Mestel, A. W. Roscoe

We can now fire up these new events as follows:

C1[P] = prioritise(P � RUNΣ ′∪{stab},≤1,Σ).

This process has a state ξ ′ for each state ξ of P , where ξ ′ has the same unprimed events (and
corresponding transitions) as ξ . Furthermore ξ ′ can communicate x ′ just when ξ is stable
and can refuse x , and stab just when ξ is stable.

Step 2We now recall that the definition of the stable failures model only allows a refusal
set to be recorded at the end of a trace, and is not interested in (so does not record) what
happens after the refusal set.

We gain this effect by using a regulator process to prevent a primed event (or stab) from
being followed by an unprimed event. Let

UNSTABLE = �x∈Σ x → UNSTABLE
� �x∈Σ ′∪{stab} x → STABLE

STABLE = �x∈Σ ′∪{stab} x → STABLE,

and define C by

C[P] = C1[P] ‖
Σ∪Σ ′∪{stab}

UNSTABLE.

A trace of C[P] consists of: firstly, a trace s of P; followed by, if P can after s be in a
stable state, then for some such state σ0 any string formed from the events that can be refused
in σ0, together with stab. The lemma clearly follows. ��

As discussed in Step 1 above, the process C1[P] has the same number of states as P .
The process UNSTABLE has two states (STABLE and UNSTABLE; note that that external
choice operator does not introduce new states). Hence the process C[P] has at most twice the
number of states of P .5

It is clear that any such context must involve an operator that is not compositional over
traces, for otherwise we would have P �T Q implies C[P] �T C[Q], which is equivalent to
P � F Q, and this is not true for general P and Q (consider for instance P = a → STOP,
Q = (a → STOP) � STOP). It follows that only contexts which like ours involve priority or
some operator with similar status can achieve this.

Adding � to the model causes a few issues with the above. For one thing it creates a
refusal (namely of everything except�) from what could be an unstable state, namely a state
that can perform � and perhaps also a τ . And secondly we need to find an effective way
of making processes show their refusal of �, and their refusal of all events other than �,
when respectively appropriate. (The syntax� is not part of the CSP language:� only appears

5 Note, however, that to perform refinement checks, the FDR tool constructs the ‘normalisation’ (determini-
sation) of the specification process, and it is sometimes possible for the normalised form of C[P] to have up
to a factor of 2|Σ | more states than the normalised form of P (both of which may be exponentially larger than
P itself, though the normal form of C[P] is bounded in size by 4|P|). This is closely related to the famous
result of Kannellakis and Smolka [9] that checking equivalence in a CSP-style model is PSPACE-hard, and
is discussed and illustrated in [18]. In practice since the specification process is usually far smaller than the
implementation process this has not often been a constraint for FDR users. Now consider the normal forms
of P and C1[P]. The latter will have a state corresponding to each state of the former, but in addition will
have states only reachable via events a′ signifying the observation of refusals. Consider the cases where a
single normal form state S of P has M maximal refusals Xi (the states of the F normal form are marked with
perhaps multiple such sets). It is clear that there will be a normal form state of C1[P] corresponding to S itself
and to each of the Xi . But there is also one for all intersections of Xi . Thus it was always inevitable that the
number of trace normal form states of C1[P] would sometimes be larger than the number of failures normal
form states of P , but in fact this difference can be problematic. We will discuss this further in Sect. 6.2.

123

Translating between models of concurrency 411

through SK I P .) Oneway of doing these things is to add to the state space so that termination
goes through multiple stages. Create a new event term and consider P; term → SKIP.
This performs any behaviour of P except that all �s of P become τ s and lead to the state
term → SKIP. That of course is a stable state. If we now (treating term as a member of Σ)
apply C as defined above, this will be able to perform term′ in any stable state that cannot
terminate, and will perform every a′ event other than term′ every time it reaches the state
term → SKIP. Thus if we define

C�(P) = C(P; term → SKIP)\{term}
we get exactly the decorated traces we might have expected from the stable failures repre-
sentation of P except that instead of having an event �′ we have term′.

4 Semantic models

In order to generalise this construction to arbitrary finite observational semantic models, we
must give formal definitions not only of particular models but of the very notion of a finite
observational model.

4.1 Finite observations

We consider only models arising from finite linear observations. Intuitively, we postulate
that we are able to observe the process performing a finite number of visible actions, and
that, where the process was stable (unable to perform a τ) immediately before an action, we
are able to observe the precise acceptance set of actions it was willing to perform.

Note that there cannot be two separate stable states before visible event b without another
visible event c between them, even though it is possible to have many visible events between
stable states. Thus itmakes no sense to record two separate refusals or acceptance sets between
consecutive visible events. Similarly it does not make sense to record both an acceptance and
a refusal, since observing an acceptance set means that recording a refusal conveys no extra
information: if acceptance A is observed then no other is seen before the next visible event,
and observable refusals are exactly those disjoint from A.

The main difference between an acceptance set and a refusal set, beyond the obvious one
that the first records a set of events the process can do and the second a set it cannot do, is
that refusal sets are subset closed and acceptance sets are not superset closed. Thus refusals
are not just complements of acceptances. An acceptance represents the exact set of events
offered by a stable state, whereas a refusal is any set disjoint from an acceptance. Thus, as is
well known to those who have studied refusal-style models, the set of refusals after a given
trace is always subset closed. However acceptances are not closed under either superset or
subset: the process STOP � (a → STOP� b → STOP) has initial acceptances {∅, {a, b}}.

We are unable to finitely observe instability: the most we are able to record from an action
in an unstable state is that we did not observe stability. Thus in any context where we can
observe stability we can also fail to observe it by simply not looking.

We take models to be defined over finite alphabetsΣ , and take an arbitrary linear ordering
on each finite Σ which we refer to as alphabetical.

The most precise finite observational model is that considering all finite linear observa-
tions, and is denoted FL:

123

412 D. Mestel, A. W. Roscoe

Definition 1 The set of finite linear observations over an alphabet Σ is

FLΣ := {〈A0, a1, A1, . . . , An−1, an, An〉 : n ∈ N, ai ∈ Σ, Ai ⊆ Σ or Ai = •},
where the ai are interpreted as a sequence of communicated events, and the Ai denote stable
acceptance sets, or in the case of • failure to observe stability. Let the set of such observations
corresponding to a process P be denoted FLΣ(P). This needs to be extended to encompass
final �s if we want to include termination.

(Sometimes we will drop the Σ and just write FL(P)).
More formally, FL(P) can be defined inductively; for instance

FL(P � Q) := {〈A ∪ B〉^α, 〈A ∪ B〉^β : 〈A〉^α ∈ FL(P), 〈B〉^β ∈ FL(Q)}
(where X ∪ • := • for any set X). See Section 11.1.1 of [21] for further details.

For observations s, t ∈ FLΣ , we say that s is extended by t , and write s ≤ t , if any
process which can produce the observation t can also produce s: that is, if s is a prefix of
t , perhaps with some sets Ai replaced by •. This is a partial order on FLΣ , with respect to
which we have that FLΣ(P) is downwards-closed for any process P .

The definition of priority over FL (accommodating final �s) is as follows. prioritise
(P,≤, X) is, with ≤ extended as before to ≤′ on the whole of Σ ∪ {τ } by making all
elements not in X incomparable to all others

{〈A0, b1, A1, . . . , An−1, bn, An〉 | 〈Z0, b1, Z1, . . . , Zn−1, bn, Zn〉 ∈ P}
∪

{〈A0, b1, A1, . . . , An−1, bn, •,�〉 | 〈Z0, b1, Z1, . . . , Zn−1, bn, •,�〉 ∈ P}
where for each i one of the following holds:

– bi is maximal under ≤′ and Ai = • (so there is no condition on Zi except that it exists).
– bi is not maximal under≤′ and Ai−1 = • and Zi−1 is not • and neither does Zi−1 contain

any c > bi .
– Neither Ai nor Zi is •, and Ai = {a ∈ Zi | ¬∃b ∈ Zi .b > a},
– and in each case where Ai−1 �= •, ai ∈ Ai−1.

Note that for a given bi , all of Ai−1, Ai , Zi−1 and Zi are directly relevant to it: the Z ’s are
what are seen to be accepted before and after bi in P , and the A,s in prioritise(P,≤, X).

We can interpret the above clauses as follows. We are looking at when a typical
behaviour 〈Z0, b1, Z1, . . . , Zn−1, bn, Zn〉 of P or respectively one with � at the end proves
that 〈A0, b1, A1, . . . , An−1, bn, An〉 belongs to prioritise(P,≤, X). Recall that τ s are not
amongst the events recorded here as bi or members of Ai , Zi , but that the presence of a non-•
acceptance implies that no τ is possible from the state that witnessed it.

– If bi ismaximal and not dominated by τ , then the prioritised process can certainly perform
it from any reachable state prioritise(S,≤, X) where S can perform bi , so we need no
condition on Zi−1.

– However if bi is not maximal under≤′, then firstly it can only happenwhen P was known
to be in a stable state (i.e. Zi−1 is not •) because τ or � would pre-empt it, and secondly
P was not accepting (in Zi−1) any event of Σ that is of higher priority than bi .

– In cases where bi is possible and followed by • in P , then bi is followed by • in the
result.

– Where bi is possible and followed by Zi (not •) in P , the prioritised process accepts
precisely those events of Zi which are not dominated in the priority order by other
members of Zi . Namely, Ai = {a ∈ Zi | ¬∃b ∈ Zi .b > a},

123

Translating between models of concurrency 413

Thus for 〈Z0, b1, Z1, . . . , Zn−1, bn, Zn〉 to give rise to any behaviour of prioritise(P,≤, X),
the bi that are not maximal require proof of stability before them in Zi−1, and an inability to
perform any event that would pre-empt bi under priority.

This is not possible for the other studied finite behaviour models of CSP: the statement
that it is for refusal testingRT in [21] is not true, though it is possible for some priority orders
≤′ including those needed for maximal progress in timed modelling of the sort we will see
later. For more discussion on this point see [24].

4.2 Finite observational models

We consider precisely themodels which are derivable from the observations ofFL, which are
well-defined in the sense that they are compositional over CSP syntax (other than priority),
and which respect extension of the alphabet Σ .

Definition 2 A finite observational pre-model M consists for each (finite) alphabet Σ of
a set of observations, obsΣ(M), together with a relation MΣ ⊆ FLΣ × obsΣ(M). The
representation of a process P in MΣ is denoted MΣ(P), and is given by

MΣ(P) := MΣ(FLΣ(P)) = {y ∈ obsΣ(M) : ∃x ∈ FLΣ(P).(x, y) ∈ MΣ }.
For processes P and Q over alphabet Σ , if we have MΣ(Q) ⊆ MΣ(P) then we say Q
M-refines P , and write P �M Q.

(As before we will sometimes drop the Σ).
Note that this definition is less general than if we had defined a pre-model to be any

equivalence relation on P (FLΣ). For example, the equivalence relating sets of the same
cardinality has no corresponding pre-model. Definition 2 agrees with that sketched in [21].

To illustrate this and the following definitions, we will take as a running example the
traces model. This is the coarsest non-trivial model, and its observations correspond to the
language of the process viewed as a nondeterministic finite automaton (NFA). We thus have
obsΣ(T) = Σ∗, the set of finite words over Σ , and TΣ is the relation which relates the
observation 〈A0, a1, A1, . . . , an, An〉 to the string a1 . . . an .

Without loss of generality, MΣ does not identify any elements of obsΣ(M); that is, we
have M−1

Σ (x) = M−1
Σ (y) only if x = y (otherwise quotient by this equivalence relation).

Subject to this assumption, MΣ induces a partial order on obsΣ(M), inherited from the
extension order on FLΣ :

Definition 3 The partial order induced by MΣ on obsΣ(M) is given by: x ≤ y if and only
if for all b ∈ M−1

Σ (y) there exists a ∈ M−1
Σ (x) with a ≤ b.

Observe that for any process P it follows from this definition that M(P) is downwards-
closed with respect to this partial order (since FL(P) is downwards-closed).

For the traces model, we have that the partial order induced by TΣ on obsΣ(T) = Σ∗ is
just the prefix order.

Definition 4 A pre-modelM is compositional if for all CSP operators
⊕

, say of arity k, and
for all processes P1, . . . , Pk and Q1, . . . , Qk such thatM(Pi) = M(Qi) for all i , we have

M
(⊕

(Pi)i=1...k

)
= M

(⊕
(Qi)i=1...k

)
.

123

414 D. Mestel, A. W. Roscoe

This means that the operator defined on processes in obs(M) by taking the pushforward
of

⊕
alongM is well-defined: for any sets X1, . . . , Xk ⊆ obs(M) which correspond to the

images of CSP processes, take processes P1, . . . , Pk such that Xi = M(Pi), and let
⊕

(Xi)i=1...k = M
(⊕

(Pi)i=1...k

)
.

Definition 4 says that the result of this does not depend on the choice of the Pi .
Note that it is not necessary to require the equivalent of Definition 4 for recursion in the

definition of a model, because of the following lemma which shows that least fixed point
recursion is automatically well-defined (and formalises some arguments given in [21]):

Lemma 2 Let M be a compositional pre-model. Let C1, C2 be CSP contexts, such that for
any process P we have M(C1[P]) = M(C2[P]). Let the least fixed points of C1 and C2
(viewed as functions on P(FL) under the subset order) be P1 and P2 respectively. Then
M(P1) = M(P2).

Proof Using the fact that CSP contexts induce Scott-continuous functions on P(FL) (see
[7], Section 2.8.2), the Kleene fixed point theorem gives that Pi = ⋃∞

n=0 Cni (⊥). Now any
x ∈ M(P1) is in the union taken up to some finite N , and since finite unions correspond
to internal choice, and ⊥ to the process div, we have that the unions up to N of C1 and C2
agree under M by compositionality. Hence x ∈ M(P2), so M(P1) ⊆ M(P2). Similarly
M(P2) ⊆ M(P1). ��
Definition 5 A pre-model M is extensional if for all alphabets Σ1 ⊆ Σ2 we have that
obsΣ1(M) ⊆ obsΣ2(M), andMΣ2 agrees with MΣ1 on FL(Σ1) × obsΣ1(M).

Definition 6 A pre-model is a model if it is compositional and extensional.

In this setting, we now describe the five main finite observational models coarser than
FL: traces, stable failures, revivals, acceptances and refusal testing.

4.2.1 The traces model

Recording the remarks from the previous section, we have the definition of the traces model.

Definition 7 The traces model, T, is given by

obsΣ(T) = Σ∗, TΣ = traceΣ

where trace is the relationwhich relates the observation 〈A0, a1, A1, . . . , an, An〉 to the string
a1 . . . an .

4.2.2 Failures

The traces model gives us information about what a process is allowed to do, but it in
some sense tells us nothing about what it is required to do. In particular, the process STOP
trace-refines any other process.

In order to specify liveness properties, we can incorporate some information about the
events the process is allowed to refuse, beginning with the stable failures model. Intuitively,
this captures traces s, together with the sets of events the process is allowed to stably refuse
after s.

123

Translating between models of concurrency 415

Definition 8 The stable failures model, F, is given by

obsΣ(F) = Σ∗ × (P(Σ) ∪ {•}), FΣ = failΣ,

where failΣ relates the observation 〈A0, . . . , an, An〉 to all pairs (a1 . . . an, X), for all X ⊆
Σ − An if An �= •, and for X = • otherwise.

4.2.3 Revivals

The next coarsestmodel, first introduced in [20], is the revivalsmodel. Intuitively this captures
traces s, together with sets X that can be stably refused after s, and events a (if any) that can
then be accepted.

Definition 9 The revivals model,R, is given by

obsΣ(R) = Σ∗ × (P(Σ) ∪ {•}) × (Σ ∪ {•}), RΣ = revΣ),

where revΣ relates the observation 〈A0, a1, . . . , an−1, An−1, an, An〉 to
(i) The triples (a1 . . . an−1, X , an), for all X ⊆ Σ − An−1 if An−1 �= • and for X = •

otherwise, and
(ii) The triples (a1 . . . an, X , •), for all X ⊆ Σ − An if An �= • and for X = • otherwise.

A finite linear observation is related to all triples consisting of: its initial trace; a stable
refusal that could have been observed, or • if the original observation did not observe stability;
and optionally (part (i) above) a single further event that can be accepted.

4.2.4 Acceptances

All the models considered up to now refer only to sets of refusals, which in particular are
closed under subsets. The next model, acceptances (also known as ‘ready sets’), refines the
previous three and also considers the precise sets of events that can be stably accepted at the
ends of traces.

Definition 10 The acceptances model, A, is given by

obsΣ(A) = Σ∗ × (P(Σ) ∪ {•}), AΣ = accΣ,

where accΣ relates the observation 〈A0, a1, . . . , an, An〉 to the pair (a1 . . . an, An).

It is convenient to note here that, just as we were able to use a′ as a cipher for the refusal
of a when model shifting, we can introduce a second one a′′ as a cipher for stable acceptance
of a: it is performed (without changing the state) just when a′ is stably refused.We will apply
this idea and discuss it further below.

4.2.5 Refusal testing

The final model we consider is that of refusal testing, first introduced in [16]. This refines F
and R by considering an entire history of events and stable refusal sets. It is incomparable
to A, because it does not capture precise acceptance sets.

123

416 D. Mestel, A. W. Roscoe

Definition 11 The refusal testing model, RT, is given by

obsΣ(RT) = {〈X0, a1, X1, . . . , an, Xn〉 : n ∈ N, ai ∈ Σ, Xi ⊆ Σ or Xi = •}
RTΣ = rtΣ,

where rtΣ relates the observation 〈A0, . . . , an, An〉 to 〈X0, . . . , an, Xn〉, for all Xi ⊆ Σ − Ai

if Ai �= •, and for Xi = • otherwise.

The correct way to handle �, if needed, in any of these models is to add to the respective
transformation in exactly the same way we did for stable failures. This is to be expected
because � only ever happens at the end of traces. Clearly we will need to use term′′ as a
cipher for �′′ in appropriate cases.

4.3 Rational models

We will later on wish to consider only models M for which the correspondence between
FL-observations and M observations is decidable by a finite memory computer. We will
interpret this notion as saying that the relationMΣ corresponds to the language accepted by
some finite state automaton. In order to do this, we must first decide how to convert elements
of FLΣ to words in a language. We do this in the obvious way (the reasons for using fresh
variables to represent the Ai will become apparent in Sect. 5).

Definition 12 The canonical encoding of FLΣ is over the alphabet Ξ := Σ ∪ Σ ′′ ∪ Sym,
where Σ ′′ := {a′′ : a ∈ Σ} and Sym = {〈, 〉, ‘,’, •}.6 It is given by writing out the repre-
sentation given in Definition 1, where sets Ai are expressed by listing the elements of Σ ′′
corresponding to the members of Ai in alphabetical order (so an example of an encoded
element would be 〈ab, a, •, c, bc, b, abc〉). We denote this encoding by φΣ : FLΣ → Ξ∗.

We now define a model to be rational (borrowing a term from automata theory) if its
defining relation can be recognised (when suitably encoded) by some nondeterministic finite
automaton.

Definition 13 A model M is rational if for every alphabet Σ , there is some finite alphabet
Θ , a map ψΣ : obsΣ(M) → Θ∗ and a (nondeterministic) finite automaton A such that

(i) A recognises {(φΣ(x), ψΣ(y)) : (x, y) ∈ MΣ }, in the sense described below, and
(ii) ψΣ is order-reflecting (that is, ψΣ(x) ≤ ψΣ(y) only if x ≤ y),

where Θ∗ is given the prefix partial order, and obsΣ(M) is given the partial order induced
by MΣ (in the sense of Definition 3).

What does it mean for an automaton to ‘recognise’ a relation?

Definition 14 For alphabetsΣ and T , a relationR ⊆ Σ∗×T ∗ is recognised by an automaton
A just when:

(i) The event-set of A is left.Σ ∪ right.T , and
(ii) For any s ∈ Σ∗, t ∈ T ∗, we have sRt if and only if there is some interleaving of left.s

and right.t accepted by A.

6 Note that this somewhat unsatisfactory notation denotes a set of four elements: the angle brackets 〈 and 〉,
the comma , and the symbol •.

123

Translating between models of concurrency 417

Note that recognisability in the sense of Definition 14 is easily shown to be equivalent
to the common notion of recognisability by a finite state transducer given for instance in
[30], but the above definition is more convenient for our purposes. Note also that FL itself
(viewing FLΣ as the diagonal relation) is trivially rational.

Lemma 3 The models T,F,R,A and RT are rational.

Proof By inspection of Definitions 7–11.We takeΘ = Σ ∪Σ ′ ∪Σ ′′ ∪Sym, withΣ ′′ and the
expression of acceptance sets as in the canonical encoding of FL, and refusal sets expressed
in the corresponding way over Σ ′ := {a′ : a ∈ Σ}. It is easy to see that all the resulting
relations are rational; for instance the transducer for the traces model echoes elements of Σ

and ignores all other inputs. ��
Note that not all relations are rational. For instance, the ‘counting relation’ mapping each

finite linear observation to its length is clearly not rational. We do not know whether the
additional constraint of being a finite observational model necessarily implies rationality;
however, no irrational models are known. We therefore tentatively conjecture: that every
finite observational model is rational.

5 Model shifting

We now come to the main substance of this paper: we prove results on ‘model shifting’,
showing that there exist contexts allowing us to pass between different semantic models and
the basic traces model. The main result is Theorem 1, which shows that this is possible for
any rational model.

5.1 Model shifting forFL

We begin by proving the result for the finest model, FL. We show that there exists a context
CFL such that for any process P , the finite linear observations of P correspond to the traces
of CFL(P).

Lemma 4 (Model shifting for FL) For every alphabet Σ , there exists a context CFL over
alphabet T := Σ ∪ Σ ′ ∪ Σ ′′ ∪ {done}, and an order-reflecting map π : FLΣ → T ∗ (with
respect to the extension partial order on FLΣ and the prefix partial order on T ∗) such that
for any process P over Σ we have T(CFL[P]) = pref(π(FL(P))) (where pref(X) is the
prefix-closure of the set X).

Proof Wewill use the unprimed alphabetΣ to denote communicated events from the original
trace, and the double-primed alphabet Σ ′′ to denote (members of) stable acceptances. Σ ′
will be used in an intermediate step to denote refusals, and donewill be used to distinguish ∅
(representing an empty acceptance set) from • (representing a failure to observe anything).

Step 1 We first produce a process which is able to communicate events x ′
i , just when

the original process can stably refuse the corresponding xi . Define the partial order
≤1 = 〈x ′ <1 x : x ∈Σ〉, which prevents refusal events when the corresponding event can
occur.

Let the context C1 be given by

C1[X] = prioritise(X � RUNΣ ′ ,≤1,Σ).

123

418 D. Mestel, A. W. Roscoe

Note that the third argument prevents primed events from occurring in unstable states.
Step 2 We now similarly introduce acceptance events, which can happen in stable states

when the corresponding refusal can’t. The crucial difference between a and a′′ is that a
usually changes the underlying process state, whereas a′′ leaves it alone. a′′ means that P
can perform a from its present stable state, but does not explore what happens when it does.

Similarly define the partial order ≤2= 〈x ′′ <2 x ′ : x ∈ Σ〉, which prevents acceptance
events when the corresponding refusal is possible. Let the context C2 be defined by

C2[X] = prioritise(C1[X] � RUNΣ ′′ ,≤2,Σ).

Step 3 We now ensure that an acceptance set inferred from a trace is a complete set
accepted by the process under examination. This ismost straightforwardly done by employing
a regulator process, which can either accept an unprimed event or accept the alphabetically
first refusal or acceptance event, followed by a refusal or acceptance for each event in turn.
In the latter case it then communicates a done event, and returns to its original state. It has
thus recorded the complete set of events accepted by P’s present state.

The done event is necessary in order to distinguish between a terminal ∅, which can have
a done after the last event, and a terminal •, which cannot (observe that a ∅ cannot occur
other than at the end). Along the way, we hide the refusal events.

Let a and z denote the alphabetically (bywhichwemean in a fixed but arbitrary linear order
on Σ) first and last events respectively, and let succ x denote the alphabetical successor of
x . Define the processes

UNSTABLE = �x∈Σ x → UNSTABLE

� a′ → STABLE(a) � a′′ → STABLE(a)

STABLE(x) = (succ x)′ → STABLE(succ x)

� (succ x)′′ → STABLE(succ x) (x �= z)

STABLE(z) = done → �x∈Σ x → UNSTABLE,

and let

CFL[X] =
(

C2[X] ‖
Σ∪Σ ′∪Σ ′′

UNSTABLE

)

\Σ ′.

Note that C1[P] and C2[P] have the same number of states as P , and UNSTABLE has
|Σ | + 1 states. Hence the state space of CFL[P] exceeds that of P by a factor of at most
|Σ | + 1.

Step 4 We now complete the proof by defining the function π inductively as follows:

π(s^〈•〉) = π(s)
π(s^〈x〉) = π(s)^〈x〉
π(s^〈A = {x1, . . . , xk}〉) = π(s)^〈x ′′

1 . . . x ′′
k done〉,

where without loss of generality the xi are listed in alphabetical order.
It is clear that this is order-reflecting, and by the construction above satisfies T(CFL[P]) =

pref(π(FL(P))). ��
This result allows us to translate questions ofFL-refinement into questions of trace refine-

ment under CFL, as follows:

Corollary 1 For CFL as in Lemma 4, and for any processes P and Q, we have P �FL Q if
and only if CFL[P] �T CFL[Q].

123

Translating between models of concurrency 419

Proof Certainly if FL(Q) ⊆ FL(P) then T(CFL[Q]) = pref(π(FL(Q))) ⊆
pref(π(FL(P))) = T(CFL[P]) and so CFL[P] �T CFL[Q].

Conversely, suppose there exists x ∈ FL(Q)−FL(P). Then sinceFL(P) is downwards-
closed, we have x � y for all y ∈ FL(P). Since π is order-reflecting, we have
correspondingly π(x) � π(y) for all y ∈ FL(P). Hence π(x) /∈ pref(π(FL(P))), so
pref(π(FL(Q))) � pref(π(FL(P))). ��

5.2 Model shifting for rational observational models

We now have essentially all we need to prove the main theorem. We formally record a well
known fact, that any nondeterministic finite austomaton (NFA) can be implemented as a CSP
process (up to prefix-closure, since trace-sets are prefix-closed but regular languages are not):

Lemma 5 (Implementation for NFA) Let A = (Σ, Q, δ, q0, F) be a (nondeterministic)
finite automaton. Then there exists a finite-state CSP process PA such that pref(L(A)) =
pref(T(PA)).

See Chapter 7 of [18] for the proof.

Theorem 1 (Model shifting for rational models) For every rational modelM, there exists a
context CM such that for any process P we have T(CM[P]) = pref(ψ(M(P))).

Proof LetA be the automaton recognising (φ × ψ)(M) (as from Definition 13), and let PA
be the corresponding process from Lemma 5.

We first apply Lemma 4 to produce a process whose traces correspond to the finite linear
observations of the original process, prefixed with left: let CFL be the context from Lemma
4, and let the context C1 be defined by

C1[X] = CFL[X]�left.x/x�.
We now compose in parallel with PA, to produde a process whose traces correspond to

the M-observations of the original process. Let C2 be defined by

C2[X] =
((

C1[X] ‖
{|left|}

PA

)

\{|left|}
)

�x/right.x�.

Then the traces of C2[X] are precisely the prefixes of the images under ψ of the observations
corresponding to X , as required. ��

By the same argument as for Corollary 1, we have

Corollary 2 For any rational model M, let CM be as in Theorem 1. Then for any processes
P and Q, we have P �M Q if and only if CM[P] �T CM[Q].

6 Implementation

We demonstrate the technique by implementing contexts with the property of Corollary 2;
source code may be found at [33].

For the sake of efficiency we produce contexts by hand for each model, rather than going
via a context for FL as in the general result Theorem 1 (which in particular would involve
introducing many new events only to hide them).

123

420 D. Mestel, A. W. Roscoe

We have illustrated this effect in Sect. 7 where we have implemented both the Theorem 1
construction and a custom one, and explained the reasons for this phenomenon.

The starting point for building a custom context for the stable failures model is the context
CR, which is the same as C1 used in the first stage of constructing CFL in the proof of
Lemma 4, except that it also has the event stab (of lower priority than τ only) which is
used to distinguish between an unstable state and a stable one that accepts everything. CR is
an efficient direct model shifting transformation for the refusal testing model. The context
CF[P] is CR[P] put in parallel with a process that prevents real (namely unprimed) events
after either primed events or stab: thus refusals and stability are only recorded at the end of
a trace. It characterises the stable failures model. The code for all the contexts we introduce
can be found in the accompanying example files [33].

The revivals model can also be produced from CR by specifying that no more than one
unprimed event (itself followed by nothing else) comes after one or more primed events and
stab.

For models based on acceptance rather than refusal sets, we introduce acceptance events
which can occur only when the corresponding refusal events cannot and introduce an appro-
priate regulator to allow only precise acceptance sets, in a similar manner to the construction
in the proof of Theorem 1.

These contexts for the ‘refusal sets’ models (F,R andRT) are however suboptimal over
large alphabets, in the typical situation where most events are refused most of the time.
FDR’s inbuilt failures refinement checking codes refusal in terms ofminimal acceptance sets
(checking that each such acceptance of the specification is a superset of one of the implemen-
tation). Minimal acceptances are typically smaller than maximal refusal sets, though this is
only in typical rather than worst case examples.

If we too wish to work with acceptances then we face the following problem: how to check
that the acceptances of the specification are a subset of those of the implementation, despite
the fact that trace refinement checks for inclusion the other way?

The answer is to treat the specification and the implementation slightly differently. We
allow the implementation to produce only the precise acceptance sets of Impl, but the speci-
fication to produce all supersets of the acceptance sets of Spec. In practice this means that to
check (for instance) the failures model, we take the implementation to be CA[Impl], whereas
for the specification we additionally interleave with RUNΣ ′′ (before application of the regu-
lator which prevents acceptances except at the end of traces).

6.1 Testing

We test this implementation by constructing processes which are first distinguished by the
stable failures, revivals, refusal testing and acceptance models respectively (the latter two
being also distinguished by the finite linear observations model). The processes, and the
models which do and do not distinguish them, are shown in Table 1 (recall the precision
hierarchy of models: T ≤ F ≤ R ≤ {A,RT} ≤ FL). The correct results are obtained when
these checks are run in FDR4 with the implementation described above.

6.2 Performance

We assess the performance of our simulation by running those examples from Table 1 of [6]
which involve refinement checks (as opposed to deadlock- or divergence-freedomassertions),
and comparing the timings for our construction against the time taken by FDR4’s inbuilt

123

Translating between models of concurrency 421

Table 1 Tests distinguishing levels of the model precision hierarchy

Specification Implementation Passes Fails

a → div a → STOP T F
((a → div) � div) � STOP a → div F R
(a → div) � (div�(a → STOP)) a → STOP R,A RT,FL
(a → STOP) � (b → STOP) (a → STOP) � (b → STOP) R,RT A,FL

� is the interrupt operator; see [21] for details

Table 2 Experimental results comparing the performance of our construction with FDR4’s inbuilt failures
refinement check

File Inbuilt F CF CF’ FL
|S| |Δ| T (s) |S| |Δ| T (s) |S| |Δ| T (s) |S| |Δ| T (s)

inv 21 220 15 21 220 53 21 220 86 21 220 87

nspk 6.8 118 15 7.1 128 55 7.8 141 83 3.6 63 28

swp 24 57 12 30 123 43 43 76 71 42 93 76

|S| is number of states in millions, |Δ| is number of transitions in millions, T is time in seconds. As the nspk
checks are negative, there is a good degree of nondeterminism in all the figures on this row because they
depend on where in the relevant ply of the search the counterexample is found

failures refinement check (sinceF is the only model for which we have a point of comparison
between a direct implementation and the methods developed in this paper). In each of them
the parameters have been chosen to give amoderate-scale check. Results are shown inTable 2,
for both the original and revised contexts described above; the performance of the FL check
is also shown. As may be seen, performance is somewhat worse but not catastrophically
so. Note however that these processes involve rather small alphabets that are exposed to the
transformation; performance is expected to be worse for larger alphabets.

We remarked earlier, in a footnote, that we do not expect model shifting to work as
efficiently when checking P �F Q where P is a process where for one or more traces
there are many maximal refusals for P after s and these refusals have many distinct inter-
sections. The worst possible case of this is the common failures specification of deadlock
freedom

DF = �{a → DF | a ∈ Σ}

which, though it has only one normal form state over F, that state has |Σ | maximal refusals,
all of whose intersections are distinct. Thus with |Σ | = 20 there are over 1,000,000 normal
form states for C1[DF] and FDR4 takes 130 s to check C1[DF] � C1[DF] in contrast to
negligible time for FDR4’s own failures check.

The C1[P] coding optimises the number of states in the model shifting process to dou-
ble the original, while the approach we used for FL, by forcing the acceptance and refusal
reporting to be in strict order, typically multiplies the state space by |Σ | + 1. On the other
hand this coding approach substantially curtails the normalisation blow-up illustrated above,
though does not eliminate it. Thus there is a trade-off between different measures of effi-
ciency.

123

422 D. Mestel, A. W. Roscoe

Fig. 2 FDR4 debugging output for model shifting

6.3 Debugging output

When a refinement check on FDR4 fails, it gives a syntax-driven multi-level behaviour of
the implementation that fails the specification in its GUI, which allows the user to expand or
contract syntax and pan through the states and actions that have led to the failure to meet a
specification. It naturally gives slightly different forms of output for traces, refusal sets and
divergences. In this paper we have shown how to reduce the behaviours in diverse models to
“decorated” traces, namely traces of events, some of which are actually annotations of what
the underlying process can accept or refuse.

When a model-shifting refinement fails, the user will be able to see the trace and states of
the underlying process P by focussing on P in the syntax tree of C[P], and will also be able
to see the acceptance and/or refusal events that contributed to the failure of the specification.
The fact that FDR always finds a shortest counter example means that events and annotations
that are irrelevant to failing the specification do not appear.

We have found the resulting debugging feedback quite easy to understand and navigate.
Figure 2 shows the trace reported by FDR2 for the failure of the model shifting representation
of the refusal testing model refinement check

((a → STOP) � div) � (a → div)

by the similar representation of a → STOP. This fails though the corresponding failures and
revivals checks succeed: the failure of refinement manifests itself via the right hand process
being stable initially, and then performing a before being stable again

123

Translating between models of concurrency 423

6.4 Example: conflict detection

We now illustrate the usefulness of richer semantic models than just traces and stable failures
by giving a sample application of the revivals model. Consequently we have a property that
can be decided using model shifting but not with any model supported directly by FDR4.

Suppose that we have a process P consisting of the parallel composition of two sub-
processes Q and R. The stable failures model is able to detect when P can refuse all the
events of their shared alphabet, or deadlock in the case when they are synchronised on the
whole alphabet. However, it is unable to distinguish between the two possible causes of this:
it may be that one of the arguments is able to refuse the entire shared alphabet, or it may
be that each accepts some events from the shared alphabet, but the acceptances of Q and
R are disjoint. We refer to the latter situation as a ‘conflict’. The absence of conflict (and
similar situations) is at the core of a number of useful ways of proving deadlock-freedom for
networks of processes running in parallel [25].

The revivals model can be used to detect conflicts. For a process P = Q X ‖Y R, we
introduce a fresh event a to represent a generic event from the shared alphabet, and form the
process P ′ = Q′

X ′ ‖Y ′ R′, where Q′ = Q�{(x, x), (x, a) : x ∈ X}�, X ′ = X ∪ {a}, and
similarly for R′ and Y ′. Conflicts of P now correspond to revivals (s, X ∩ Y , a), where s is
a trace not containing a.

7 Timed failures and Timed CSP

Timed CSP is a notation which adds a W AIT t construct to CSP and reinterprets how
processes behave in a timed context. So not only does it constrain the order that things
happen, but also when they happen. Introduced in [27], it has been widely used and studied
[3,28,29]. W AIT t behaves like SK I P except that termination takes place exactly t time
units after it starts. It introduced and uses the vital principle of maximal progress, namely
that no action that is not waiting for some other party’s agreement is delayed: such actions
do not sit waiting while time passes. That principle fundamentally changes the nature of its
semantic models.

Consider how the hiding operator is defined. It is perfectly legitimate to have a process
P that offers the initial visible events a and b for an indefinite length of time, say P =
a → P1 � b → P2. However P\{a} cannot perform the initial b at any time other than
the very beginning because the a has become a τ : either it or the b must happen the moment
the τ is available. So P\X only uses those behaviours of P which refuse X whenever time
is passing. This means that timed traces (i.e. traces in which all events have times) do not
provide a compositional model for Timed CSP.

Timed CSP was originally described on the basis of continuous (non-negative real) time
values. The basic unit of semantic discourse is a timed failure, the coupling of a timed trace –
a sequence of events with non-strictly increasing times – and a timed refusal, which is the
union of a suitably finitary set of products of a half-open time interval [t1, t2) (containing t1
but not t2) and a set of events. Thus the refusal set changes only finitely often in a finite time,
coincidingwith the fact that a process can only performfinitelymany actions in this time. This
continuous model of time takes it well outside the finitary world that model checking finds
comfortable. However it has long been known that restricting the t in W AIT t statements

123

424 D. Mestel, A. W. Roscoe

to integers7 makes it susceptible to a much more finitary analysis by region graphs [8].
However the latter represents a technique remote from the core algorithms of FDR so it has
never been implemented for CSP, though it has for other notations [10]. In [14,15], Joel
Ouaknine reported the following important discoveries:

– It makes sense to interpret Timed CSP with integer W AIT over the positive integers as
the time domain.

– The technique of digitisation (effectively a uniformmapping of general times to integers)
provides a natural mapping between the continuous and discrete representations.

– Properties that are closed under inverse digitisation can be decided over continuous
Timed CSP by analysis over Discrete Timed CSP, and these include many practically
important specifications.

– It is in principle possible to interpret Timed CSP in a modified (by the addition of two
new operators: versions of � and � that are not triggered by tock) tock-CSP (a dialect
developed by Roscoe in the early 1990’s for reasoning about timed systems in FDR). In a
way that is equivalent to its semantics in the integer version of timed failures. Therefore
it is possible to reason about continuous Timed CSP in FDR. The definition of Timed
CSP hiding over LTSs involves prioritising τ and � over tock.
Ouaknine’s translation of ST OP is T ST OP = tock → T ST OP , and that of a → P
is R = a → P ′ � tock → R, where P ′ is the translation of P . These are designed to
observe that these processes both let time pass through the occurrence of tocks.

This was implemented as described in [1], originally in the context of the last versions
of FDR2 and Timed CSP continues to be supported in FDR4. One can write in the Timed
CSP notation and FDR performs the translation into tock-CSP. There is an important thing
missing from these implementations, however, namely refinement checking in the timed
failures model, the details of which we describe below. That means that although it is possible
to check properties of complete Timed CSP systems, there is no satisfactory compositional
theory for (Discrete)TimedCSP that FDRsupports directly. For example one cannot automate
the reasoning that if C[P, Q] (a term in Timed CSP) satisfies SPEC , and P � P ′ and
Q � Q′ thenC[P ′, Q′] satisfied SPEC , because FDR does not give us a means of checking
the necessary refinements.

The purpose of this section is to show how timed failures refinement can be reduced to
things FDR can do, filling this hole, while at the same time exploring the possibilities for
doing so. Given the methods described in this paper to date, it is natural to try model shifting,
and we will do this below, both using the formulaic approach Sect. 5 creates, and a custom
approach. There is another option offered to us by late versions of FDR2, namely reduction
to the refusal testing model which is implemented in that but not (at the time of writing) later
versions of FDR. We will discuss these in turn.

7.1 A summary of discrete timed failures

The discrete timed failures model D consists, in its usual presentation, of sequences of the
form

(s0, X0, tock, s1, X1, tock, . . . , sn−1, Xn−1, tock, sn, Xn)

where each of si is a member of Σ∗, each of Xi is a subset of Σ , and tock /∈ Σ . Since tock
never happens from an unstable state, there is no need to have the possibility of • as discussed
7 This does not constrain all events to happen at integer times. Rather it makes all differences between event
times that are determined by the process (as opposed to environment) integers.

123

Translating between models of concurrency 425

above for other models before tock, and it would be misleading to have it. However • is an
option for Xn .

If we are allowing for �, then this can replace Xn in the above form.
What this means, of course, is that the trace s0 occurs, after which it reaches a stable

state refusing X0 where tock occurs, and this is repeated for other si and Xi until, after
the last tock, the trace sn is performed followed by the refusal xn (not including tock) or
potentially instability or �. Recall that we apply the principle of maximal progress, so that
tock only happens from a stable state: this means that if, after behaviour . . . sn , stability is not
observable, then tock can never happen and we have reached an error state. It is, however,
convenient to have this type of error or partial state in our model because misconstrued or
partially defined systems can behave like this.

Like other CSP models, it has healthiness conditions, or in other words properties that
the representation of any real process must satisfy. These are analogous to those of related
untimed models, such as prefix closure and subset closure on refusal sets, and the certain
refusal of impossible events. A property that it inherits from continuous Timed CSP is no
instantaneous withdrawal, meaning that if, following behaviour β, it is impossible for a
process to refuse a leading up to the next tock, then the process must still have the possibility
of performing a after β〈tock〉. This amounts to the statement that the passage of time as
represented by tock is not directly visible to the processes concerned, and is much discussed
in the continuous context in [17,26].

One healthiness condition the above formulation has is that if

(s0, X0, tock, s1, X1, tock, . . . , sn−1, Xn−1, tock, sn, Xn)

belongs to a member then so does

(s0, X0, tock, s1, X1, tock, . . . , sn−1, Xn−1, tock, sn, Xn, tock, 〈 〉, •)

because in any stable state, tock is available.
Since the reverse implication holds as well, we realise that it is not in fact necessary to

record stability and refusal sets at the end of behaviours. We get exactly the same equivalence
on processes and refinement relation by re-defining the model to consist of behaviours of the
form

(s0, X0, tock, s1, X1, tock, . . . , sn−1, Xn−1, tock, sn)

with n ≥ 0 where sn may end in �.
We will adopt this presentation, since it turns out to fit slightly more easily with model

shifting. We will mean this version by D.
It is a rational model, since it can be obtained from the standard representation of RT

by the rational transduction which deletes all refusal sets not preceding tock (and replaces
occurrences of • before tock by ∅, since tock can only occur in stable states). Hence by
Theorem 1 it can be model shifted: there exists a context CD such that trace refinement under
CD is equivalent to refinement in D.

We will examine a variety of approaches to expressing �T F in models accessible to FDR
below. We will not consider variants including � because this makes all the transforma-
tions more involved: as in [22] we could extend all the transformations to incorporate this,
frequently using versions of the transformation used earlier for F with �:

P = (P; term → SKIP)\{term}

123

426 D. Mestel, A. W. Roscoe

for a new event term which becomes a cipher for termination in the transformations which,
unlike �, can be synchronised cleanly with a regulator process.8

The operational semantics of Discrete Timed CSP processes are calculated as an LTS in
two stages: first the conventional CSP operational semantics are calculated of Ouaknine’s
transformation as described and implemented in [1]. Then the timed priority construct which
prioritises τ and� over tock is applied. These have the property that tock is available in every
stable state and no unstable state. It is obvious that no unstable state can have a tock because
of the application of timed priority. That all stable states of the pre-prioritised semantics have
tock is a consequence of Ouaknine’s translations of ST OP and a → P quoted above and
the fact that the operators used do not block tock.

7.2 Model shifting timed failures

In model shifting Timed CSP we have FDR turn a process into this language into a standard
LTS, one which involves the tock action and which has the property discussed above that
tock is available from precisely the stable states.

In judging refinement between them we can thus use model shifting as rooted in ordinary
CSP: it is not done in Timed CSP itself.

We offer two choices for how to do this: we can follow the formulaic recipe for model
shifting offered in Sect. 6, or we can create a customised version that it hoped to be more
efficient. These are covered in the next two sections.

7.2.1 ViaFL and an automaton

In many ways the approach set out in our proof of Theorem 1 is like the approach suggested
above involving refusal testing: take a representation of refinement in a finer model and then
show how to forget, precisely, the details of it not needed for the target. To be precise the
method of the theorem is to generate the FL model-shifting (i.e. decorated trace) represen-
tation of a process, and then pipe that into an automaton which converts that representation
into one for the chosen model. In other words, the FL representation becomes the input to
the automaton and is hidden, leaving only the automaton’s output visible. The automaton,
because of the way it is intended to be plumbed in, was termed a transducer.

In this section we demonstrate how this can be done for D. We build a transducer from
the decorated traces generated by CFL (the model shifting context we defined for for FL)
to those of D. There are two challenges to doing this: the first is only to output a refusal set
before a tock. The second is to convert the exact acceptances of FL into the subset-closed
refusal sets of D. We solve the first of these with nondeterminism, and the second by some
careful coding, which depends crucially on the fact that CFL generates acceptances in a
strictly defined order.

The second requires a little more indirection as, having hidden refusal Σ ′ actions in the
context, we need to re-introduce themand not pass on theΣ ′′s. For this, the automaton records
two parameters, typically the two most recent Σ ′′ (acceptance) events seen, and permits the
refusal events strictly between them. This uses the fact that CFL[P] generates a full set of
acceptance events in increasing order, and requires boundary cases for the beginning and end

8 Thus RUN = �a→Σ a → RUN is the unit of parallel composition ‖ (even with processes involving �),
but there is no easy way to involve � as an event in RUN and maintain that property. However if P has been
replaced by P; term → SKIP we can use RUN ′ = �a→Σ a → RUN ′ � term → SKIP and use this as a
prototype regulator. Of course if this route is followed then term is hidden at the outside of the construction.

123

Translating between models of concurrency 427

of the set. It lets CFL[P] output an acceptance in this order and remembers the two most
recent values output. It then can contribute the refusals of events strictly between them.

In the following the function rght(x) renames event x into a distinct name for output
by the transducer. The programs are in the machine-readable CSPM notation quoted from
our implementation.

The transducer nondeterministically decides whether the next visible event will be tock
or not. When it is not going to be tock we can ignore decorations and not pass them on. Only
regular events other than tock are output, and one is it makes the initial choice again.

T3 = T3t [] T3nt

T3nt = ([] x:Sigma @ x -> rght(x) -> T3)
[] ([] x:union(Sigma’,Sigma’’) @ x -> T3nt)
[] (tockp -> T3nt [] tockpp -> T3nt)

If the next event proper will be tock then this is passed on, and acceptance decorations
are translated into a nondeterministic collection of refusal ones using the approach discussed
above. We have to allow for cases at the beginning and end of the acceptance as well as the
one where there are two most recent outputs.

T3t = tock -> rght(tock) -> T3
[] ([] x:{y | y <- Sigma} @ acc(x) -> T3t1(x))
[] (done -> T3t2)
[] (tockp -> T3t [] tockpp -> T3t)

T3t1(u) = tock -> rght(tock) -> T3
[] ([] x:{y | y <- Sigma, ord(y)>ord(u)} @

acc(x) -> T3t3(u,x))
[] (done -> T3t4(u))
[] ([] x:{y | y <- Sigma, ord(y)<ord(u)} @

rght(ref(x)) -> T3t1(u))
[] (tockp -> T3t1(u) [] tockpp -> T3t1(u))

T3t2 = tock -> rght(tock) -> T3
[] ([] x:{y | y <- Sigma} @ rght(ref(x)) -> T3t2)
[] (tockp -> T3t2 [] tockpp -> T3t2)

T3t3(l,u) = tock -> rght(tock) -> T3
[] ([] x:{y | y <- Sigma, ord(y)>ord(u)} @ i

acc(x) -> T3t3(u,x))
[] (done -> T3t4(u))
[] ([] x:{y | y <- Sigma, ord(y)<ord(u), ord(y)>ord(l)} @

rght(ref(x)) -> T3t3(l,u))
[] (tockp -> T3t3(l,u) [] tockpp -> T3t3(l,u))

T3t4(l) = tock -> rght(tock) -> T3
[] ([] x:{y | y <- Sigma, ord(l)<ord(y)} @

rght(ref(x)) -> T3t4(l))

We will report on the performance of the resulting model shift in Sect. 8.1.
The accompanying files, in addition to the above, contain a transducer that creates a

representation of D directly from the context C2 as an alternative to CFL.

123

428 D. Mestel, A. W. Roscoe

7.2.2 Custom approach

Here we avoid the passage through FL and go directly to the structure of D. The approach
here differs first by not using acceptance events at all and, instead of using a transducer,
restricts the natural model shifting representation of the refusal testing model.

As before we introduce a primed copy a′ of each a ∈ Σ to represent refusals, and using
the following construct involving a regulator which ensures that an ordinary event cannot
follow a refusal flag. This means that its traces consist of pairs of traces ofΣ and traces ofΣ ′
(which can be empty) interspersed with a tock between consecutive pairs. We do not need
stab because in a D behaviour there is no ambiguity about where in a recorded behaviour
the underlying process is known to be stable: immediately before the tock actions.

CST F (P) = prioritise(P � RUN (Σ ′),≤,Σ) ‖ Reg

Reg = tock → Reg
� (�a∈Σ a → Reg)
� (� a∈Σa′ → Reg1)

Reg1 = tock → Reg
� (�a∈Σ a′ → Reg1)

and a′ < a, (as well as the implicit a′ < τ) for each a ∈ Σ .
Wehave assumedhere, as before, that any prioritisation needed to ensuremaximal progress

has already been applied before this, so that the LTS being operated on here has the correct
behaviour under a normal interpretation of how LTSs behave.

The correctness of this construction is argued as follows. It comes in two stages:

CS1T F (P) = prioritise(P � RUN (Σ ′),≤,Σ)

CS2T F (Q) = Q ‖ Reg

The first of these is almost identical to the natural model-shifting transformation for the
refusal testing model (for any alphabet). The difference is the exclusion of tock′ and stab.
It is clear that it delivers a set of traces including the refusal indicators a′ for a ∈ Σ which
includes representations of every behaviour of P of the form

{(X0, b1, . . . , Xn−1, bn, Xn) | bi ∈ Σ ∪ {tock}, Xi ⊆ Σ, bi /∈ Xi }
where P’s operational semantics has a sequence of states linked by actions, such that
〈b1, . . . , bn〉 are the visible actions (i.e. the ones that are not τ), and when Xi−1 is non-
empty then bi occurs from a stable state refusing Xi−1.

Furthermore if Xn is non-empty then the final state of the behaviour is stable and refuses
it.

There is no distinction between ∅ and • because this is not necessary for D.
Because there is no event tock′ used here it ignores the possibility of the process refusing

tock, which we actually know is impossible for P a Discrete Timed CSP process.
The second stage imposes a regulator which restricts which decorated traces appear and

thus which of the refusal testing behaviours are seen.
Note that this regulator allows only allows refusal events and tock after refusal events

a′, thus forcing the decorated traces (namely combinations of real events and the a′ ones
signifying refusals) to exactly follow the structure set out for timed failures above except
that there are now final refusals as well as ones before tock. However we can identify such

123

Translating between models of concurrency 429

a trace with a non-empty sequence of final Σ ′ actions the D behaviour with an additional
tock, 〈 〉 at the end.

So when put in parallel with CS1T F (P) the regulator only retains, with this last interpre-
tation, the decorated traces that are consistent with the structures for D. The value in that
model of process P are simply derived point-wise from the remaining decorated traces of
CST F (P).

Furthermore, for any behaviour of this form, any decorated trace which this mapping
would send to the above behaviour (there are many because the a′ events from a given Xi can
be re-ordered or repeated, bearing in mind that Σ ′ events do not change CS1T F (P)’s state.)

It follows that CST F (P) �T CST F (P) if and only if P �T F Q.

7.3 Reducing timed failures to refusal testing

The constructions of the previous section showhow to build amodel shifting representation of
a process P in the refusal testingmodel and then project that to amodel shifting representation
of P in D.

In this section we show how to do the same thing in the space of regular CSP, without the
extra events used to decorate traces but where we do have to worry about refusal sets instead.

So we are creating an analogue of C2
T F [P] that works in the space of CSP with refusal

sets rather than decorated traces and the traces model.
We want C[·] such that C[P] contains precisely the refusal testing behaviours of P that

are required for D, so that C[P] �RT C[Q] if and only if P �T F Q.
This turns out to be somewhat more subtle than the creation of C2

T F [·]. In that case we
could ensure that refusals only happen before tock events or at the end of a trace by preventing
events from Σ appearing in traces after Σ ′ ∪ {stab}. However this cannot be done so easily
in C[P]. The states where tocks occur need to have the correct refusal set, but if an event
other than tock occurs cannot continue after it.

This apparent paradox can be resolved by makingC[P] the parallel composition of P and
a regulator which after any trace has two choices:

– it can perform any event in Σ from an unstable state and carry on,
– it can offer the combination Σ ∪ {tock}, but if an event other than tock occurs it goes

to state div which is the refinement-maximum member of the refusal testing and timed
failures models.

These choices can be given via nondeterministic choice, based on the fact that in any finite
observation model div � P = P as div has no non-trivial finite observations, so

((a → P) �div) � (a → div)

can refuse Σ −{a} on the empty trace or perform a and behave like P , but not on the same
observation. Or they can be defined by sliding choice �, where (a → P)� a → div has the
same behaviour. This regulator process contains – in D – precisely the representation in D
of the process

RUN = �a∈Σ a → RUN

123

430 D. Mestel, A. W. Roscoe

Using the second of these ideas, the regulator (expressed as a regular as opposed to Timed
CSP process) is:

REGP = (�a∈Σ a → REGP)

�
(tock → REGP
� �a∈Σ a → div)

Asbefore, this regulator is synchronisedwith P to perform the transformation. Since P ‖ Q is
only stable – and so has refusals – when both P and Q are, the following parallel composition
contains (over the refusal testing model) exactly the timed failures representation of P . We
think of it as a projection.

ΠT F (P) = P ‖ REGP

Thus we can test P �T F Q for Timed CSP processes P and Q by taking their operational
semantics as discussed earlier and testing

ΠT F (P) �RT ΠT F (Q)

It is interesting to note that, though the approach given here does not use model shifting
in the sense we have introduced in this paper, the proof of Theorem 1 also takes the approach
of reducing a representation of a finer model to the chosen one (there FL).

8 Case study: timed sliding window protocol

The sliding window protocol has long been used as a case study with FDR: it is well known
and reasonably easy to understand, at least in an untimed setting. It is a development of the
alternating bit protocol in which the messages in a fixed-length window on the input stream
are simultaneously available for transmission and acknowledgement across an erroneous
mediumwhich, in our version, can lose and duplicate messages but not re-order them. At any
one time the sender and receiver processes each hold an equal length window on the stream
passing through the protocol, in the sense that the places in that window represent (possibly
unknown) values taken from consecutive places on the stream. They are not always the same
window but (i) the union of them is a window of length up to twice the length of the individual
ones, so there is no gap between them even though they may not overlap. Furthermore (ii)
the receiver window is always either the same as, or ahead of, the sender one. If it is properly
ahead then the last places in the receiver window are necessarily unknown. Messages and
acknowledgements are tagged with an indication of what position on the stream of messages
they refer to. We have re-interpreted this protocol in Timed CSP with the following features:

– There is a parameter W which defines the width of the window. Because the windows
held by the sender and receiver processes may be out of step, we need to define B = 2W
to be the bound on the amount of buffering the system can provide. (Trying a smaller
value in one of our FDR models will show this is needed.)

– In commonwith otherCSPcodings of this protocol,weneed tomake the indexing space of
places in the input and output streams finite by replacing the natural non-negative integers
by integers modulo some N which must be at least 2W (though there is no requirement
that B and N are the same). This is sufficient to ensure that acknowledgement tags never
get confused as referring to the wrong message.

123

Translating between models of concurrency 431

– Round robin sending of message components from unacknowledged items in the current
window: this clearly has a bearing on the timing behaviour of the transmission and
acknowledgements that the system exhibits.

– The occurrence of errors is limited by a parameter which forces them to be spaced: at
least K time units must pass between consecutive ones. To achieve this elegantly we
have used the controlled error model [18] in which errors are triggered by events that
can be restricted by external regulators, and then lazily abstracted. It turns out that lazy
abstraction (originally proposed in [18]) needs reformulating in Timed CSP. We will
detail this below since it is an important aspect of the Timed CSP modelling of systems
with error-prone components.
Clearly it would be possible to use different error assumptions.

– We have assumed for simplicity that all ordinary actions take one time unit to complete.
– Where a message is duplicated, we need to assume that the duplicate is available reason-

ably quickly, say within 2 time units of the original send. If it can be deferred indefinitely
this causes subtle errors in the sense that deferred duplication can prevent the system
from settling sufficiently.

The full Timed CSP of this implementation can be found in the files which accompany this
paper. The core, in CSPM , is (without many details)

Timed(AllZero){ -- denotes Timed CSP section
SEND(sw,n,last) =

(head(sw)==Null&
left?x -> SEND(tail(sw)ˆ<x>,(n+1)

[] d?v -> SEND(ack(sw,n,v),n,last)
[](nonempty(sw,n)&

let (r,v) = next(sw,n,last) within
a.r.v -> SEND(sw,n,r))

RCV((rw,n)) = if (head(rw)!=Null) then
right!head(rw) -> RCV((tail(rw)ˆ<Null>,(n+1)
else
b?t?v -> c!t -> RCV((update((t+N-n)

SND = SEND(blanks,N-1,N-1)

RCVA = RCV((blanks,0))

SYSTEM = (SND[|{|a,d|}|]((MM|||AM)\{timeout}
[|{|b,c|}|]RCVA))\ {|a,b,c,d|}

}

PSYSTEM = tpri(SYSTEM) -- apply Timed priority

HereTimed(T) declares a TimedCSP part of aCSP scriptwhereT (for exampleAllZero)
maps all event to the non-negative integer time they take to complete.MM andAM are controlled
error models of aspects of communication that communicate messages and acknowledge-
ments respectively between SND and RCVA but are subject to loss and duplication of their
contents.

We can create a timed failures specification in CSP which says, following established
models for regular CSP, that the resulting system is a buffer bounded by B (so it never

123

432 D. Mestel, A. W. Roscoe

contains more than B items) but is only obliged to input when it has nothing in it. Whenever
it is nonempty it is obliged to output, but these two obligations do not kick in before some
parameter D time units from the previous external communication.

This is slightly trickier thanwemight thinkbecause of theway inwhich the implementation
process can, entirely legitimately, change its behaviour over time. So in an interval where it
can legitimately accept or refuse an input le f t .1, at one point it can refuse to communicate
it, while later accepting it after time has passed.

In hand-coded tock-CSP this can be expressed as

TFBUFF(n) =
let
TFB(s,k) =
if k < n then

((#s>0 & right!head(s) -> TFB(tail(s),0)
[]

#s<B & left?x -> TFB(sˆ<x>,0))
[>
tock -> TFB(s,k+1))

else
((#s>0 & right!head(s) -> TFB(tail(s),0))
[]
(#s==0 & left?x -> TFB(<x>,0))
[]
((#s>0 and #s<B) & (left?x -> TFB(sˆ<x>,0) [> STOP))
[] tock -> TFB(s,k))

within TFB(<>,0)

This says that if we have not yet reached the point where offers must be made (i.e. k < n)
then it can perform permitted actions but can (expressed via [> or sliding choice) also refuse
them and wait for time to pass.

For comparison we now present the same specification in the Timed CSP language, partly
because we want to investigate that as a practical specification language now we can do
compositional verification over it.

In Timed CSP, a completely equivalent specification can be divided into three separate
parts: one to control the buffer behaviour, one to handlewhat the specification says aboutwhen
offers must be made as opposed to can be made, and the final one to control nondeterminism
by creating the most nondeterministic timed process on a given alphabet. The last of these
is notably trickier than in the untimed world because where a process has the choice, over a
period, to accept or refuse an event b, it is not sufficient for it to make the choice once and
for all. So we have

TCHAOS(A) = let onestep = ([] x:A @ x -> onestep)
[> WAIT(1)

within onestep;TCHAOS(A)

(This is equivalent to the following but maps better into FDR4.)

TCHAOS’(A) = [] x:A @ x -> TCHAOS’(A)
[> (WAIT(1); TCHAOS’(A))

123

Translating between models of concurrency 433

Lazy abstraction in CSP, first defined in its present form in [18], is a construct that assumes
we have a process P with a partition {A, B} of its alphabet. The lazy abstraction of sub-
alphabet A creates the view of what P looks like to a user who interacts with it only in B. It
is distinct from P\A because it is assumed there is a user controlling A who has the option
to refuse as well as accept communications, while in hiding A events are always enabled. In
untimed CSP it is implemented as

L Abs(A)(P) = (P ‖ CH AOS(A))\A
InTimedCSP lazy abstraction needs to be formulatedwith this revisedCH AOS definition

because the user controlling A is allowed to change their mind as time progresses.

LAbs(A)(P) = (P [|A|] TCHAOS(A))\A

Note that the passage of time (tock) is implicitly synchronised here as well as A, and priority
of τ over tock will also apply.

In the main part of the buffer specification we do not create this style of nondetermin-
ism, but instead use two variants of the externally visible events: one that will be made
nondeterministic by the above and one that will not:

TFB(s) =
(#s>0 & right!head(s) -> TFB(tail(s)))
[]

(#s>0 & rightnd!head(s) -> TFB(tail(s)))
[]

(#s==0 & left?x -> TFB(<x>))
[]

(#s<B & (leftnd?x -> TFB(sˆ<x>)))

The above always allows the nondeterministic variants of the events, and allows the “deter-
ministic” ones when they should be offered if sufficient time has passed since the last visible
event. Thus left is only offered deterministically when the buffer is empty, no matter how
long since the last event.

The choice over whether the offers available must be made, implemented by allowing the
deterministic versions of events, is made by the following process

TEnable(E,R,m) =
let Rest = diff(R,E)

En = [] x:R @ x -> Dis(m)
Dis(k) = if k==0 then En else

(([] x:Rest @ x -> Dis(m))
[] WAIT(1);Dis(k-1))

within Dis(m)

The three parameters here are the events that are enabled when there has been sufficient
delay (here {|left,right|}), the ones that reset the clock (here
{|left,right,leftng,rightnd|}) and the time by which offers have to be made.
The full specification is put together by combining the above process, TFB(<>) and
TCHAOS({|leftnd,rightnd|}) and renaming leftnd, rightnd to respectively
left, right.

Given the subtlety of the above and the fact that it is hard to be sure that TBUFF is right
when it is written in tock CSP rather than Timed CSP, it is reassuring that FDR readily proves
that the two versions of the specification are equivalent in the timed failures model.

123

434 D. Mestel, A. W. Roscoe

8.1 Experiments

The authors have run a number of checks of versions of the TimedCSP version of the protocol
against this and other specifications, using the approaches to coding timed failures refinement
set out in the previous section.

Of these the custom approach of Sect. 7.2.2 is much the most efficient.9 Specifically the
method using going by the CFL shift of FL took 538 s, where the custom method took 32 s:
the check this related to had specification TFBUFF(20) and whose implementation was
limited to one transmission error (loss or dup) every 20 time units. As suggested by data
independence [18], the data space had size 2 as this proves that the same check will succeed
for any data type of messages.

This ratio is typical. Probably the biggest cause of the difference is the buffering present
in the FL representation piping into a separate automaton in the Theorem 1 based versions.
In the rest of this section the model shifting checks referred to all use the custom method.

When compared against FDR’s inbuilt stable failures refinement (a less discerning one
than timed failures, so not inevitably producing the same results) the overheads were low,
typically about 50% in states and time. This suggests to us that, used skillfully, model shifting
is amuch cheapermethod for testing exotic refinements than creating amodifiedFDR4,which
at least some of the time is hardly any worse.

Files illustrating this section can be downloaded10 alongside this paper, along with some
dumps of the data that FDR4 generates on performing the checks.

The following reports on the check of the Timed CSP sliding window protocol with two
items of DAT A and a window of width 4 against the specification that says it is an 8-bounded
buffer when there is a minimum time between errors of 3. It is specified to make stable offers
by 42 time units. (In general the longer between errors and lower the widthW of the window,
the faster the system makes settled offers.)

The first check does this by model shifting, but it fails when the check is nearly complete
because it can fail to have the offer ready on time. In fact the corresponding check is passed
when 42 is replaced by 45 (but not 44).

assert CTFMS(TFBUFF(42)) [T= CTFMS(TLAbs({loss,dup})(ELSYSTEM(3)))

The statistics from this check were as follows:
Visited 49,239,989 states and 166,698,488 transitions in 118.91 s (on ply 261)
The following is a failures checkof the same systemwithoutmodel shifting,which happens

to find the same problem.

assert TFBUFF(42) [F= TLAbs({loss,dup})(ELSYSTEM(3))

Visited 41,779,778 states and 107,648,549 transitions in 81.64 s (on ply 261)
It is noteworthy that the overhead of model shifting (relatively speaking) is here less than

reported earlier for the untimed case. We expect this is explained because the un-shifted
checks in the timed case already contain (timed) prioritisation before it is applied as part of
model shifting.

It is straightforward to run experiments that reveal the exact performance of versions of
the sliding window protocol with different window lengths and assumedmaximal error rates.
For example for the window W being 4, the weakest T FBUFF(n) specifications satisfied
are as follows: with no errors (loss or dup) n = 19, with one error per m time units: (m, n)

9 FDR3 and FDR4, which do not have native refusal testing refinement, are significantly faster at refinement
in general than FDR2, which does have this. Therefore the method of Sect. 7.3 was not compared like-for-like.
10 http://www.cs.ox.ac.uk/people/publications/personal/Bill.Roscoe.html (paper 193).

123

http://www.cs.ox.ac.uk/people/publications/personal/Bill.Roscoe.html

Translating between models of concurrency 435

can be (20, 21), (10, 26), (6, 31), (5, 32), (4, 36), (3, 45). With an error per 2 time units it is
possible that the system will never make its required offers, because the errors happen fast
enough to defer the offers for ever. In other words, with an error rate this high, the sliding
window protocol we have implemented fails to be a timewise refinement as discussed in
[23,29] of the untimed buffer specification: this simply means that the timed traces are buffer
traces with the times removed, and that any offer that a buffer is obliged to make is offered
infinitely often after some sufficient time after the last visible action of a trace.

In [23], it is shown how to decide timewise refinement using a way that non-compliance
with a required offer is turned into a CSP divergence that FDR can detect. These techniques,
which turn refusals into events, are forerunners of the model shifting techniques we introduce
in this paper. Therefore it will come as little surprise that they can be reformulated in terms
of the methods we have already presented. The reader familiar with our notation will realise
that a process that can, after trace s refuse the event a for ever will have the infinite trace
s〈a′, tock〉∞ under the model shifting of the timed failures model to the traces model. For
the buffer specification this is implemented via

TFBUFFd =
let
TFB(s) =

((#s>0 & right!head(s) -> TFB(tail(s))
[]

#s<B & left.0 -> TFB(sˆ<0>))
[]
tock -> TFB(s))
[] switch -> TFB’(s)

TFB’(s) =
(#s>0 & rightp!head(s) -> tock’ -> TFB’(s)
[] #s==0 & leftp?x -> tock’ -> TFB’(s))

within TFB(<>)

running in parallel with the implemented error-prone systemwith tock double renamed11 to
itself and tock’, with {|leftp,rightp,tock’|} hidden. The occurrence of the new
event switch in this process stops it monitoring the trace of the process and starts it inviting
the infinite trace which demonstrates the indefinite refusal of events the buffer specification
says it must eventually offer.

If we modify the above testing process so that pairs of the form <leftp.x,tock’> or
<rightp.x,tock’> can happen, hidden at any time and not just after switch (which
is now removed), this represents a perhaps more subtle but in fact much more efficient check
for infinite refusal.

In both cases the events {|leftp,rightp,tock’|} are hidden in the combination
and infinite refusal is a divergence that FDR can check for.

Use of these specification shows that the boundary between our timed sliding window
protocol timewise refining the untimed buffer specification or not lies between an error every
two units and every three: only the later makes the property hold for each window size 2 to
8, the ones we tried it for. (For this DATA was size 1 since the said check’s result is, by data
independence, independent of the size of this type.)

The experiments in this paper were performed using FDR4 on a MacBook with a 2.7GHz
Intel Core i7 processor and 16GB of RAM.

11 This allows tock events the system performs before switch to remain visible, and those after leftp.x
or rightp.x to be hidden.

123

436 D. Mestel, A. W. Roscoe

9 Conclusions

While this paper can reasonably be seen as very CSP focused, the basic structure of the
mathematical arguments and constructions can extend well beyond this, potentially to other
parts of the vanGlabbeekhierarchy andbeyond. Suppose one has a languageL and a hierarchy
of semanticmodels or equivalences E that are congruences. Suppose also that one has a formal
analysis tool which decides properties about equivalence E0 which is coarser than the other
E. Then it may be possible to find an additional operator ⊕ (perhaps with parameters) to add
to L which turns the E except perhaps for some finest one Eω into non-congruences. In our
case E0 and Eω are T and FL, and ⊕ is priority.

Then, given E other than E0 it may be possible to apply contexts involving ⊕ to processes
P so that their semantics in E becomes apparent in E0, thus making E amenable to automatic
analysis.

For all this to work it is essential that if E1 and E2 are two of the equivalences with E0,
E1 and E2 successively more discerning (finer) then ⊕ cannot be compositional for E1. If it
were, and P, Q are a pair of processes differentiated by E2 but not by E1 then no context
involving L{⊕} can differentiate P and Q in E0 either: P ≡1 Q so C[P] ≡1 C[Q], and so
C[P] ≡0 C[Q] as ≡0 is coarser than ≡1.

Though this may seem complex, we have seen the approach works well for one hierarchy
of models, and hope it will work elsewhere too.

Focussing now on CSP,We have seen how its expressive power when extended by priority,
allows seemingly any finite behaviour model of CSP to be reduced to traces. Indeed this
extends to anyfinitely expressed rules forwhat can be observedwithinfinite linear behaviours,
whether the resulting equivalence is compositional or not.

This considerably extends the range of what can be done with a tool like FDR. The
final section shows an alternative approach to this, namely reducing a less discerning model
to a more discerning one without priority. This worked well for reducing timed failures to
refusal testing, but other reductions (for example ones involving both acceptances and refusal
sets) do not always seem to be so efficient. For example reducing a refusal sets process to
the acceptances model seems unnecessarily complex as, for example, the process CH AOS
needs exponentially many acceptance sets where a single maximal refusal suffices.

We discovered that it is entirely practical to use this technique to reason about large
systems. Furthermore the authors have found that the debugging feedback that FDR gives to
model shifting checks is very understandable and usable.

In particular the authors were pleased to find that the results of this paper make automated
compositional reasoning about Timed CSP practical. They have already found it most infor-
mative about the expressive power of the notation. It seems possible that, as with untimed
CSP, the availability of automated refinement checking will bring about enrichments in the
notations of Timed CSP that help it in expressing practical systems and specifications.

Model shifting means that it is far easier to experiment with automated verification in a
variety of semantic models, so it will only very occasionally be necessary for a new one to
be directly supported.

We believe that similar considerations will apply to classes of models that include infinite
observations such as divergences, infinite traces, where these can be extended to incorporate
refusals and acceptances as part of such observations. In such cases we imagine that model
shifting will take care of the aspects of infinite behaviours that are present in their finite
prefixes, and that the ways that infinitary aspects are handled will follow one of the three
traces models available in CSP. These are

123

Translating between models of concurrency 437

– finite traces (used in the present paper),
– divergence-strict finite and infinite traces, so as soon as an observation is made that can

be followed by immediate divergence, we deem all continuations to be in the process
model whether or not the process itself can do them operationally, and finally

– with full divergence strictness replaced by the weak divergence strictness discussed in
[19] (here an infinite behaviourwith infinitelymany divergent prefixes is added as above).

Only the first of these is directly supported by FDR4 at present, though the second is easily
derived from its support of the failures divergence model. There is no technical obstacle to
supporting the third for finite state processes.

Thus it should be possible to handle virtually the entire hierarchy of models described
in [21] in terms of variants on traces and model shifting. This will be the subject of future
research.

Acknowledgements The authors are grateful to Tom Gibson-Robinson for helpful discussions and practical
assistance with FDR4. The paper has been greatly improved thanks to comments from anonymous referees.
This work was been partially sponsored by DARPA under Agreement Number FA8750-12-2-0247 and by
research Grant EP/N022777/1 from EPSRC.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Armstrong, P., Lowe, G., Ouaknine, J., Roscoe, A.W.: Model checking Timed CSP. In: Proceedings of
HOWARD (Festschrift for Howard Barringer) (2012)

2. Brinksma, E., Rensink, A., Vogler, W.: Fair testing. In: International Conference on Concurrency Theory,
pp. 313–327. Springer, Berlin (1995)

3. Davies, J., Schneider, S.: A brief history of Timed CSP. Theor. Comput. Sci. 138(2), 243–271 (1995)
4. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3—amodern refinement checker

for CSP. In: Ábrahám, E., Havelund, K. (eds) Tools and Algorithms for the Construction and Analysis
of Systems. TACAS 2014. Lecture Notes in Computer Science, vol. 8413, Springer, Berlin, Heidelberg
(2014)

5. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3: a parallel refinement checker
for CSP. Int. J. Softw. Tools Technol. Transf. 18(2), 149–167 (2016)

6. Gibson-Robinson, T., Hansen, H., Roscoe, A.W., Wang, X.: Practical partial order reduction for CSP. In:
Havelund K., Joshi R., Holzmann G. (eds.) NASA Formal Methods, pp. 188–203. Springer, Berlin (2015)

7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc, Upper Saddle River (1985)
8. Jackson, D.M.: Logical verification of reactive software systems. Oxford University, DPhil Thesis (1992)
9. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems of equivalence.

Inf. Comput. 86(1), 43–68 (1990)
10. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. (STTT)

1(1), 134–152 (1997)
11. Mestel, D., Roscoe, A.W.: Reducing complex CSP models to traces via priority. Electron. Notes Theor.

Comput. Sci. 325, 237–252 (2016)
12. Milner, R.: A Calculus of Communicating Systems. Springer, New York (1982)
13. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput. 100(1), 1–40 (1992)
14. Ouaknine, J.: Discrete analysis of continuous behaviour in real-time concurrent systems. PhD thesis,

Oxford University (2000)

123

http://creativecommons.org/licenses/by/4.0/

438 D. Mestel, A. W. Roscoe

15. Ouaknine, J.:Digitisation and full abstraction for dense-timemodel checking. In: InternationalConference
on Tools andAlgorithms for the Construction andAnalysis of Systems, pp. 37–51. Springer, Berlin (2002)

16. Phillips, I.: Refusal testing. Theor. Comput. Sci. 50(3), 241–284 (1987)
17. Reed, G.M., Roscoe, A.W.: The timed failures–stability model for CSP. Theor. Comput. Sci. 211(1–2),

85–127 (1999)
18. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR, Upper Saddle River (1997)
19. Roscoe, A.W.: Seeing beyond divergence. In: Communicating Sequential Processes. The First 25 Years,

pp. 15–35. Springer, Berlin (2005)
20. Roscoe, A.W.: Revivals, stuckness and the hierarchy of CSP models. J. Logic Algebr. Program. 78(3),

163–190 (2009)
21. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science. Springer, Berlin (2010)
22. Roscoe, A.W.: On the expressiveness of CSP (2011)
23. Roscoe, A.W.: The automated verification of timewise refinement. EIT- CPSE (2013)
24. Roscoe,A.W.: The expressiveness ofCSPwith priority. Electron.Notes Theor. Comput. Sci. 319, 387–401

(2015)
25. Roscoe, A.W., Dathi, N.: The pursuit of deadlock freedom. Inf. Comput. 75(3), 289–327 (1987)
26. Roscoe, A.W., Huang, J.: Checking noninterference in Timed CSP. Form. Asp. Comput. 25(1), 3–35

(2013)
27. Roscoe, A.W., Reed, G.M.: A timed model for Communicating Sequential Processes. Theor. Comput.

Sci. 58, 249–261 (1988)
28. Schneider, S.: An operational semantics for Timed CSP. Inf. Comput. 116(2), 193–213 (1995)
29. Schneider, S.: Concurrent and Real-Time Systems. Wiley, Hoboken (2000)
30. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press,

Cambridge (2009)
31. van Glabbeek, R.J.: The linear time-branching time spectrum II. In: International Conference on Concur-

rency Theory, pp. 66–81 (1993)
32. Van Glabbeek, R.J.: The linear time-branching time spectrum I. The semantics of concrete, sequential

processes. In: Handbook of Process Algebra, pp. 3–99. Elsevier, Amsterdam (2001)
33. www.cs.ox.ac.uk/people/publications/personal/Bill.Roscoe.html (paper 193)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

www.cs.ox.ac.uk/people/publications/personal/Bill.Roscoe.html

	Translating between models of concurrency
	Abstract
	1 Introduction
	1.1 Summary of paper

	2 The CSP language
	2.1 Priority

	3 Example: the stable failures model
	3.1 The traces and failures models
	3.2 Model shifting for the stable failures model

	4 Semantic models
	4.1 Finite observations
	4.2 Finite observational models
	4.2.1 The traces model
	4.2.2 Failures
	4.2.3 Revivals
	4.2.4 Acceptances
	4.2.5 Refusal testing

	4.3 Rational models

	5 Model shifting
	5.1 Model shifting for mathcalFL
	5.2 Model shifting for rational observational models

	6 Implementation
	6.1 Testing
	6.2 Performance
	6.3 Debugging output
	6.4 Example: conflict detection

	7 Timed failures and Timed CSP
	7.1 A summary of discrete timed failures
	7.2 Model shifting timed failures
	7.2.1 Via mathcalFmathcalL and an automaton
	7.2.2 Custom approach

	7.3 Reducing timed failures to refusal testing

	8 Case study: timed sliding window protocol
	8.1 Experiments

	9 Conclusions
	Acknowledgements
	References

