
Business Process Privacy Analysis in Pleak

Aivo Toots1,2, Reedik Tuuling1, Maksym Yerokhin2, Marlon Dumas2, Luciano
Garćıa-Bañuelos2, Peeter Laud1, Raimundas Matulevičius2, Alisa Pankova1,

Martin Pettai1, Pille Pullonen1,2, and Jake Tom2

1 Cybernetica AS, Estonia
firstname.lastname@cyber.ee
2 University of Tartu, Estonia
firstname.lastname@ut.ee

Abstract. Pleak is a tool to capture and analyze privacy-enhanced
business process models to characterize and quantify to what extent the
outputs of a process leak information about its inputs. Pleak incorpo-
rates an extensible set of analysis plugins, which enable users to inspect
potential leakages at multiple levels of detail.

1 Introduction

Data minimization is a core tenet of the European General Data Protection
Regulation (GDPR) [1]. According to GDPR, usage of private data should be
limited to the purpose for which it has been collected. To verify compliance with
this principle, privacy analysts need to determine who has access to the data and
what private information these data may disclose. Business process models are
a rich source of metadata to support this analysis. Indeed, these models capture
which tasks are performed by whom, what data are taken as input and output
by each task, and what data are exchanged with external actors. Process models
are usually captured using the Business Process Model and Notation (BPMN).

This paper introduces Pleak3 – the first tool to analyze privacy-enhanced
BPMN models in order to characterize and quantify to what extent the outputs
of a process leak information about its inputs. The top level, namely the Boolean
level (Sec. 2), tell us whether or not a given (intermediate or final) output of a
process may reveal information about a given input. The middle level, the qual-
itative level (Sec. 3), goes further by indicating which attributes of (or functions
over) a given input data object are potentially leaked by each output, and under
what conditions this leakage may occur. The lower level (quantitative analysis)
quantifies to what extent a given output leaks information about an input, either

3 https://pleak.io (account: demo@example.com, password: pleakdemo, manual:
https://pleak.io/wiki/, source code: https://github.com/pleak-tools/)
This research was funded by the Air Force Research laboratory (AFRL) and Defense
Advanced Research Projects Agency (DARPA) under contract FA8750-16-C-0011.
The views expressed are those of the author(s) and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

ar
X

iv
:1

90
2.

05
05

2v
1 

 [
cs

.C
R

] 
 1

3 
Fe

b 
20

19

https://pleak.io
https://pleak.io/wiki/
https://github.com/pleak-tools/


in terms of a sensitivity measure (Sec. 4) or in terms of the guessing advantage
that an attacker gains by having the output (Sec. 5).

To illustrate the capabilities of Pleak, we refer to an “aid distribution”
process in Fig. 1. This process starts when a nation requests aid from the inter-
national community to handle an emergency and a country offers to route a ship
to help transport people and/or goods. The goal of the process is to allocate
a port and a berth to the ship but not to reveal information about ships that
are unable to help or the parameters of the ports. The process uses a type of
privacy-enhancing technology (PET) known as secure multiparty computation
(MPC). MPC allows participants to perform joint computations such that none
of the parties gets to see the data of the other parties, but can learn the out-
put depending on the private inputs. Given a ship, a deadline and the list of
ports, task “Compute reachable ports” retrieves the list of ports reachable by
the deadline. Tasks with identical names in different pools denote MPC compu-
tations carried out jointly by multiple stakeholders. Task “Select feasible ports”
retrieves ports with the capacity to host the ship. The third task selects a port,
a berth, and a slot for the ship, and discloses them to both participants.

Fig. 1. Aid distribution process

2 PE-BPMN Editor and Simple Disclosure Analysis

The model in Fig. 1 is captured Privacy-Enhanced BPMN (PE-BPMN) [6]. PE-
BPMN uses stereotypes to distinguish used PETs, e.g. MPC or homomorphic
encryption, that affect which data is protected in the process. The PE-BPMN
editor allows users to attach stereotypes to model elements and to enter the
stereotype’s parameters where applicable. The editor integrates a checker, which
verifies stereotype specific restrictions. For example, that: (1) when a task has



an MPC stereotype, there is at least one other “twin” task with the same label
in another pool, since an MPC computation involves at least two parties; (2)
when one of these tasks is enabled, the other twin tasks is eventually enabled;
and (3) the joint computation has at least one input and one output.

Given a valid PE-BPMN model, Pleak runs a binary privacy analysis, which
produces a simple disclosure report and data dependency matrix. The disclosure
report in Fig. 2 tells us whether or not a stakeholder gets to see a given data
object. In the report shown . “V” indicates that a data object (in columns) is
visible to a stakeholder (in rows). Row “shared over” refers to the network service
provider, who may also see some of the data (e.g. unencrypted data objects).

Fig. 2. Simple disclosure report for the aid distribution process in Fig. 1

3 Qualitative Leaks-When Analysis

Leaks-When analysis [2] is a technique that takes as input a SQL workflow
and determines, for each (output, input) pair such that the output discloses
information about the input, which attributes of the input object are disclosed
by the output object and under which conditions. A SQL workflow is a BPMN
process model in which every data object corresponds to a database table, defined
by a table schema, and every task is a SQL query that transforms the input tables
of the task into its output tables.

Fig. 3 shows a sample SQL workflow – a variant of the “aid distribution”
example where the disclosure of information about ships to the aid-requesting
country is made incrementally. The figure shows the SQL workflow alongside the
query corresponding to task “Select reachable ports”.

To perform a Leaks-When analysis, the user selects one or more output data
objects and clicks the “LeaksWhen Report” button. The Leaks-When analysis
shows one tab for each output data object and one report for each column
in the output table. An example of a leaks-when report (in graphical form) is
shown in Fig. 4. The report states that the aid-requesting country would get to
know that at least one or several ships (left branch) can reach a specific port
(right branch) before the deadline (branch in the middle). The rest of the report
specifies how the disclosed elements are computed from the inputs (in the dashed
rectangles). The report is generated by extracting all runs of the workflow and
applying dataflow analysis techniques to each run in order to infer all relevant
data dependencies.



Fig. 3. Aid distribution SQL workflow in Pleak SQL editor

4 Sensitivity Analysis and Differential Privacy

ship port

parameters

filter

and

≤ =

ceil deadline shipname

÷
distance

maxspeed name latitude longitude latitude longitude

2

1

1 2

2

1

1

2 3

4

Fig. 4. Sample leaks-when report

The sensitivity of a function is the ex-
pected maximum change in the out-
put, given a change in the input of
the function. Sensitivity is the basis for
calibrating the amount of noise to be
added to prevent leakages on statisti-
cal database queries using a differential
privacy mechanism [5]. Differential pri-
vacy ensures that it is difficult for an
attacker, who observes the query out-
put, to distinguish between two input
databases that are sufficiently “close”
to each other, e.g. differ in one row.
Pleak tells the user how to sample noise to achieve differential privacy, and
how this affects the correctness of the output.

Pleak provides two methods – global and local – to quantify sensitivity of
a task in a SQL workflow or of an entire SQL workflow. These methods can be
applied to queries that output aggregations (e.g. count, sum, min, max).

Global sensitivity analysis [4] takes as input a database schema and a query,
and computes the theoretical bounds for sensitivity, which are suitable for any
instance of the database. Sensitivity shows how the output changes if we add
(remove) a row to (from) some input table. To launch the analysis, the user clicks
the “Analyse Sensitivities” button, receiving a matrix that shows the sensitivity
w.r.t. each input table separately. It supports only COUNT queries.

Sometimes, the global sensitivity may be very large or even infinite. Local
sensitivity analysis is an alternative approach, which requires as input not only
a schema and a query, but also a particular instance of the underlying database,



and it tells how the output changes with the change from the given input. Using
the database instance improves the amount of noise needed to ensure differential
privacy w.r.t. the number of rows. Moreover, it supports COUNT, SUM, MIN,
MAX aggregations, and allows to capture more interesting distances between
input tables, such as change in a particular attribute of some row. In Pleak,
we have investigated a particular type of local sensitivity, called derivative sen-
sitivity [3], which is in first place adapted to continuous functions, and is closely
related to function derivative. Pleak uses derivative sensitivity to quantify the
required amount of noise as described in [3].

Let us look at some examples of derivative sensitivity analysis. Since dif-
ferential privacy works with real-valued outputs, we cannot apply the analysis
directly to the model of Fig. 1. We compute some related queries instead.

An example of derivative sensitivity analysis output with a COUNT query
is shown in Fig. 5. The query counts the number of ships that are able to arrive
at the available port before the deadline. The actual database instance contains
53 ships. The user wants to enforce differential privacy w.r.t. unit change in ship
location (latitude and longitude), assuming that all ships (all rows in the table
Ship) are sensitive. This might correspond to the case where the user is the
owner of the Ship table, and the attacker is any other party that might see the
output. The analysis result tells that the derivative sensitivity w.r.t. the Ship
table is 0.0625, and that a differential privacy level of ε = 1 can be achieved using
smoothness parameter β = 0.1. To this end, we would have to add an amount of
noise such that the relative error of the output is 1.28%. More precisely, if the
correct output is y, the noised answer will be between 0.9872y and 1.0128y with
probability 80%.

A related SUM-query would be e.g. one that estimates the total amount of
cargo that all arriving ships bring altogether. An example of a SUM query is
shown in Fig. 6. The table norm and analysis settings are the same as in the
COUNT query (Fig. 5) and are omitted from the figure. The sensitivity is larger,
since some ships have more than 1 unit of cargo and hence affect the output more,
but the output itself is larger as well and in turn reduces the relative error.

Instead of counting the number of ships that reach the port before the dead-
line, we may be interested in the time when the first of them reaches the port.
The corresponding example of a MIN query is shown in Fig. 7. The table norm
and analysis settings are the same as before. We see that the error is quite large
for a MIN query, and it is now 111%. While sensitivity itself is 0.05, which is
quite small, the reason why error is large is that the output itself is small. Dif-
ferently from COUNT or SUM queries, the output does not increase with the
number of table rows, and it is more difficult to achieve differential privacy.

It may be interesting to analyse a related query that computes the time when
the last ship reaches the port. The corresponding example of a MAX query is
shown in Fig. 8. The table norm and analysis settings are the same as before.
We see that the error is much smaller than for a MIN query, and it is 4.75%.
This is because the output itself is large, so we in general would have smaller



Fig. 5. Derivative sensitivity analysis example: COUNT query

relative errors for a MAX than for a MIN query over non-negative values (the
absolute error remains the same).

A tutorial on sensitivity analyzer can be found at https://pleak.io/wiki/
sql-derivative-sensitivity-analyser.

5 Attacker’s Guessing Advantage

While function sensitivity as defined in Sec. 4 can be used directly to compute
the noise required to achieve ε-differential privacy, it is in general not clear
which ε is good enough, and the problem is that its “goodness” depends on
the particular data and the query [5]. We want to use a more standard security
measure, such as attacker’s guessing advantage. Formally, it is defined as the
difference between the posterior (after observing the output) and prior (before
observing the output) probabilities of attacker guessing the input. This tells the
user how much the attacker is able to infer about the input after observing the

https://pleak.io/wiki/sql-derivative-sensitivity-analyser
https://pleak.io/wiki/sql-derivative-sensitivity-analyser


Fig. 6. Derivative sensitivity analysis example: SUM query

output, in addition to what he has already known before (if anything). Internally,
Pleak is still performing query function sensitivity analysis, but represents the
analysis result in terms of guessing advantage, as described in [3].

The guessing advantage analysis of PLEAK takes as input the desired upper
bound on attacker’s advantage, which ranges between 0% and 100%. The user
specifies particular subset of attributes that the attacker is trying to guess for
some data table record, within given precision range. To characterize the attacker
more precisely, the user defines prior knowledge of the attacker, which is currently
expressed as an upper and a lower bound on an attribute. The analyser internally
converts these values to a suitable ε for differential privacy, and computes the
noise required to achieve the bound on attacker’s advantage.

Fig. 9 shows an example of guessing advantage analysis result. We consider
the same COUNT query that has undergone sensitivity analysis in Fig. 5, which
counts the total number of ships arriving before given deadline. Here, the attacker
already knows that the longitude and latitude of a ship are in the range [0..300]
while the speed is in the range [20..90]. By default, he does not know anything
else besides the bounds, and the prior distribution is assumed to be uniform in
the range. Attacker’s goal is to learn the location of any ship with a precision of
5 units of its actual latitude and longitude. The analysis result says that, if we
want to bound the guessing advantage by 30% using noise addition mechanism,
the relative error of the output will be 13.57%.

A tutorial on guessing advantage analyzer can be found at https://pleak.
io/wiki/sql-guessing-advantage-analyser.

https://pleak.io/wiki/sql-guessing-advantage-analyser
https://pleak.io/wiki/sql-guessing-advantage-analyser


Fig. 7. Derivative sensitivity analysis example: MIN query

References

1. M. Colesky, J. Hoepman, and C. Hillen. A critical analysis of privacy design strate-
gies. In IEEE Security and Privacy Workshops (SP), pages 33–40. IEEE, 2016.

2. M. Dumas, L. Garćıa-Bañuelos, and P. Laud. Disclosure Analysis of SQL Workows.
In 5th International Workshop on Graphical Models for Security, 2018. Springer.

3. P. Laud, A. Pankova, and M. Pettai. Achieving Differential Privacy using Methods
from Calculus. 2018. http://arxiv.org/abs/1811.06343.

4. P. Laud, M. Pettai, and J. Randmets. Sensitivity analysis of SQL queries. In
Proceedings of the 13th Workshop on Programming Languages and Analysis for
Security, PLAS ’18, pages 2–12, New York, NY, USA, 2018. ACM.

5. J. Lee and C. Clifton. How much is enough? Choosing ε for differential privacy. In
Intl. Conference on Information Security (ISC), pages 325–340. Springer, 2011.

6. P. Pullonen, J. Tom, R. Matulevičius, and A. Toots. Privacy-enhanced bpmn: en-
abling data privacy analysis in business processes models. Software & Systems
Modeling, Jan 2019.



Fig. 8. Derivative sensitivity analysis example: MAX query

A Demo Plan

PLEAK can be tried with username demo@example.com and password pleakdemo.
The models created under this account are periodically deleted. In addition,
PLEAK offers public view using the links included in the following. The public
links are enough to see example models with their metadata and run PLEAK’s
analyzers. The account is necessary to create of modify the models.

The following description provides a walkthrough of capabilities of PLEAK
using a unified scenario. The focus is on explaining the models and running
the analysis and it is expected that the reader follows the writing using the
demo account or the public links to the models. Our live demo would follow a
similar pattern, but would allow for more interaction with the models, especially
modifying the model data. Parts of the expected demonstration can be seen in
the demo video in https://www.youtube.com/watch?v=pQDYn1Q-BQM.

A.1 Introduction to PLEAK

The front page of pleak.io allows a user to log in and access its models using the
files menu. Clicking on the model name in the file menu opens the editor used
to create the BPMN model. Other actions can be accessed using the button in
right hand side of the model row. Choosing the Shared models tab also shows
the models that are not owned by the user, but where others have granted either
view or edit rights to the user. All models considered in this description are
available for the demo account under the Shared models tab with view rights.
The user can copy the shared models so that they appear in the My models
view and become modifiable. PLEAK also allows to publish models so that the
analysis tools are accessible without a user account.

https://www.youtube.com/watch?v=pQDYn1Q-BQM


Fig. 9. Guessing advantage analysis example

PLEAK is built on top of the BPMN-js library and contains separate com-
ponents to manage the model files, create BPMN models and several privacy-
related editors. These editors can be accessed using the button on the right hand
side of the model row in the file listing and they are the focus of this demo.

All of the following revolves around a running scenario (e.g. see https://

pleak.io/app/#/view/Zta5dILQC6DozqcqQB4E) that involves cargo ships and
a nation with ports for the ships to dock at. The ship needs to find suitable
berths available before its deadline. The data object reachable ports contains
ports that can be reached within the deadline. Feasible ports narrows this down
to ports that the ship can actually fit to. The final output of the process gives
the actual port and berth slot assignment for each ship. The goal is to hide the
ship location and the exact details of the ports where the ship can not dock.

https://pleak.io/app/#/view/Zta5dILQC6DozqcqQB4E
https://pleak.io/app/#/view/Zta5dILQC6DozqcqQB4E


The example models folder in the demonstration account has other processes
that can be analyzed using our tools (model is intended to be used with the
analyzer specified by the folder name). The process of using the tools is similar
to the description given for the running example, but the concrete scenarios,
the computations involved in the process, and therefore the analysis outputs
can differ significantly. In addition, the wiki page in pleak.io gives further
information about the usage and details of our tools.

A.2 PE-BPMN

Consider the Ship Allocation model using the PE-BPMN editor (https://
pleak.io/app/#/view/Zta5dILQC6DozqcqQB4E). This is one possible process
for agreeing on the slot assignment using secure multiparty computation (MPC).
MPC methods allow participants to collaboratively compute on their data while
only revealing the computation output. Privacy-Enhanced BPMN is a BPMN
extension that captures the use of privacy enhancing technologies in the model.
It adds notations to specify the technology and its concrete operation within a
classical BPMN model, for example the blue MPC markers in the example.

Clicking on tasks opens the stereotype menu when the user has edit rights.
This can be tried by copying the demo model so that it appears under My models
tab in the demo account and example of edit view of PE-BPMN editor is given
in Fig. 10. This menu is organized based on privacy goals such as data protection
or processing. For example, MPC can be found under Data processing/Privacy
preserving. Choosing a stereotype like secure multiparty computation opens a
stereotype-specific panel on the right allowing to add required parameters.

Fig. 10. Editing view of PE-BPMN editor

Tasks with the MPC stereotype are grouped based on which tasks corre-
spond to a joint computation. The editor highlights the selected model element

pleak.io
https://pleak.io/app/#/view/Zta5dILQC6DozqcqQB4E
https://pleak.io/app/#/view/Zta5dILQC6DozqcqQB4E


and other related elements, for example, other group members for MPC. In the
given example, tasks with the same name in separate pools are considered to
correspond to the same joint computation, hence, clicking on a task in one pool
highlights the corresponding task in the other pool.

The correctness of PE-BPMN models can be checked using the Validate but-
ton. The result of the validation appears on the right hand side of the screen.
For a valid model, like the demo model, we get two analysis options - simple
disclosure and data dependency. The simple disclosure report visualizes which
participants have access to which data in the process. In addition, it distinguishes
between data objects that are visible or hidden. For example, the Nation sees
its inputs such as port, berth and slot and also learns the intermediate values,
namely, feasible ports and the output assignment. However, the Nation does not
have direct access to the inputs of the ship manager nor the reachable ports
computed for the ship manager. A data dependency matrix describes the inter-
dependence of data objects. However, other analyzers offer more tools to go into
the details of the dependencies. In the basic use of PLEAK, the analyst first
finds potential leakages (data marked with V in the disclosure report) and then
uses the data dependency matrix to check if any visible data depends on any
private data. If it does then the leaks-when or sensitivity analysis can be used
to further study this dependency.

Validation produces an error list and does not allow analysis in case there
are any problems in the model. For example, https://pleak.io/app/#/view/
NyWvwmKjUedE10nNyY6u is an invalid model where clicking the validation button
shows an error. Clicking on the error helps to locate the model elements that
cause the error. In this case the second part of the feasible ports task is missing
the MPC stereotype so the error draws attention to the fact that the feasible ports
task in the Nation requires another group member. The distributed nature of
MPC tasks requires that there is at least two tasks in a group, hence the removal
of one stereotype causes the remaining MPC task to give an error.

Other demo account models consider different privacy enhancing technologies
than MPC. Our approach to various PETs, including the concrete stereotypes
and types of validation, is documented in PLEAK wiki4.

A.3 Leaks-When

Open https://pleak.io/app/#/view/lsQufWrKxjbdGtpJErHl using the SQL
editor to consider an example of the leaks-when analysis. The editor can be
changed to SQL editor using the Change Analyzer button in PLEAK.

Leaks-when analysis takes a SQL workflow or SQL collaborative workflow as
an input. SQL workflow is a BPMN model where each task corresponds to SQL
script that manipulates input database tables into temporary tables. The editor
allows to view and edit these scripts. For example, clicking on the task Select
reachable ports reveals a SQL script that takes the tables port, ship and parame-

4 https://pleak.io/wiki/pe-bpmn-editor_stereotypes

https://pleak.io/app/#/view/NyWvwmKjUedE10nNyY6u
https://pleak.io/app/#/view/NyWvwmKjUedE10nNyY6u
https://pleak.io/app/#/view/lsQufWrKxjbdGtpJErHl
https://pleak.io/wiki/pe-bpmn-editor_stereotypes


ters as inputs and produces reachable ports. Data object are defined analogously,
for the table port one would enter an SQL CREATE TABLE statement.

The data object parameters is a special table that we use to define the name
and data types of input parameters for the overall computation. In this scenario,
we assume that the SQL-workflow is executed for one ship at a time such that
the parameters are the ships name and desired deadline.

PLEAK’s leaks-when analyzer processes the PostgreSQL’s SQL dialect. For
example, task Select feasible ports has two store procedures, one of which com-
putes the distance over the earth surface given the coordinates of two objects.

To analyze a fully annotated model, the analyst has to select one or more
output data objects by clicking on them (selected data is green) and then start
the analysis by clicking the button Leaks-when report. For example, select feasi-
ble ports and reachable ports in the demo model. At the beginning of the analysis,
PLEAK collects SQL scripts for each of the runs of the BPMN model and sends
them to the backend for analysis.

The analysis output is a leaks-when report for each attribute. The right hand
panel lists the chosen data objects and expanding the data object view shows the
number of leakage graph corresponding to this data object. Each data object has
one graph for each column in its output. For example, the reachable ports data
object has two columns, these correspond to the port and deadline computed in
the script. The reachable ports(1) is the port column. The final node in leaks-
when graph is a filter where the first input shows what leaks and the second input
shows under which conditions the leakage occurs. In reachable ports(1) case, the
leaks-when report shows that the port id is disclosed if the ship can reach the
port by a given deadline. The graph describes the deadline computation – it
is computed from ship’s speed and distance from the port as determined from
its coordinates. The second column reachable ports(0) corresponds to deadline in
the reachable ports table. Looking at the corresponding leaks-when report shows
that it leaks the arrival time under the same conditions as for the port. However,
in the leaks branch of the graph we now also have the deadline computation.

The feasible ports table is computed from the reachable ports data and the
leaks-when report reflects this. We can see that the deadline condition is still
present for the leaks-when report of feasible ports. In addition, there are new
conditions specific to this SQL query to stress that the ships draft has to be less
than the harbor depth and that the port must be able to offload the cargo.

The leaks-when analysis can be extended to collaborative workflows. An ex-
ample of our ships workflow as a collaboration can be seen in https://pleak.

io/app/#/view/wJuteo5sJAa_sf4cJ5oY.

A.4 Sensitivity

Sensitivity tells us how much information the output reveals about adding or
modifying a row in the input table. Knowing the workflow’s sensitivity allows
us to make it differentially private (DP). PLEAK considers two flavours of sen-
sitivity: global and local. Global sensitivity computes bounds based on the data
structures whereas local sensitivity depends on the actual data.

https://pleak.io/app/#/view/wJuteo5sJAa_sf4cJ5oY
https://pleak.io/app/#/view/wJuteo5sJAa_sf4cJ5oY


Global. Open https://pleak.io/app/#/view/lh2NY01e2brJb6hspcFN, Click
the button Change Analyzer and select SQL analyzer. It is the same editor
as used for leaks-when SQL analysis, and it requires similar SQL data object
and task descriptions. Global sensitivity quantifies the magnitude of the noise
that should be added to the output to make it differentially private. It can be
computed based on the table schemas and the SQL workflow, similar to the
leaks-when analysis.

Since global sensitivity is reasonable only for COUNT-queries, we count the
number of ports for which the time that it takes to reach the port is below
a certain threshold. Note that the main query does not contain the keyword
COUNT, since the analyzer itself counts the rows in the output table.

The global sensitivity analysis starts by clicking the blue button Analyze Sen-
sitivities. The sensitivity matrix depicts the sensitivity of tasks in columns with
respect to the input tables making up the rows. In this example, the sensitivity
w.r.t. all tables except ship is ∞. The sensitivity w.r.t. ship is 1 since adding
a ship may increase the total number of counted ships by 1. If we remove the
keyword DISTINCT from the query, the sensitivity becomes ∞, since now the
same ship can be potentially assigned to an unbounded number of berths.

Local. Open https://pleak.io/app/#/view/xUILMd3SxrFF8wKPXV-7 in Com-
bined sensitivity analyzer to see both local and derivative sensitivities.

Similarly to SQL editor, this editor allows the user to define SQL statements
for all tasks. In addition, it requires the user to insert actual input data tables to
the data objects. Data can be viewed and added by clicking on the data objects.
For example, select the ship data object and consider the definition of sensitive
rows in Table norm. We see that all rows are considered sensitive (line rows:

all), there are no sensitive columns (line cols: none), but the number of rows
itself is sensitive, and the cost of adding/removing one row is 1.0 (line G: 1.0).

Analysis is started by clicking the button Analyze. First, set the parameters to
define the desired privacy level. The variable ε comes directly from the definition
of differential privacy. Simply put, a smaller epsilon means more privacy. The
variable β is a parameter that can be optimized. In general, it gives less noise
if it is smaller but if it is too small, then achieving differential privacy may be
impossible. The parameters can be left to their default values.

The analysis is executed by clicking on the green button Run analysis. Simi-
larly to global sensitivity, local sensitivity is computed with respect to each input
table. In our case, the only sensitive table is ship, and the sensitivity w.r.t. it is
2. Indeed, since there is no keyword DISTINCT, a ship can be assigned to two
possible berths of the port “alma” (assignments of berths to ports can be viewed
by clicking the data object berth), so the count may change by 2. Recall that
it would be ∞ in the case of global sensitivity. Relative error shows how much
noise we have to tolerate to achieve differential privacy for ship table.

Derivative. Open https://pleak.io/app/#/view/lQSSx15uY13H9S4EhcXA in
Combined sensitivity analyzer using Change Analyzer button. This is the same

https://pleak.io/app/#/view/lh2NY01e2brJb6hspcFN
https://pleak.io/app/#/view/xUILMd3SxrFF8wKPXV-7
https://pleak.io/app/#/view/lQSSx15uY13H9S4EhcXA


model as before but the table norms are defined differently. In component based
sensitivity, the user may choose which rows and columns are sensitive.

Click the port data object and consider the definition of sensitive rows in
Table norm. Here we assume that the columns offloadcapacity, offloadtime, and
harbordepth are sensitive in all rows. It is possible to define more sophisticated
sensitive components. In the table ship, only the rows indexed 3 and 7 (ships
“gamma” and “farmi”) are considered sensitive as can be seen in the first row of
the Table norm. We combine latitude and longitude to define Euclidean distance
(i.e `2-norm) from the port with the line u = lp 2.0 latitude longitude;.
We may assign different privacy weights to different columns, e.g. 0.2 in v1 =

scaleNorm 0.2 u; means that we conceal changes in location up to 1/0.2 = 5
units, so the location is more private than the length. Then, z = lp 1.0 v1

v2; means that the distance between two rows is the sum of distances between
the location and the length (i.e `1-norm). Finally, return linf z; shows how
the distance between the tables is computed from the distances between their
rows, and linf means that we take the maximum row distance (i.e `∞-norm),
so DP conceals the change even if all sensitive rows change by a unit. In general,
DP requires much more noise to hide the changes in all rows simultaneously, but
in our case only the rows 3 and 7 are sensitive, so it is fine.

Analysis is started by clicking the button Analyze. The button Attacker set-
tings allows to define known bounds on table attributes. In the example model,
it says that the ship maximum speed ranges from 20 to 90 units. Without the
lower bound on ship speed, the arrival time approaches ∞ as speed approaches
0, which does not allow to define a β-smooth lower bound for a finite β.

The analysis is executed by clicking on the green button Run analysis. The
sensitivity is computed with respect to each input table. The sensitivity w.r.t.
table port is very large. Indeed, if the port attributes change, it may happen
that no ship will fit there anymore. Sensitivity w.r.t. the table ship is 4, where 2
comes from possible changes in the 3rd row, and 2 from possible changes in the
6th row. The row sensitivity 2 comes from the fact that modifying the length by
1 unit, or the location by 5 units, may cause filtering failure, and since there are
2 available berths, we lose 2 rows from the count.

A.5 Guessing Advantage

Open https://pleak.io/app/#/view/P4RRkJV-DsBttt5NnapS. Click the but-
ton Change Analyzer and select Guessing advantage analyzer. Here, each table
has a schema and data, but no norm. Clicking Analyze opens a slider, ranging
from 0% to 100%, to set the upper bound on attacker’s guessing advantage.
There are now two extra buttons to define bounds for used attributes:

Attacker settings defines prior knowledge of the attacker by setting pre-
known bounds on attributes, defined either as exact, range a b, or total a (the
latter is used only for discrete data).

Sensitive attributes defines a set of sensitive components, which the at-
tacker is trying to guess. The definition starts from a keyword leak and for each

https://pleak.io/app/#/view/P4RRkJV-DsBttt5NnapS


attribute, the guess can either be exact (discrete attributes), or approx r (ap-
proximated by r > 0 units). The list of attributes is followed by the keyword
cost and a number that defines the cost of leaking that attribute.

Reducing the advantage slider to 0% gives the error ∞, as it is impossible
to achieve perfect privacy with bounded noise. Increasing it to 100% gives the
error 0, since the attacker is allowed to guess everything. Reducing the allowed
guessing radius under Sensitive attributes, or the known radius under Attacker
settings (click Save after making any changes) makes the guess more difficult.
Clicking View more, we see that both prior and posterior probabilities decrease.
However, since the noise level depends on the advantage, which is the difference
between these two probabilities, the error does not necessarily decrease.


	Business Process Privacy Analysis in Pleak

