Skip to main content
Log in

Petrinetze in der Systembiologie

  • HAUPTBEITRAG
  • PETRINETZE IN DER SYSTEMBIOLOGIE
  • Published:
Informatik-Spektrum Aims and scope

Zusammenfassung

Dieser Artikel zeigt die Anwendung von Petrinetzen in der Systembiologie. Anhand eines biochemischen Beispiels werden Konzepte zur automatischen Dekomposition biochemischer Systeme eingeführt. Der Artikel fokussiert auf Konzepte, die unter Steady-State-Bedingungen gelten. Interessanterweise basieren all diese Konzepte auf minimalen, semi-positiven Transitions-Invarianten. Es wird beschrieben, welche neuen Definitionen für Netzwerkdekompositionen sich ableiten lassen und wie sie biologisch interpretiert werden können. Am Beispiel des Citratzyklus wird veranschaulicht, wie durch solch eine Analyse ein neuer Stoffwechselweg vorhergesagt werden konnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Ackermann J, Einloft J, Nöthen J, Koch I (2012) Reduction techniques for network validation in systems biology. J Theor Biol 315:71–80

    Article  Google Scholar 

  2. Ackermann J, Koch I (2011) Quantitative Analysis. In: Koch I, Reisig W, Schreiber F (eds) Modeling in Systems Biology: The Petri Net Approach, Comp. Biol., Springer, Berlin, Heidelberg, 153–178

  3. Backhaus K, Erichson B, Plinke W, Weiber R (2003) Multivariate Analysis Methods. An Application-Oriented Introduction, 10. Aufl. Springer, Berlin

    Google Scholar 

  4. Bahi-Jaber N, Pontier D (2003) Modeling transmission of directly transmitted infectious diseases using colored stochastic Petri nets. Math Biosci 185:1–13

    Article  MATH  MathSciNet  Google Scholar 

  5. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. 5. Aufl. W.H. Freeman and Company, New York

  6. Bortfeldt RH, Schuster S, Koch I (2010) Exhaustive analysis of the modular structure of the spliceosomal assembly network: a Petri net approach. In Silico Biol 10:89–123

    Google Scholar 

  7. Chaouiya C (2007) Petri net modelling of biochemical systems. Brief Bioinf 8(4):210–219

    Article  Google Scholar 

  8. Clarke BL (1981) Complete set of steady states for the general stoichiometric dynamical system. J Chem Phys 75:4970

    Article  MathSciNet  Google Scholar 

  9. Clarke BL (1988) Stoichiomteric network analysis. Cell Biophys 12:237–253

    Article  Google Scholar 

  10. Doi A, Nagasaki M, Matsuno H, Miyano S (2006) Simulation based validation of the p53 transcriptional activity with hybrid functional Petri net. In Silico Biol 6(1–2):1–13

    Google Scholar 

  11. Einloft J, Ackermann J, Nöthen J, Koch I (2013) Monalisa – visualization and analysis of functional modules in biochemical networks. Bioinform 29:1469–1470

    Article  Google Scholar 

  12. Esparza J (1998) Decidability and complexity of Petri net problems – an introduction. LNCS 1491:374–428

    Google Scholar 

  13. Fieber M (2004) Design and implementation of a generic and adaptive tool for graph manipulation. Master’s thesis, Brandenburg University of Technology at Cottbus

  14. Finney A, Hucka M (2003) Systems biology markup language: level 2 and beyond. Biochem Soc Trans 31:1472–1473

    Article  Google Scholar 

  15. Fischer E, Sauer U (2003) A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J Biol Chem 278(47):46446–46451

    Article  Google Scholar 

  16. Förster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253

    Article  Google Scholar 

  17. Genrich H, Küffner R, Voss K (2001) Executable Petri net models for the analysis of metabolic pathways. J Software Tools Techn Transfer 3(4):394–404

    MATH  Google Scholar 

  18. Grafahrend-Belau E (2006) Classification of T-invariants in biochemical Petri nets based on different cluster analysis techniques. Master’s thesis, Technical University of Applied Sciences Berlin

  19. Grafahrend-Belau E, Schreiber F, Heiner M, Sackmann A, Junker BH, Grunwald S, Speer A, Winder K, Koch I (2008) Modularisation of biochemical networks through hierarchical cluster analysis of T-invariants of biochemical Petri nets. BMC Bioinf 9:90

    Article  Google Scholar 

  20. Grunwald S, Speer A, Ackermann J, Koch I (2008) Petri net modelling of gene regulation of the Duchenne muscular dystrophy. BioSyst 92:189–205

    Article  Google Scholar 

  21. Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem 42:89–95

    Article  Google Scholar 

  22. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhai M, Xu L, Mendes P, Kummer U (2006) COPASI – a COmplex PAthway SImulator. Bioinform 22(24):3067–3074

    Article  Google Scholar 

  23. Kielbassa J, Bortfeldt R, Schuster S, Koch I (2009) Modeling of the U1 snRNP assembly pathway in alternative splicing in human cells using Petri nets. Comput Biol Chem 33:46–61

    Article  MATH  MathSciNet  Google Scholar 

  24. Klamt S, Gilles ED (2004) Minimal cut sets in biochemical reaction networks. Bioinform 20(2):226–234

    Article  Google Scholar 

  25. Koch I (2010) Petri Nets and GRN models. In: Das S, Caragea D, Welch S, Hsu WH (eds) Handbook of Research on Computational Methodologies in Gene Regulatory Networks. IGI Global, Hershey, NY, 604–637

    Google Scholar 

  26. Koch I, Junker BH, Heiner M (2005) Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber. Bioinf 21:1219–1226

    Article  Google Scholar 

  27. Larhlimi A, Bockmayr A (2009) A new constraint-based description of the steady-state flux cone of metabolic networks. Disc Appl Math 157:2257–2266

    Article  MATH  MathSciNet  Google Scholar 

  28. Lautenbach K (1973) Exact conditions of liveness for a class of Petri nets. Nummer 82 in Berichte der GMD. Gesellschaft für Mathematik und Datenverarbeitung, Sankt Augustin

  29. Liao J, Hou S-Y, Chao Y-P (1996) Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechn Bioengin 52:129–140

    Article  Google Scholar 

  30. Matsuno H, Doi A, Nagasaki M, Miyano S (2000) Hybrid Petri net representation of gene regulatory network. Proc Pac Symp Biocomput 5:338–349

    Google Scholar 

  31. MTZ-Stiftung (2012) Definition of systems biology. http://www.mtzstiftung.de/die_mtz_awards_projekte/mtz_bioquant_award/definition_systembiologie/, letzter Zugriff: 15.1.2014

  32. Mura I (2011) Stochastic Modeling. In: Koch I, Reisig W, Schreiber F (eds) Modeling in Systems Biology: The Petri Net Approach. Comp. Biol., Springer, Berlin, Heidelberg, 121–152

  33. Nagasaki N, Saito A, Jeong E, Li C, Kojima K, Ikeda E, Miyano S (2011) Cell Illustrator 4.0: a computational platform for systems biology. Stud Health Technol Inform 162:160–181

    Google Scholar 

  34. Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BO (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Mol Systems Biol 7:535

    Article  Google Scholar 

  35. Peleg M, Rubin D, Altman RB (2005) Using Petri net tools to study properties and dynamics of biological systems. J Am Med Inf Assoc 12(2):369–371

    Google Scholar 

  36. Pèrés S, Vallée F, Beurton-Aimar M, Mazat JP (2011) Acom: a classification method for elementary flux modes based on motif finding. BioSyst 103(3):410–419

    Article  Google Scholar 

  37. Pfeiffer T, Sánchez-Valdenebro I, Nuño JC, Montero F, Schuster S (1999) METATOOL: for studying metabolic networks. Bioinf 15(3):251–257

    Article  Google Scholar 

  38. Popova-Zeugmann L, Heiner M, Koch I (2005) Time Petri nets for modeling and analysis of biochemical networks. Fundam Inform 67:149–162

    MATH  MathSciNet  Google Scholar 

  39. Priami C, Regev A, Shapiro E, Silverman W (2001) Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf Proc Lett 80:25–31

    Article  MATH  MathSciNet  Google Scholar 

  40. Reddy VN (1994) Modeling biological pathways: a discrete event systems approach. Master’s thesis, University of Maryland, USA

  41. Reddy VN, Liebman MN, Mavrovouniotis ML (1996) Qualitative analysis of biochemical reaction systems. Comput Biol Med 26(2):9–24

    Article  Google Scholar 

  42. Reddy VN, Mavrovouniotis ML, Liebman MN (1993) Petri net representations in metabolic pathways. In: Hunter L, Searls D, Shavlik J (eds) Proceedings of the First International Conference on Intelligent Systems for Molecular Biology, volume 1, Menlo Park, California, USA, AAAI Press, 328–336

  43. Regev A, Silverman W, Shapiro E (2001) Representation and simulation of biochemical processes using the pi-calculus process algebra. Proc Pac Symp Biocomp 6:459–470, 2001

    Google Scholar 

  44. Sackmann A (2005) Modelling and Simulation of signaltransduction pathways of Saccharomyces cerevisiae based on Petri net theory. Diploma thesis, Ernst Moritz Arndt-University Greifswald

  45. Sackmann A, Formanowicz D, Formanowicz P, Koch I, Błażewicz J (2007) An analysis of the Petri net based model of the human body iron homeostasis process. Comput Biol Chem 31:1–10

    Article  MATH  Google Scholar 

  46. Sackmann A, Heiner M, Koch I (2006) Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinf 7:482

    Article  Google Scholar 

  47. Schrijver A (1998) Theory of Linear and Integer Programming. Wiley-VCH, Weinheim

    MATH  Google Scholar 

  48. Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechn 17(2):53–60

    Article  Google Scholar 

  49. Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 2:165–182

    Article  Google Scholar 

  50. Schuster S, Hilgetag C, Schuster R (1996) Determining elementary modes of functioning in biochemical reaction networks at steady state. In: Ghista DN (ed) Biomedical and Life Physics. Vieweg, Wiesbaden, 101–114

    Chapter  Google Scholar 

  51. Schuster S, Pfeiffer T, Moldenhauer F, Koch I, Dandekar T (2002) Exploring the pathway structure of metabolism: Decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinf 18:352–361

    Article  Google Scholar 

  52. Srivastava R, Peterson MS, Nentley WE (2001) Stochastic kinetic analysis of the Escherichia coli stress circuit using σ-32 targeted antisense. Biotechol Bioeng 231(1):120–129

    Article  Google Scholar 

  53. Steinhausen D, Langer K (1977) Cluster analysis. An Introduction to methods for automatic classification. de Gruyter, Berlin

    Google Scholar 

  54. Voss K, Heiner M, Koch I (2003) Steady state analysis of metabolic pathways using Petri nets. In Silico Biol 3(3):367–387

  55. Wang L, Li P (2011) Microfluidic DNA microarray analysis: a review. Anal Chim Acta 687(1):12–27

    Article  Google Scholar 

  56. Wick LM, Quadroni M, Egli T (2001) Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose limited growth conditions in continuous culture and vice versa. Environ Microbiol 3:588–599

    Article  Google Scholar 

  57. Windhager L, Erhard F, Zimmer R (2011) Fuzzy Modeling. In: Koch I, Reisig W, Schreiber F (eds) Modeling in Systems Biology: The Petri Net Approach, Comp. Biol., Springer, Berlin Heidelberg, 179–205

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, I. Petrinetze in der Systembiologie. Informatik Spektrum 37, 211–219 (2014). https://doi.org/10.1007/s00287-013-0757-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00287-013-0757-1

Navigation