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A MULTIPERIOD STOCHASTIC PRODUCTION PLANNING AND 
SOURCING PROBLEM SERVICE LEVEL CONSTRAINTS 

 

 

Abstract: 

 
We study a stochastic multiperiod production planning and sourcing problem of a manufacturer with a 
number of plants and/or subcontractors. Each source, i.e. each plant and subcontractor, has a different 
production cost, capacity, and lead time. The manufacturer has to meet the demand for different 
products according to the service level requirements set by its customers. The demand for each product 
in each period is random. We present a methodology that a manufacturer can utilize to make its 
production and sourcing decisions, i.e., to decide how much to produce, when to produce, where to 
produce, how much inventory to carry, etc. This methodology is based on a mathematical programming 
approach. The randomness in demand and related probabilistic service level constraints are integrated in 
a deterministic mathematical program by adding a number of additional linear constraints. Using a 
rolling horizon approach that solves the deterministic equivalent problem based on the available data at 
each time period yields an approximate solution to the original dynamic problem.   We show that this 
approach yields the same result as the base stock policy for a single plant with stationary demand.  For a 
system with dual sources, we show that the results obtained from solving the deterministic equivalent 
model on a rolling horizon gives similar results to a threshold subcontracting policy. 
  

Keywords: stochastic production planning, service level constraints, subcontracting 

   

1. INTRODUCTION AND MOTIVATION  

In this study, we consider a manufacturer that supplies products to a retailer.  The manufacturer 

has a number of production sources that are either its own plants or its subcontractors.  Each source 

has a different production cost, capacity, and lead time.    The demand for each product in each period 

is random.   The manufacturer has to meet the demand for multiple products taking into account  the 

service level requirements set by the retailer. 

In the production planning and the sourcing problem, the manufacturer’s decision variables are 

how much to produce, when to produce, where to produce, and how much inventory to carry in each 

period.   The objective is to minimize its total production and inventory carrying costs during the 

planning horizon subject to the service level requirements and other possible constraints. 

This problem is motivated by the problems faced by suppliers of lean retailers in the textile-

apparel-retail channel (Abernathy et. al., 1999).  Namely, adoption of lean retailing practices force 

suppliers of lean retailers to adopt new strategies to respond quickly to changing demand effectively.    

Using subcontractors emerge as a viable alternative to increase production capacity temporarily when 

it is needed.  Additional cost of subcontracting can be justified by lowering inventories and improving 

the service.   However, deciding on where to produce and how much to produce is a challenging task 

especially when the demand is volatile.  A qualitative discussion of this problem can be found in 

(Abernathy et. al., 2000).  Figure 1 below depicts the system which motivates this study.   
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Figure 1.  A Manufacturer with multiple plants that sells multiple products to a retailer 

 

We propose a solution methodology that is based on solving a deterministic mathematical 

problem at each time period on a rolling horizon basis.  Randomness in the problem that comes from 

uncertain demand and service level constraints are integrated in a deterministic mathematical program 

by adding a number of additional linear constraints similar to the approach proposed by Bitran and 

Yanasse (1984).  We propose using this approach to address the more relevant but also more difficult 

dynamic problem where decisions can be updated over time.    Since the equivalent deterministic 

problem is a well-structured mathematical programming problem, the proposed methodology can 

easily be integrated with the Advanced Planning and Optimization tools, such as the products of i2, 

Manugistics, etc., that are commonly used in practice.   

 The organization of the remaining part of the paper is as follows:  In Section 2, we review the 

literature on mathematical-programming-based stochastic production planning methodologies.  The 

particular stochastic production planning and sourcing problem we investigate is introduced in Section 

3.   Section 4 presents the proposed solution methodology that is based on solving the deterministic 

equivalent problem at each time step on a rolling horizon basis.   The performance of the rolling 

horizon approach is evaluated by considering a number of special cases in Section 5.  Finally, 

conclusions are presented in Section 6. 

2. LITERATURE REVIEW 

The classical deterministic production planning problem, its mathematical programming 

formulations and solution methodologies have received a lot of attention for many years (see Hax and 

Candea, 1984 for a number of well-known models). In this section, we only review the literature 
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directly related to mathematical programming based approaches for stochastic production planning 

problems. 

Bitran and Yanasse (1984) deal with a similar stochastic production planning problem with a 

service level requirement. They provide non-sequential (static) and deterministic equivalent 

formulations of the model and propose error bounds between the exact solution and the proposed 

approach. Their main focus is on the solution of the static problem, i.e., the solution at time zero for 

the whole planning horizon.    

Bitran, Haas and Matsudo (1986) present a model that is motivated by a case in the consumer 

electronics and textile and apparel industry.  In this model, the stochastic problem is transformed into a 

deterministic one by replacing the random demand with their average values. Then, the solution of the 

transformed problem provides answers to the questions of what to produce and when to produce. The 

complete solution is obtained by determining how much to produce from a newsboy-type formulation 

based on the solution of the deterministic problem.  

Feiring and Sastri (1989) focus on production smoothing plans with rolling horizon strategies 

and confidence levels for the demand, which are set by the production planners. The probabilistic 

constraints in the demand-driven scheduling model are revised by Bayesian procedures and are 

transformed into deterministic constraints by inverse transformations of normally distributed demand.  

Zapfel (1996) claims that MRP II systems can be inadequate for the solution of production 

planning problems with uncertain demand because of the insufficiently supported 

aggregation/disaggregation process.  The paper then proposes a procedure to generate an aggregate 

plan and a consistent disaggregate plan for the Master Production Schedule. 

Kelle, Clendenen and Dardeau (1994) extend the economic lot scheduling problem for the 

single-machine, multi-product case with random demands. Their objective is to find the optimal length 

of production cycles that minimizes the sum of set-up costs and inventory holding costs per unit of 

time and satisfies the demand of products at the required service levels. 

Clay and Grossman (1997) focus on a two-stage fixed-recourse problem with stochastic Right-

Hand-Side terms and stochastic cost coefficients and propose a sensitivity-based successive 

disaggregation algorithm. 

Sox and Muckstadt (1996) present a model for the finite-horizon, discrete-time, capacitated 

production planning problem with random demand for multiple products. The proposed model 

includes backorder cost in the objective function rather than enforcing service level constraints. A 

subgradient optimization algorithm is developed for the solution of the proposed model by using 

Lagrangian relaxation and some computational results are provided.  

Beyer and Ward (2000) report a production and inventory problem of Hewlett-Packard’s 

Network Server Division. The authors propose a method to incorporate the uncertainties in demand in 

an Advanced Planning System utilized by Hewlett-Packard.  
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 Albritton, Shapiro and Spearman (2000) study a production planning problem with random 

demand and limited information and propose a simulation based optimization method.  Qui and Burch 

(1997) study a hierarchical production planning and scheduling problem motivated by the fibre 

industry and propose an optimization model that uses logic of expert systems. 

Van Delft and Vial (2003) consider  multi-period supply chain contracts with options. In order 

to analyze the contracts, they propose a methodology to formulate the deterministic equivalent 

problem from the base deterministic model and from an event tree representation of the stochastic 

process and solve the stochastic linear program by discretizing demand under the backlog assumption. 

For the textile-apparel-retail problem discussed in (Abernathy et. al., 2000), a simulation model 

has also been developed (Yang, Lee, and Ho, 1997).  Then a simulation-based optimization technique 

that is referred as ordinal optimization, has been used to determine the parameters of a production and 

inventory control policy that gives a good-enough solution approximately (Yang, Lee, and Ho, 1997; 

Lee, 1997).  However, one needs to set a specific production and inventory control policy in the 

simulation.  In addition to the difficulty of setting a plausible policy in a complicated case, as the 

number of sources and products increase, the number of parameters to be optimized also increases.  As 

a result, finding an approximate solution requires a considerable time. 

Simplified versions of the sourcing problem studied in this paper have been investigated in the 

past by using stochastic optimal control (Bradley, 2002; Tan and Gershwin, 2004; Tan, 2001).   

Bradley (2002) considers a system with a producer and a subcontractor and discrete flow of goods.  In 

an M/M/1 setting without the service level requirements, he proves that the optimal control policy 

structure is a dual-base stock policy.  In this policy when the number of customers in the queue 

reaches a certain level, then new incoming customers are sent to the subcontractor.  When there are no 

customers waiting in the queue, then the producer continues production until a certain threshold is 

reached.   

In Tan (2001) and Tan and Gerhswin (2004), a producer with a single subcontractor is 

formulated with continuous flow of goods without the service level requirements.  They also show that 

a threshold-type policy is optimal to decide when and how to use a subcontractor.  In the threshold-

policy, the subcontractor is used when the inventory or the backlog is below a certain threshold level. 

Our paper uses the idea of incorporating randomness in a deterministic mathematical program 

that is used in many of the above studies in different formats.  We utilize the approach proposed by 

Bitran and Yanasee (1984) that shows the equivalence for the static problem.  In contrast to this study 

where the main objective is determining error bounds for the optimal cost in the non-sequential case, 

our main focus is generating a production and sourcing plan, i.e. determining the values of the 

decision variables in the sequential (dynamic) problem where sourcing decisions are made (or 

updated) dynamically over time. We also compare the approximate solution of the dynamic problem 

with certain benchmark policies.   Since the exact optimal solution of the dynamic problem is not 

known, we use two different benchmarks.  It is proven that for a single source with lead time, the 
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proposed approach yields the same production policy as the optimal base stock policy.  For a dual-

source, e.g. a producer with a subcontractor, a threshold-type subcontracting policy suggested by 

Bradley (2002), Tan (2001), Tan and Gershwin (2004) is utilized as a benchmark.  After adopting the 

threshold policy to a more generalized case with lead time and service-level requirements, it is 

observed that the proposed approach yields very similar results to the threshold-based benchmark in 

the numerical examples considered. 

3. STOCHASTIC MULTIPERIOD SOURCING PROBLEM WITH SERVICE 
LEVEL CONSTRAINTS 

Assume that there is a single product and N different production sources (plants and 

subcontractors).  The demand for this specific product at time t, dt is random.  The main decision 

variables are the production quantities at each production source at time t, Xi,t, i=1,…,N.  The 

inventory level at the end of time period t is denoted by It. The number of periods in the planning 

horizon is T.  The inventory holding cost per unit per unit time is ht and the production cost at 

production source i at time t is ci,t. 

 Constraints on the performance (related to backorders) of the system are imposed by requiring 

service levels.  The frequently used Type 1 Service Level is defined to be the fraction of periods in 

which there is no stock out. It can be viewed as the plant’s no-stock-out frequency. This service level 

measures whether or not a backorder occurs but is not concerned with the size of the backorder. In 

this study, we consider a Modified Type 1 Service Level requirement. The Modified Type 1 Service 

Level forces the probability of having no stock out to be greater than or equal to a service level 

requirement in each period.   The service level requirement in period t is denoted by .   

The Stochastic Production Planning and Sourcing Problem (SP) is defined as:  

   

 subject to 

  (1)                                                                             

  (2) 

  (3) 

where . 

 

The objective of the problem is to minimize the total expected cost, which is the expected value of 

the sum of the inventory holding and production costs in the planning horizon.   The first constraint set 

defines the inventory balance equations for each time period.  The next constraint imposes the service 
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level requirement for each period.  Finally, the last constraint states that the production quantities 

cannot be negative.   

  This formulation can easily be extended to multiple products and production sources with lead 

times.   Moreover different service level definitions can also be considered by following the same 

approach. 

4. AN APPROXIMATE SOLUTION PROCEDURE BASED ON A ROLLING 
HORIZON PROCEDURE 

The solution of the above problem at time 0 for the planning horizon [0, T] is referred as the 

static solution.  The static solution is obtained by using the available information about the distribution 

of demand in the future periods and the initial inventory.   A policy that sets (or updates) the future 

production quantities Xi,t at time t based on the information available at that time, e.g., demand 

realizations, demand distributions in the future periods, and current inventory levels, is referred to as 

the dynamic solution. 

In theory, the optimal policy which determines production quantities based on actual state 

information may be obtained by solving the stochastic dynamic program associated with this problem.  

In practice, however, there are several problems with the stochastic dynamic programming solution. 

First, the well-known curse of dimensionality makes numerical solutions challenging even for 

relatively small problems. Second, it is difficult to integrate constraints on the trajectory of the 

underlying stochastic processes such as service level requirements in inventory models.  Therefore, we 

propose a rolling-horizon approach that is based on solving the static problem at each time period 

based on the available information.  This, however, requires solving the static problem repeatedly 

which requires a transformation explained below. 

Deterministic Equivalent Formulation for the Static Solution 
Although obtaining the optimal dynamic solution is, in general, not tractable, the static solution 

can relatively easily be obtained by using deterministic mathematical programming as suggested by 

Bitran and Yanasse (1984).  

In particular, Bitran and Yanasse show that the (modified type-1) service level constraint can be 

transformed into a deterministic equivalent constraint by specifying certain minimum cumulative 

production quantities that depend on the service level requirements.  

To summarize this approach, let lt denote the (deterministic equivalent) minimum cumulative 

production quantity in period t which is calculated by solving the probabilistic inequality:  

 for lt ( ) 

that yields 

 

1
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where Ft(.) is the cumulative distribution function of the random sum . Then the probabilistic 

constraint can be expressed equivalently by: 

     (4) 

 

Now, the deterministic equivalent problem with service level constraints that has been mentioned 

in the previous sections can be modeled as below (Bitran and Yanasse, 1984): 

Deterministic Equivalent Problem (DEP): 

    

    

  (5) 

  (6) 

The optimal decision variable values in DEP are the same as the ones in the solution of SP at time 

0. 

 The static solution is obtained by transforming the stochastic problem into a deterministic one 

and then solving the resulting mathematical program.  The rolling horizon approach repeats this 

procedure by using the available information at each time period until time T.   

5. PERFORMANCE OF THE ROLLING HORIZON SOLUTION 

It is known that the rolling-horizon approach yields good results for a number of dynamic 

optimization problems.  In some special cases, the rolling horizon method may even yield the optimal 

solution.  In this section, we evaluate the performance of the proposed method by comparing it to 

certain benchmark policies in two commonly encountered special cases in production planning. 

5.1 A Single Source Problem with Stationary Demand 
We start with the special case of a single production source. When there is only one source, the 

objective function includes only the holding cost (since the expected total production costs must equal 

the total expected demand over the planning horizon). In this case, we use the base stock policy as the 

benchmark policy. The base stock policy is widely known and utilized in many applications. In 

addition, it is known to be optimal in a number of related inventory problems. It, therefore, constitutes 

a natural benchmark for comparison. The base stock policy has a single parameter which is a reorder 

level and a base lot size of one unit. It aims to maintain a pre-specified target inventory level. Under 

this policy, the sequence of events is as follows: the system starts with a pre-specified base stock level 
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in the finished goods inventory. The arrival of the customer demand triggers the consumption of an 

end-item from the inventory and issuing of a replenishment order to the production facility. Using this 

policy, an order is placed (or the manufacturing facility operates) if and only if the inventory level 

drops below the base stock level. The comparison of these two models is performed for two cases with 

and without a lead time. 

5.1.1 Single Source without Lead Time 

In this first scenario, there is a single product to be produced by a single production facility. It is 

assumed that the demand of this specific product stays stationary over the planning horizon. We 

propose that solving the deterministic equivalent model with modified service level constraints on a 

rolling horizon basis is equivalent to operating the system under the base stock policy. The next 

proposition establishes this equivalence: 

 

Proposition 1: When the production facility has no lead time and the demand is stationary, 

using a base stock policy is equivalent to solving the deterministic equivalent model with service level 

constraints on a rolling horizon basis (either Modified Type 1 or Modified Type 2) in the following 

way: assume that the base stock level in the base stock policy equals I0(BS)=S1 and the initial 

inventory level in the deterministic equivalent problem equals I0(DEP)=l1. If S1=l1, then the equivalent 

base stock policy gives the same total expected cost value, yields the same production plan and results 

in the same service level with the deterministic equivalent model with modified service level 

constraints solved on a rolling horizon basis. 

 

Since this case is a special case of the next one with lead time,  the proof of Proposition 1 is not 

given here but reported in (Yıldırım, 2004). 

 

Corollary 1:  The optimal base stock level is equal to l1. Equivalently, the base stock level S1=l1 

ensures that the resulting production plan satisfies the required service levels 

 

Proof:  If the initial inventory level is set to be S1=l1, the resulting production plan is the same 

with that of the base stock policy which starts with a base stock level of S1=l1. Although the base stock 

policy does not guarantee the assurance of the service levels, since we know that the deterministic 

equivalent model satisfies the required service levels and the two policies are equivalent, we can say 

that the base stock level S1=l1 ensures that the resulting production plan satisfies the required service 

levels. Note that S1=l1 must be optimal because decreasing the base stock level from l1 leads to an 

infeasible solution and increasing it above l1 would lead to higher average inventory costs and 

therefore cannot be optimal. �  
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Even though a formal proof is lacking, it is highly likely that the base stock policy (with a 

stationary base stock level) is optimal for the single-plant single-product problem in an infinite horizon 

setting. Theorem 1 and Corollary 1 establish that for this problem, the rolling horizon approach yields 

the same solutions as the optimal base stock policy leading us to conclude that the rolling horizon 

procedure performs optimally in this case. 

5.1.2  Single Source with Lead Time 

The deterministic equivalent model with service level constraints (DEP) can be extended to a case 

in which the production facility has a production lead time. Assume that there is a production lead 

time of LT periods and the initial scheduled receipts are denoted by  Then, the 

problem can be modeled in the following way: 

Deterministic Equivalent Production Planning Problem including Lead Time (DEPLT): 

 

   

    

   (7) 

   (8) 

 

Our main result is as follows: 

Proposition 2: When the production facility has a non-negative lead time LT, the demand is 

stationary and there are no scheduled receipts initially, using a base stock policy is equivalent to 

solving the deterministic equivalent model with service level constraints on a rolling horizon basis in 

the following manner: assume that the base stock level in the base stock policy including lead time 

equals I0(BSLT)=S2 and the initial inventory level in the deterministic equivalent model including lead 

time equals I0(DEPLT)=lLT+1. If S2=lLT+1,then the equivalent base stock policy gives the same total 

expected cost value, yields the same production plan and results in the same service level with the 

deterministic equivalent model with service level constraints solved on a rolling horizon basis. 

 

Proof:  The proof of Proposition 2 is given in the Appendix. ■ 
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5.2 A Dual Source Problem with Stationary Demand 
Since the optimal solution of our dynamic problem is not known, a plausible benchmark is used to 

evaluate the performance of the proposed approach.  We propose a threshold subcontracting model 

suggested in a number of studies in the literature (Bradley, 2002; Tan, 2001; Tan and Gershwin, 

2004).  Although the threshold policy is only shown to be optimal under specific assumptions 

including zero lead time, stationary demand, no service level requirements, etc., we think that it is a 

reasonable benchmark policy for our problem. 

5.2.1 A threshold subcontracting policy 

Now we explain the operation of the threshold policy for our benchmark case.  We consider a dual 

source system with an in-house production facility and a subcontractor.  We assume that the in-house 

facility has a capacity of C but the subcontractor has an infinite capacity.   There is a lead-time of one 

period.  That is, production quantities scheduled at time t become available at time t+1.  

The threshold policy is characterized by two threshold levels S and Z.  The in-house production 

facility operates when the inventory level is below S.  That is, it starts producing when the inventory 

level drops below the target level S and stops producing when the inventory level again reaches S.   

The subcontractor is used when the inventory level decreases to a threshold level of Z.   

When the inventory level is below S, but is still above Z, the in-house facility produces to cover 

the shortfall with respect to S.  If there is not sufficient production capacity to cover the whole 

shortfall, the in-house facility operates at full capacity and the portion of demand that cannot be 

satisfied is backlogged for the next period.  

Let X1,t and X2,t denote the production amounts of the in-house facility and the subcontractor in 

period t respectively. Then, the production amounts of each production facility in each time period can 

be determined for the threshold subcontracting model in the following way: 

  (9) 

  (10) 

The following figure shows the evolution of X1,t , X2,t and I t under this policy for a Poisson 

arrival of demand with rate 10 and  S=15, Z=7, and C=8. 

 

1, 1Min{ , , },  1,..., ;t tX S Z S I C t T-= - - =

2, 1Max{0, },  1,..., .t tX Z I t T-= - =



  12 

 

 

 

 
Figure 2.  Sample realization of d t, X1,t , X2,t and I t under the threshold policy S=15, Z=7, C=8. 
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5.2.2   Comparison of the performance of the threshold policy and the rolling horizon 
approach 

 The deterministic equivalent model for this case is solved for a rolling horizon of 10 periods 

repeatedly throughout a planning horizon of 1000 periods. 5000 sample demand streams are generated 

and the realized inventory levels are integrated in the model accordingly. The production plans and the 

realized cost values between periods 451 and 550 are observed. All cost values are calculated on a per 

period basis.  

The optimal values of the threshold values S and Z are determined by using a direct simulation-

based numerical search.  It is assumed that there are 1000 periods in the planning horizon and the 

same 5000 sample demand streams are utilized.  The service level requirement is relaxed with the one-

sided 95% confidence interval of the simulation result.  That is whenever upper confidence level of the 

observed service level reaches the desired one, this case is accepted as satisfying the service level 

requirement.  The underlying reasoning behind making this modification in service levels is that, the 

sample size we utilize might not be sufficient enough to make the realized service level equal exactly 

to the required one. Among the base stock and threshold levels that satisfy the relevant service level 

requirements, the model aims to find the one with minimum total cost. The calculations are performed 

for periods between 451 and 550.  

For the numerical examples reported below, the order arrivals are governed by a Poisson process 

with rate 10 products per period.  The production cost is assumed to be $4 per product for the in-house 

facility. The initial inventory level of the specific product is set to be zero. The service level 

requirement is set to be 95%. 

The comparison between the deterministic equivalent model and the threshold subcontracting 

model is performed for nine combinations of subcontracting cost to in-house production cost, holding 

cost to in-house production cost and capacity to mean demand ratios. The combinations of 

subcontracting costs, holding costs and the in-house production capacities and therefore, the 

combinations of relevant subcontracting cost to in-house production cost, holding cost to in-house 

production cost and capacity to mean demand ratios for which the comparisons are made can be 

observed in Table 1.   For each of the problem settings, the base stock and threshold levels observed in 

the threshold subcontracting model are reported in Table 2.  

Note that, in some of the cases, the base stock and threshold pairs are observed to be the same. The 

reasoning behind this is, these pairs lead to the same average inventory levels and minimum cost 

values in these settings. 

While comparing the two models, total expected cost, average production cost, average inventory 

holding cost values and the assignment of production to the plants (in percentages) are the key 

elements we focus on.  Table 3 summarizes the total expected cost values of the deterministic 

equivalent model (DEM) and the threshold subcontracting model (TSM) for the nine different 

scenarios for each modified service level type. 
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Table 1: The possible scenarios for which comparisons are made 

Subcontracting 
Cost 

Holding 
Cost 

In-house 
Production 
Capacity 

   

4 16 8 1 4 0.8 
4 16 12 1 4 1.2 
4 16 20 1 4 2 
6 1 8 1.5 0.25 0.8 
6 1 12 1.5 0.25 1.2 
6 1 20 1.5 0.25 2 
6 4 8 1.5 1 0.8 
6 4 12 1.5 1 1.2 
6 4 20 1.5 1 2 

 

Table 2: Base stock and threshold levels observed in each scenario 

Subcontracting Cost  Holding Cost 
In-house 

Production  
Capacity 

Critical Levels 

Base Stock Threshold 
4 16 8 15 7 
4 16 12 15 3 
4 16 20 15 -¥ 
6 1 8 17 7 
6 1 12 16 0 
6 1 20 15 -¥ 
6 4 8 15 7 
6 4 12 15 3 
6 4 20 15 -¥ 

 

Table 3: The comparison of total expected cost values observed in each scenario  

Subcont.  
Cost 

Holding  
Cost 

In-house 
 Prod. 
Cap. 

Total expected cost 

DEM TSM Percentage  
Difference 

4 16 8 121.66 121.66 0.00 
4 16 12 121.66 121.66 0.00 
4 16 20 121.66 121.62 0.03 
6 1 8 49.97 49.89 0.16 
6 1 12 46.16 45.65 1.12 
6 1 20 45.10 45.10 0.02 
6 4 8 65.33 65.33 0.00 
6 4 12 61.47 61.47 0.00 
6 4 20 60.42 60.40 0.03 

 

The above figures display that the deterministic equivalent model gives very close solutions when 

compared with the threshold subcontracting model for both types of the modified levels. The 

deterministic equivalent model results in total expected cost values equal to or a little bit larger than 

those of the threshold subcontracting model.  For our set of numerical experiments, the deterministic 

Subcontracting Cost
In-house Prod. Cost

Holding Cost
In-house Prod. Cost

In-house Prod. Capacity
Mean Demand
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equivalent model gives close results to the threshold subcontracting model when the service level 

requirement is of Modified Type 1.   

Tables 4 and 5 display the comparison of average production and holding cost values. As can be 

seen, the deterministic equivalent model gives similar results to the threshold subcontracting model.   

Table 6 summarizes the percentage of production assigned to the in-house production facility for both 

the deterministic equivalent model and the threshold subcontracting model. The results suggest that 

the production assignments of the deterministic model follow a similar pattern with the benchmark 

chosen. 

Table 4: The comparison of average production cost values observed in each scenario 

Subcont.  
Cost 

Holding  
Cost 

In-house 
 Prod. 
Cap. 

Average Production Cost 

DEM TSM Percentage  
Difference 

4 16 8 39.99 39.99 0.00 
4 16 12 39.99 39.99 0.00 
4 16 20 39.99 39.99 0.00 
6 1 8 44.06 44.36 -0.68 
6 1 12 41.05 40.24 2.03 
6 1 20 40.00 39.97 0.06 
6 4 8 44.91 44.91 0.00 
6 4 12 41.05 41.05 0.00 
6 4 20 40.00 39.99 0.01 

 

Table 5: The comparison of average holding cost values observed in each scenario  

Subcont.  
Cost 

Holding  
Cost 

In-house 
 Prod. 
Cap. 

Average Holding Cost 

DEM TSM Percentage  
Difference 

4 16 8 81.67 81.67 0.00 
4 16 12 81.67 81.67 0.00 
4 16 20 81.67 81.63 0.05 
6 1 8 5.92 5.53 6.91 
6 1 12 5.10 5.41 -5.67 
6 1 20 5.10 5.10 0.05 
6 4 8 20.42 20.42 0.00 
6 4 12 20.42 20.42 0.00 
6 4 20 20.42 20.41 0.05 

 

Table 6: The percentage of production assignments to the in-house production facility observed 

in each scenario  

Subcontracting 
Cost  Holding Cost 

In-house 
Production  
Capacity 

% In-house Production 

Base Stock Threshold 
4 16 8 75.45 75.40 
4 16 12 94.73 94.70 
4 16 20 99.97 100.00 
6 1 8 79.76 78.17 
6 1 12 94.73 98.78 
6 1 20 99.97 100.00 
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6 4 8 75.45 75.40 
6 4 12 94.73 94.70 
6 4 20 99.97 100.00 

Based on these figures, we can conclude that the proposed deterministic equivalent model solved 

on a rolling horizon basis performs as well as the threshold subcontracting model solved on a 

simulation-based optimization technique for the modified type-1 service level. The total expected cost 

values of deterministic equivalent models for all nine different cases are equal to or a little bit larger 

than those of the threshold subcontracting model. However, we cannot reach the same conclusion for 

the average production and holding cost values. The deterministic equivalent model performs either 

worse for some cases or better for some other cases when the comparison is based on average 

production or holding cost values. However, the sum of these two terms, the total expected cost, is 

equal to a little bit larger than that of the threshold subcontracting model. Moreover, the proportion of 

production assigned to the in-house facility in the deterministic equivalent model resembles that in the 

simulation based threshold subcontracting model.  

It is worth mentioning that the sample size utilized in the above numerical comparisons, 5000, 

might not be large enough to satisfy the service level requirements in each time period that the 

modified service level definitions necessitate. The coefficient of variation in the realized service level 

values might be larger than expected. To handle this problematic issue, we introduced one-sided 

confidence intervals. Although the threshold subcontracting model constitutes a lower bound in terms 

of total expected cost values for our set of numerical examples, it can not be generalized from our 

examples that the deterministic equivalent model always gives solutions worse than those of the 

threshold subcontracting model. Nevertheless, the proposed approach seems to give extremely 

promising results in this particular case as well. 

6. CONCLUSIONS 

In many practical situations, mathematical models of production planning/outsourcing problems 

have to deal with the randomness in demand.  We present a systematic approach that enables the 

randomness in demand and the desired service levels to be incorporated in a mathematical 

programming framework.    

We show that solving the deterministic equivalent problem on a rolling-horizon basis gives 

similar results to the performance of the benchmarks.  Although the threshold-type policies are 

conceptually quite intuitive, it is very challenging to determine the optimal threshold levels by using 

simulation.  The proposed algorithm is easier to implement and optimize by using available solvers. 

This study can be extended in a number of ways.  The same approach can be used to derive 

results for different service level definitions.  Yıldırım (2004) reports preliminary results for Type 2 

and Modified Type 2 service levels.  The formulation of the multi-product case is also straightforward.  

The effects of demand variability, production cost, and the lead time on the production and 

sourcing plans need further investigation.  Since the optimal solution to the general problem is not 
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known for the dynamic case, investigation of the static case or a stylized model can yield insights 

regarding the interaction of demand variability, cost, and the lead time. 
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Appendix 

Proof of Proposition 2  
We use induction to show that 

i. If the inventory levels at the beginning of the first period are equal, 

I0(BSLT)=I0(DEPLT)=lLT+1, then production quantities in the first period and the 

inventory at the end of first period for both policies become equal, i.e. 

X1(BSLT)=X1(DEPLT)=0 and I1(BSLT)=I1(DEPLT)=lLT+1-d1; 

ii. If the inventory levels at the end of period t1 such that t1£LT are equal, 

, then the production quantities in period 

(t1+1) and the inventory levels at the end of period (t1+1) for both policies become equal; 

i.e.  and  

. 

and 

iii. If the inventory levels at the end of period (LT+1) are equal, 

, then production quantities in period 

(LT+2) and the inventory levels at the end of period (LT+2) for both policies 

become equal, i.e. XLT+2(BSLT)=XLT+2(DEPLT)=dLT+1 and  

; 

iv. If the inventory levels at the end of period t2 such that t2³LT are equal, 

, then the production quantities in period 

(t2+1) and the inventory levels at the end of period (t2+1) for both policies become equal; 

i.e. and 

. 

Assume that the initial inventory levels are equal such that I0(BSLT)=S2, I0(DEPLT)=lLT+1 and 

S2=lLT+1. In the base stock policy, each demand observed is produced in the next period; therefore there 

is no production in the first period, X1(BSLT)=0. In the deterministic equivalent approach, the 
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production quantity in the first period is determined according to the constraint 

  and therefore, 

. Since the problem is of minimization type, the production quantity in the first 

period equals zero, i.e. X1(DEPLT)=0. Next, a customer demand of d1 arrives. The end of period 

inventory for the base stock policy becomes I1(BSLT)=I0(BSLT)+SR1(BSLT)=S2+0-d1=S2-d1 and the 

end of period inventory for the deterministic equivalent approach becomes I1(DEPLT)=I0(DEPLT) 

+SR1(DEPLT)-d1=lLT+1+0-d1=lLT+1-d1. Since we know that S2=lLT+1, I1(BSLT)=I1(DEPLT).  

In the second period, the base stock policy produces the demand of the first period, i.e. 

X2(BSLT)=d1. At the beginning of the second period, the deterministic equivalent model is rerun since 

it is solved on a rolling horizon basis. The demand is assumed to be stationary over the planning 

horizon. Although solving the model on a rolling horizon basis throughout the planning horizon 

requires integration of the minimum cumulative production quantites for the number of periods in the 

rolling horizon into the model, only the minimum cumulative production quantity of  period (LT+1), 

lLT+1, is fully utilized. The production quantity of the deterministic equivalent model in the second 

period is determined by 

 

; therefore, . In order to 

minimize the production costs, the production quantity in the second period equals the demand of the 

first period, i.e. .  After the arrival of a customer demand of d2, the end of period 

inventory for the base stock policy becomes I2(BSLT)=I1(BSLT)+SR2(BSLT)-d2=S2-d1-d2 and the end 

of period inventory for the deterministic equivalent approach becomes 

I2(DEPLT)=I1(DEPLT)+SR2(DEPLT)-d2= lLT+1 

-d1-d2. Since S2=lLT+1, we can say that I2(BSLT)=I2(DEPLT). 

Since demand during lead time cannot be satisfied no sooner than (LT+1) periods of time, the 

inventory levels at the end of any period t1 such that t1£(LT-1) can be written 

as , and S2=lLT+1. In period (t1+1), the base stock 

policy produces . In the deterministic equivalent approach, the production quantity 

is determined by the constraint   
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; therefore, . Since the problem is of minimization type, 

. Then, a customer demand of  is observed. The end of period inventory for 

the base stock policy becomes  

 and the end of period inventory for the deterministic 

equivalent approach becomes  

. Since S2=lLT+1,  . 

Similarly, dLT+1 is produced by the base stock policy in period (LT+1), i.e. XLT+1=dLT+1. The 

constraint  

; i.e.  

determines the production quantity of the deterministic equivalent model in period (LT+1). Then, 

.  Next, a customer demand of dLT+1 arrives. The end of period inventory for the 

base stock policy becomes  

   and the end of 

period inventory for the deterministic equivalent approach becomes 

 

.Since S2=lLT+1, . 

In period (LT+2), the base stock policy produces XLT+1(BSLT)=dLT+2. For the deterministic 

equivalent approach, we know that  

 

; i.e.  and then, .  After the arrival of 

dLT+2, the following end of period inventory levels are observed 
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 and  

. Since 

we know that S2=lLT+1, . 

Now assume that at the end of any period t2 such that t2³(LT+1), , 

 and S2=lLT+1. In period (t2+1),  and 

 is determined by the constraint  

 

;  and since the model is of minimization 

type . Next, a customer demand of  arrives. The end of period inventory 

levels for both policies become  

an

d  

 Since we know that S2=lLT+1, 

. This proves our proposition. ■ 
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