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Abstract
Parameterized complexity allows us to analyze the time complexity of problems with respect
to a natural parameter depending on the problem. Reoptimization looks for solutions or
approximations for problem instances when given solutions to neighboring instances. We
combine both techniques, in order to better classify the complexity of problems in the
parameterized setting. Specifically, we see that some problems in the class of composi-
tional problems, which do not have polynomial kernels under standard complexity-theoretic
assumptions, do have polynomial kernels under the reoptimizationmodel for some localmod-
ifications. We also observe that, for some other local modifications, these same problems do
not have polynomial kernels unless NP ⊆ coNP/poly. We find examples of compositional
problems, whose reoptimization versions do not have polynomial kernels under any of the
considered local modifications. Finally, in another negative result, we prove that the reopti-
mization version of Connected Vertex Cover does not have a polynomial kernel unless
Set Cover has a polynomial compression. In a different direction, looking at problems
with polynomial kernels, we find that the reoptimization version of Vertex Cover has a
polynomial kernel of size 2k + 1 using crown decompositions only, which improves the size
of the kernel achievable with this technique in the classic problem.
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1 Introduction

In this paper, we try to combine the techniques of reoptimization and parametrization in
order to have a better understanding of what makes a problem hard from a parameterized
complexity point of view. The goal is, given a solution for an instance of a parameterized
problem, try to look at local modifications and see if the problem becomes easier or if it
stays in the same complexity class. For this, we look at classical problems in parameterized
complexity, whose complexity is well understood and classified.

While the connections between reoptimization and parameterization were not systemat-
ically explored up to now, some links were already discovered. The technique of iterative
compressionwhichwas introduced byReed, Smith, andVetta [29]was very successfully used
to design parameterized algorithms, see the textbook by Cygan et al. [12] for an overview. It
is closely related to common design techniques for reoptimization algorithms. Abu-Khzam et
al. [1] looked at the parameterized complexity of dynamic, reoptimization-related versions of
dominating set and other problems, albeit more related to a slightly different model of reop-
timization as introduced by Shachnai et al. [30]. Very recently, Alman, Mnich, and Williams
[2] and also Krithika et al. [24] considered dynamic parameterized problems, which can be
seen as a generalization of reoptimization problems.

We start by introducing themain concepts of parameterized complexity and reoptimization
that we are going to use in our results.

1.1 Parameterized complexity

Classical complexity theory classifies problems by the amount of time or space that is required
by algorithms solving them. Usually, the time or space in these problems is measured by
the input size. However, measuring complexity only in terms of the input size ignores any
structural information about the input instances, making problems appear sometimes more
difficult than they actually are.

Parameterized complexity was developed by Downey and Fellows in a series of articles in
the early 1990s [15, 16]. Parameterized complexity theory provides a theory of intractability
and of fixed-parameter tractability that relaxes the classical notion of tractability, namely
polynomial-time computability, by allowing non-polynomial computations only depending
on a parameter independent of the instance size. For a deeper introduction to parameterized
complexity, we refer the reader to Downey et al. [17, 20].

We now introduce the formal framework for parameterized complexity that we use
throughout the paper. Let � denote a finite alphabet and N the set of natural numbers. A
decision problem L is a subset of �∗. We will call the strings x ∈ �∗, input of L , regardless
of whether x ∈ L . A parameterized problem is a subset L ⊆ �∗ × N. An input (x, k) to
a parameterized language consists of two parts where the second part is the parameter. A
parameterized problem L is fixed-parameter tractable if there exists an algorithm that given
an input (x, k) ∈ �∗ × N decides whether (x, k) ∈ L in f (k)p(n) time, where f is an
arbitrarily computable function solely in k and p is a polynomial in the total input length
n = |x |+ k. FPT is the class of parameterized problems which are fixed-parameter tractable.

A kernelization for a parameterized problem L ⊆ �∗ × N is an algorithm that, given
(x, k) ∈ �∗ × N, outputs in p(n) time a pair (x ′, k′) ∈ �∗ × N, namely a kernel, such
that (x, k) ∈ L ⇐⇒ (x ′, k′) ∈ L and |x ′|, k′ ≤ f (k), where p is a polynomial and f an
arbitrary computable function; f is referred to as the size of the kernel. If for a problem L ,
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Reoptimization of parameterized problems 429

the size of the kernel f is polynomial in k, we say that L has a polynomial kernel. PK is the
class of parameterized problems which have polynomial kernels.

A Turing kernelization is a procedure consisting of two parameterized problems L1 and
L2 (typically L1 = L2) and a polynomial g together with an oracle for L2, such that, on
an input (x, k) ∈ �∗ × N, the procedure outputs the answer whether x ∈ L1 in polynomial
time by querying the oracle for L2 with questions of the form “Is (x2, k2) ∈ L2?” for
|x2|, k2 ≤ g(k). Essentially, a Turing kernelization allows us to use an oracle for small
instances, in order to solve L1 on a larger instance (x, k). A polynomial Turing kernelization
is a Turing kernelization where g is a polynomial function. PTK is the class of parameterized
problems which have polynomial Turing kernelizations.

The problem classes we defined up to now satisfy PK ⊆ PTK ⊆ FPT. There are well-
known problems; however, that are not known to be FPT. For example, k-Clique, which is
the problem of identifying whether a graph G contains a clique of size k, is not contained in
FPT under some standard complexity-theoretic assumptions. Neither is the complementary
problem k-Independent Set, which is the problem of identifying whether a graph G con-
tains an independent set of size k, or the k-Set Cover problem, where given a universe set
U and a familyF of subsets ofU , we are asked to determine whether there is a subset ofF of
size k which contains every element ofU . For these problems outside FPT, there is a further
classification of their hardness in terms of the so-called W-hierarchy consisting of classes
W [t] for t ∈ N, such that W [t] ⊆ W [t + 1]. Moreover, FPT ⊆ W [1]. For the definition
of these classes and the theory behind, it we refer the reader to the reference book [17]. In
this paper, we will only use the classes W [1] and W [2]. For them, we have the following
characterizations in terms of complete problems: k-Clique and k-Independent Set are
complete for W [1], and k-Set Cover is complete for W [2].

1.2 Reoptimization

Often, one has to solve multiple instances of one optimization problem which might be
somehow related. Consider the example of a timetable for some railway network. Assume
that we have spent a lot of effort and resources to compute an optimal or near-optimal
timetable satisfying all given requirements. Now, a small local change occurs like, e. g., the
closing of a station due to construction work. This leads to a new instance of our timetable
problem that is closely related to the old one. Such a situation naturally raises the question
whether it is necessary to compute a new solution from scratch or whether the known old
solution can be of any help. The framework of reoptimization tries to address this question:
We are given an optimal or nearly optimal solution to some instance of a hard optimization
problem, then a small local change is applied to the instance, and we ask whether we can
use the knowledge of the old solution to facilitate computing a reasonable solution for the
locally modified instance. It turns out that, for different problems and different kinds of local
modifications, the answer to this question might be completely different. Generally speaking,
we should not expect that solving the problem on the modified instance optimally can be
done in polynomial time, but, in some cases, the approximability might improve a lot.

This notion of reoptimization was mentioned for the first time by Schäffter [31] in the
context of a scheduling problem. Archetti et al. [4] used it for designing an approximation
algorithm for the metric traveling salesman problem (�TSP) with an improved running time,
but still the same approximation ratio as for the original problem. But the real power of the
reoptimization concept lies in its potential to improve the approximation ratio compared to
the original problem. This was observed for the first time by Böckenhauer et al. [6] for the
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430 H.-J. Böckenhauer et al.

�TSP, considering the change of one edge weight as a local modification. Independently
at the same time, Ausiello et al. [5] proved similar results for TSP reoptimization under the
local modification of adding or removing vertices.

Intuitively, the additional information that is given in a reoptimization setup seems to be
rather powerful. Intriguingly,many reoptimization variants ofNP-hard optimization problems
are also NP-hard. A general approach toward proving the NP-hardness of reoptimization
problems uses a sequence of reductions and can on a high level be described as follows
[7]: Consider an NP-hard optimization problem L , a local modification lm, and a resulting
reoptimization problem lm-L . Moreover, suppose we are able to transform an efficiently
solvable instance x ′ of L to any instance x of L in a polynomial number of local modifications
of type lm. Then, any efficient algorithm for lm-L could be used to efficiently solve L; thus,
the NP-hardness of L implies the hardness of lm-L .

1.3 Reoptimization of parameterized problems

Now that we have seen the main concepts of parameterized complexity and reoptimization,
we will formally define an instance for a reoptimization parameterized problem lm-L .

Given a parameterized problem L , we say that a parameterized instance (x, k) has a
solution if (x, k) ∈ L .

If an instance (x, k) /∈ L , we will say that the instance does not have a solution and denote
it with ⊥. A solution s for a problem instance (x, k) is a witness of size |s| ≤ p(|x |) for
some polynomial p, with which we can check in polynomial time that (x, k) ∈ L . Observe
that there may be more than one solution for a given instance. In order to measure how good
a solution is, we have to define the cost of the solution. The cost function assigns an integer
value to every solution. For some parameterized problems, the parameter is already ameasure
of the goodness of the solution. For these problems, a solution s has cost k if it is a solution
for (x, k) ∈ L but not a solution for (x, k′) for any k′ < k, if L is a minimization problem,
and k′ > k, if L is a maximization problem.

In problems where the parameter k is an intrinsic value of the instance rather than a quality
measure, we have to define an extra parameter γ measuring the quality of the solutions. A
cost function cost(·) is a polynomially computable function that, given a solution s to an
instance (x, k), computes the value of γ corresponding to this solution. Often, this parameter
will be the size of the solution, but other parameters can be used. In these problems, we
redefine an instance to be a triple (x, k, γ ) where (x, k, γ ) ∈ L if and only if (x, k) ∈ L and
there exists a solution s with cost(s) ≤ γ if L is a minimization problem and cost(s) ≥ γ if
L is a maximization problem.

From now on, we assume that k is a cost parameter unless otherwise specified, and thus,
we refer to instances as pairs (x, k). An instance of a reoptimization problem lm-L consists
of: an instance of the parameterized problem L , (x, k) ∈ �∗ × N, together with a solution
s with cost(s) ≤ k for minimization problems and cost(s) ≥ k for maximization problems
if it exists, i. e., if (x, k) ∈ L , or ⊥ if (x, k) /∈ L , and a locally modified instance (xlm, k′),
where k′ = f (k) for a computable function f . We say that ((x, k), s, (xlm, k′)) ∈ lm-L if
and only if (xlm, k′) ∈ L .

We will also define a polynomial reoptimization kernel for a reoptimization instance
((x, k), s, (xlm, k′)) as a polynomial kernel for (xlm, k′). This makes sense because
((x, k), s, (xlm, k′)) ∈ lm-L if and only if (xlm, k′) ∈ L .
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1.4 Our contribution

In this paper,weuse reoptimization techniques to solve parameterized problemsor to compute
better kernels for them. In particular, we show in Sect. 2 that some compositional parameter-
ized problems [8], which do not have polynomial kernels under standard complexity-theoretic
assumptions, do have polynomial reoptimization kernels for some local modifications.More-
over, in Sect. 3, we show that, under the opposite local modifications, those same problems
do not admit polynomial reoptimization kernels unless NP ⊆ coNP/poly. We also show that
some compositional problems do not have polynomial reoptimization kernels under any of
the standard local modifications for graph problems, i. e., vertex or edge addition or deletion.

Section 4 contains a reduction from Set Cover parameterized by the size of the universe
toConnected Vertex Cover that shows that the reoptimization of Connected Vertex

Cover under edge addition does not have a polynomial reoptimization kernel unless NP ⊆
coNP/poly.

We then show in Sect. 5 that, for the reoptimization version of the vertex cover problem
with edge addition, the crown decomposition technique yields a reoptimization kernel of size
2k + 1.

2 Kernels for compositional problems

Bodlaender et al. [8] define the concept of compositional parameterized problems, specifi-
cally OR-compositional and AND-compositional problems, for both of which no polynomial
kernel exists under standard complexity-theoretic assumptions. In this section, we see that
some of these problems do indeed have polynomial reoptimization kernels, where an optimal
solution or a polynomial kernel is given for a locally modified instance.

2.1 Preliminaries

A characterization of OR-compositional graph problems is the following.

Definition 1 [8] Let L be a parameterized graph problem. If for any pair of graphs G1 and
G2, and any integer k ∈ N, we have

(G1, k) ∈ L ∨ (G2, k) ∈ L ⇐⇒ (G1 ∪ G2, k) ∈ L,

where G1 ∪ G2 is the disjoint union of G1 and G2, then L is OR-compositional.

Now, if we define the complement of a problem, an analogous characterization can be
defined that will identify problems whose complement is OR-compositional, the so-called
AND-compositional problems.

Definition 2 Let L be a parameterized decision problem. The complement L̄ of L is the
decision problem resulting from reverting the yes- and no-answers.

Definition 3 [8] Let L be a parameterized graph problem. If for any pair of graphs G1 and
G2, and any integer k ∈ N, we have

(G1, k) ∈ L ∧ (G2, k) ∈ L ⇐⇒ (G1 ∪ G2, k) ∈ L,

where G1 ∪ G2 is the disjoint union of G1 and G2, then L̄ is OR-compositional and L is
AND-compositional.
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432 H.-J. Böckenhauer et al.

Bodlaender et al. [8] showed the following result.

Theorem 1 [8] NP-hardOR-compositional problems do not have polynomial kernels, unless
NP ⊆ coNP/poly, i. e., the polynomial hierarchy collapses.

Moreover, Drucker [18] was able to show the following.

Theorem 2 [18] Unless NP ⊆ coNP/poly, NP-hard AND-compositional problems do not
have polynomial kernels.

We prove in this section that reoptimization versions of some OR-compositional or AND-
compositional problems have polynomial reoptimization kernels. Let us see now which local
modifications will provide these results.

When we talk about graph problems in a reoptimization setting, four local modifications
come to mind immediately, namely edge addition and deletion, and vertex addition and
deletion. We now define them formally.

Given a graph G = (V , E), and a pair of non-neighboring vertices u, v ∈ V , we denote
an edge addition (V , E ∪{u, v}) by G +{u, v}, or G + e where e = {u, v}. Analogously, for
edge deletion, given an edge e ∈ E , G − e is the graph (V , E −{e}). Furthermore, for vertex
deletion, given a vertex v ∈ V , G−v is the subgraph induced by V −{v}, i. e., (V −{v}, E ′)
where E ′ is E without the edges incident to v. Finally, in the case of vertex addition, given a
new vertex v and a set of edges E ′ ⊆ ⋃

u∈V {u, v}, G + v is G = (V ∪ {v}, E ∪ E ′). Given a
graph problem L , we call the reoptimization version of L under edge addition, edge deletion,
vertex addition, and vertex deletion e+-L , e−-L , v+-L , and v−-L , respectively.

We now give an example of a OR-compositional FPT problem that admits polynomial
reoptimization kernels under edge addition. We want to see which are the conditions that
allow us to find a kernel in this setting.

2.2 Internal vertex subtree

A subtree T of a graph G is a (not necessarily induced) subgraph of G which is also a tree.
The vertices of a tree can be classified into two categories: leaves are vertices of degree 1 and
internal vertices are vertices of higher degree. Let us consider the following parameterized
decision problem called the Internal Vertex SubTree problem. Given a graph G and an
integer k, we have to determine whether G contains a subtree with at least k internal vertices.

The connected version of this problem,wherewe consider as input only pairs (G, k)where
G is connected, is calledMaximum Internal Spanning Tree and has a polynomial kernel
of size 3k using the crown lemma [21] and an improved polynomial kernel of size 2k [25].
However, the general version of this problem does not have a polynomial kernel, unless
NP ⊆ coNP/poly. Let us see this.

Theorem 3 Internal Vertex SubTree in general graphs does not have a polynomial
kernel unless NP ⊆ coNP/poly.

Proof Observe first that Internal Vertex SubTree is OR-compositional. As required by
Definition 1, given two connected graphs G1 and G2, if one of them has a subtree with k
internal vertices, then the disjoint union of them, i. e., the graph with two connected com-
ponents G1 and G2 will also have one, the same one that was in G1 or G2. This argument
easily extends to arbitrary graphs G1 and G2. As for the reverse implication, if a graph G
contains two connected components G = G1 ∪ G2 and has such a subtree, then the whole
subtree, which is connected, must be contained in one of the components, meaning that either
(G1, k) ∈ Internal Vertex SubTree or (G2, k) ∈ Internal Vertex SubTree.
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Moreover, Internal Vertex SubTree is NP-complete (in particular NP-hard). This is
because there is a straightforward reduction from Hamiltonian path (see [28]), which is well
known to be NP-complete.

Finally, we see that, by Theorem 1, Internal Vertex SubTree does not have a poly-
nomial kernel unless NP ⊆ coNP/poly. ��

Now, we are going to prove that e+-Internal Vertex SubTree has a polynomial
reoptimization kernel.

Theorem 4 e+-Internal Vertex SubTree has a polynomial reoptimization kernel of size
2k.

Proof Let us consider an instance ((G, k), T , (G + e, k)) for e+-Internal Vertex Sub-

Tree. Recall that T is a subtree of G with at least k internal vertices (i. e., a solution for
(G, k)) if it exists or ⊥ otherwise. The following procedure gives a kernel of size 2k for the
modified input (G + e, k).

If T is a subtree with at least k internal vertices, then T is also a valid solution for
G+e; thus, any instancewhere (G, k) ∈ Internal Vertex SubTree implies immediately
that ((G, k), T , (G + e, k)) ∈ e+-Internal Vertex SubTree; thus, any trivial instance
(H , k) ∈ Internal Vertex SubTree of size ≤ 2k is a kernel for e+-Internal Vertex

SubTree.
On the other hand, if (G, k) contains no such tree, then it suffices to check for (G + e, k),

whether the connected component containing the edge e has such a subtree because any other
connected component of G + e is identical to a component in G, and, we know that those
components do not contain any subtree with at least k internal vertices. This means that (G+
e, k) ∈ Internal Vertex SubTree if and only if the connected component containing
e has a subtree with at least k internal vertices. And thus, a kernel for this component is
equivalent to a kernel of the whole instance. As we know that a 2k kernel exists for the
connected case [25], we can obtain one such kernel for the connected component containing
e; thus, we have provided a kernel of size 2k for ((G, k), T , (G + e, k)). ��

This shows that e+-Internal Vertex SubTree admits polynomial reoptimization ker-
nels. Observe that, in this case, we would be able to find a kernel for the modified instance
by using the same procedure, even if we were given only a Yes/No answer or a polynomial
kernel instead of a solution for the non-modified instance. This is because given an instance
(G, k) for Internal Vertex SubTree, if we are guaranteed this instance has a subtree
with k internal vertices, then for sure (G + e, k) also has one, on the other hand, if we are
guaranteed that (G, k) does not have such a subtree, then if one should exist for (G + e, k),
it would be found in the component that contains e, and thus, we could build a kernel for that
component. In the case, we are given just an instance (G, k) and a polynomial kernel for this
instance; the way to build a kernel for (G + e, k) is just to build a kernel for the component
that contains e and give as polynomial kernel for (G + e, k) the kernel obtained by taking
a disjoint union of both kernels. We can find through the first kernel if (G, k) has a subtree
with k internal vertices and in this case second kernel is not relevant; otherwise, we can look
at the second kernel to determine if the component containing the edge e has a spanning tree
with k internal vertices, thus solving the instance (G + e, k).

2.3 Generalization

To begin with, we observe that, in order for a problem to be solvable in an analogous way to
the problem above, it is important that the property defining the problem is maintained under
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the local modification considered. For instance, a subtree of a graph G is also a subtree of the
same graph with an added edge, G + e. However, the same does not hold for edge deletion,
because the deleted edge might be part of the chosen subtree for G. In order to formalize
this, we define the following:

Definition 4 (Monotone graph problem) A graph problem L is calledmonotone if it is closed
under removal of edges and vertices. That is, if an instance (G, k) ∈ L , then (G − e, k) ∈ L
for every e ∈ E and (G − v, k) ∈ L for every v ∈ V .

Definition 5 (Comonotone graph problem) Similarly, a graph problem L is called comono-
tone if it is closed under addition of edges and vertices.

We see in this subsection how to construct polynomial reoptimization kernels for the reop-
timization versions of some compositional graph problems that are monotone or comonotone
and that are not in PK.

We realize that, in order to get similar results as in the examples above, we need the
following conditions. Let L be a graph problem;

1. L is compositional and NP-hard.
2. Any instance of the parameterized problem L has a polynomial kernel on the connected

component of a given vertex or edge, or an instance of the rooted version of the problem L∗
has a polynomial kernel (informally, in a rooted version of a problem, any given instance
contains a distinguished vertex, the root, and the solution must contain this vertex).

3. The problem is monotone or comonotone.

The first condition ensures that the considered problem does not have a polynomial kernel
unless NP ⊆ coNP/poly, which makes results on reoptimization interesting. The second
condition allows us to find kernels locally. The third condition allows the modification to
only affect the solution locally, whereas other modifications could potentially require to look
at the whole instance for a solution. Let us formalize this.

We define the environment of an edge e or a vertex v in a graph G + e or G + v, as
the connected component that contains e or v. For edge and vertex deletions, we say that
the environment of e or v in a graph G − e or G − v is the connected components that are
modified or generated when e or v is deleted from G.

Given an instance (G, k) for a parameterized problem L on graphs whose solution can
be described by a subset of vertices and edges, an instance of the rooted version L∗ of the
problem is a triplet (G, v, k) where (G, v, k) ∈ L∗ if and only if (G, k) ∈ L and there exists
a solution containing v. We will say that a kernel (G ′, k′) for an instance (G, k) is a v-rooted
kernel if it is a kernel for (G, v, k) for the rooted problem L∗, i. e., such that (G ′, k′) ∈ L if
and only if (G, k) ∈ L and has a solution (represented by a subset of vertices and edges) that
contains v.

Given a graph G = (V , E), and a subset of the vertex set V ′ ⊆ V , the subgraph H
induced by V ′ is the graph H = (V ′, E ′) where E ′ ⊆ E contains the edges between vertices
of V that are part of E .

Finally, given an instance (G, k) ∈ L for a graph problem L whose solution can be
described by a subset of vertices and edges, we say that the solution S ⊆ V to (G, k) is a
witness solution if it, given the subgraph H induced by S together with a parameter, is an
instance for L and (H , k) ∈ L , and moreover, S is a solution for any supergraph G ′ of G
for which H is a subgraph induced by S. Essentially, we require all of the vertices which
are necessary for the solution to be valid, to be part of the solution subset, and we require
that the solution keeps being valid for any supergraph. This last requirement is automatically
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satisfied in comonotone graph problems, which would allow us to relax the definition, but is
needed in the case of monotone graph problems.

We are now ready to formally state the theorems which generalize the results we have for
Internal Vertex SubTree.

Theorem 5 Let L be a parameterized NP-hard OR-compositional monotone graph problem.
If, for every instance (G, k), we can compute a polynomial kernel for an environment of
any edge e ∈ E or if there exist witness solutions for instances in L and we can compute a
rooted polynomial kernel for any vertex v ∈ V , then e−-L admits polynomial reoptimization
kernels. Moreover, if for every instance (Ĝ, k̂), we can compute a polynomial kernel for an
environment of any vertex v ∈ V̂ , then v−-L admits polynomial reoptimization kernels.

In the same way, we can state a similar theorem for comonotone graph problems with the
complementary reoptimization steps, namely edge and vertex addition.

Theorem 6 Let L be a parameterized NP-hard OR-compositional comonotone graph prob-
lem. If, for every instance (G, k), we can compute a polynomial kernel for an environment of
any edge e ∈ E or if there exist witness solutions for instances in L and we can compute a
rooted polynomial kernel for any vertex v ∈ V , then e+-L admits polynomial reoptimization
kernels. Moreover, if for every instance (Ĝ, k̂), we can compute a polynomial kernel for an
environment of any vertex v ∈ V̂ or a polynomial kernel rooted to v for any v ∈ V̂ ; then,
v+-L admits polynomial reoptimization kernels.

We state a proof for Theorem 5 in the case of edge deletion, and the rest of the cases can
be proven by analogy to it.

Proof of Theorems 5 and 6 Let us first consider the case for edge deletion. If an instance (G, k)
for a monotone parameterized graph problem L is a yes instance then, we can construct a
trivial yes-kernel for (G − e, k).

Otherwise, (G, k) /∈ L . It is important to observe, that in case of an edge deletion, given
an instance G and an edge e, the environment of emight contain two connected components.

If the considered problem L has polynomial kernels for an environment of an edge, it will
have a polynomial kernel for the graph G − e. This is because none of the components of the
rest of the graph are modified; thus, any solution found for G − emust be in the environment
of e, thus making the generated kernel, a valid kernel for (G − e, k).

On the other hand, if for any instance of the considered problems we can compute a kernel
for any vertex v ∈ V , in the case of edge deletion, there may be only two components in
the environment of e after deleting it. One can thus consider the two rooted kernels on the
two vertices adjacent to e. The union of these two kernels is a kernel for (G − e, k) in this
case. Let us assume that (G − e, k) has a witness solution S′ that does not contain any of
the vertices adjacent to e; this would mean that the subgraph H induced by S′ has G as a
supergraph. By the definition of witness solution, ifG is a supergraph of H , then (G, k) ∈ L ,
thus contradicting the assumption that (G, k) /∈ L . This argument does not work in the case
of vertex deletion, where the number of connected components after the deletion might not
be bounded on k. Thus, having rooted kernels is not enough to guarantee reoptimization
kernels for vertex deletion.

The cases for vertex deletion and edge and vertex addition in comonotone graph problems
are completely analogous, which proves Theorems 5 and 6. ��

In the case of vertex deletion, the number of newly generated connected components can
be as high as the degree of the deleted vertex v. It is important to point out that, in this case,
in order to have a polynomial kernel for an environment, it might not be enough that L is in
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PK if restricted to connected instances (which was true for the previous cases). This is also
the reason why, if a monotone problem has a rooted kernel, the theorem still does not hold up
for v−-L , as we would need to make sure that the deleted vertex has restricted degree, too.
For any vertex with degree superpolynomial in k, even the existence of rooted kernels for all
of its neighbors would not provide us with a polynomial reoptimization kernel for G − v.

In general, polynomial kernels cannot be built for OR-compositional hard problems
because one might have a lot of connected components and one can only build a poly-
nomial kernel for each connected component. In fact, in the next section, we will see that in
general some of the reoptimization versions of OR(or AND)-compositional problems do not
have polynomial reoptimization kernels.

If we now come back to the Internal Vertex SubTree problem that we saw in
Sect. 2.2, we realize that not only the conditions are satisfied to apply Theorem 6 for an edge
addition, but also to apply it to a vertex addition. In particular, we can build kernels for the
environment of any vertex. Thus, we conclude that v+-Internal Vertex SubTree admits
polynomial reoptimization kernels.

A problem where we can find a rooted kernel is Leaf Out Tree, known sometimes
in the literature as k-Leaf Out Tree. Given a directed graph D and an integer k, we are
asked to compute a tree in D with at least k leaves. We first observe that this problem is
comonotone. Moreover, the rooted version of this problem is in PK with a quadratic kernel
as was seen by Daligault and Thomassé [13]; furthermore, any subset of vertices and edges
from D forming the tree with at least k leaves is a witness solution. Finally, Leaf Out Tree

has no polynomial kernel unless coNP ⊆ NP/poly as pointed out by Fernau et al. [19], due to
the fact that the problem is OR-compositional and NP-hard. Then, applying Theorem 6, we
deduce that e+-Leaf Out Tree and v+-Leaf Out Tree admit polynomial reoptimization
kernels.

Yet another problem that falls into this category is Clique on graphs of maximum degree
d , where d is the parameter, with target solution size k (d-Clique); this problem trivially has a
polynomial kernel for the rooted case, as the neighborhood of any vertex can be exhaustively
checked for clique candidates, and a witness solution is simply a subset of k vertices that
induce a clique. It is OR-compositional and does not have a polynomial kernel parameterized
by maximum degree in the general case as observed by Hermelin et al. [23]; thus, we deduce
that we can apply Theorem 6, and thus, e+-d-Clique and v+-d-Clique admit polynomial
reoptimization kernels.

To sum it up, we have the following corollary:

Corollary 1 The following problems, parameterized by their solution size, admit polynomial
reoptimization kernels:

• v+-Internal Vertex SubTree

• e+-Leaf Out Tree and v+-Leaf Out Tree

• e+-d-Clique and v+-d-Clique
Now, we can think about the complementary version of the problems described, where

a property is required in every component in order for a solution to exist, i. e., AND-
compositional problems. Again, we can state a pair theorems for AND-compositional
problems analogous to Theorems 5 and 6 based on the considered local modifications.

Theorem 7 Let L be a parameterized NP-hard AND-compositional monotone graph prob-
lem. If, for every instance (G, k), we can compute a polynomial kernel for an environment
of any edge e ∈ E, then e+-L admits polynomial reoptimization kernels. Moreover, if for
every instance (Ĝ, k̂), we can compute a polynomial kernel for an environment of any vertex
v ∈ V̂ ; then, v+-L admits polynomial reoptimization kernels.

123



Reoptimization of parameterized problems 437

Theorem 8 Let L be a parameterized NP-hard AND-compositional comonotone graph prob-
lem. If, for every instance (G, k), we can compute a polynomial kernel for an environment
of any edge e ∈ E, then e−-L admits polynomial reoptimization kernels. Moreover, if for
every instance (Ĝ, k̂), we can compute a polynomial kernel for an environment of any vertex
v ∈ V̂ , then v−-L admits polynomial reoptimization kernels.

The proofs of these theorems are analogous to the ones for Theorems 5 and 6. We again
prove the statement regarding edge addition, and the rest are proved analogously.

Proof Given a solution to an instance (G, k) for a monotone problem L , we find a polynomial
kernel for an instance (G + e, k) as follows.

If (G, k) /∈ L , then for sure (G + e, k) /∈ L . If (G + e, k) was in L , then any solution for
(G + e, k) would also be a solution for (G, k) because L is monotone.

If (G, k) has a solution S, S might not be a valid solution for G + e. However, because
L is AND-compositional, it means that the required property is already satisfied in every
component of G + e except, maybe, in the environment of e. This means that checking
whether the environment of e is in L is enough to ensure that G − e ∈ L . Thus, a kernel for
an environment of e will be a reoptimization kernel for the reoptimization instance.

The cases for vertex addition in monotone graph problems and edge and vertex deletion
in complement of monotone graph problems are completely analogous. ��

Observe that the theorems for AND-compositional problems do not mention local kernels
for rooted versions of the problem. This is because, when constructing a kernel for the
reoptimization version of an OR-compositional problem, we are given an instance without
a solution, and then, the modified instance might have a solution. Intuitively, it is clear that
the new solution has to be around the local modification. In AND-compositional problems,
however, the procedure is exactly the opposite. Given an instance that has a solution, we are
provided with a local modification that renders that solution useless. Essentially, we need
to make sure that the component or components affected by the modification still have a
solution. This solution will thus not need to be a new solution, but one that might already
have existed within the component in the original instance, but that was not given in the
reoptimization instance, as the reoptimization instance only requires one solution for the
original instance to be given.

3 Reoptimization compositional problems without polynomial kernels

We have just presented a general strategy to construct polynomial reoptimization kernels
for reoptimization versions of OR-compositional and AND-compositional problems. Let
us focus now on proving which of these problems do not have polynomial reoptimization
kernels for some other local modifications. That is, problems where even knowing an optimal
solution for a neighboring instance does not help to build a kernel for the given instance.

First, we give an intuitive approach to the kernelization results for compositional problems.
In order to build kernels for reoptimization versions of OR-compositional and AND-
compositional problems, we took a local modification that would not break the solution,
i.e., a local modification that would respect the monotonicity properties of the problem.
Through this monotonicity, we then could build a kernel centered on the local modification,
knowing that the rest of the solution remains valid.

Now we try to do the opposite. That is, we will take local modifications which go against
the monotonicity of the problem properties. Then, we use a clever built-in solution for a
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neighboring instance that will be broken when the local modification occurs, yielding the
knowledge of the neighboring solution useless.

In order to prove these results, we reduce parameterized problems to their reoptimization
versions, in a way analogous to polynomial parameter transformations.

Definition 6 (Bodlaender et al. [9]) Given two parameterized problems L and Q an algorithm
A is a polynomial parameter transformation from L to Q if given an instance (x, k) for L ,
A transforms it in polynomial time into an instance (x ′, k′) for Q such that k′ is polynomial
in k and (x, k) ∈ L if and only if (x ′, k′) ∈ Q.

We can extend this definition to be able to reduce parameterized problems to parameterized
reoptimization problems.

Definition 7 Given a parameterized problem L and a reoptimization problem lm-Q an algo-
rithm A is a polynomial parameter transformation from L to lm-Q if given an instance (x, k)
for L , A transforms it in polynomial time into an instance ((x ′, k′), s, (x ′

lm, k′′)) for Q such
that k′ and k′′ are polynomial in k and (x, k) ∈ L if and only if ((x ′, k′), s, (x ′

lm, k′′)) ∈ Q.

With this definition, we are able to reduce parameterized problems into reoptimization
problems, which helps us prove lower bounds for the existence of polynomial reoptimization
kernels for the latter ones. Let us observe this through an example.

3.1 e−-longest path

Wenowgive an example of anOR-compositional FPT problem that does not have polynomial
reoptimization kernels for some local modifications. We want to see which are the conditions
that make finding a kernel in this setting as difficult as the original problem.

In the parameterized Longest Path problem, the goal is given an instance (G, k) to
determine whether G contains a path of length at least k.

It is easy to see that this problem is OR-compositional, and it is NP-complete [10], so in
general, according to Theorem 1, it is not in PK unless NP ⊆ coNP/poly.

We are going to show now that this even holds for certain reoptimization variants.

Theorem 9 e−-Longest Path and v−-Longest Path do not have polynomial reoptimiza-
tion kernels unless NP ⊆ coNP/poly.

Proof We prove the claim by providing a reduction from Longest Path to e−-Longest
Path through a polynomial parameter transformation.

Given an instance (G, k) for Longest Path, we construct an instance for e−-Longest
Path as follows. Given Pk a path of length k, let ((G ∪ Pk, k), Pk, (G ∪ (Pk − e), k)) be an
instance for e−-Longest Path where e is an edge in Pk . We observe, that after deleting an
edge from Pk , Pk is no longer a path of length k and thus ((G∪Pk, k), Pk, (G∪(Pk−e), k)) ∈
e−-Longest Path if and only if (G, k) ∈ Longest Path. Moreover, the solution Pk does
not provide any information about the graphG inwhich the new solutionmust be found. Thus,
if e−-Longest Path would have a polynomial reoptimization kernel, given any instance
(G, k) of Longest Path, we would be able to construct a kernel for it by providing a
kernel for ((G ∪ Pk, k), Pk, (G ∪ (Pk − e), k)). But Longest Path is not in PK unless
NP ⊆ coNP/poly, thus proving the statement.

The reduction for v−-Longest Path is completely analogous. ��
The insight that this example provides is that if a reoptimization instance has an easy-

to-spot solution that is not available after the reoptimization step, then solving this instance
might be as hard as solving the problem in general without any extra information.

123



Reoptimization of parameterized problems 439

3.2 General results

In order to prove a general result about reoptimization versions of OR- and AND-
compositional problems, we need to understand what an easy solution, or an easy-to-break
solution looks like.

We say that a graph G is maximal with respect to the problem L and the parameter k if
(G, k) ∈ L , but for any edge e, (G + e, k) /∈ L . Analogously, we say that G is minimal if
(G, k) ∈ L , but (G − e, k) /∈ L and (G − v, k) /∈ L for any edge e or vertex v.

Observe that the notion of maximality does not include vertex addition. This is because,
when adding vertices to a graph, there is too much freedom on how to make the new vertex
adjacent to a specific subset of vertices of the original graph. In this sense, it can be considered
that vertex addition is not so much of a local modification as it is a global one. In particular,
when thinking about maximal graphs, there exist problems for which specific graphs are
maximal only if vertices are added adjacent to all the other vertices or to none of them.
Consequently, this section includes no results for vertex addition.

Maximal orminimal graphs, if easy to construct, will help us design polynomial parameter
transformations from an instance for a graph problem L , to an instance for its reoptimization
version such that the existence of polynomial reoptimization kernels would imply that L is
also in PK.

Theorem 10 Let L be amonotone (comonotone) NP-hardOR-compositional graph problem.
If, given an instance (G, k) for L, we can compute in time polynomial in k amaximal (minimal
resp.) graph with respect to k, then e+-L (e−-L and v−-L resp.) do not admit polynomial
reoptimization kernels, unless NP ⊆ coNP/poly.

Proof Let L be a monotone NP hard OR-compositional graph problem and let (G, k) be an
instance for L . Let then H be an maximal graph with respect to L and k, and S be a solution
for (H , k).

Observe that, because L is OR-compositional, (H , k) ∈ L implies that (G ∪ H) ∈ L .
Thus, the instance ((G ∪ H , k), S, (G ∪ (H + e), k)) for e+-L will only be in e+-L if
(G, k) ∈ L , as (H + e, k) /∈ L by construction.

Thus, if e+-L would admit polynomial reoptimization kernels, given any instance (G, k)of
L wewould be able to construct a kernel for it by providing a kernel for ((G∪H , k), H , (G∪
(H + e), k)). But L is not in PK, unless NP ⊆ coNP/poly, thus proving the statement.

An analogous construction proves the statement for problems that are comonotone. ��
In particular, as a corollary we have:

Corollary 2 The following problems, parameterized by the solution size, do not admit poly-
nomial reoptimization kernels, unless NP ⊆ coNP/poly.

• e−-Internal Vertex SubTree and v−-Internal Vertex SubTree

• e−-Leaf Out Tree and v−-Leaf Out Tree

• e−-d-Clique and v−-d-Clique
• e−-Clique and v−-Clique

Proof We have proved already that Internal Vertex SubTree, Leaf Out Tree and
d-Clique are NP-hard, OR-compositional and comonotone. Moreover, a tree with k internal
vertices is minimal for Internal Vertex SubTree, a directed tree with k leaves is minimal
for Leaf Out Tree and the complete graphwith k vertices, and Kk isminimal for d-Clique,
all of them computable in polynomial time. For Clique it is even simpler, as d-Clique is
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a subproblem of Clique; thus, the nonexistence of polynomial kernels for reoptimization
versions of d-Clique implies that such kernels also do not exist for Clique. ��

For AND-compositional graph problems, a similar result can be stated by constructing a
reoptimization instance with a graph that is maximal or minimal with respect to the comple-
ment problem.

Theorem 11 Let L be a monotone (comonotone) NP-hard AND-compositional graph prob-
lem. If, given an instance (G, k) for L, we can compute in time polynomial in k a minimal
(maximal resp.) graphwith respect to k, e−-L and v−-L (e+-L resp.) do not admit polynomial
reoptimization kernels, unless NP ⊆ coNP/poly.

Proof Let L be a monotone NP-hard AND-compositional graph problem and let (G, k) be
an instance for L . Let then H be a minimal graph with respect to Lc and k. This means that
(H , k) /∈ L , however, (H − e, k) ∈ L for any edge e.

The instance ((G∪H , k),⊥, (G∪(H−e), k)) for e−-L will only be in e−-L if (G, k) ∈ L ,
as (H − e, k) ∈ L by construction.

Thus, if e−-L would admit polynomial reoptimization kernels, given any instance (G, k)of
L wewould be able to construct a kernel for it by providing a kernel for ((G∪H , k),⊥, (G∪
(H − e), k)). But L is not in PK, unless NP ⊆ coNP/poly, thus proving the statement.

An analogous construction proves the statement for v−-L and for problems that are
comonotone. ��

Let us now present a problem that this theorem can be applied to, the Tree Width

problem. The aim of this problem is to measure how tree-like a graph is. In order to do so,
we define the following structure.

Definition 8 Let G = (V , E) be a graph. A tree decomposition of G is a pair D = (T , B),
where T = (VT , ET ) is a tree. Let I denote an arbitrary index set enumerating the vertices
from VT . Then, B is a labeling function B : I → 2V that assigns a vertex set Xi ⊆ V to
each index i ∈ I (that is, to each vertex from VT ). These sets Xi are called bags. Moreover,
D satisfies the following properties:

⋃

i∈I
Xi = V ,

for every edge {u, v} ∈ E , there exists an index i ∈ I such that u, v ∈ Xi , and for each
v ∈ V , the bags Xi containing v are assigned to a subtree of T .

The width of D is defined as max{|Xi | | i ∈ I } − 1, that is, the maximum size of a bag
minus 1. The treewidth of G is the minimum width over all tree decompositions of G; it is
denoted by tw(G).

Given an instance (G, k) consisting of a graph G and a parameter k, we say that (G, k) ∈
Tree Width if and only if tw(G) ≤ k.

This problem is NP-hard [22], AND-compositional [8], and monotone, as we can observe,
by definition, that given a tree decomposition for a graph G, it is also a tree decomposition
for any G − e or G − v if we remove the removed vertex from the bags containing it.

In particular, as a corollary we have:

Corollary 3 e−-Tree Width and v−-Tree Width do not admit polynomial reoptimization
kernels, unless NP ⊆ coNP/poly.

Let us also see a concrete proof to see how one constructs the instances mentioned in the
proof of Theorem 11.
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Proof Let (G, k) be an instance for Tree Width. Let now H be a graph with treewidth
k + 1 such that, for any edge e, H − e has treewidth k. For instance, the complete graph
with k + 2 vertices Kk+2 fulfills this property. If e−-Tree Width admitted polynomial
reoptimization kernels, it would be able to provide a polynomial kernel for the instance
((G ∪ Kk+2, k),⊥, (G ∪ (Kk+2 − e, k)). Observe that because Kk+2 has treewidth k + 1,
the treewidth of G ∪ Kk+2 > k, thus (G ∪ Kk+2, k) /∈ Tree Width and it is valid to
put ⊥ as the second element of the instance. Moreover, because Kk+2 − e has treewidth
k, ((G ∪ Kk+2, k),⊥, (G ∪ (Kk+2 − e, k)) ∈ e−-Tree Width if and only if (G, k) ∈
Tree Width; thus, a kernel for the reoptimization instance would provide us with a kernel
for the initial instance. ��

3.3 Other reoptimization compositional problems without polynomial kernels

We have seen that for every monotone, or comonotone, NP-hard compositional graph prob-
lem, two of its reoptimization variants do not admit polynomial reoptimization kernels.
Nevertheless, finding local kernels for the other two reoptimization variants is not trivial
either.

We now provide problems for which even the notion of fixed-parameter tractability cannot
be transferred to the reoptimization setting. Given an instance ((x, k), s, (xlm, k′)) for a
parameterized reoptimization problem lm-L , recall that ((x, k), s, (xlm, k′)) ∈ lm-L if and
only if (xlm, k′) ∈ L .We say that we solve an instance ((x, k), s, (xlm, k′)) in fixed-parameter
tractable time, if and only if we can decide whether (xlm, k′) ∈ L in time f (k) · p(n), for an
arbitrary function f and a polynomial p.

3.3.1 Clique

We already know that reoptimization Clique instances parameterized by the size of the
clique do not have polynomial reoptimization kernels in the case of edge and vertex deletion.

Recall also that Clique is conjectured not to be in FPT since it is W [1]-hard.
We now show that under any of the four considered local modifications the reoptimization

versions of Clique are not likely to be solvable in FPT time.

Theorem 12 e−-Clique, v−-Clique, e+-Clique, and v+-Clique are not solvable in fixed-
parameter tractable time, unless FPT = W [1].

Proof We start by showing this result for e+-Clique through a polynomial parameter trans-
formation from Clique.

Let (G, k) be an instance for Clique. We construct the following instance for e+-Clique.
Let G ′ be a graph that consists of the graph G together with v1 and v2, two new vertices
adjacent to every vertex in G but not to each other. Let then e1,2 denote the edge between
v1 and v2. Then, ((Kk+1 ∪ G ′, k + 1), Kk+1, (Kk+1 ∪ G ′ + e1,2, k + 2)) ∈ e+-Clique if
and only if (G, k) ∈ Clique. Observe, that, because Clique is a maximization problem, it
is possible to make the parameter larger.

If an instance for e+-Clique was solvable in fixed-parameter tractable time, it would be
possible to solve any given instance of Clique in fixed-parameter tractable time because of
this construction.

As for v+-Clique, we just need to consider, given an instance (G, k) for Clique, the
reoptimization instance ((Kk ∪ G, k), Kk, (Kk ∪ G + v1, k + 1)), where v1 is adjacent
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to every vertex in G, and observe again that this instance is in v+-Clique if and only if
(G, k) ∈ Clique. Thus, we reach the same conclusion.

For the edge and vertex deletion cases, one only needs to consider the instances ((Kk ∪
G, k), Kk, (Kk − e ∪G, k)) and ((Kk ∪G, k), Kk, (Kk − v ∪G, k)), where e and v are any
edge or vertex in the clique of size k, respectively. ��

4 Non-compositional problems without polynomial kernels: connected
vertex cover

One of the non-compositional problems in which reoptimization does not help us to achieve
any improvement with respect to the classical parametrization techniques is the Connected
Vertex Cover (CVC) problem. A connected vertex cover of a graph G = (V , E) is a
subset of vertices A ⊆ V that is a vertex cover of G such that the subgraph induced by A
is connected. Connected Vertex Cover is FPT with respect to the solution size [11].
Moreover, it is conjectured that Connected Vertex Cover does not have a polynomial
Turing Kernel [23].

We build a reduction from Set Cover that will show that even the reoptimization versions
of Connected Vertex Cover do not have a polynomial kernel unless Set Cover has
a polynomial compression with respect to its universe size. First we define the notion of
polynomial compression. Informally, we can think of a compression as a way to transform an
instance for a problem L1 into a kernel for a problem L2. This concept is a bit more general
than kernelization in the sense that it allows to show non-kernelization results for problems
that are NP-hard: If anNP-complete problem compresses to a problem X , which is also in NP,
then the compressed instance of X can be transformed back into an instance of the original
problem. Hence, a polynomial compression gives you automatically a polynomial kernel.

Definition 9 (Cygan et al. [12]) A polynomial compression of a parameterized language
Q ⊆ �∗ × N into a language R ⊆ �∗ is an algorithm that takes as input an instance
(x, k) ∈ �∗ × N, works in time polynomial in |x | + k, and returns a string y such that
|y| ≤ p(k), for some polynomial p, and y ∈ R if and only if (x, k) ∈ Q.

Moreover, Dom et al. [14] prove that Set Cover parameterized by the size of the universe
does not have a polynomial compression, unless NP ⊆ coNP/poly.

We prove through a reduction that if e+-Connected Vertex Cover had a polynomial
reoptimization kernel, then Set Cover parameterized by the size of the universe would have
a polynomial compression. Formally:

Theorem 13 e+-Connected Vertex Cover does not have a polynomial reoptimization
kernel, unless NP ⊆ coNP/poly.

Proof Wedescribe the polynomial parameter transformation from Set Coverparameterized
by the size of the universe to Connected Vertex Cover. Then, we use this reduction to
prove that if a polynomial reoptimization kernel would exist for e+-Connected Vertex

Cover, then we would have a polynomial compression for Set Cover parameterized by
the size of the universe, but such a compression is not possible, unless NP ⊆ coNP/poly.

A Set Cover instance parameterized by the size of the universe is a quadruple,
((U ,F, k), u) where (U ,F, k) is the instance, comprised by U = {1, . . . , u}, the universe
set, of size |U | = u, F = {F1, . . . Ft }, a family of subsets, and k, the solution size targeted,
and u is the parameter, as defined in the introduction. We want to answer the question: Is
there a subfamily of k sets of F that covers U?
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Until now, we always considered the solution size as the parameter in all of our parame-
terized problems. This, however, is not fixed as such in the definition of kernelization, which
allows us to choose the parameter with other criteria, as we do in this case.

We only consider instances for Set Cover where k ≤ u, because otherwise the solution
is trivial. This is because any subset Fi in the optimal solution should cover at least one
element in U that is not covered by any other selected subset. Otherwise, the subset could
be trivially removed and the solution would be smaller. Moreover, if the number of subsets
in the family F is smaller than k, a solution can trivially include all of the subsets. Thus, in
the following we assume that t > k.

Let us first show the following reduction from Set Cover to Connected Vertex

Cover. Given a Set Cover instance ((U ,F, k), u), we construct an instance for Con-
nected Vertex Cover as shown in Fig. 1.

We create a grid of vertices ui, j where i = 1, . . . , k + 2 and j = 0, . . . , u. Each of these
vertices has an attached leaf u′

i, j . Each one of the columns 1 to u of the grid represents one
of the elements of the universe set in the Set Cover instance. Column 0 is an additional
column which can be viewed as an extra element added to the set.

We add a row of vertices f1, . . . , ft such that each vertex ui, j of the column j > 0 will
be connected to f� if and only if j ∈ F�. We also add a vertex x which is connected to all of
the vertices of the first column ui,0 for all i = 1, . . . , k + 1, except for uk+2,0. We can think
of x as an extra set in the family of subsets F , containing only the new element of the set.
The edge e = (x, uk+2,0) will be added in the reoptimization step (dashed edge in Fig. 1).

We add a column v1, . . . , vk+2 such that each vertex ui, j of row i , will be connected to
vi , as represented in Fig. 1. Finally, we add two vertices f and y, f neighboring f�, for all
� = 1, . . . , t , and also x and y, and y additionally neighboring vi , for all i = 1, . . . , k + 2.

Now we will use this reduction to prove Theorem 13.
Given a Set Cover instance ((U ,F, k), u)with k < u, we construct an e+-Connected

Vertex Cover instance as follows. Take first the graphsG,G+e constructed by the reduc-
tion described above. Now, this instance is not complete unless we provide the appropriate
parameters for G and G + e and a solution for G.

We will now construct two optimal solutions for G.
To select a connected vertex cover in the graph, first observe that if the grid vertex ui, j is

not part of the connected vertex cover, then, even if all the other vertices in the graph were
in the cover, the cover would not be connected.

Thus, we select all the vertices ui, j of the grid (i. e., (k + 2)(u + 1) vertices in total). This
covers all leaf edges (ui, j , u′

i, j ), all edges (ui, j , f�) and all edges (ui, j , vi ). It does not cover,
however, the edges ( f�, f ), (vi , y) and (y, f ), and it is not connected.

The vertex f needs to be taken to cover the edges ( f�, f ) because, again, recall we
assumed that t > k, thus taking every f� would make the vertex cover too large with respect
to u. Moreover, to connect the ui, j , we have two options:

1. Take all vi and y: With these vertices, we cover the remaining edges and we obtain a CVC
of size (k + 2)(u + 1) + k + 2 + 2 = (k + 2)(u + 2) + 2. We will name this solution S1
and we will also name c = (k + 2)(u + 2) making the size of this solution c + 2. (See
Fig. 1)

2. Take a selection of F� that covers all columns and also take vk+2 in order to connect the
vertex uk+2,0. Finally, we also take y to cover the edges (vi , y). This makes a total of
(k + 2)(u + 1) + SCsol + 1 + 3 where SCsol + 1 stands for the size of a Set Cover
solution for (U ,F) together with the vertex x and + 3 stands for the vertices f , vk+2 and
y. We will name this solution S2. (See Fig. 2)
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Fig. 1 Drawing of the reduction graph.Here the leaves u′
i, j are left out of the drawing for clarity. The connected

vertex cover for this graph using the side vertices vm is shaded in gray

u1,0
u1,0

f

x f1 f2 ft. . .

...
...

...
...

. . .

y
. . .

v1

v2

v3

...

vk+2

ui,j
k + 2

u+ 1

Fig. 2 Second CVC option using a SC for F . Observe, that not all of the vertices fi , are part of the cover,
only a selection of them
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Mixing these two strategies is not a good option because, for any column j missed by
the set cover, in order to connect every vertex ui, j to the rest of the vertex cover, we would
need to take all vertices vi , 1 ≤ i ≤ k + 2, into the cover, rendering the selection of any f�
pointless.

Both solutions are of the same size if and only if the size of the optimal set cover for F is
k.

Given a set cover instance, with u > k, then the Connected Vertex Cover instance
((G, c+2), S1, (G+e, c+1)) is a valid reoptimization instance for e+-Connected Vertex

Cover.
In order to solve the instance for G + e, we have to consider that, once the dashed edge is

added to the graph, S2 is still a solution and S2 \ {vk+2} is also a solution. This vertex is not
needed anymore because now the edge e already connects uk+2,0, via the vertex x , to the rest
of the vertex cover. However, it is easy to see that one cannot remove any vertex of S1. This
means that, if the original instance for set cover had a set cover of size k, only S2 \ {vk+2} is
optimal, once the new edge e is added.

We have just described a polynomial parameter transformation from Set Cover (SC) to
e+-Connected Vertex Cover. Where an instance ((U ,F, k), u) ∈ SC if and only if the
transformed instance ((G, c + 2), S1, (G + e, c + 1)) ∈ e+-CVC. Thus, the existence of a
polynomial reoptimization kernel for e+-Connected Vertex Coverwould mean that we
can a construct polynomial compression for Set Cover. But Set Cover parameterized by
the size of the universe does not admit a polynomial compression, unless NP ⊆ coNP/poly.

��

5 Reoptimization and vertex cover

Another case where we observe the power of reoptimization in parameterized problems
is in the Vertex Cover (VC) problem. Vertex Cover is a problem in PK, whose best
known polynomial kernel is of size 2k using linear programming [27]. However, using crown
decomposition only allows us to achieve a kernel of size 3k in the classical setting [3] (see
also the reference book [20]). Recently and independent of our work, Li and Zhu reduced the
size of the crown decomposition kernel by refining the method [26]. We present here a way
to achieve a reoptimization kernel of size 2k + 1 using crown decomposition. The following
proof is not meant to substitute the way that crown decomposition is used in the classical
setting, but as a proof of concept of how one might be able to achieve kernelizations for
reoptimization problems, based on the solutions given for the neighboring instances.

First we define the problem. A vertex cover of a graph G = (V , E) is a subset A ⊆ V
such that every edge is covered, i. e., every edge e ∈ E is incident to a vertex v ∈ A. As a
parameterized problem, we say (G, k) ∈ VC if there exists a vertex cover of G of size k or
smaller.

Given a graph G = (V , E), a matching M is a subset of edges without common vertices,
that is, no two edges in a matching can be incident to the same vertex. The vertices that are
incident to edges inM are calledmatched vertices; the rest of the vertices inG are unmatched.

The crown decomposition is a structure in a graph that can be defined as follows. (It is
shown schematically in Fig. 3.)

Definition 10 Let G = (V , E) be a graph. A crown decomposition of G is a partition of V
into three sets C , H , and R satisfying the following properties.

1. C is a non-empty independent set in G,
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Fig. 3 Example of a crown
decomposition of a graph

R

H

C

2. There are no edges between C and R,
3. The set of edges between C and H contains a matching M of size |H |; we also say that

M saturates H .

We call C the crown, H the head, and R the rest of the crown decomposition.

The crown lemma tells us under which conditions crown decompositions exist and is the
basis for kernelization using crown decomposition.

Lemma 1 [3] Let G be a graph without isolated vertices and with at least 3k + 1 vertices.
There is a polynomial-time algorithm that either finds a matching of size k + 1 in G or finds
a crown decomposition of G.

This lemma allows us to reduce any Vertex Cover instance to size at most 3k. This is
because, given a graph of size larger than 3k, we either find a matching of size k + 1 or a
crown decomposition of G. Given a crown decomposition of G into H , C and R, take the
maximum matching between H and C . This matching provides proof that any vertex cover
for G will need at least |H | vertices to cover the edges in the matching. Furthermore, these
vertices need to be in H to cover all of the edges between C and H . Thus, we may reduce
an instance (G, k) to an instance (G − (H ∪ C), k − |H |).

A maximal matching is a matching that cannot be extended. More precisely, a matching
M is maximal if every other edge e ∈ E \ M is incident to a matched vertex. Observe, that
maximal matchings might not have maximum cardinality. On the other hand, a maximum
matching is a matching with maximum cardinality.

Given a graph G = (V , E) and a matching M , an alternating path is a path that begins in
an unmatched vertex andwhose edges belong alternately to E \M andM . An alternating path
is an augmenting path if it begins and ends in unmatched vertices. If one has an augmenting
path, one can exchange the edges in the path that are M for the edges in the path that are not
in M and obtain a matching with one more edge.

Let us consider the Vertex Cover problem under edge addition, i. e., e+-VC. Given a
vertex cover of size k for a graph G, we will give a kernel of size 2k for (G + e, k′) using
crown decomposition.

Theorem 14 Given graph G, with a vertex cover A ⊆ V (G) of size k. The reoptimization
instance ((G, k), A, (G + e, k′)) for e+-Vertex Cover has a polynomial reoptimization
kernel of size 2k + 1 constructed using crown decomposition.

Proof First of all, let G = (V , E) be a graph, and let A ⊆ V be a vertex cover G of size k,
and B ⊆ V the rest of the vertices in G. Thus, |A| = k and |B| = n − k. Observe, that there
might be edges between vertices of A but not between vertices of B; otherwise, A would not
be a vertex cover.
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C1

H1

A3
M

A2
M

B3
M

B2
M

A1
M B1

M

AM BM

A B
(a)First crown decomposition

C2

H2

A3
M

A2
M

B3
M

B2
M

A1
M B1

M

AM BM

A B
(b)Second crown decomposition

Fig. 4 Partition ofG. Bold edges belong to thematching, solid edges indicate that there exist edges between the
two subsets and dashed edges indicate that edges might exist between the two groups. Any non-edge between
A and B indicates that edges do not exist between the two subsets by construction. The shaded subsets indicate
the head and crown of two possible crown decompositions parting from this partition of G; the non-shaded
subsets are the rest sets R1 and R2, respectively

Let us pick M to be a maximum matching between A and B. We will now partition A
and B further into subsets according to their adjacencies (see Fig. 4). First, we consider the
vertices of A and B that are not part of the matching, let us call these vertex sets AM and
BM , respectively. The vertices of these two subsets do not share edges because otherwise
M would not be maximal. The vertices of A and B that are part of the matching will be
AM and BM , respectively. Now let A1

M be the matched vertices in A that have an alternating
path to at least one vertex in BM , and let B1

M be the vertices matched to those from A1
M . Let

then B2
M be the vertices in B that have an alternating path to at least one vertex in AM , and

let A2
M be the vertices matched to those from B2

M . These four subsets have no intersection
because otherwise there would be an augmenting path starting in BM through an alternating
path to v ∈ A1

M ∩ A2
M and through its matched vertex in B2

M and another alternating path
to AM , contradicting the fact that M is a maximum matching. Let then A3

M and B3
M be the

rest of the matched vertices in A and B, respectively. Neither BM nor B1
M have edges to

A3
M by construction. In the first case, vertices in AM with edges to BM are placed in A1

M .
In the second case, any edge from B1

M to a vertex v ∈ A3
M would imply the existence of an

alternating path starting at BM to A1
M and through the matching to B1

M , through the existing
edge from B1

M to v, such an alternating path would mean, by definition that v ∈ A1
M .

Observe, through Fig. 4a, that the following is a valid crown decomposition for G:

BM ∪ B1
M ∪ B3

M = C1, A
1
M ∪ A3

M = H1 and AM ∪ A2
M ∪ B2

M = R1.

This is true because B is an independent set by construction, and there are no edges between
C1 and R1 because BM and B1

M have edges neither to AM nor to A2
M and neither does B3

M .
Moreover, as depicted in Fig. 4b,

BM ∪ B1
M = C2, A

1
M = H2 and B3

M ∪ A3
M ∪ R1 = R2,

is also a valid crown decomposition, as BM and B1
M also have no edges to A3

M .
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In the second crown decomposition, |R2| ≤ 2k because |A| ≤ k and thus |BM | ≤ k,
meaning that |BM | ≥ n − 2k and BM is always part of C . If H2 is empty, it means that there
is a set of isolated vertices in G of size at least n − 2k and we can erase them. Thus, except
in the special case where H2 is empty, |C2| ≥ n − 2k + 1, |H2| ≥ 1, and |R2| ≤ 2k − 1.

First, we observe that if, after adding the new edge e the maximum matching M can be
extended to a maximum matching of size k + 1, then no vertex cover can exist of size k or
smaller; thus, if k′ ≤ k this would be a no answer. Moreover, if k′ > k, covering the new
edge would only require adding at most one more vertex in the cover, which can be trivially
done by extending A and not exceed the new value of the parameter.

Now assume that k′ ≤ k and the maximum matching M cannot be extended by using the
new edge e. We prove using these two crown decompositions that we can construct a kernel
of size 2k + 1 for any G + e under edge addition.

If the new edge is incident to an isolated vertex, we can use the following reduction:
Observe thatG+e−{isolated vertices} contains a leaf, i.e., a vertex of degree 1, in particular
the formerly isolated vertex. Add the vertex adjacent to the leaf to the cover and use R2 of
the second crown decomposition as a 2k-sized kernel.

If the new edge e is adjacent to any vertex in A and k′ = k, the vertex cover for G is also
a vertex cover for G + e, and thus, the problem is solved. If k′ < k and e is adjacent to A, we
can adapt the further partition of A and B to take into account the new edge e extending the
maximum matching if necessary and obtain, via the first or second crown decompositions
a kernel of size 2k consisting of the rest. Observe that this new edge adjacent to A cannot
reduce the size of the maximum matching, only increase it, thus, the size of the rest can only
decrease.

If e is adjacent to two vertices u and v in B, we make the following case distinction.

Case1 u, v ∈ B2
M ∪ B3

M : C2, H2 and R2 are also a crown decomposition for G + e.
Case2 u, v ∈ BM : Set H = H1 ∪ u and C = C1 − u and R = R1. The new edge e

provides the matching between u and v, so H , C and R as defined are a crown
decomposition.

Case3 u ∈ BM , v ∈ B2
M ∪ B3

M : Set R = R2 ∪ u, C = C2 − u and H = H2. This
provides a valid crown decomposition, as e will be left inside R. Observe, that
because R2 < 2k, R ≤ 2k.

Case4 u ∈ B1
M , v ∈ B2

M ∪ B3
M : There is always an alternating path between the vertex

matched to u and BM . This path provides an alternative maximum matching M ′
that does not use u. Thus, we are in Case 3.

Case5 u ∈ B1
M , v ∈ B1

M ∪ BM : Using the same technique as in Case 4, we can assume
v ∈ BM . If there is an alternating path from u to BM − v, we can, again, use the
same technique as in Case 4 and we are in Case 2. Otherwise, every alternating
path from u to BM leads exclusively to v. Meaning that there is a set of vertices
Bv ⊆ B1

M and Av ⊆ A1
M that do not contain edges to any other vertex in B1

M or
BM . Redefining R = v ∪ Bv ∪ Av ∪ R1, H = H1 − Av and C = C1 − (Bv ∪ v),
we have a valid crown decomposition. Observe that the only unmatched vertices in
R are AM and v, thus, if AM is not empty, |R| ≤ 2k, but if AM is empty and Av

contains all of A, |R| ≤ 2k + 1.

For every crown decomposition we defined, the set R contains not more than 2k+1 vertices;
thus, these decompositions provide a kernel of size 2k + 1 for e+-Vertex Cover. ��

If we consider Vertex Coverwith other local modifications, we observe it is easy to use
the same technique. Adding vertices and deleting vertices or edges allow us to use exactly
the same crown decomposition and similar techniques to find kernels of size at most 2k + 1.
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6 Conclusions and further research

We presented examples of problems that do not have polynomial kernels under standard
complexity-theoretic assumptions, but whose reoptimization versions have polynomial reop-
timization kernels. We also presented an example, where a kernel using the same crown
decomposition technique is smaller in the reoptimization version of the problem than in
the original classical version. We finally presented a reduction proving that there are prob-
lems and local modifications, for which the complexity does not decrease when considering
reoptimization.

In conclusion, there are problems that are easier under reoptimization conditions and
problems that are not. We hope that further research will help us to better understand how
much information neighboring solutions are providing and when this information is helpful.

The relation between Turing kernelization and reoptimization kernels is still unclear and
can be a topic for further research. In another direction, one can try to obtain improved
polynomial kernels for parameterized problems through reoptimization kernels.
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