Skip to main content
Log in

Complement for two-way alternating automata

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

We consider the problem of converting a two-way alternating finite automaton (2AFA) with n states to a 2AFA accepting the complement of its language. Complementing is trivial for halting 2AFAs, by swapping the roles of existential and universal decisions and the roles of accepting and rejecting states. However, since 2AFAs do not have resources to detect infinite loops by counting executed steps, it was not known whether the cost of complementing is polynomial in n in the general case. Here we shall show that 2AFAs can be complemented by using \(O(n^7)\) states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Throughout the paper, m denotes the length of the input and n the number of states.

  2. Sometimes, we call this tree “standard”, since other trees induced by the same configuration graph will also be used later.

  3. This means that \({\mathsf {A}}\) must be in an accepting state when it halts; the position of the input head at this moment is not relevant; such configuration has no sons; and the entire subtree degenerates into a single node.

  4. Both \(\langle {}d,r{}\rangle \in D{\times }Q\) and \(dr\in D{\cdot }Q\) represent an ordered pair satisfying \(d\in D\) and \(r\in Q\). We introduce a superfluous binary operator in order not to complicate notation more than necessary.

  5. The chronological order in which \(\kappa _{\scriptscriptstyle {j_{\pi }}},\ldots ,\kappa _{\scriptscriptstyle {j_1}}\) are determined as accepting does not correspond to the order in which \({\mathsf {A}}'\) traverses from these configurations to \(\kappa \). For example, in Fig. 1, the configuration \(\langle {}q_{\scriptscriptstyle {0}},3{}\rangle \) is determined as accepting earlier than \(\langle {}q_{\scriptscriptstyle {0}},5{}\rangle \), but \(\langle {}q_{\scriptscriptstyle {1}},4{}\rangle \) is visited from \(\langle {}q_{\scriptscriptstyle {0}},5{}\rangle \) earlier than from \(\langle {}q_{\scriptscriptstyle {0}},3{}\rangle \).

  6. It should be pointed out that \(\kappa \) can also be visited in the mode “\(\mathsf {{}from}\_{\mathsf {succ}}\)” by traversals from configurations that are not its valid sons. However, by (a.1), such visits do not modify the read–write contents in the cell.

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Boston, MA (1976)

    MATH  Google Scholar 

  2. Berman, L., Chang, J.H., Ibarra, O.H., Ravikumar, B.: Some observations concerning alternating turing machines using small space. Inf. Process. Lett. 25, 1–9 (1987). (Corr. ibid., 27, p. 53, 1988.)

    Article  MathSciNet  Google Scholar 

  3. Birget, J.-C.: Partial orders on words, minimal elements of regular languages, and state complexity. Theor. Comput. Sci. 119, 267–91 (1993)

    Article  MathSciNet  Google Scholar 

  4. Bovet, D.P., Crescenzi, P.: Introduction to the Theory of Complexity. Prentice Hall, Upper Saddle River, NJ (1994)

    MATH  Google Scholar 

  5. Brassard, G., Bratley, P.: Fundamentals of Algorithmics. Prentice Hall, Upper Saddle River, NJ (1996)

    MATH  Google Scholar 

  6. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. Assoc. Comput. Mach. 28, 114–33 (1981)

    Article  MathSciNet  Google Scholar 

  7. Geffert, V.: A speed-up theorem without tape compression. Theor. Comput. Sci. 118, 49–65 (1993)

    Article  MathSciNet  Google Scholar 

  8. Geffert, V.: An alternating hierarchy for finite automata. Theor. Comput. Sci. 445, 1–24 (2012)

    Article  MathSciNet  Google Scholar 

  9. Geffert, V.: Complement for two-way alternating automata. In: Proceedings on Computer Science Theory and Applications in Russia, Lecture Notes in Computer Science, vol. 10846, pp. 132–44. Springer (2018)

  10. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata. Inf. Comput. 205, 1173–87 (2007)

    Article  MathSciNet  Google Scholar 

  11. Geffert, V., Okhotin, A.: Transforming two-way alternating finite automata to one-way nondeterministic automata. In: Proceedings on Mathematical Foundations of Computer Science Part I, Lecture Notes in Computer Science, vol. 8634, pp. 291–302. Springer (2014)

  12. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Boston, MA (2001)

    MATH  Google Scholar 

  13. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J. Comput. 17, 935–38 (1988)

    Article  MathSciNet  Google Scholar 

  14. Kapoutsis, Ch.A.: Size complexity of two-way finite automata. In: Proceedings on Developments in Language Theory, Lecture Notes in Computer Science, vol. 5583, pp. 47–66. Springer (2009)

  15. Kapoutsis, Ch.A.: Minicomplexity. J. Autom. Lang. Combin. 17, 205–24 (2012)

  16. Kunc, M., Okhotin, A.: Reversibility of computations in graph-walking automata. In: Proceedings on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, vol. 8087, pp. 595–606. Springer (2013)

  17. Ladner, R.E., Lipton, R.J., Stockmeyer, L.J.: Alternating pushdown and stack automata. SIAM J. Comput. 13, 135–55 (1984)

    Article  MathSciNet  Google Scholar 

  18. Liśkiewicz, M., Reischuk, R.: Computing with sublogarithmic space. In: Hemaspaandra, L., Selman, A. (eds.) Complexity Theory Retrospective II. Springer, Berlin (1997)

    Google Scholar 

  19. Papadimitriou, Ch.H.: Computational Complexity. Addison-Wesley, Boston, MA (1994)

  20. Sakoda, W., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: Proceedings on ACM Symposium Theory of Computing, pp. 275–86 (1978)

  21. Sipser, M.: Halting space bounded computations. Theor. Comput. Sci. 10, 335–38 (1980)

    Article  MathSciNet  Google Scholar 

  22. Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Thomson Course Technology, Boston, MA (2006)

    MATH  Google Scholar 

  23. Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Inform. 26, 279–84 (1988)

    Article  MathSciNet  Google Scholar 

  24. Szepietowski, A.: Turing Machines with Sublogarithmic Space. Lecture Notes in Computer Science, vol. 843. Springer, Berlin (1994)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viliam Geffert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the Slovak Grant Agency for Science (VEGA) under contract 1/0056/18 “Descriptional and Computational Complexity of Automata and Algorithms” and by the Slovak Research and Development Agency under Contract APVV-15-0091 “Efficient Algorithms, Automata, and Data Structures”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geffert, V., Kapoutsis, C.A. & Zakzok, M. Complement for two-way alternating automata. Acta Informatica 58, 463–495 (2021). https://doi.org/10.1007/s00236-020-00373-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-020-00373-8

Mathematics Subject Classification

Navigation