

Jena Research Papers in
Business and Economics

The assembly line balancing and scheduling
problem with sequence-dependent setup times:

Problem extension, model formulation and
efficient heuristics

A. Scholl, N. Boysen, M. Fliedner

11/2009

Jenaer Schriften zur Wirtschaftswissenschaft

Working and Discussion Paper Series
School of Economics and Business Administration

Friedrich-Schiller-University Jena

ISSN 1864-3108

Publisher:

Wirtschaftswissenschaftliche Fakultät
Friedrich-Schiller-Universität Jena
Carl-Zeiß-Str. 3, D-07743 Jena

www.jbe.uni-jena.de

Editor:

Prof. Dr. Hans-Walter Lorenz
h.w.lorenz@wiwi.uni-jena.de

Prof. Dr. Armin Scholl
armin.scholl@wiwi.uni-jena.de

www.jbe.uni-jena.de

The assembly line balancing and scheduling problem

with sequence-dependent setup times: Problem

extension, model formulation and efficient heuristics

Armin Scholla Nils Boysenb Malte Fliednerb

a Friedrich-Schiller-University of Jena, Chair of Management Science,
Carl-Zeiß-Straße 3, D-07743 Jena, Tel. +49-3641-943171, email: armin.scholl@uni-jena.de

b Friedrich-Schiller-University of Jena, Chair of Operations Management,
Carl-Zeiß-Straße 3, D-07743 Jena, email: nils.boysen@uni-jena.de, malte.fliedner@uni-jena.de

Abstract

Assembly line balancing problems (ALBP) consist of distributing the total workload for manufacturing any unit of the products

to be assembled among the work stations along a manufacturing line as used in the automotive or the electronics industries.

Usually, it is assumed in research papers that, within each station, tasks can be executed in an arbitrary precedence-feasible

sequence without changing station times. In practice, however, the task sequence may influence the station time considerably

as sequence-dependent setups (e.g., walking distances, tool changes, withdrawal of parts from material boxes) have to be

considered. Including this aspect leads to a joint balancing and scheduling problem, which we call SUALBSP (setup assembly

line balancing and scheduling problem). In this paper, we modify the problem by modeling setups more realistically, give

a new, more compact mathematical model formulation and develop effective heuristic solution procedures. Computational

experiments based on existing and new data sets indicate that the new procedures outperform formerly proposed heuristics and

are able to solve problem instances of real-world size with small deviations from optimality in short time.

Keywords: Assembly line balancing; Mass-production; Combinatorial optimization; Setup time; Scheduling

1 Introduction

Assembly lines are flow-oriented production systems and are typical in the mass-production of standardized com-
modities. An assembly line consists of (work) stations k = 1, . . . ,m arranged along some type of conveyor belt.
The workpieces are consecutively launched down the line and are moved from station to station. At each sta-
tion, certain operations are repeatedly performed regarding the constant cycle time available per work-cycle. The
decision problem of optimally partitioning the assembly work among the stations with respect to some objective
is known as the Assembly Line Balancing Problem (ALBP); cf., e.g., Baybars (1986); Becker and Scholl (2006);
Boysen et al. (2007).

The total amount of work is divided into a set of tasks V = {1, . . . ,n} which build the nodes of a prece-
dence graph. Performing a task i takes a task time (node weight) ti; the total production time per product unit is
tsum = ∑i∈V ti. Technological and organizational conditions require to observe precedence relations (i, j) between

1

2 The Setup Assembly Line Balancing and Scheduling Problem (SUALBSP) 2

different tasks i and j. Non-redundant precedence relations are represented as arcs in the precedence graph. To
simplify the presentation, we assume that graph G = (V,E, t) is acyclic and numbered topologically.

An ALBP generally consists of finding a feasible line balance, i.e., an assignment of each task to a station such
that the cycle time constraints, the precedence constraints and possible further restrictions are fulfilled. The set Sk

of tasks assigned to a station k constitutes its station load. Usually, it is assumed that the station time (required
working time in each cycle), which must not exceed the cycle time, simply results from summing up the execution
times of all tasks in the load, i.e., t(Sk) = ∑i∈Sk

ti. In case of t(Sk) < c, the station k has an idle time of c− t(Sk)
time units in each cycle.

The most popular ALBP is called Simple Assembly Line Balancing Problem (SALBP). It considers a single
product, a serial line, fixed task times and processes as well as equally equipped and manned stations (e.g., Baybars,
1986; Scholl, 1999; Boysen et al., 2007). The main problem parameters are the number m of stations and the cycle
time c which can be given as a constant or considered as a variable defining several problem versions. The most
relevant version referred to as SALBP-1 ([| |m] in the classification scheme of Boysen et al. 2007) is to
minimize m given c. This problem and the other versions are NP-hard. Recent surveys covering SALBP models
and procedures are given by Erel and Sarin (1998), Scholl (1999, ch. 2,4,5), Rekiek et al. (2002) as well as Scholl
and Becker (2006).

2 The Setup Assembly Line Balancing and Scheduling Problem (SUALBSP)

Setup times are regularly considered as being sequence-dependent in job shop settings and other low volume
production systems (cf. Allahverdi et al., 2008). The rationale behind this is that products are typically assumed
to be so diverse, that additional configuration effort arises between any two jobs. In contrast to that sequence-
dependent setup times are hardly ever considered in the operational planning of paced assembly systems. Even
if different product models are assembled (in a so-called mixed-model assembly), setup times between jobs are
assumed to be negligible due to the use of flexible machinery and the high amount of standardized operations. But
even though setup times do not depend on the sequence of jobs (models), there are in fact several practical settings
in which setup times are incurred based on the sequence of tasks assigned to the operators of the line:

• In automotive assembly lines (and other assembly lines manufacturing large workpieces), work can be per-
formed at different (mounting) positions inside and outside the car body (cf. Becker and Scholl, 2009) such
that walking distances are relevant and depend on the positions where two consecutive tasks are executed.
Due to the size of a car body, those distances might be zero (same position) or amount up to about 10 meters
(if a worker must walk to the opposite side of the car body). As walking speed is typically assumed to be
about one meter per second (cf., e.g., Barnes, 1959, p. 376; Kanawaty, 1992, pp. 297), we might have
walking-related setup times of 0 up to 10 seconds per setup. Concerning usual cycle times of about 60 to 90
seconds, this is a very critical aspect.

• Usually, walking distances are increased due to the necessity to fetch parts from material containers placed
along the moving conveyor system. Furthermore, times to withdraw the parts from the container are to be
considered. At a major German car manufacturer, (unproductive) walking and withdrawal times amount to
about 10-15% of total production time. As a consequence, it is quite necessary to consider those times in a
sequence-dependent manner in order to build station loads with small unproductive times.

• Regularly, tools are required to perform tasks. If consecutive tasks require different tools it will be necessary
to change them causing a setup time or the same tool can be used anymore such that no setup is required.
This sequence-dependent setups are typical in robotic assembly lines where robots can use a single tool at a

2 The Setup Assembly Line Balancing and Scheduling Problem (SUALBSP) 3

time and have to change them if required (cf. Andrés et al., 2008). However, this is even necessary in manual
assembly since most tasks require additional equipment like power screwdrivers, elevating mechanisms and
fit-up aids.

• If two consecutive tasks require the workpiece in different positions (e.g., height, angle) it will be necessary
to turn or lift the workpiece between performing those tasks causing a sequence-dependent setup time.

• If time is required for curing or cooling processes (e.g., after gluing or melting), then tasks which have to be
executed at a corresponding mounting position must wait until this process is completed while other tasks
could be performed in the meanwhile at other positions.

Despite of this obvious relevance for practice, assembly line balancing problems with sequence-dependent setup
times have only been considered by a few research papers: Andrés et al. (2008) extend the classical SALBP-1 by
additionally considering sequence-dependent setup times. They formulate a binary linear program and propose
priority-rule-based and GRASP procedures. A large number of additional priority-rule-based procedures are de-
veloped and examined by Martino and Pastor (2009). Futhermore, see Arcus (1966), Wilhelm (1999) as well as
Bautista and Pereira (2002).

Former research considers setup considerations only indirectly via assignment restrictions (e.g., Boysen et al.,
2007; Scholl et al., 2010) along the following reasoning: If setup times are known to be (too) large, planners might
take this into account by setting the related tasks incompatible, i.e., they are not allowed to be assigned to the same
station (e.g., Becker and Scholl, 2009). Nevertheless, it is not possible to model any setup time by an assignment
restriction, because this would be too restrictive and reduce the degree of freedom in using capacities unnecessarily.
Instead, it is necessary to take setup times into account directly.

We extend the approach of Andrés et al. (2008) by additionally distinguishing between forward and backward
setups. The term forward setup refers to a situation where task j is executed directly after task i in the same cycle,
i.e., at the same workpiece, observing a (forward) setup time τi j ≥ 0. A backward setup occurs if task i is the last
one executed at the workpiece of a cycle p and the worker has to move to the next workpiece in cycle p+1, which
causes a (backward) setup time µi j ≥ 0. Then, he/she executes task j as the first task of cycle p+1.

Figure 1 contains an example which shows that forward and backward setup times will generally be unequal in
the real-world. We consider a station with ordered load 〈i, j,h], i.e., the tasks i, j, and h are performed in a cyclic
manner on consecutive workpieces (e.g., car bodies). Each cycle p starts at time 0 with execution of task i which
consumes time ti. Afterwards, the operator has to walk to a box (1) where he has to fetch a part needed for task
j (2). From this box, he has to move to the mounting position of task j (3). Summing up those time components
results in setup time τi j to change over from task i to j which, thus, starts at time ti +τi j and ends t j time units later.
Afterwards, the operator moves to the mounting position of task h (perhaps he fetches a further part or a tool on the
way) which takes time τ jh. After having executed h for th time units, he has to travel to the succeeding workpiece
in cycle p+1. This takes backward setup time µhi and the current cycle p is finished. In order to be able to manage
all productive and unproductive steps within each cycle, the following condition (cycle time constraint) has to be
fulfilled: ti + τi j + t j + τ jh + th + µhi ≤ c

Assume that another ordered station load, say, 〈 j,h, i] has to be considered. Then, a forward setup from h

to i with time τhi (dashed arc), which is obviously different from µhi (cf. Figure 1), takes place. By the way of
contrast, the model of Andrés et al. (2008) does not distinguish between the loads 〈i, j,h] and 〈 j,h, i], because
they assume that the same setup times are valid in both directions, i.e., µi j = τi j for all task pairs i, j ∈ V . This
includes µii = τii = 0 for all tasks i which is fairly inappropriate for our example, where τii is not relevant and µii

reflects the transfer to the next workpiece. Obviously, this assumption of Andrés et al. (2008) considerably restricts
applicability of their model in practice to cases where setups are not related to worker or workpiece movement.

3 Model for SUALBSP 4

Fig. 1: Consecutive cycles and their connection

For our model, we assume that the (modified) triangle inequality is valid, i.e., the station time is assumed to
monotonically increase when an additional task is included. This condition is fulfilled if the following inequalities
hold for all task triplets i, j,h ∈V :

τih + th + τh j ≥ τi j ∀i, j,h ∈V (1)

τih + th + µh j ≥ µi j ∀i, j,h ∈V (2)

The triangle inequality will be fulfilled in almost any case in practice:

• If a tool (or the workpiece position) has to be changed between tasks i and j with setup time τi j, it might be
possible that inserting task h allows for using the tool of task i, i.e., τih = 0. Then, however, the change must
be performed between h and j, i.e., τh j = τi j, and the triangle inequality is valid due to th ≥ 0.

• If setups are caused by walking distances, the triangle inequality obviously holds even if the intermediate
task h might be on the way from i to j, i.e., τi j = τih + τh j.

• Usually, material boxes are positioned after the line balance and task schedules are known. So, they can be
located such that walking distances are minimized.

• If cooling or curing takes place between tasks i and j, this waiting time can usually not be reduced by
performing an intermediate task h (at another mounting position).

Finally, it is a necessary pre-condition for feasibility that each task, taken as the single element of a station load,
can be executed within the cycle time, i.e., ti + µii ≤ c ∀i ∈V .

The new problem SUALBSP1 now can be defined as follows: Build a minimal number of ordered station
loads such that each task is assigned to exactly one station, the precedence constraints are observed and the cycle
time is not exceeded in any station when considering cyclic task execution with sequence-dependent (forward and
backward) setup times. In the classification scheme of Boysen et al. (2007), SUALBSP is represented by the tuple
[∆tdir| |m].

3 Model for SUALBSP

We formulate the SUALBSP as a mixed-binary linear model which combines the logics of the traditional model
for SALBP (Scholl, 1999) and the formulation of Miller et al. (1960) for the traveling salesman problem. Table 1
summarizes already introduced notation and defines additional parameters and variables.

1 In the usual nomenclature the problem would have to be named SUALBSP-1 (minimize m given c). Since other problem versions can be
deduced in a simple manner (cf. Scholl, 1999, ch. 2), we restrict our analysis to this version and omit the indicator ’1’ to ease presentation.

3 Model for SUALBSP 5

V set of tasks; V = {1, . . . ,n}
E (E∗) set of direct (all) precedence relations
ti execution time for task i ∈V with tsum = ∑i∈V ti
τi j (µi j) forward (backward) setup time from task i to j

Pi (P∗i) set of direct (all) predecessors of task i ∈V

Fi (F∗i) set of direct (all) successors/followers of task i ∈V

m upper bound on the number of stations, e.g., m = n or heuristic solution value

Ei (Li(m)) earliest (latest station for task i ∈V ; Ei := d
ti+∑ j∈P∗i

t j

c e; Li(m) := m+1−d
ti+∑ j∈F∗i

t j

c e
K set of possible stations; K = {1, . . . ,m}
FSi set of stations to which task i ∈V is feasibly assignable; FSi = {Ei,Ei+1, . . . ,Li(m)}
Bk set of tasks assignable to station k ∈ K; Bk = {i ∈V | k ∈ FSi}
Fτ

i (Pτ
i) set of tasks which may directly follow (precede) task i in a station load in forward direction;

Fτ
i = { j ∈V − (F∗i −Fi)−P∗i −{i} | FSi∩FS j 6= /0}; Pτ

i = {h ∈V | i ∈ Fτ
h }

Fµ

i (Pµ

i) set of tasks which may directly follow (precede) task i in a station load in backward direction;
Fµ

i = { j ∈V −F∗i | FSi∩FS j 6= /0}; Pµ

i = {h ∈V | i ∈ Fµ

h }
M (ε) sufficiently large (small) number, i.e., M = n · c and ε = 1/(c · (n+1))
xik binary variable with value 1, iff task i ∈V is assigned to station k ∈ FSi

yi j binary variable with value 1, iff task i ∈V is direct predecessor of j ∈ Fτ
i in a station load

wi j binary variable with value 1, iff task i ∈V is last and j ∈ Fµ

i is first task in a station load
zi continuous variable for encoding the number of the station task i ∈V is assigned to
fi continuous variable for start time of task i ∈V (relative to launch time at the first station)
Tk continuous variable for station time of station k ∈ K

Tab. 1: Notation

Example: The problem and some of the notations defined in Table 1 are clarified by means of an example with
the cycle time set to c = 20 and the precedence graph as well as forward and backward setup times given in Fig. 2.
The node weights denote the task times with tsum = 45.

The setup time matrices have been defined such that the triangle conditions are fulfilled using the method
explained in Section 6.1.3 so as to reflect that, in practice, setup times are often due to walking distances. The
omitted values in matrix τ indicate that a forward setup can only represent a changeover from a task i to another
task j that is not related to i by precedence or is a direct successor. These tasks are collected in set Fτ

i . Backward
setups from i are restricted to tasks j ∈ Fµ

i which are not successors of i. As defined in Table 1, these sets could be
further restricted by means of feasible station sets FSi whenever two tasks cannot be assigned to the same station
(in a solution with no more than m stations).

Note that these irrelevant setup times can be set to c+1 or another sufficiently large value. Though not relevant
for the model, this data manipulation is helpful in programming solution procedures as it renders an explicit
examination of the above mentioned sets superfluous.
Using the defined notation, we get the model (3) - (17). The objective function (3) minimizes the index of the
station to which the unique sink node n is assigned and, thus, the total number of stations required. As a secondary
objective the values of the variables Tk are minimized in order to get station times with minimum setups. Due to
setting ε sufficiently small, the secondary objective does not influence minimization of the number of stations.

The assignment of each task i to exactly one station k ∈ FSi is guaranteed by (4) and transformed into the
corresponding station index zi by (5). The constraint sets (6) and (7) ensure that each task i is followed and

3 Model for SUALBSP 6

τ 1 2 3 4 5 6 7 8
1 - 1 2 1 - - - -
2 1 - 3 2 1 - - -
3 - 3 - 1 2 3 1 -
4 1 - 1 - 1 2 0 -
5 - 1 - 1 - 1 1 2
6 - - - - 1 - 2 3
7 - - - - 1 2 - 1
8 - - - - 2 - - -

µ 1 2 3 4 5 6 7 8
1 4 5 - 3 - - - -
2 3 4 1 - 3 - - -
3 6 7 4 5 - - 5 -
4 5 6 3 4 5 - - -
5 4 5 2 3 4 5 3 2
6 3 4 1 2 3 4 2 -
7 5 6 3 4 5 6 4 -
8 6 7 4 5 6 7 5 4

Fig. 2: Data of the example problem (cycle time c = 20)

preceded by exactly one other task j in the cyclic sequence of a station load. In combination with (8) these
constraints demand that in each cycle exactly one of the relations is a backward setup. Tasks contained in the same
cycle are forced to be assigned to the same station by constraints (9) and (10) which are to be fulfilled pairwise as
equations (zi = z j), if yi j = 1 and wi j = 1, respectively, and are redundant, otherwise.

Minimize m(x,y,z) = zn + ε · ∑
k∈K

Tk subject to (3)

∑
k∈FSi

xik = 1 ∀i ∈V (4)

zi = ∑
k∈FSi

k · xik ∀i ∈V (5)

∑
j∈Fτ

i

yi j + ∑
j∈Fµ

i

wi j = 1 ∀i ∈V (6)

∑
i∈Pτ

j

yi j + ∑
i∈Pµ

j

wi j = 1 ∀ j ∈V (7)

∑
i∈V

∑
j∈Fµ

i

wi j = zn (8)

zi +M · (1− yi j)≥ z j and z j +M · (1− yi j)≥ zi ∀i ∈V, j ∈ Fτ
i (9)

zi +M · (1−wi j)≥ z j and z j +M · (1−wi j)≥ zi ∀i ∈V, j ∈ Fµ

i (10)

f j ≥ fi + ti ∀(i, j) ∈ E (11)

f j ≥ fi + ti + τi j +M · (yi j−1) ∀i ∈V, j ∈ Fτ
i (12)

fi ≥ c · (zi−1) ∀i ∈V (13)

fi + ti + µi j ≤ c · zi +M · (1−wi j) ∀i ∈V, j ∈ Fµ

i (14)

Tk + c · (zi−1)≥ fi + ti + ∑
j∈Fµ

i

µi j ·wi j−M · (1− xik) ∀i ∈V,k ∈ FSi (15)

xik ∈ {0,1} ∀i ∈V,k ∈ FSi; yi j ∈ {0,1} ∀i ∈V, j ∈ Fτ
i ; wi j ∈ {0,1} ∀i ∈V, j ∈ Fµ

i (16)

fi,zi,Tk ≥ 0 ∀i ∈V,k ∈ K (17)

The precedence relations are fulfilled through (11), while the forward ordering of tasks in a station load is
guaranteed by (12). Each task i must be executed completely in the time interval [(zi−1) · c,zi · c] assigned to its
station zi (time elapsed since workpiece was launched down the line) by the restrictions (13) and (14). In (14) it is
sufficient to ensure that the final backward setup (indicated by wi j = 1) will be finished in-time. The station time
Tk is computed by (15) which is - just as (14) - only binding for the task i that is the last one in station k.

4 Former Heuristic Procedures for SUALBSP 7

The variables are defined by (16) and (17). Among those variables, only xik, yi j, wi j, and fi are required to
define a complete and correct model. The other ones are introduced only in order to enhance readability and
comprehensibility. The variables zi and their definitions (5) can be removed from the model by replacing them
in all constraints via (5). The variables Tk and the corresponding constraints (15) are only introduced to directly
compute the station time which could also be retrieved from the other variables after having solved the model. In
the objective function, the sum of station times could be replaced by the sum of starting times fi of all tasks i to
ensure continuous operation within stations.

In the most compact version, the model contains up to 2 ·n2 +n ·m binary variables and n continuous variables.
Due to m ≤ n, the number of (binary) variables is bounded by O(n2). Furthermore, the model contains up to
7 ·n2 +n ·m+5 ·n+1 constraints, i.e., the number of constraints is bounded by O(n2). The model of Andrés et al.
(2008) contains 2 · n2 ·m + n2 + m, i.e., O(n3) binary variables and 2 · n3 ·m + n2 · (m + 1) + 2 · (n + m) + n, i.e,
O(n4) constraints. Provided that n = 100 tasks are to be assigned to at most m = 20 stations, which would be a
medium-sized problem instance in the real world, the new model contains up to 22,000 binary variables and 100
continuous ones as well as 72,501 constraints. The model of Andrés et al. (2008) would require up to 410,020
binary variables and 40,214,100 constraints. Though, in both models, (further) reductions (via FSi and Bk) are
possible, it is obvious that the new model’s size is smaller at least by an order of magnitude.

4 Former Heuristic Procedures for SUALBSP

Up to now, only a few heuristic solution procedures have been proposed for solving SUALBSP. We shortly describe
these procedures and their reported performance as the underlying ideas and experimental results inspired our
development of a new composite heuristic. For more detailed explanations, the reader is referred to the original
papers.

4.1 Priority Rule Based Procedures (PRBP)

The application of PRBP to different ALBPs has a long tradition (cf., e.g., Talbot et al., 1986; Boctor, 1995;
Scholl and Voß, 1996). A large variety of priority rules and scheduling schemes have been tested for SALBP
and other problem versions. As a basic result, it could be established for SALBP and SUALBSP as well that the
station-oriented scheduling scheme is to be preferred to the task-oriented one (cf. Scholl and Voß, 1996; Martino
and Pastor, 2009). Both scheduling schemes order tasks by priority rules and successively assign available tasks,
i.e., tasks whose predecessors have already been assigned. While the station-oriented scheme builds station loads
strictly one after the other, the task-oriented one always opens a new station if the highest-priority task does not fit
in a station already open.

For solving SUALBSP, the station-oriented scheduling scheme works as follows: Stations are considered in
forward direction, beginning with station 1. For each station k considered, a load Sk (with nk tasks ordered in the
sequence πk) is built by successively adding available tasks such that the station time t(Sk) = T (πk) computed by
(18) does not exceed the cycle time. Among several candidate tasks, the one with highest priority is chosen. If no
task can be added in this manner, the load is maximal (cannot be extended anymore) and the next station is opened
and filled in the same way, until a feasible assignment of all tasks is achieved. The number of station loads formed
determines the value of the heuristic solution (upper bound UB).

T (πk) =
nk−1

∑
p=1

(t
πk

p
+ τ

πk
p,πk

p+1
)+ t

πk
nk

+ µ
πk

nk
,πk

1
(18)

4 Former Heuristic Procedures for SUALBSP 8

Andrés et al. (2008) and Martino and Pastor (2009) have listed and tested a large number of possible priority
rules. Besides the above-mentioned preference for the station-oriented scheme, it was found out by Martino and
Pastor (2009) that criteria based on a single parameter (like task time or number of successors) are less effective
than composite rules combining several parameters. The best composite rule proposed and fine-tuned by Martino
and Pastor (2009) is based on priority values computed as follows:

MPi(k, p) := 5.0 · ti +0.3 · ∑
j∈F∗i

(t j +3.9 · τ j)−45.3 · τ
πk

p−1,i (19)

With τ
πk

p−1,i we denote the setup time necessary to change over from the currently last task at the position p− 1
of the partial sequence to the task i which is a candidate for position p (τ0,i := 0), while τ j is the average setup
time of a successor task j ∈ F∗i . This average value is updated in each step as it only should cover possible setup
operations between still unassigned tasks.

The fine-tuning of weights has been performed by systematically applying the rule with different weight set-
tings to a training data set (10% of the instances out of the data set used) following the method of Nelder and Mead
(1965).

Among several modifications of the basic station-oriented scheme, a re-optimization of the partial sequence πk

right after each task assignment turned out to be effective. This is done by a local search procedure where moves
are defined by shifting each task to any other position of the sequence (to be more precise: between each (other)
pair of adjacent tasks). In each iteration, the shift which leads to minimal station time is taken. This process is
repeated until a local optimum is reached, i.e., no shift can reduce station time anymore.

With these two modifications of the station-oriented PRBP, Martino and Pastor (2009) achieved astonishingly
good results and could clearly outperform the more elaborate procedure of Andrés et al. (2008) described in the
next section. So, one aim of our experiments will be to examine whether the fine-tuning to a particular data set has
led to a composite rule which is useful for other data sets, too, or represents a "self-fulfilling prophecy" only.

4.2 Greedy Randomized Adaptive Search Procedure (Task-GRASP)

As a single-pass PRBP might lead to rather weak solutions for some problem instances, it is typically recommended
to perform multiple passes (e.g., Boctor, 1995). In order not to depend on having available a sufficiently large set
of different rules and to compensate structural deficits of existing rules, it is, moreover, useful to incorporate some
level of randomness into the process.

A well-known meta-strategy with these properties is called greedy randomized adaptive search procedure

(GRASP). In each pass, a randomized greedy algorithm, e.g., a PRBP with randomized priority rule, is applied
to construct a feasible solution which is, then, improved by a local search procedure (e.g., Resende and Ribeiro,
2003).

Andrés et al. (2008) apply the GRASP meta-strategy to SUALBSP as follows (we call this approach Task-

GRASP as its random component applies to task selection): In all (of 5 or 10) passes the same single priority
function is utilized to define task priorities. In each of the passes, a solution is constructed in the station-oriented
manner as described above. However, the task chosen to be assigned is not necessarily the one with highest
priority but one with sufficiently high priority. This is achieved by setting a priority threshold which defines a
subset of assignable tasks, the restricted candidate set, to be selected from randomly with equal probabilities.
Having normalized the interval of priorities computed for all candidate tasks to length 1 (with value 0 for the best
and value 1 for the worst task), the priority threshold is set to 0.3, i.e., only tasks whose priorities are among the

5 A New Composite Heuristic Procedure for SUALBSP 9

best 30% of the entire priority interval are candidates for random assignment. As priority function it is proposed:

AMPi(k, p) := ti + τ
πk

p−1,i (20)

To each solution constructed in this manner, a local search heuristic is applied in order to find an improved solution.
Considering the assigned tasks as a sequence with n positions, each precedence-feasible exchange of tasks between
two positions is examined (by forming maximal station loads following this sequence). Among all those exchange
moves, the best one is selected. This process is repeated until no improved solution (with less stations) is found by
such a move.

4.3 Avalanche

The procedure Avalanche developed by Boysen and Fliedner (2008) is a flexible heuristic procedure for a large
variety of ALBPs and can be modified to solve SUALBSP easily. It is an iterative two-phase algorithm based on
task sequences. In the first phase of each iteration, a number of precedence-feasible sequences is constructed by
an ant colony approach (for this meta-heuristic cf., e.g., Dorigo and Blum, 2005) based on a PRBP with the task
time as priority value.

In the second phase, every solution constructed in the first phase is optimally partitioned by a graph approach
explained in detail and extended in Section 5.4. For the next iteration, the solutions obtained before are analyzed
with respect to solution quality. This information is connected with the performed assignments of tasks to sequence
positions and utilized to update the so-called pheromon matrix by standard formulae of ant colony approaches
(cf., e.g., Dorigo and Stützle, 2003) which results in intensified new trails and evaporation of older ones. When
constructing the next sequence, each ant utilizes the pheromon values which are combined with the original priority
values to form a composite measure for task selection. For details we refer to Boysen and Fliedner (2008).

5 A New Composite Heuristic Procedure for SUALBSP

We propose a new composite heuristic for SUALBSP which makes use of some of the former contributions and
new ideas as well. As practice regularly demands for fast and easy-to-implement heuristics, we do not focus on
computationally expensive search procedures but try to develop a procedure which is able to solve even large
problem instances quickly while achieving a high solution quality. In the following, we describe the ingredients of
our new approach.

5.1 Rule-GRASP

Analyzing the procedure of Andrés et al. (2008) shows that the selection approach (priority threshold) is rather
arbitrary as only a single priority rule is taken and the threshold (best 30% of the entire priority interval achieved
by assignable tasks) seems to be rather wide. Furthermore, the priority function (20) seems not to be very promising
as it interprets large setup times τ

πk
p−1,i as being favorable. In fact, these setup times should be minimized and, thus,

subtracted as realized in the composite priority rule of Martino and Pastor (2009) defined in (19).
As the latter rule considers setup times and other time criteria in a reasonable manner, this fine-tuned rule

seems indeed to be a favorable candidate but should be accompanied with other rules that incorporate the same
criteria without weighting them in such a definite manner as well as other criteria to define a robust and effective
heuristic. To achieve these goals, we define a modified GRASP approach, called Rule-GRASP, because it is not
the tasks that are selected at random but the priority rules applied. Using the chosen rule, the highest-priority task
is selected and assigned instead of any one with acceptable priority.

5 A New Composite Heuristic Procedure for SUALBSP 10

As priority rules we utilize the following ones which have shown some potential in solving SALBP-1 (cf., e.g.,
Talbot et al., 1986; Scholl and Voß, 1996) or SUALBSP (cf. Martino and Pastor, 2009). These rules cover different
aspects of the problem structure and appeared to be useful as a combination in preliminary experiments though
they are not necessarily among the best single rules in the tests of Martino and Pastor (2009):

MaxTMinSU Select a task with largest task time reduced by increase of setup times:
MTi(k, p) := ti− (τ

πk
p−1,i + µi,πk

1
−µ

πk
p−1,πk

1
) for each candidate task i

MaxTMinSUSlack Select a task with largest reduced time divided by the number of available stations (slack):
MT Si(k, p) := MTi(k, p)/(Li(m)−Ei +1) for each candidate task i

MaxF Select a task with maximal number of direct followers:
MFi := |Fi| for each candidate task i

MinSlack Select a task which has minimal slack or, equivalently, select the task with maximal:
MSi(k) := k−L j(m)

Random Select one of the available tasks by chance (with uniform probability).
MPRule Select a task with maximal value of MPi(k, p) computed by (19).

For SALBP, it has been shown effective, to apply solution procedures to the reverse precedence graph also (e.g.,
Scholl, 1999, ch. 7.2). This is also possible for SUALBSP provided that all problem data is reversed correctly,
i.e., arcs of the precedence graph as well as forward and backward setup times. Finally, the solution to the reverse
problem must be inverted to get a solution for the original problem. So, we might apply our Rule-GRASP in
forward direction (to the original problem) and in backward direction (to the reverse problem) without algorithmic
changes.

5.2 Re-optimization

By assigning tasks to a station load one after the other, a sequence for task execution is defined. However, this
sequence need not be optimal as it has been built in a greedy manner. In opposite to SALBP, the station times
depend on the actual sequence and it might be possible to reduce setup times by rearranging the tasks.

For this reason, Martino and Pastor (2009) apply a local search procedure to re-optimize the sequence always
after having assigned a task (see Section 4.1). However, this re-optimization might come too late as can be
demonstrated by means of our example presented in Figure 2. Imagine that task 2 has already been assigned to the
first station. When task 1 is inspected to be assigned to the same station load it has to be checked if the station time
is not greater than c = 20. However, by applying (18) we get T (〈2,1]) = t2 + τ21 + t1 + µ12 = 7 + 1 + 8 + 5 = 21
which is too large. So, task 1 will not be assigned and task 4 is taken instead. Without overstraining this small
example, this might prevent from finding the optimal solution.

As a consequence, we propose a different approach which first computes priorities for all tasks that are avail-

able to the current position p of station sequence πk. Starting with the highest-priority task i, it is examined if i fits
into the station. This is done in two steps:

1. If the station time, computed by (18) for the sequence with i simply assigned to the currently last position p,
is not greater than the cycle time, task i is assigned to this last position without further effort.2

2. Only if this simple test is not successful, an enumerative procedure is started which systematically constructs
all feasible sequences of the trial station load including task i. In order to find promising sequences first, the
procedure starts with assigning the tasks in a "nearest-neighbor" manner, i.e., the next task is always chosen

2 Note that only the change in setup times τ
πk

p−1 ,i + µi,πk
1
−µ

πk
p−1 ,πk

1
has to be computed to update the station time.

5 A New Composite Heuristic Procedure for SUALBSP 11

such that the setup time increase is minimal. Following this "nearest-neighbor ordering" the precedence-
feasible sequences are constructed in a lexicographic manner recursively. Whenever the station time exceeds
the cycle time, a backtracking step is performed. Once a feasible sequence with its station time not exceeding
the cycle time is found, the search can be stopped.

If a feasible sequence is found in step (1) or (2), the examined task i is assigned. Otherwise, the next task in
descending priority ordering is tested in the same manner. This process is repeated until a task can be assigned or
no available task remains. In the first case, the next position p+1 of sequence πk is examined, in the latter case, a
new station k +1 with i at the first position of sequence πk+1 is opened.

In our example, this procedure would find out in step (2) that the sequence 〈1,2] is feasible with T (〈1,2]) =
t1 + τ12 + t2 + µ21 = 8+1+7+3 = 19 and would assign task 1.

Our experiments indicate that the re-optimization is useful for sequences with up to 7 to 10 tasks, because
this sequencing problem is a variation of the traveling salesman problem and, hence, an NP-hard problem by
itself. So, in order to define a fast overall heuristic, we apply this re-optimization only if necessary (in opposite
to Martino and Pastor (2009) who propose a local search after each task assignment) and promising (for up to 7
tasks in our tests). As the number of tasks per worker is seldom greater than 10 to 12 in practice, this is not a
very hard limitation. Additionally, we restrict the computation time as preliminary experiments indicate that the
trade-off between computational effort and (positive) effect of re-optimization is best if a very short time is spent
(0.01 seconds per sequence to be re-optimized in our tests). In many cases, this time is sufficient to find a feasible
sequence, whereas in others it might consume minutes (or even hours) to find one or to prove that none exists. This
is due to the complexity of this sequencing subproblem of SUALBSP.

We decided against the local search developed by Martino and Pastor (2009) as our experiments indicate that
this procedure has only limited effect as it might get stuck soon in a local optimum and, on average, does not run
faster than our enumerative procedure.

Another option for re-optimization is given by the local search procedure applied by Andrés et al. (2008) and
described in Section 4.2. It is designed to re-optimize the whole sequence of all tasks just after having constructed
a solution. As a potential improvement of this procedure, we examine an extended rule for move acceptance as
follows: A move is seen as an improvement and the best among several improving moves is selected when the
number of stations is reduced or, if the number of stations remains unchanged, the sum of setup times is reduced.
However, without forestalling too much, it can be said that this procedure is very time-consuming and has limited
effect. Further preliminary experiments with applying a first-fit strategy (instead of best-fit) or to guide search by
tabu search or simulated annealing also show that this approach is of rather limited profitableness.

5.3 Fathoming

In a multi-pass procedure, time might be wasted by completing solutions though it is already obvious after the
first assignments that no improved solution can be achieved anymore. In order to avoid this superfluous effort, we
compute the minimal productive time (only execution times excluding setup times and idle times) that is necessary
for the current station load in order to have still the potential to improve on the current best solution (incumbent
solution). Let UB be the corresponding upper bound (number of stations in the incumbent solution) and BD :=
(UB−1) · c− tsum the balance delay (total unproductive time) allowed in a solution with at most UB−1 stations,
then the lower bound on required productive time of the first station k = 1 is given by MPT1 := max{0,c−BD}.
This time bound is successively reduced for the next stations whenever unproductive times (setup times or idle
times) are introduced, i.e., MPTk := MPTk−1 + c−∑i∈Sk−1

ti for k > 1.
The construction process is always immediately stopped whenever it becomes obvious that no load whose

5 A New Composite Heuristic Procedure for SUALBSP 12

productive time is greater or equal than MPTk can be achieved anymore. This fathoming enables to perform more
passes in the same time such that improved solutions might be found faster.

5.4 Improvement by Shortest-Path Computations

After having constructed a number of feasible solutions, these solutions might be combined to build improved
solutions by extending the graph approach of Avalanche (cf. Section 4.3 as well as Boysen and Fliedner, 2008).

This approach is best explained by means of our example of Figure 2. Assume that two different solutions with
four stations each have been obtained by applying Rule-GRASP, A = 〈1|3,2|4,6|7,8,5] and B = 〈1,2|3,4,7|6,5|8],
with vertical bars indicating that a new station needs to be opened.

Fig. 3: Grouping graph

To re-optimize each sequence or to combine favorable parts of different (re-optimized) sequences, a so-called
grouping graph is constructed (e.g., Klein, 1963; Easton et al., 1989; Boysen and Fliedner, 2008; Boysen and
Scholl, 2009). Figure 3 shows the graph for our example which contains a node for each position p of each se-
quence. This node represents the set of tasks assigned up to position p, e.g., node A3 represents feasible task subset
{1,2,3} and node 8 entire task set V . Additionally, a start node 0 which represents the empty set is introduced.
These nodes are connected by arcs whenever their difference set forms a feasible station load. Due to the fact that
each arc corresponds to one station, arc weights are all set to 1 and the minimal number of stations for each of the
task sequences can be determined by finding the shortest path from node 0 to 8. In the example, additional options
to combine tasks to station loads are found for each sequence by their grouping subgraphs (chains) which lead to
additional solutions (e.g., A′ = 〈1|3,2|4,6,7|8,5]) but no overall improvement is achieved.

This separated form of constructing and optimizing a grouping graph for each single sequence is performed in
Avalanche (Boysen and Fliedner, 2008).

An improved solution with three stations can be determined by adding a chain-connecting arc as shown in
Figure 3: The nodes B2 = {1,2} and A5 = {1,2,3,4,6} differ by the set {3,4,6} which is a feasible station load
(with sequence 〈3,4,6] and station time 20). With this arc on hand, a shortest path with three arcs is found, i.e.,
〈1,2|3,4,6|7,8,5] which is highlighted by bold arcs in the Figure.

To summarize, the proposed approach is based on a number of precedence-feasible task sequences each of
which defines a chain in the grouping graph. Between the nodes built, arcs are introduced whenever there exists a
cycle time- and precedence-feasible sequence of the tasks in the difference set. With this graph on hand a new and,
hopefully, improved solution can be computed by calculating a shortest path.

From a computational point of view, there are several means for saving time. Of course, nodes that represent the
same task set can be merged, e.g., nodes A4 and B4 (which we have distinguished for presentation purposes only).
As a consequence, all adjacent arcs are connected to this merged node. Having a look at the resulting graph shows
that it is a subgraph of the state graph of a station-oriented dynamic programming (DP) approach (e.g., Jackson,

5 A New Composite Heuristic Procedure for SUALBSP 13

1956; Easton et al., 1989). As a consequence, shortest paths can be computed just when nodes are constructed in
the manner of a DP procedure. For example, right after generating merged node A4 = B4 it becomes obvious that
its task set {1,2,3,4} can be assigned to two stations as the shortest path represents the partial solution 〈1,2|3,4].
Furthermore, it is not necessary to search for arcs if a node will not be part of the shortest path. In our example,
node B1 represents the non-maximal load with task 1 only. So, there is no need to identify the arc from B1 to B3.

The latter aspect is more relevant than it seems to be as the detection of arcs is not as trivial as in case of
SALBP, where it is sufficient to sum up task times, but requires to decide whether there exists a feasible sequence
of the tasks contained in the difference set. This NP-hard subproblem should not be solved unnecessarily. In
our approach, we use the same two-step procedure to examine loads as described in Section 5.2. An arc is only
introduced if it was possible to find a feasible sequence within the given limitations.

5.5 Lower Bounds and Data Reduction

Since optimal solutions are not known for any problem instance tested and to evaluate solution capabilities of the
heuristic solution procedures examined more deeply, we use an extended version of the lower bound argument
defined by Andrés et al. (2008). This bound argument is an extension of the well-known capacity bound for
SALBP-1 which is defined as follows:

LB1 :=
⌈

tsum

c

⌉
with tsum = ∑

j∈V
t j (21)

LB1 has been adapted to their restricted version of SUALBSP (setup times τi j used in both directions and τii =
0 ∀i ∈ V) by Andrés et al. (2008) and corrected in Pastor et al. (2010). They compute the bound value, which we
call LB1 f

AMP, in an iterative manner based on τ
q
sum(RV), the sum of the q smallest setup times τi j with i ∈ V and

j ∈ RV −{i}.
In order to explain the logic of the bound within the usual categories, we present it as a destructive improvement

bound (cf. Klein and Scholl, 1999, Scholl and Becker, 2006) as follows: The bound is based on the fact that at
least q = n− (m−1) = n+1−m tasks must share a station with other tasks if (at most) m stations are available.3

Thus, for (at most) m stations τ
q
sum is a lower bound on the total setup time required. If the total time capacity

TC(m) = m · c provided by m stations is not sufficient to perform all work (tsum) and the setups at least required
(τq

sum), then m stations are not sufficient (this trial bound value is "destroyed"), and m := m + 1 is considered as
trial number of stations in the next iteration. This process starts with m = LB1 and is repeated until the current
m cannot be destroyed. The final bound value is set to LB1 f

AMP := m. Unlike the procedure described in Pastor
et al. (2010), our destructive improvement procedure increases the bound value in each iteration as it leaves out
superfluous computations. It can be summarized in the following formula:

LB1 f
AMP := min{m≥ LB1 | tsum + τ

n+1−m
sum ≤ TC(m)} (22)

For SUALBSP, the lower bound argument LB1 f
AMP can be adapted and improved by distinguishing between for-

ward and backward setups as well as observing that not all tasks can be adjacent to each other in feasible sequences
(cycles). Given a trial number m of stations, it is known that a backward setup is necessary in each station and at
least q = n−m forward setups are required. Let τ

q
sum now denote the sum of the q smallest forward setup times τi j

with i ∈V and j ∈ Fτ
i . Furthermore, let µ

q
sum be defined as the sum of the q smallest backward setup times µi j with

3 This lower bound on setup operations between different tasks is achieved if each of m−1 stations contains a single task and the remaining
station contains the residual q tasks

6 Computational Experiments 14

i ∈V and j ∈ Fµ

i , then the modified bound is computed as follows:

LB1 f b
AMP := min{m≥ LB1 | tsum + τ

n−m
sum + µ

m
sum ≤ TC(m)} (23)

Example: In our problem instance of Figure 2 we have tsum = 45 and, thus, LB1 = d45/20e = 3. If only the
matrix τ is taken for both directions without eliminating irrelevant entries (as already done in Figure 2), the orig-
inally proposed bound LB1 f

AMP will have no effect for m = 3 due to τn+1−m
sum = 0 as eight original τi j entries are

zero. Though no bound improvement can be achieved for this example (as the available total unproductive time
is BD(m = 3) = 3 · 20− 45 = 15), the modified bound takes advantage of distinguishing between forward and
backward setups and removing irrelevant values, i.e., τ5

sum = 0+4 ·1 = 4 and µ3
sum = 1+1+2 = 4.

The logic behind the AMP-bound can be applied more directly to identify sequence-independent parts of the
setup times by (24) and (25) in order to increase task times, if possible.

ωi := min {min {τi j | j ∈ Fτ
i }, min {µi j | j ∈ Fµ

i }} (24)

αi := min {min {τhi−ωi | h ∈ Pτ
i }, min {µhi−ωi | h ∈ Pµ

i }} (25)

After having executed task i, at least ωi time units must be spent before another task can be started. As a conse-
quence, the task time can be increased by this sequence-independent part of subsequent setup times while the setup
times need to be reduced accordingly by computing ti := ti +ωi, τi j := τi j−ωi ∀ j∈Fτ

i , and µi j := µi j−ωi ∀ j∈Fµ

i .
After this reduction step, there might remain sequence-independent parts αi of preceding setup times for some

tasks. For each such task i, the execution time can be increased further by setting ti := ti +αi, τhi := τhi−αi ∀h∈Pτ
i ,

and µhi := µhi−αi ∀h ∈ Pµ

i . Notice that these computations follow the same logic as the the bound argument for
the asymmetric traveling salesman problem proposed by Little et al. (1963).

In our example, we get ω = (1,1,1,0,1,1,1,2) such that the execution times of the tasks 1, 2, 3, 5, 6 and 7 can
be increased by 1 time unit while t8 can be increased by 2. After reducing the setup time matrices, each column of
either matrix contains at least one entry 0, so, all α-values are 0 and no further reductions possible.

The reduction step is performed before the lower bound value LB1 f b
AMP is calculated. This has two potential

advantages: On the one hand, the AMP-bounds do not consider that each particular task has only one preceding
and one succeeding setup as utilized in the reduction step. If only a subset of the tasks are responsible for the
smallest setup times summed up by those bound arguments, the resulting lower bound values will be weak. On
the other hand, increased task times represent better information for priority rules to select the right task for being
assigned.

Note that, in many cases, the sums utilized in the bound arguments will be 0 after reduction. However, e.g., if
only return times µii are 0 and all other forward and backward setup times are positive, the reduction step will have
no effect as αi = ωi = 0 ∀i, whereas LB1 f b

AMP will take advantage of τ
q
sum > 0 (while µm

sum = 0).

6 Computational Experiments

We describe a number of computational experiments and analyze their results to examine the performance of the
procedures described so far and compare them to previous developments in the field.

6 Computational Experiments 15

6.1 Data Sets and Experimental Settings

6.1.1 AMP-Data Set

Andrés et al. (2008) defined a data set for SUALBSP (with unidirectional setup times only). This data set utilizes
some precedence graphs contained in the well-known benchmark data set for SALBP-1 (cf. Scholl, 1999, ch.
7.1). They systematically extracted eight (medium-sized) precedence graphs such that different order strengths
of the graphs and different numbers of tasks are included. Furthermore, they defined two settings with respect
to the variability of setup times. In the setting called "low", setup times are randomly chosen from the interval
[0,0.25 · tmin] with tmin denoting the minimal execution time of a task, while the times are randomly drawn from
[0,0.75 · tmin] in the setting "high". For each precedence graph and each setting, 10 instances are generated by
randomly defining cycle times from the interval of cycle times occurring in the SALBP-data set. To transform
these 160 instances to our version of SUALBSP, we have to set µi j := τi j for all task pairs (i, j) ∈V ×V .

6.1.2 MP-Data Set

Martino and Pastor (2009) extended the AMP-data set by adding another eight precedence graphs from the SALBP-
1 benchmark data set and defining two additional settings for a higher setup time level. In the setting called "low-
med", setup times are randomly chosen from the interval [0,0.25 · tav] with tav denoting the average execution time
of a task. Similarly, a setting "high-med" draws randomly from [0,0.75 · tav]. All together, 16 precedence graphs
are combined with four settings. As again 10 instances are generated per combination, a total of 640 instances is
contained in the MP-data set. Though it contains the AMP-data set completely, we show results for both data sets
in order to be comparable with former experiments and to examine the effect of low and high setup times.

6.1.3 SBF-Data Sets

To our opinion, the MP-data set has several limitations: (1) Instances were selected from the SALBP-1 benchmark
data set rather arbitrarily. (2) No distinction between forward and backward setup times is made. (3) The triangle
inequalities are not observed in some cases which seems to be not realistic as insertion of a task in a sequence
might reduce station time. (4) Optimal solutions are known only for a part of the instances such that deviations
from (rather weak) lower bounds need to be considered to measure solution quality. (5) Martino and Pastor (2009)
have fine-tuned their heuristics just for this data set.

To remove all these drawbacks, we define four further data sets as follows: As a basis, the entire SALBP-1 data
set is taken such that each new data set contains 269 instances (having 7 to 297 tasks) with all data from SALBP-
1 like cycle times, task times and precedence constraints. Different data sets are obtained by defining different
maximal levels of the setup time. As in most cases there are rather small minimal task times and, furthermore,
in practice setup times might be much larger than the time of such a minor task, we relate the setup times to the
average task time tav as done by Martino and Pastor (2009) in their extended set. We define α · tav as upper bound
for the (forward) setup times to be generated. Four different data sets are obtained by setting α to the values 0.25,
0.50, 0.75, and 1.00. That is, average setup times are 12.5%, 25%, 37.5%, and 50% of the average task time. This
should cover almost any realistic case and allow for comparisons with the MP-data set.

Furthermore, setup times are constructed such that they hold the triangle inequalities (1) and (2). To achieve
realistic setup times, we subdivide each station into (fictitious) mounting positions 1,2, . . . ,mpmax = bα · tavc in
order to model setup times as walking times between real positions. Each task i gets assigned a mounting position
mpi randomly drawn from the interval [0,bα · tavc]. The forward setup times are calculated as the absolute differ-
ence (distance) between mounting positions, i.e., τi j := |mpi−mp j|. Backward setup times (return times) result

6 Computational Experiments 16

from the fact that the worker has to walk to the next workpiece. If we assume that workpieces are arranged on the
conveyor without space between them, return times have to be calculated by µi j := mpmax + mp j −mpi. These
calculations are visualized for mpmax = 5 in Figure 4. Our example of Figure 2 has been generated in this manner
by setting the position vector to mp = (3,4,1,2,3,4,2,1) with mpmax = 4.

Fig. 4: Generation of setup times based on mounting positions

In order to be able to examine the results more comprehensively, we take care that at least one optimal SALBP-
1 solution (with random precedence-feasible sequence within stations) remains feasible and, thus, constitutes an
optimal solution to SUALBSP, also. This is achieved by setting all mounting positions of tasks assigned to the
same station in this given solution to the same value (no forward setups required) and by restricting the backward
setup times in each station to the idle time of the contained load. This is done such that triangle inequalities still
hold.

All data sets are available for download at the homepage for assembly line optimization research:
www.assembly-line-balancing.de -> Data sets.

6.1.4 Experimental Settings

All experiments were run on a personal computer with quad-core AMD Phenom II X4 920 processor (four cores
with 2.8 GHz clock speed each), and 3.0 GByte of RAM. In order to speed-up computations, (up to) four parallel
test runs were started at the four cores (without using parallel computation capabilities). As operating system,
Windows XP Professional (32 bit) was used. The algorithms have been coded and compiled using Borland Delphi
7.0 as console applications.

We recoded the approaches of Andrés et al. (2008) and Martino and Pastor (2009) and implemented the new
procedures described above. Additionally, the general-purpose ALBP-solver Avalanche (cf. Boysen and Fliedner
2008), which could be adapted easily to solve SUALBSP instances, was included in the tests. In order to have
a general benchmark, we finally implemented our model of Section 3 in Fico XPress-MP (Mosel 3.0, XPress
optimizer 20.00.05). The XPress-model is initialized with an upper bound provided by applying a PRBP with
priority rule MaxTMinSU. As it takes time to solve complex problems with off-the-shelf solvers like XPress-MP,
we started it with a time limit of 100 seconds per instance.

Task-GRASP (called TG) of Andrés et al. (2008), described in Section 4.2, is restricted to 10 passes as sug-
gested by the authors, while Avalanche (see Section 4.3) is restricted to 1000 iterations with a population size of
25 sequence vectors (ants) as proposed in Scholl et al. (2010). As the MP-rule of Martino and Pastor (2009) is a
single-pass rule, it constructs a single solution (first step called MP) which is improved by local search after each
assignment (both steps called MPLS) as described in Section 4.1.

To examine which of the components developed in this work and described in Section 5 are useful (and which
not), we test a number of combinations each of which contains the Rule-GRASP solution framework (including
the MP-rule deriving a complete solution) and the following further options:

F10 10 passes in forward direction

6 Computational Experiments 17

FB10 10 passes in forward and 10 passes in backward direction
FBC10 FB10 plus grouping graph approach of Section 5.4
FBR10 FB10 plus re-optimization as described in Section 5.2
FBCR10 FB10 plus grouping graph and re-optimization
FBCI10 FB10 plus grouping graph and fathoming as described in Section 5.3
FBRI10 FB10 plus re-optimization and fathoming
FBCRI10 FB10 plus grouping graph, re-optimization and fathoming
FBCRI100 FBCRI with 100 passes instead of 10
FBLS10 FB10 plus local search of Andrés et al. (2008) with first fit & extended move acceptance (Section 4.2)

To have identical and fair conditions and to enable procedures to examine potential optimality, the lower bounds
and reduction process of Section 5.5 are applied before starting the heuristics in any case. The following measures
are utilized to evaluate the algorithms:

rel.best average relative deviation from the best upper bound found in the test [in %]
rel.LB average relative deviation from best known lower bound (only MP-data set) [in %]
rel.opt average relative deviation from the minimal number of stations m∗ (only SBF-data sets) [in %]
av.time average computation time in seconds
#opt the number of proven optima, i.e., procedure itself proves optimality due to UB = LB

#found the number of optima found, i.e., UB = m∗ (only SBF-data sets)
#best the number of best solutions found (among the approaches within a test)

6.2 Experiments on the AMP- and MP-Data Sets

Table 2 summarizes the results obtained for the AMP-data set. There are great differences between the approaches
concerning solution quality and/or computation time. The best relative deviations are obtained by FBCRI100
which combines all developed components. It finds the best solution for 157 of the 160 instances with moderate
computation times of about 1.5 seconds per instance on average. If computation time is taken into account, too,
the best compromise might be constituted by FBCR10 which is best in 151 out of 160 cases and takes only 0.24
seconds on average.

To rank the new components concerning their contribution to good performance, it has to be stated that the
Rule-GRASP mechanism, the additional backward planning and the re-optimization have most influence, while
the grouping graph approach is successful only in a few cases but at very low cost in computation time. Fathoming
significantly reduces computation time and allows for 100 (trial) passes (FBCRI100) in each direction without
increasing computation time to 200 times the one of MP. However, in case of FBCI it is counterproductive as it
reduces potential to apply the grouping graph approach. The enhanced local search of FBLS10 is not competitive
to the other approaches.

6 Computational Experiments 18

M
P

M
PL

S
T

G
A

va
l.

X
pr

es
s

F1
0

FB
10

FB
C

10
FB

R
10

FB
C

R
10

FB
C

I1
0

FB
R

I1
0

FB
C

R
I1

0
FB

C
R

I1
00

FB
L

S1
0

re
l.b

es
t

2.
86

2.
82

3.
00

2.
51

4.
30

1.
76

1.
18

1.
05

0.
45

0.
33

1.
39

0.
47

0.
45

0.
05

0.
97

re
l.L

B
11

.8
9

11
.8

4
12

.0
2

11
.5

1
13

.3
8

10
.7

1
10

.1
1

9.
97

9.
37

9.
23

10
.3

3
9.

39
9.

36
8.

95
9.

90
cp

u
0.

04
0.

04
0.

17
16

.2
7

10
2.

08
0.

10
0.

17
0.

19
0.

23
0.

24
0.

14
0.

18
0.

18
1.

45
0.

25
#o

pt
57

57
54

57
47

62
67

67
71

71
65

71
71

73
68

#b
es

t
11

5
11

5
10

6
11

3
94

12
7

13
4

13
9

14
5

15
1

13
2

14
4

14
5

15
7

13
5

Ta
b.

2:
R

es
ul

ts
of

al
lp

ro
ce

du
re

s
fo

rA
M

P-
da

ta
se

t(
16

0
in

st
an

ce
s)

M
P

M
PL

S
T

G
A

va
l.

X
pr

es
s

F1
0

FB
10

FB
C

10
FB

R
10

FB
C

R
10

FB
C

I1
0

FB
R

I1
0

FB
C

R
I1

0
FB

C
R

I1
00

FB
L

S1
0

re
l.b

es
t

1.
43

1.
13

8.
37

7.
97

8.
50

1.
11

0.
89

0.
89

0.
57

0.
57

0.
90

0.
56

0.
56

0.
23

0.
73

re
l.L

B
9.

19
8.

93
16

.8
5

16
.4

0
16

.9
2

8.
83

8.
59

8.
59

8.
24

8.
24

8.
61

8.
23

8.
23

7.
89

8.
44

cp
u

0.
09

0.
09

0.
77

28
.6

3
10

4.
10

0.
34

0.
63

0.
90

0.
92

1.
10

0.
44

0.
63

0.
69

6.
75

1.
18

#o
pt

14
5

15
3

11
1

11
6

90
15

5
16

1
16

1
17

7
17

7
15

8
17

7
17

7
18

6
16

3
#b

es
t

39
8

41
2

26
2

26
1

22
2

43
8

47
9

48
9

56
9

58
3

47
5

57
0

57
1

62
7

48
5

Ta
b.

3:
R

es
ul

ts
of

al
lp

ro
ce

du
re

s
fo

rM
P-

da
ta

se
t(

64
0

in
st

an
ce

s)

7 Conclusions 19

As reported by Martino and Pastor (2009), MP performs very well considering the fact that only a single
solution is computed. However, the AMP-data set is part of the data set MP is fine-tuned for. Here, the local search
for re-optimization in MPLS is not very effective.

The results of TG are worse than those of MP though ten solutions instead of one are computed. Considering
that Avalanche is a flexible multi-purpose procedure its solution quality is acceptable but required time is large.
Further, smaller tests show that computation times can be reduced without significant loss in solution quality but
we do without showing such results as the new procedures, nevertheless, outperform the other procedures.

The performance of XPress-MP is very disappointing as its acceptable solution quality is mainly due to the
initial heuristic solution computed. Even increasing computation times considerably has almost no effect. This
shows the complexity of the problem and puts the good performance of the (other) heuristics in perspective.

When considering the MP-data set, we get similar results with even increased gap between well-performing
procedures on the one hand and TG, Avalanche and XPress-MP on the other hand. As MP has been fine-tuned
to this very data set, its results are near-to-optimal though it requires negligible computation times. However,
considerable improvements can be obtained by the same new procedures as before with FBRI10 providing a good
compromise between solution quality and computation time. The further quality improvement by FBCRI100
comes along with about tenfold computation time. Nevertheless, it should be no problem in practice to wait 6 (up
to 50 for instances with 300 tasks) seconds for a good solution.

6.3 Experiments on the SBF-Data Sets

In this section, we show and analyze the results obtained for the new SBF-data sets for different setup time levels
and variability α . As the results summarized in Tables 4 to 7 are very similar to those for the former data sets, we
only describe additionally interesting aspects.

The MP-rule still performs very well with minimal computation times. This might result from those SALBP
precedence graphs which are contained in the SBF-Data set as well. However, other cycle times and, more im-
portant, setup times have been chosen. The fine-tuning of the rule has obviously reached an admirable robustness
such that the rule can be recommended whenever a solution should be computed without any recognizable delay.

Compared to the MP-data set, the versions of our new procedure now significantly differ with respect to com-
putation time. The fathoming component gets very important as it avoids unnecessary computations. This becomes
obvious by comparing FBCR10 and FBCRI10, where almost identical solution quality is obtained whereas the lat-
ter procedure takes roughly 10% of the time. Now, FBCRI10 seems to be the best compromise considering quality
and time as it requires about 1 second on average for small optimality gaps of about 3 to 5% even in case of large
and considerably varying setup times, where some of the procedures have deviations of 15% and more. It has to
be recalled that it is deviation to optimality not only to a weak bound in these data sets.

When about 10 seconds are invested per instance, FBCR100 almost in every case finds the best solution with
obviously best overall solution quality.

7 Conclusions

In this paper, we have studied and modeled the assembly line balancing and scheduling problem with setup times.
We provide an extended yet more efficient mathematical model in comparison to prior research. We further propose
a toolbox comprised of several heuristic components, which can be combined as required to yield fast and/or high-
quality solutions for instances of real-world size. The results of an extensive computational study demonstrate that
the new heuristics dominate former approaches with regard to solution quality and computation times.

7 Conclusions 20

However, further research effort is required to analyze the mathematical structure of the problem more deeply
as it contains an NP-hard subproblem which arises in every station, namely, a sequencing problem of the traveling
salesman type. There is a need for improved lower bounds and exact solution procedures.

Furthermore, it is required to consider additional aspects like the positioning of material boxes. This problem
is interrelated with the problem considered here as the positions of boxes determine the distances to walk when
fetching parts. The other way round, the sequence influences the optimal positions of boxes, which is further
complicated by the fact that the conveyor system usually moves steadily.

Another interesting aspect interrelated with the setup problem is ergonomics. On the one hand, ergonomic
restrictions introduce (additional) setups as tools like lifting or fixing devices have to be mounted. On the other
hand, they might reduce task times. Furthermore, there is a potential advantage of setup operations (in particular,
walking) as they enable workers to relax between two demanding tasks. So, setups seem to be useful for modeling
dynamic aspects of ergonomics which receives increasing attention in (automotive) industry.

7 Conclusions 21

M
P

M
PL

S
T

G
A

va
l.

X
pr

es
s

F1
0

FB
10

FB
C

10
FB

R
10

FB
C

R
10

FB
C

I1
0

FB
R

I1
0

FB
C

R
I1

0
FB

C
R

I1
00

FB
L

S1
0

re
l.b

es
t

1.
74

1.
61

3.
65

3.
86

4.
03

1.
16

0.
41

0.
38

0.
22

0.
19

0.
38

0.
18

0.
18

0.
02

0.
41

re
l.o

pt
4.

80
4.

67
6.

77
7.

01
7.

16
4.

22
3.

46
3.

43
3.

26
3.

23
3.

43
3.

22
3.

22
3.

06
3.

46
cp

u
0.

12
0.

12
1.

10
35

.8
2

12
.1

3
0.

66
1.

39
7.

13
1.

62
6.

99
0.

88
1.

04
1.

03
9.

80
3.

67
#o

pt
55

56
41

44
37

59
66

66
67

67
66

67
67

67
66

#f
ou

nd
10

8
10

9
84

91
79

12
3

13
4

13
6

13
7

13
9

13
5

13
9

13
9

14
4

13
4

#b
es

t
19

6
20

4
12

2
13

8
11

6
21

7
23

9
24

2
25

5
25

8
24

0
25

6
25

6
26

7
23

9

Ta
b.

4:
R

es
ul

ts
of

al
lp

ro
ce

du
re

s
fo

rS
B

F-
da

ta
se

t(
α

=
0.

25
)

M
P

M
PL

S
T

G
A

va
l.

X
pr

es
s

F1
0

FB
10

FB
C

10
FB

R
10

FB
C

R
10

FB
C

I1
0

FB
R

I1
0

FB
C

R
I1

0
FB

C
R

I1
00

FB
L

S1
0

re
l.b

es
t

1.
75

1.
74

6.
41

6.
38

6.
92

1.
44

0.
54

0.
47

0.
25

0.
20

0.
47

0.
18

0.
18

0.
06

0.
53

re
l.o

pt
5.

39
5.

38
10

.2
3

10
.2

4
10

.7
4

5.
07

4.
16

4.
09

3.
86

3.
81

4.
09

3.
79

3.
79

3.
67

4.
15

cp
u

0.
14

0.
12

1.
16

35
.6

5
12

.1
9

0.
64

1.
25

11
.2

2
1.

63
11

.0
8

0.
80

1.
06

1.
08

10
.6

8
3.

61
#o

pt
52

52
27

35
22

54
62

62
63

63
63

64
64

64
62

#f
ou

nd
10

4
10

4
60

75
50

11
2

12
4

12
4

12
6

12
6

12
4

12
7

12
7

13
0

12
4

#b
es

t
19

3
19

4
79

95
67

20
2

23
2

23
7

25
3

25
7

23
5

25
6

25
6

26
4

23
3

Ta
b.

5:
R

es
ul

ts
of

al
lp

ro
ce

du
re

s
fo

rS
B

F-
da

ta
se

t(
α

=
0.

50
)

M
P

M
PL

S
T

G
A

va
l.

X
pr

es
s

F1
0

FB
10

FB
C

10
FB

R
10

FB
C

R
10

FB
C

I1
0

FB
R

I1
0

FB
C

R
I1

0
FB

C
R

I1
00

FB
L

S1
0

re
l.b

es
t

2.
46

2.
19

9.
56

8.
63

9.
94

2.
09

0.
71

0.
64

0.
25

0.
19

0.
62

0.
28

0.
28

0.
10

0.
68

re
l.o

pt
6.

61
6.

32
14

.0
3

13
.1

1
14

.4
0

6.
23

4.
82

4.
75

4.
33

4.
27

4.
73

4.
37

4.
37

4.
18

4.
78

cp
u

0.
13

0.
12

1.
24

35
.9

2
12

.2
9

0.
69

1.
39

15
.4

8
1.

83
16

.8
3

0.
86

1.
08

1.
09

10
.9

9
3.

67
#o

pt
45

45
22

32
19

48
60

60
60

60
60

60
60

61
60

#f
ou

nd
91

92
46

67
37

99
11

6
11

6
12

1
12

1
11

6
12

2
12

1
12

4
11

6
#b

es
t

17
1

18
4

56
83

44
18

2
22

1
22

4
25

6
25

9
22

4
25

3
25

4
26

1
22

2

Ta
b.

6:
R

es
ul

ts
of

al
lp

ro
ce

du
re

s
fo

rS
B

F-
da

ta
se

t(
α

=
0.

75
)

M
P

M
PL

S
T

G
A

va
l.

X
pr

es
s

F1
0

FB
10

FB
C

10
FB

R
10

FB
C

R
10

FB
C

I1
0

FB
R

I1
0

FB
C

R
I1

0
FB

C
R

I1
00

FB
L

S1
0

re
l.b

es
t

2.
83

2.
72

12
.2

4
8.

41
12

.1
9

2.
28

1.
09

1.
02

0.
57

0.
50

1.
01

0.
53

0.
50

0.
14

1.
01

re
l.o

pt
7.

19
7.

07
17

.1
0

13
.1

1
16

.9
7

6.
64

5.
40

5.
33

4.
86

4.
78

5.
32

4.
81

4.
79

4.
42

5.
32

cp
u

0.
12

0.
12

1.
29

35
.9

2
12

.5
4

0.
63

1.
24

17
.9

8
1.

79
17

.1
6

0.
83

1.
18

1.
20

11
.6

5
3.

52
#o

pt
45

44
22

32
21

49
55

55
58

58
55

58
58

61
56

#f
ou

nd
84

85
43

67
36

95
11

1
11

1
11

5
11

6
11

3
11

5
11

6
12

2
11

2
#b

es
t

15
0

15
7

48
82

43
16

2
20

4
20

5
24

1
24

6
20

7
24

4
24

5
26

0
20

9

Ta
b.

7:
R

es
ul

ts
of

al
lp

ro
ce

du
re

s
fo

rS
B

F-
da

ta
se

t(
α

=
1.

00
)

7 Conclusions 22

References

Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M., 2008. A survey of scheduling problems with setup times or costs.
European Journal of Operational Research 187 (3), 985–1032.

Andrés, C., Miralles, C., Pastor, R., 2008. Balancing and scheduling tasks in assembly lines with sequence-
dependent setup times. European Journal of Operational Research 187 (3), 1212–1223.

Arcus, A., 1966. A computer method of sequencing operations for assembly lines. International Journal of Pro-
duction Research 4, 259–277.

Barnes, R., 1959. Motion and time study.

Bautista, J., Pereira, J., 2002. Ant algorithms for assembly line balancing. Vol. 2463 of Lecture Notes in Computer
Science. pp. 65–75.

Baybars, I., 1986. A survey of exact algorithms for the simple assembly line balancing problem. Management
Science 32, 909–932.

Becker, C., Scholl, A., 2006. A survey on problems and methods in generalized assembly line balancing. European
Journal of Operational Research 168, 694–715.

Becker, C., Scholl, A., 2009. Balancing assembly lines with variable parallel workplaces: Problem definition and
effective solution procedure. European Journal of Operational Research 199, 359–374.

Boctor, F., 1995. A multiple-rule heuristic for assembly line balancing. Journal of the Operational Research Society
46, 62–69.

Boysen, N., Fliedner, M., 2008. A versatile algorithm for assembly line balancing. European Journal of Operational
Research 184, 39–55.

Boysen, N., Fliedner, M., Scholl, A., 2007. A classification of assembly line balancing problems. European Journal
of Operational Research 183, 674–693.

Boysen, N., Scholl, A., 2009. A general solution framework for component commonality problems. BuR - Business
Research 2 (1), 86–106.

Dorigo, M., Blum, C., 2005. Ant colony optimization theory: A survey. Theoretical Computer Science 344, 243–
278.

Dorigo, M., Stützle, T., 2003. The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Ad-
vances. Vol. 57. Springer, New York, pp. 250–285.

Easton, F., Faaland, B., Klastorin, T., Schmitt, T., 1989. Improved network based algorithms for the assembly line
balancing problem. International Journal of Production Research 27, 1901–1915.

Erel, E., Sarin, S., 1998. A survey of the assembly line balancing procedures. Production Planning and Control 9,
414–434.

Jackson, J., 1956. A computing procedure for a line balancing problem. Management Science 2, 261–271.

Kanawaty, G., 1992. Introduction to work study.

7 Conclusions 23

Klein, M., 1963. On assembly line balancing. Operations Research 11, 274–281.

Klein, R., Scholl, A., 1999. Computing lower bounds by destructive improvement - an application to resource-
constrained project scheduling. European Journal of Operational Research 112, 322–346.

Little, J., Murty, K., Sweeney, D., Karel, C., 1963. An algorithm for the traveling salesman problem. Operations
Research 11, 972–989.

Martino, L., Pastor, R., 2009. Heuristic procedures for solving the general assembly line balancing problem with
setups. International Journal of Production Research (to appear).

Miller, C., Tucker, A., Zemlin, R., 1960. Integer programming formulation of the traveling salesman problem 7,
326–329.

Nelder, J., Mead, R., 1965. A simplex method for function minimization. The Computer Journal 7, 308–313.

Pastor, R., Andrés, C., Miralles, C., 2010. Corrigendum to "Balancing and scheduling tasks in assembly lines
with sequence-dependent setup" [European Journal of Operational Research 187 (2008) 1212-1223]. European
Journal of Operational Research 201, 336 – 336.

Rekiek, B., Dolgui, A., Delchambre, A., Bratcu, A., 2002. State of art of optimization methods for assembly line.
Annual Reviews in Control 26, 163–174.

Resende, M., Ribeiro, C., 2003. Greedy randomized adaptive search procedures. In: Glover, F., Kochenberger, G.
(Eds.), Handbook of Metaheuristics. Kluwer Academic Publishers, pp. 219 – 249.

Scholl, A., 1999. Balancing and sequencing of assembly lines. 2nd ed., Physica, Heidelberg.

Scholl, A., Becker, C., 2006. State-of-the-art exact and heuristic solution procedures for simple assembly line
balancing. European Journal of Operational Research 168, 666–693.

Scholl, A., Fliedner, M., Boysen, N., 2010. Absalom: Balancing assembly lines with assignment restrictions.
European Journal of Operational Research 200 (3), 688–701.

Scholl, A., Voß, S., 1996. Simple assembly line balancing - heuristic approaches. Journal of Heuristics 2, 217–244.

Talbot, F., Patterson, J., Gehrlein, W., 1986. A comparative evaluation of heuristic line balancing techniques.
Management Science 32, 430–454.

Wilhelm, W., 1999. A column-generation approach for the assembly system design problem with tool changes.
International Journal of Flexible Manufacturing Systems 11 (2), 177–205.

