Skip to main content
Log in

On the probabilistic bisimulation spectrum with silent moves

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

In this paper we look at one of the seminal works of Rob van Glabbeek from a probabilistic angle. We develop the bisimulation spectrum with silent moves for probabilistic models, namely Markov decision processes. Especially the treatment of divergence makes this endeavour challenging. We provide operational as well as logical characterisations of a total of 32 bisimilarities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. When dealing with \(\xi \in \{\textsf {s},0,\lambda \}\) then \(u_1 \mathrel {\approx _{x}^{\xi }} u_2\) in \({\mathcal {N}}\) is possible, although \(u_1\) and \(u_2\) may not be \(\mathrel {\approx _{x}^{\xi }}\)-bisimilar in \({\mathcal {M}}\). This, however, is irrelevant for our purposes as we deal here only with the relation \(R_{{\mathcal {N}}}\) which enjoys the property that if \(u_1,u_2\in S\) then \((u_1,u_2) \in R\) iff \((u_1,u_2)\in R_{{\mathcal {N}}}\). Furthermore, with R also \(R_{{\mathcal {N}}}\) is \(\xi \)-respecting as all fresh states are terminal. Therefore, if \(\xi \in \{\textsf {s},0,\lambda \}\) then the \(\xi \)-predicate in \({\mathcal {N}}\) is \(\xi _{{\mathcal {N}}}=\{u_{{\mathcal {N}}}:u\in S\}\), while for \(\xi \in \{\Updelta ,\nabla \}\) the \(\xi \)-predicates in \({\mathcal {N}}\) and \({\mathcal {M}}\) agree in the sense that \(\Updelta _{{\mathcal {N}}}=\Updelta _{{\mathcal {M}}}\) and \(\nabla ^{R_{{\mathcal {N}}}}_{{\mathcal {N}}}=\nabla ^R_{{\mathcal {M}}}\).

  2. Note, however, that \({\text {supp}(\mu _n)}\) contains states \(u \in S\) that do not have R-equivalent states in \({\text {supp}(\mu )}\), unless \({\mathcal {T}}_n={\mathcal {T}}\). These are exactly the states that occur as labels of some inner node v of \({\mathcal {T}}\) with \(\textit{depth}(v)=n\). For these states u, we have \(\lim _{n \rightarrow \infty } \mu _n(u)=0\), but no monotonicity property can be guaranteed for the sequence \((\mu _n(u))_{n \geqslant 0}\).

  3. If there is no BSCC in \({\mathcal {C}}\) that consists of T-states then \(E=\varnothing \), in which case \(\mathrm {Pr}^{\sigma _0}_u\bigl ( \, (S \times \{\tau \})^{\omega } \, \bigr )=0\) for all states \(u\in S\).

  4. Recall that \(\mu \mathrel {\approx _{x}^{\xi }}\nu \) stands for \(\mu \equiv _{\mathrel {\approx _{x}^{\xi }}}\nu \).

References

  1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  2. Bergstra, J.A., Klop, J.W., Olderog, E.: Failures without chaos: a new process semantics for fair abstraction. In: Wirsing, M. (ed.) Formal Description of Programming Concepts-III: Proceedings of the IFIP TC 2/WG 2.2 Working Conference on Formal Description of Programming Concepts-III, Ebberup, Denmark, 25–28 Aug 1986, pp. 77–104. North-Holland (1987)

  3. Blute, R., Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. In: 12th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 149–158. IEEE Computer Society (1997)

  4. Brengel, M.: Probabilistic weak transitions. Bachelor’s thesis, Universität des Saarlandes, Fachrichtung Informatik (2013)

  5. D’Argenio, P.R., Sánchez Terraf, P., Wolovick, N.: Bisimulations for non-deterministic labelled Markov processes. Math. Struct. Comput. Sci. 22(1), 43–68 (2012). https://doi.org/10.1017/S0960129511000454

    Article  MathSciNet  MATH  Google Scholar 

  6. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford University, Department of Computer Science (1997)

  7. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Testing finitary probabilistic processes. In: 20th International Conference on Concurrency Theory (CONCUR), Lecture Notes in Computer Science, vol. 5710, pp. 274–288. Springer, Berlin (2009)

  8. Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222, 139–168 (2013). https://doi.org/10.1016/j.ic.2012.10.010

    Article  MathSciNet  MATH  Google Scholar 

  9. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Weak bisimulation is sound and complete for pCTL*. Inf. Comput. 208(2), 203–219 (2010). https://doi.org/10.1016/j.ic.2009.11.002

    Article  MathSciNet  MATH  Google Scholar 

  10. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11–14 July 2010, Edinburgh, United Kingdom, pp. 342–351. IEEE Computer Society (2010). https://doi.org/10.1109/LICS.2010.41

  11. Fischer, N., van Glabbeek, R.: Axiomatising infinitary probabilistic weak bisimilarity of finite-state behaviours. J. Log. Algebra Methods Program. 102, 64–102 (2019). https://doi.org/10.1016/j.jlamp.2018.09.006

    Article  MathSciNet  MATH  Google Scholar 

  12. Groote, J.F., Vaandrager, F.W.: An efficient algorithm for branching bisimulation and stuttering equivalence. In: 17th International Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science, vol. 443, pp. 626–638. Springer, Berlin (1990)

  13. Hennessy, M.: Exploring probabilistic bisimulations, part I. Formal Asp. Comput. 24(4–6), 749–768 (2012). https://doi.org/10.1007/s00165-012-0242-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Hermanns, H., Parma, A., Segala, R., Wachter, B., Zhang, L.: Probabilistic logical characterization. Inf. Comput. 209(2), 154–172 (2011). https://doi.org/10.1016/j.ic.2010.11.024

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee, M.D., de Vink, E.P.: Logical characterization of bisimulation for transition relations over probability distributions with internal actions. In: Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.) 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, 22–26 Aug 2016-Kraków, Poland, LIPIcs, vol. 58, pp. 29:1–29:14. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.MFCS.2016.29

  16. Liu, X., Yu, T., Zhang, W.: Logics for bisimulation and divergence. In: Baier, C., Lago, U.D. (eds.) Foundations of Software Science and Computation Structures—21st International Conference, FOSSACS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, 14–20 April 2018, Proceedings, Lecture Notes in Computer Science, vol. 10803, pp. 221–237. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-89366-2_12

  17. Milner, R.: Communication and Concurrency. PHI Series in Computer Science. Prentice Hall, Upper Saddle River (1989)

    Google Scholar 

  18. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) Theoretical Computer Science, 5th GI-Conference, Karlsruhe, Germany, 23–25 March 1981, Proceedings, Lecture Notes in Computer Science, vol. 104, pp. 167–183. Springer, Berlin (1981). https://doi.org/10.1007/BFb0017309

  19. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)

    Book  Google Scholar 

  20. Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1995). http://hdl.handle.net/1721.1/36560

  21. Song, L., Zhang, L., Godskesen, J.C.: Bisimulations meet PCTL equivalences for probabilistic automata. Log. Methods Comput. Sci. (2013). https://doi.org/10.2168/LMCS-9(2:7)2013

    Article  MathSciNet  MATH  Google Scholar 

  22. Stoelinga, M.: Alea jacta est: verification of probabilistic, real-time and parametric systems. Ph.D. thesis, University of Nijmegen, the Netherlands (2002)

  23. van Glabbeek, R.J.: The linear time-branching time spectrum II. In: Best, E. (ed.) CONCUR ’93, 4th International Conference on Concurrency Theory, Hildesheim, Germany, 23–26 Aug 1993, Proceedings, Lecture Notes in Computer Science, vol. 715, pp. 66–81. Springer, Berlin (1993). https://doi.org/10.1007/3-540-57208-2_6. An extended version is available at http://boole.stanford.edu/pub/spectrum.pdf.gz

  24. van Glabbeek, R.J.: The linear time-branching time spectrum I. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99. North-Holland, Elsevier, Amsterdam (2001). https://doi.org/10.1016/b978-044482830-9/50019-9

    Chapter  MATH  Google Scholar 

  25. van Glabbeek, R.J., Luttik, B., Trcka, N.: Branching bisimilarity with explicit divergence. Fundam. Inform. 93(4), 371–392 (2009). https://doi.org/10.3233/FI-2009-109

    Article  MathSciNet  MATH  Google Scholar 

  26. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43(3), 555–600 (1996). https://doi.org/10.1145/233551.233556

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christel Baier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has received financial support by DFG Grant 389792660 as part of TRR 248 (see perspicuous-computing.science), by ERC Advanced Grant 69561 (POWVER), by ANPCyT PICT-2017-3894 (RAFTSys), and by SeCyT-UNC 33620180100354CB (ARES), by the Cluster of Excellence EXC 2050/1 (CeTI, Project ID 390696704, as part of Germany’s Excellence Strategy), by the DFG-Projects BA-1679/11-1 and 1679/12-1 and by the CRC 912 HAEC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baier, C., D’Argenio, P.R. & Hermanns, H. On the probabilistic bisimulation spectrum with silent moves. Acta Informatica 57, 465–512 (2020). https://doi.org/10.1007/s00236-020-00379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-020-00379-2

Navigation