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Abstract

Packing problems (sometimes also called cutting problems) are combinatorial op-

timization problems concerned with placement of objects (items) in one or several

containers. Some packing problems are special cases of several other problems such

as resource-constrained scheduling, capacitated vehicle routing, etc. In this pa-

per we consider a bounding technique for one- and higher-dimensional orthogonal

packing problems, called conservative scales (CS) (in the scheduling terminology,

redundant resources). CS are related to the possible structure of resource con-

sumption: filling of a bin, distribution of the resource to the jobs, etc. In terms

of packing, CS are modified item sizes such that the set of feasible packings is

not reduced. In fact, every CS represents a valid inequality for a certain binary

knapsack polyhedron.

CS correspond to dual variables of the set-partitioning model of a special 1D

cutting-stock problem. Some CS can be constructed by (data-dependent) dual-

feasible functions ((D)DFFs). We discuss the relation of CS to DFFs: CS assume

that at most 1 copy of each object can appear in a combination, whereas DFFs

allow several copies. The literature has investigated so-called extremal maximal

DFFs (EMDFFs) which should provide very strong CS. Analogously, we intro-

duce the notions of maximal CS (MCS) and extremal maximal CS (EMCS) and

show that EMDFFs do not necessarily produce (E)MCS. We propose fast greedy

methods to “maximize” a given CS. Using the fact that EMCS define facets of the

binary knapsack polyhedron, we use lifted cover inequalities as EMCS. For higher-

dimensional orthogonal packing, we propose a Sequential LP (SLP) method over

the set of CS and investigate its convergence. Numerical results are presented.
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1 Introduction

The introductory section states the considered problems, defines the conservative scales

and describes their usage, and reviews the paper’s contributions.

1.1 Problems considered

Cutting and packing (C&P) problems are a classical field of study in combinatorial op-

timization [WHS07]. Some packing problems represent special cases of other resource-

constrained problems, e.g., resource-constrained scheduling [CN07]. The bounding tech-

nique investigated in this paper is connected to the feasible solution set of the following

well-known combinatorial optimization problem:

1. The 1D binary knapsack problem (1D BKP) [MT90, KPP04]. It is described by

the following data: knapsack capacity W ∈ R+, item sizes w ∈ [0,W ]n, and item

profits α ∈ R
n. The goal is to select a subset of items fitting in the given capacity

and having the maximal total profit. The optimal objective value is defined as

follows:

max
{∑n

i=1 αixi :
∑n

i=1 wixi ≤ W, x ∈ {0, 1}n}
.

Our ’target interest’ are the following problems, which are however interrelated:

2. The 1D cutting-stock problem (1D CSP) [CAVR11]. It operates with n item types.

For each item type i = 1, n we know its size wi ∈ R+ and its order demand

(number of items) bi ∈ Z+. The containers are bins of capacity W ∈ R+. The

task is to use the minimal number of bins to pack all the items. Without loss of

generality we assume that each item fits into a bin, i.e., wi ≤ W holds for each

item i.
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We shall use 1D CSP as a “bar relaxation” of orthogonal packing problems (Sec-

tion 2.2). For that reason we impose an additional restriction that each bin should

contain at most one item of each type (binary patterns). This is a valid restriction

because in orthogonal packing we consider exactly one copy of each item. This

restriction is not relevant when solving 1D CSP on its own, cf. Section 5.3.

The special case with unit demands (bi = 1, ∀i) is called the 1D bin-packing

problem (1D BPP) [GJ79, CAV10]. We shall consider this problem on its own in

the experiment. Obviously, we automatically obtain only binary patterns here.

1D CSP is the so-called preemptive relaxation of the resource-constrained schedul-

ing problem, cf. [CN07].

3. The d-Dimensional Orthogonal Packing Problem (OPP-d) [FS04a, FSvdV07,

BCP08, CJCM08]. Let be given a set of d-dimensional items (boxes) that need

to be packed into a fixed container. The input data describe the container sizes

Wk ∈ R+, k = 1, d, and the sizes of the n items wk
i ∈ R+, k = 1, d for each item

i ∈ I = {1, . . . , n}. OPP-d is a decision problem. It asks whether all the boxes

can be orthogonally packed into the container without rotations. The guillotine

constraint is not considered. Without loss of generality, we assume that each item

fits into the container, i.e., wk
i ≤ Wk holds for each box i and dimension k.

OPP-2 is a generalization of the decision version of 1D BPP. Given the strong

NP-hardness of the latter [GJ79], we conclude the strong NP-completeness of

OPP-d for d ≥ 2. Moreover, OPP is polynomially equivalent to the orthogonal

strip-packing problem [AVPT09, BM10]. OPP is related to orthogonal bin-packing

and knapsack problems [cf. FS04a, CM04, BB07, PS07].

1.2 Conservative scales: definition and relation to 1D CSP

Conservative scales [FS04b] are modified item sizes of 1D BPP (CSP) such that the

set of feasible packings is not reduced. This instrument allows us to obtain non-trivial

bounds for 1D CSP (see below) and OPP (see the next subsection).

Definition 1. Let (W,w) ∈ R+ × R
n
+ be an instance of the 1D bin-packing problem.

Vector w̃ ∈ R
n is a conservative scale (CS) for (W,w) if any bin filling of (W,w) stays
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feasible for (W, w̃):

∀a ∈ {0, 1}n :
∑n

i=1 wiai ≤ W ⇒ ∑n
i=1 w̃iai ≤ W. (1)

Thus, conservative scales define a new 1D BPP instance whose set of patterns is a

superset of that for the original instance (if it is the same, we obtain a so-called equivalent

instance, cf. [RST02, Dow84]). CS correspond to valid inequalities of a certain binary

knapsack polyhedron, see Section 2.1 for a closer discussion. CS allow us to obtain

bounds for 1D BPP and CSP as follows.

CS are the LP dual variables of the following set-partitioning model of 1D CSP,

published by Kantorovich and Zalgaller [KZ51] and by Gilmore and Gomory [GG61].

The model combines a solution from pre-defined bin fillings. The filling of a bin, also

called packing pattern, is described by a binary vector a ∈ {0, 1}n satisfying

w�a ≤ W. (Knapsack condition)

As mentioned in the problem statement, in the context of orthogonal packing we allow

only binary patterns, which will be further motivated in Section 2.2 (“bar relaxation”).

Exceptions from this convention will be stated explicitly.

The model defines an activity variable xj for each pattern aj, j = 1, η, where η is

the number of all possible patterns. The set-partitioning model of 1D CSP reads

min{W ·∑η
j=1 xj :

∑η
j=1 ajxj = b, x ∈ Z

η
+}. (2)

Because η is not bounded by any polynomial in n, this model is solved by column

generation in practice. The column generation subproblem is a 1D BKP. Model (2) has

a strong LP bound, cf. [RD08].

A dual model to (2) is the following:

max{b�w̃ : w̃�aj ≤ W ∀j = 1, η, w̃ ∈ R
n}. (3)

Because of the weak duality, any feasible w̃ provides a lower bound b�w̃ for (2). In fact,

any such w̃ is a conservative scale for (W,w), cf. Definition 1. To obtain strong CS,

we can solve the LP (3); however, when fast bounds are needed, we can construct CS

heuristically, e.g., by dual-feasible functions, see Sections 1.4 and 2.4.
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1.3 Conservative scales and bounds for OPP

A simple bound for OPP is the volume bound : if the total volume of the items exceeds

that of the container then the instance is infeasible. We can also use CS to obtain a

valid bound for OPP, as stated by the following

Theorem 1 ([FS04b]). Let I = (W1, . . . ,Wd, w
1, . . . , wd) be an instance of OPP-d. Let

w̃k be a CS for (Wk, w
k), k = 1, d. Then any feasible packing for I can be transformed

into one for the instance Ĩ = (W1, . . . ,Wd, w̃
1, . . . , w̃d).

Thus, the volume bound for the modified instance is valid for the original instance.

Often it is stronger, which is heavily used in algorithms. Our goal is to maximize this

modified volume bound :

maximize
∑n

i=1

∏d
k=1 w̃k

i

subject to w̃k is a conservative scale for (Wk, w
k), k = 1, d.

(4)

Because CS are feasible points of the LP (3), problem (4) is a multilinear programming

problem with disjoint constraints (MLPP) [MF09, Dre92]. Caprara and Monaci [CM09]

investigate an exact method for (4) for the case d = 2. They give absolute and asymp-

totic worst-case bounds on the gaps between some problems related to (4) and some

packing problems.

Fixing some d−1 conservative scales in (4) leads to a linear program. This constitutes

our LP-based heuristic, Section 4. It can be related to Successive Linear Programming

(SLP) methods which are well-known for non-linear programming problems [Kel60,

PGLE82, ZKL85, SW10], also in combination with SQP methods [BGNW04]. SLP

methods are rather efficient in practice [MF09]. Some convergence results are known for

Trust-Region-like variants [ZKL85].

1.4 Conservative scales’ generation tools: (D)DFFs

A long-standing tradition in the cutting & packing community has been the implicit

and explicit usage of (data-dependent) dual-feasible functions ((D)DFFs) [Joh73, Lue83,

MT90, FS04b, FS01, BM03, CAV10, RAV10, RAV11, CMC09, KCT10] to construct CS.

We define them and start their discussion in Section 2.3. As we saw in Definition 1,
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CS assume that each item appears at most once in a combination; DFFs do not. This

means that CS can only be used in problems with binary item combinations in patterns,

but there they can lead to stronger bounds. To distinguish the subset of CS produced

by DFFs, we introduce the subclass of unbounded CS (UCS), Definition 2 in Section 2.2.

When using (D)DFFs to construct CS, it is advantageous to use strong (D)DFFs;

[CAV10, RAV10] review the classes of maximal and extremal maximal DFFs. We will

show that EMDFFs do not necessarily produce maximal CS (to be defined in Section 3);

[CN07] already proposed an enumerative method to find all extremal UCS.

1.5 Our contributions

The next section introduces the optimization tools needed by our heuristics. It defines

the subclass of UCS and highlights their correspondence to DFFs. We extend the

maximality and extremality notions to CS and DDFFs in Section 3, in particular we

characterize maximal CS and propose fast construction heuristics based on tightening

and lifting of valid inequalities. However, the Sequential LP method of Section 4 always

converges to a stationary point and produces extremal maximal CS in non-degenerate

cases. The new and old approaches are numerically compared in Section 5.

2 Properties of conservative scales and (D)DFFs

This section discusses some properties of CS, in particular, the sufficiency to consider

only non-negative CS. To apply CS to OPP, we consider CS as duals of a certain 1D

CSP relaxation of OPP. We distinguish a subclass of CS, unbounded CS (UCS) which

correspond to DFFs. The relations between (U)CS and (D)DFFs are discussed. Usage

principles and examples of (D)DFFs are given.

2.1 Interpretations of conservative scales and non-negativity

Interpretation as valid inequalities. According to Definition 1, consider some con-

stant CS w̃ for (W,w) ∈ R+ × R
n
+. Now, the inequality

a�w̃ ≤ W
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is a valid inequality for the binary knapsack polyhedron

P (W,w) = conv
{
a ∈ {0, 1}n : a�w ≤ W

}
. (5)

Some classes of these inequalities are widely used both in packing problems [BB07,

CAV10] as well as in general integer programming, cf. [NW88, CM09]. This interpreta-

tion motivates our interest in the so-called extremal maximal CS which represent facets

of (5), refer to Section 3.

The CS polyhedron is the set of all possible CS for a given 1D BPP instance.

Furthermore, it is the feasible set of the LP (3) which is the LP dual of the Gilmore-

Gomory model of 1D CSP. Given all extreme points aj ∈ {0, 1}n, j = 1, η, of the

knapsack polyhedron (5), some w̃ ∈ R
n is a CS iff it satisfies the constraints

aj�
w̃ ≤ W, j = 1, η, (6)

i.e., all CS for a certain (W,w) are given by the polyhedron

D′(P (W,w)) =
{
w̃ ∈ R

n : aj�
w̃ ≤ W, j = 1, η

}
(7)

which is a cross-section through the polar of (5). Compare (7) to the LP (3).

Example 1. Let (W,w) = (10, (2, 3, 4)). Then the convex hull P (W,w) of knapsack

points is the unit cube and D′(P (W,w)) = W conv{e1, e2, e3}⊕R
3
− (⊕ is the Minkowski

sum and ei is the i-th unit vector). The three extreme points {We1,We2,We3} of

D′(P (W,w)) represent facets of P (W,w) and are the extremal maximal CS, Section 3;

the three remaining facets −xi ≤ 0, i = 1, 3, do not correspond to any CS.

Lemma 2. All extreme points of D′(P (W,w)) are non-negative.

Proof. To see this, let w̃0 ∈ D′(P (W,w)) and w̃0
i0

< 0. Consider two vectors w̃1, w̃2 ∈ R
n

with w̃1
i = w̃2

i = w̃0
i , ∀i �= i0, and the negative components w̃1

i0
= 1

2
w̃0

i0
and w̃2

i0
= 3

2
w̃0

i0
.

The vectors w̃1, w̃2 are valid CS because of Definition 1: for any a ∈ {0, 1}n with a�w̃0 ≤
W , the vector a′ with a′

i = ai ∀i �= i0 and a′
i0

= 0 also satisfies the knapsack condition

a′�w̃0 ≤ W , because w̃0 was assumed a valid CS. Thus, a�w̃k ≤ a′�w̃k = a′�w̃0 ≤ W ,

∀k ∈ {1, 2}. Because of w̃0 = 1
2
(w̃1 + w̃2), the CS w̃0 is not an extreme point.
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Lemma 2 implies that there are no facets of (5) with negative components among

those that correspond to extreme points of D′(P (W,w)).

Section 3 arguments that the modified volume bound (4) over CS has at least one

extremal maximum. Thus, we can restrict our attention to the non-negative subset of

D′(P (W,w)),

D(P (W,w)) = D′(P (W,w) ∩ R
n
+ =

{
w̃ ∈ R

n
+ : aj�

w̃ ≤ W, j = 1, η
}
. (8)

As can be expected, this restriction leads on average to better numerical results and

prevents some technical difficulties in the SLP methods (Section 4).

A linear program. We can maximize a linear objective function over D(P (W,w)):

max
{
h�w̃ : w̃ ∈ R

n
+, aj�

w̃ ≤ W, j = 1, η
}

(9)

with some h ∈ R
n
+. Note the similarity between (9) and (3). The LPs (3) and (9) can

be solved by a cutting-plane algorithm, cf. [CM09]. This provides the basis for our SLP

heuristic, Section 4.

2.2 The bar relaxation of OPP and unbounded conservative

scales

In the introductory Section 1.2 we showed that CS correspond to dual variables of the

set-partitioning model of 1D CSP. When applying CS to OPP, this correspondence holds

for a special 1D CSP which is a relaxation of OPP. A yet weaker relaxation helps us to

introduce so-called unbounded CS which correspond to DFFs (closer discussed below).

The LP dual to (9) is

min
{
W ·∑η

j=1 xj :
∑η

j=1 ajxj ≥ h, x ∈ R
η
+

}
. (10)

Compared to (2), the differences are the ’≥’ constraints and the non-integral variables.

Model (10) is the LP relaxation of the set-covering model of the 1D CSP instance

(W,w, h). In [CM09] model (10) is called (bounded) fractional bin packing. For some

values of the input data, the 1D CSP instance (W,w, h) is a relaxation of the OPP
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instance I = (W1, . . . ,Wd, w
1, . . . , wd). For example, for some k ∈ {1, . . . , d}, define

(W,w) = (Wk, w
k) and h = (hi)

n
i=1 = (

∏
k′ �=k wk′

i )n
i=1. With this data, (10) is the k-th

(binary) bar LP relaxation of OPP [cf. BKRS09] which relaxes the OPP by dividing

each d-dimensional item i sized (w1
i , . . . , w

d
i ) into

∏
k′ �=k wk′

i one-dimensional bars of

length wk
i , Figure 1. Note that each 1D cut in an OPP packing “goes through” an

item at most once, that is why the additional restriction to binary patterns in the 1D

CSP is valid. Moreover, any CS w̃ for (Wk, w
k) is a feasible dual solution of (10) with

(W,w) = (Wk, w
k).

W1
W3

W2

W3
W1

W2

Figure 1: A 3D item and the 1st bar relaxation (along W1)

The papers [BKRS09, CM09] also discuss a relaxed version of (10) which uses un-

bounded integer knapsack vectors aj ∈ Z
n
+, j = 1, η, in the constraint matrix:

min
{
W ·∑η

j=1 xj :
∑η

j=1 ajxj ≥ h, x ∈ R
η
+

}
. (11)

It is called integer bar LP relaxation of OPP in [BKRS09] and unbounded fractional bin

packing in [CM09]. Its LP dual is

max
{
h�w̃ : w̃ ∈ R

n
+, aj�

w̃ ≤ W, j = 1, η
}
. (12)

The paper [CM09] distinguishes two types of modified volume bounds: 2D strengthened

DFF problem (2SDP) corresponds to our model (4) and 2D DFF problem (2DP) to the

same model but with CS from the tighter feasible set of (12). To distinguish this set,

we define the corresponding subclass of CS (Definition 1) as follows:

Definition 2. Let (W,w) ∈ R+ × R
n
+ be an instance of the 1D bin-packing problem.

Vector w̃ ∈ R
n is an unbounded conservative scale (UCS) for (W,w) if any unbounded

knapsack filling of (W,w) stays feasible for (W, w̃):

∀a ∈ Z
n
+ :

∑
i wiai ≤ W ⇒ ∑

i w̃iai ≤ W. (13)
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Obviously, UCS are a subset of CS for a given tuple (W,w). In experiments UCS

are usually weaker than CS. The class of UCS is implicitly used, e.g., in [CN07, CM09].

2.3 Definitions of (D)DFFs and relations to (U)CS

This subsection reviews the relationships between (U)CS (Definitions 1 and 2) and

certain classes of their heuristic generating functions. We shall establish the following

correspondences (which are not always bijective) and inclusions:

UCS ←→ DFFs
⊇ ⊇

CS ←→ DDFFs

and closer discuss the fact that UCS are a subset of CS.

Dual-feasible functions (DFFs) are special functions that produce UCS. The name

‘DFFs’ is motivated by the fact that UCS are feasible dual solutions of (11), see Lemma 3

below.

Definition 3 ([FS04b, FS01, CAV10]). Let there be given positive real numbers C, C ′.

A function f : [0, C]→ [0, C ′] is called dual-feasible if for any finite set of non-negative

real numbers (x1, . . . , xm) ∈ R
m
+ holds:

∑m
i=1 xi ≤ C ⇒ ∑m

i=1 f(xi) ≤ f(C) = C ′.

Note that traditional definitions of DFFs use C = C ′ = 1 [FS04b, FS01]. The more

general case C,C ′ ∈ Z+ was reviewed in [CAV10], being called there discrete DFF. The

exact relation of UCS and DFFs is described by the following

Lemma 3 (Lemma 1 in [CM09]). Assume 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn ≤ W . For

every DFF f : [0,W ]→ [0,W ′], the vector W
W ′ · (f(w1), . . . , f(wn)) is a UCS for (W,w).

Conversely, for any UCS w̃, the function f : [0,W ] → [0,W ] defined by f(x) = w̃i for

x ∈ [wi, wi+1) and i = 0, n (letting w̃0 = w0 = 0, wn+1 = W and f(W ) = W ) is a DFF.

Remark 4. Allowing equal item sizes in Lemma 3 (i.e., wi = wi+1 for some i) makes it

possible that some UCS w̃ with w̃i �= w̃i+1 cannot be produced by any DFF as defined

above. Thus, exact correspondence between UCS and DFFs can be established only for

all-different item sizes.
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It is easy to see that DFFs always produce a valid UCS (using the method of

Lemma 3). They cannot give a CS which is not a UCS, as demonstrated by the following

Example 2. For (W,w) = (10, (2, 3, 4)), the CS w̃ = 10
9
(2, 3, 4) cannot be obtained by

a DFF, as easily seen from Definitions 2 and 3: suppose there exists a DFF f : [0, 10]→
[0, C ′] with f(2) > C ′/5. Then 5 · f(2) > C ′ which is a contradiction to Definition 3

because 5 · 2 ≤ 10.

This example can be generalized to the following consequence of Definition 3:

Corollary 5. Any DFF f : [0, C]→ [0, C ′] satisfies f(x) ≤ C′
�C/x� ,

which is a well-known bound on the duals of the 1D cutting-stock model (11) [CAVR11],

cf. also Fact 9 in [CM09].

The broader class of conservative scales corresponds to another class of functions,

data-dependent dual-feasible functions (DDFFs), which were proposed in [CCM07]. We

slightly modify their definition by allowing real values and by taking the item index as

argument:

Definition 4. Let there be given positive real values C, C ′, and ci ≤ C, i ∈ I =

{1, . . . , n}. A mapping g : I ∪ {0} → [0, C ′] is called a data-dependent dual-feasible

function associated with (C, (c1, . . . , cn)) if the following holds:

∀ I1 ⊆ I,
∑

i∈I1
ci ≤ C ⇒ ∑

i∈I1
g(i) ≤ g(0) = C ′.

We have to define the item index as argument because some functions from the

literature implicitly use it, see Section 2.4 and Remark 7 below. Note the correspondence

between Definitions 4 (DDFFs) and 1 (CS). This correspondence can be stated precisely

in the following

Lemma 6. For every DDFF g : I ∪ {0} → [0,W ′] associated with (W, (w1, . . . , wn)),

the vector W
W ′ · (g(1), . . . , g(n)) is a CS. Conversely, for any CS w̃, any function g(·)

satisfying g(i) = w̃i, i = 1, n and g(0) = W is a DDFF.

Remark 7. Taking the item index as argument for DDFFs enables exact correspondence

between CS and DDFFs, as opposed to Remark 4 for DFFs.
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Remark 8. Using Lemmas 3 and 6 as well as Fact 9 from Section 3 we can restrict

us to integer-valued (D)DFFs as in [CCM07] because (8) and its UCS counterpart are

rational polyhedra.

Lemmas 3 and 6 and the fact that UCS are a proper subset of CS imply that

DFFs are a proper subset of DDFFs. This relation can be seen on the above example:

consider the data (W,w) = (10, (2, 3, 4)) and an associated DDFF g : {1, 2, 3} ∪ {0} →
[0, 9] with (g(1), g(2), g(3), g(0)) = (2, 3, 4, 9). As pointed out above, the corresponding

conservative scale 10
9
(2, 3, 4) cannot be obtained by any DFF. When applying a DFF,

removing an item may decrease and cannot increase the volume bound. When DDFFs

are used, this observation does not hold anymore since the value of other items may be

increased [CCM07, KCT10], see the example DDFF below.

The observations of this subsection can be summarized as follows:

1. CS and DDFFs can provide stronger lower bounds than DFFs for our main max-

imization problems (4) and (3).

2. However, CS are applicable only to problems with binary item combinations in

each pattern; problems with integer patterns, such as (11), can only be bounded

using UCS and DFFs.

3. In general, DFFs cannot produce all UCS; exact correspondence can be estab-

lished only for all-different item sizes. This applies to all common DFFs. In

contrast, some known DDFFs use the item index as argument which allows exact

correspondence to CS.

Traditional bounding techniques for (4) and (3), which use (D)DFFs, are closer consid-

ered in the next subsection.

2.4 Usage of (D)DFFs in packing problems and examples

Many authors [Lue83, FS01, FS04b, CAV10, CAVR11, KCT10] use (D)DFFs to obtain

bounds for OPP and 1D CSP. They heuristically select some (D)DFFs to construct
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(U)CS (according to Lemmas 3 and 6) and compute a lower bound L for the maxi-

mization problem (4) or (3). For OPP, if L exceeds the container volume, the container

cannot pack all the items.

The objective functions of (4) and (3) can hardly be considered during selection of

(D)DFFs. Nevertheless, some research has been invested in finding strong DFFs, e.g.,

maximal (dominant) and extremal ones, see the survey [CAV10] and the paper [RAV10].

The next section extends these notions to CS / DDFFs.

Below we present three families of DFFs. They are all maximal, as discussed in

[CAV10]. Moreover, they are all extremal, except for fλ
0 with λ ∈ (1/4, 1/2) [RAV10].

The first family of DFFs fλ
0 (x) : [0, 1]→ [0, 1] can be called classical because it was used

implicitly already in, e.g., [MT90]. In [FS04b, FS01] this family is denoted U (ε). It has

a parameter ε = λ ∈ [
0, 1

2

]
:

fλ
0 (x) =




0, if x < λ,

x, if λ ≤ x ≤ 1− λ,

1, if x > 1− λ.

(14)

Function fλ
0 (·) changes the arguments below λ to 0 and those above 1− λ to 1.

The following family fp
FS,1(x) : [0, C] → [0, Cp], parameterized by p ∈ N, was pro-

posed in [FS04b, FS01] (there in the non-discrete version u(p) : [0, 1]→ [0, 1]):

fp
FS,1(x) =




xp, if x(p+1)
C
∈ Z,⌊

x(p+1)
C

⌋
C, otherwise.

(15)

Numerically most advantageous for 1D bin packing [CAV10] appeared the family

fp
CCM,1 : [0, C]→ [

0, 2
⌊

C
p

⌋]
with parameter p ∈ [

1, C
2

]
:

fp
CCM,1 =




2
(⌊

C
p

⌋− ⌊
C−x

p

⌋)
, if x > C

2
,⌊

C
p

⌋
, if x = C

2
,

2
⌊

x
p

⌋
, if x < C

2
.

(16)

As we saw above, every DFF is also a DDFF, but not vice versa. The paper [KCT10]

proposes the following class of DDFFs. Let J ⊆ I = {1, . . . , n} be an index set. Let
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the function KP (C, J, α) denote the optimal value of the binary knapsack problem with

capacity C ∈ R+, item sizes c ∈ R
J
+, and objective coefficients α ∈ R

J :

KP (C, J, α) = max
{∑

j∈J αjxj :
∑

j∈J cjxj ≤ C, x ∈ {0, 1}J}
. (17)

Let J ⊇ {i : ci ≤ C
2
} be a subset of items including at least all those sized up to half of

the bin. The function gα
1 : I ∪ {0} → [0, KP (C, J, α)] defined by

gα
1 (j) =




KP (C, J, α)−KP (C − cj, J, α), if cj > 1
2
C,

αj, if cj ≤ 1
2
C,

(18)

is a DDFF associated with (C, (c1, . . . , cn)). Note that gα
1 can have different values for

equal original sizes, see Remark 7. The best results for the 1D bin-packing problem were

obtained in [KCT10] with α = c. The authors call gα
1 a general framework for DDFFs.

Below we render this statement more precisely.

3 Extremal and maximal CS and DDFFs

This section extends the discussion of maximality and extremality from DFFs to CS and

DDFFs. These notions are defined similarly to those for valid inequalities, cf. Section 2.1

and [NW88, II.1]: a DFF is maximal if it is not strictly dominated and it is extremal

if it is not a linear combination of two different DFFs. We define these notions for CS

analogously (Definition 7 below). It is obvious that extremal CS are enough to solve

the MLPP (4) to optimality:

Fact 9. There exists an optimum (w̃1, . . . , w̃d) of (4), where each w̃k is a vertex of

P (Wk, w
k).

We show by an example that an extremal DFF is not guaranteed to always produce

even a maximal CS. We propose a characterization and heuristics to obtain maximal

and extremal CS.

Note that [CN07] define maximal and extremal UCS (called there non-dominated

maximal redundant functions) and propose a method to enumerate all of the latter. We

are primarily interested in (E)MCS, so we mention only a few words on extremal and

maximal UCS at the end of the section.
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3.1 Definitions and motivation

The paper [CAV10] reviews maximal DFFs (MDFFs), i.e., those not dominated by any

others. The motivation to consider maximal CS and maximal (D)DFFs is the following.

When using (D)DFFs to lower-bound (4) or (3), we heuristically solve

max
{
h�w̃ : w̃ is a CS for (W,w)

}
. (19)

In OPP, hi =
∏

k′ �=k wk′
i is the product of the item sizes in the other dimensions. In 1D

BPP, hi ≡ 1. Thus, for every index i with hi > 0, the component w̃i should be “as large

as possible”. Here is the definition of maximality for DFFs:

Definition 5 (cf. [CAV10]). A DFF f : [0, C] → [0, C ′] is an MDFF if there does not

exist any other DFF f ′ : [0, C] → [0, C ′′] such that f(x)
f(C)

≤ f ′(x)
f ′(C)

for all x ≤ C and a

value y such that f(y)
f(C)

< f ′(y)
f ′(C)

.

A characterization of MDFFs is known:

Theorem 10 ([CCM07]). A DFF f : [0, C] → [0, C ′] is an MDFF if and only if the

following conditions hold:

1. f is non-decreasing,

2. f is superadditive, i.e., f(x) + f(y) ≤ f(x + y),

3. f is symmetric, i.e., ∀x ∈ [0, C], f(x) + f(C − x) = f(C),

4. f(0) = 0.

The sufficiency criterion can be simplified, see [RAV10]. The same paper investigates

extremal maximal DFFs:

Definition 6 ([RAV10]). An MDFF f is an extremal maximal DFF (EMDFF) if for

any two DFFs g, h with 2f(x) = g(x) + h(x) ∀x ∈ [0, 1] it follows that f ≡ g.

These notions can be analogously defined for CS:

Definition 7. A CS w̃ for (W,w) ∈ R+ × R
n
+ is a maximal CS (MCS) if there does

not exist any other CS w̃′ such that w̃ ≤ w̃′ and an index i∗ ∈ {1, . . . , n} such that

w̃i∗ < w̃′
i∗ .
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Definition 8. An MCS w̃ for (W,w) ∈ R+ × R
n
+ is an extremal maximal CS (EMCS)

if for any two CS w̃1, w̃2 with 2w̃ = w̃1 + w̃2 it follows that w̃ = w̃1.

Note that MCS belong to the boundary of the CS polyhedron D(P (W,w)) (8) and

EMCS are exactly the extreme points of the full polyhedron D′(P (W,w)) (7). At the

same time, the latter are a subset of the facet-defining inequalities of the binary knapsack

polyhedron P (W,w) (5).

Example 3 (see also Example 1). Let (W,w) = (10, (2, 2, 3, 4)). Then P (W,w) is the

convex hull of all the corners of the 4D unit cube without the point (1,1,1,1). The full

CS polyhedron is D′(P (W,w)) = W conv{e1, e2, e3, e4,
1
3
(e1+e2+e3+e4)}⊕R

4
− (⊕ is the

Minkowski sum). The 5 extreme points {We1,We2,We3,We4,
1
3
W (e1 + e2 + e3 + e4)}

of D′(P (W,w)) represent facets of P (W,w) and are the extremal maximal CS; the 4

remaining facets −xi ≤ 0, i = 1, 4, do not correspond to any CS.

Fact 9 above has shown that at least one optimum of the MLPP (4) is extremal. The

same holds for the 1D CSP dual (3). Thus, it is enough to consider only extremal CS

in these models. In any case, we should try to obtain only maximal CS, as motivated

in the beginning of the subsection.

Using the traditional bounding technique for (4) and (3), namely DFFs (Section 2.4),

we would prefer EMDFFs as being the strongest. However, EMDFFs do not guarantee

to produce even maximal CS, see the following example:

Example 4. Consider again (W,w) = (10, (2, 3, 4)) and the EMDFF fλ
0 defined in (14)

with λ ≤ 0.2. Applying fλ
0 according to Lemma 3, we obtain the UCS w̃ = (2, 3, 4)

which is dominated by the MCS w̃′ = 10
9
(2, 3, 4) (which is not extremal, cf. Example 1).

Another possibility is to try to use DDFFs to obtain (E)MCS. For that, we put

Definition 9. A DDFF g, associated with certain data (C, c) ∈ R+ × R
n
+, is called a

maximal DDFF (MDDFF) associated with (C, c) if it produces a maximal CS (using

Lemma 6).
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3.2 A characterization of maximal CS and DDFFs

We characterize maximal CS with the help of knapsack functions and give a geometric

interpretation.

Let KP (C, I, γ) = max
{∑

i∈I γixi :
∑

i∈I cixi ≤ C, x ∈ {0, 1}I} as in (17). If not

stated otherwise, we denote I = {1, . . . , n}. A simple consequence of Definition 1 of CS

is the following characterization of CS:

Observation 11. Let there be given a tuple (W,w) ∈ R+ × R
n
+. A vector w̃ ∈ R

n is a

CS for (W,w) if and only if the following inequality holds:

KP (W, I, w̃) ≤ W. (20)

Maximal CS can be characterized as follows.

Theorem 12. Let there be given a tuple (W,w) ∈ R+ × [0,W ]n. A vector w̃ ∈ R
n is a

maximal CS for (W,w) if and only if the following equalities hold:

w̃i = W −KP (W − wi, I \ {i}, w̃), ∀i ∈ I. (21)

Proof. “⇒”

Suppose (21) is wrong, i.e.,

∃i0 ∈ I : w̃i0 < W −KP (W − wi0 , I \ {i0}, w̃).

Then we can increase this component up to

w̃i0 = W −KP (W − wi0 , I \ {i0}, w̃).

“⇐” Let (21) hold but w̃ be non-maximal. Then there exist a CS w̃′ so that w̃′ ≥ w̃ (∗)

and i0 ∈ I: w̃′
i0

> w̃i0 . We obtain the contradiction

w̃i0 < w̃′
i0
≤ W −KP (W − wi0 , I \ {i0}, w̃′)

(∗)

≤ W −KP (W − wi0 , I \ {i0}, w̃).

Corollary 13. Let there be given a tuple (W,w) ∈ R+×[0,W ]n. If w̃ ∈ R
n is a maximal

CS for (W,w) then the following equality holds:

KP (W, I, w̃) = W. (22)
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Interpretation. Theorem 12 can be interpreted as follows: w̃ ∈ R
n is an MCS for

(W,w) exactly when each item i participates in some optimal solution of value W for

objective coefficients w̃, i.e., when holds:

∀i, ∃x(i) ∈ {0, 1}n : x
(i)
i = 1 ∧ w�x(i) ≤ W ∧ w̃�x(i) = W.

Geometrically this means that the hyperplane w̃�x = W touches at least one feasible

knapsack solution (Corollary 13) and, for each i ∈ {1, . . . , n}, the i-th component has

value 1 in at least one of the touched points, see Figure 2. In the left subfigure, the
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Figure 2: Maximal and non-maximal inequalities geometrically

maximal inequality is satisfied with equality in two points and both x1 and x2 take

value 1 in different ones. In the right subfigure, the maximal inequality is satisfied with

equality in a feasible point where both x1 = x2 = 1 simultaneously.

Using Theorem 12 and Lemma 6 we can easily prove a similar characterization of

maximal DDFFs:

Theorem 14. Let I = {1, . . . , n}. Let be given a DDFF g : I ∪{0} → [0, C ′] associated

with some (C, c) ∈ R+× [0, C]n. Let γ = (g(1), . . . , g(n)) be the vector of images of item

sizes. Function g is an MDDFF if and only if the following equalities hold:

g(i) = γi = KP (C, I, γ)−KP (C − ci, I \ {i}, γ), ∀i ∈ I. (23)

Now we can make precise the statement about the generality of the DDFF family

gα
1 defined by (18).

Corollary 15. For a given data tuple (C, c) ∈ R+ × [0, C]n, consider the family of

DDFFs gα
1 (18) with the full subset of items J = I = {1, . . . , n} and all α ∈ R

n
+. This

family contains all maximal DDFFs.
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Proof. Let w̃ be a maximal CS for (C, c). Then it satisfies (21). Select α = w̃. We

obtain

gα
1 (j) =




KP (C, J, α)−KP (C − cj, J, α) = αj, if cj > 1
2
C,

αj, if cj ≤ 1
2
C,


 = αj, ∀j.

Because (23) holds, the statement follows.

However, the family gα
1 contains not only maximal CS, as is shown by

Example 5. Let the capacity and sizes be as follows: C = 10, c = (3, 1, . . . , 1) ∈ Z
n
+

with n ≥ 11. For gα
1 , choose J = I and the weighting vector α = (1, 1, . . . , 1) ∈ R

n
+.

For the mapped capacity we obtain C ′ = gα
1 (0) = KP (10, J, α) = 10.

The CS obtained by gα
1 is the vector c̃ = α = (1, 1, . . . , 1), which is non-maximal.

There arises the question about the existence of a ‘closed-form’ maximal DDFF for

given data. Up to now we have not found such a general function. We propose to

compute MCS by tightening of non-maximal CS.

3.3 Computing maximal CS by tightening

There arises the question how to compute maximal CS. It is obvious that any exact

solution of the LP (19) for any h > 0 is an MCS. It has the advantage that it is a “best”

CS for the given objective h. Such an LP-based method will be a topic of Section 4. In

this section we are going to construct MCS which heuristically solve (19).

To obtain diversified and strong MCS, we suggest to compute some good UCS by

(E)MDFFs (Section 2.4) and to tighten them. As shown in Section 2.3, Example 2,

some CS cannot be produced by a DFF, including MCS.

We propose the following general scheme to construct an MCS. Let there be given

the input data (W,w) ∈ R+ × [0,W ]n.

1. Construct an UCS w̃ using some (E)MDFF (Section 2.4) and Lemma 3.

2. Randomize w̃ by multiplying each w̃i by (1 − rand(0, ν̄)), where rand(a, b) is a

uniformly distributed random number in [a, b) and ν̄ ∈ [0, 1] is a parameter.

3. Multiply w̃ by W
KP (W,I, �w)

to satisfy (22).
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4. In some order, set

w̃i = W −KP (W − wi, I \ {i}, w̃) (24)

for all i ∈ I to satisfy (21).

We need to specify the order of tightenings in Step 4. Keeping in mind that we are

heuristically solving (19), we propose two greedy variants of item sorting.

Greedy 1 (dynamic sorting) Let us estimate the increase of the objective function

of (19) when lifting each item:

i0 ∈ arg max
i∈I

{
hi ·

[
W −KP (W − wi, I \ {i}, w̃)− w̃i

]}
.

If the maximal increase is positive, perform the update (24) for this i = i0 and iterate.

The complexity of this variant is O(Wn3) in the naive implementation and can be

improved to O(Wn2) as follows. Denote by I<i = {1, . . . , i− 1} and I>i = {i+1, . . . , n}
the sets of item indexes smaller and larger than i, respectively. Note that

KP (W − wi, I \ {i}, w̃) = max
0≤p≤W−wi

{
KP (p, I<i, w̃) + KP (W − wi − p, I>i, w̃)

}
(25)

requires O(W ) times for computation, where the values of both summands under the

maximum are known from the direct and reverse dynamic programming recursions for

the binary knapsack problem [MT90], respectively.

Greedy 2 (static sorting) is obtained by simplification: we sort the items in I only

once according to non-increasing “item volumes” hici, where ci = wk
i is the original size.

This sorting is done at the outset of the algorithm. In this ordering, all elements of I are

tightened by (24). The complexity of this variant is O(Wn2) in the naive implementation

and can be improved to O(Wn) similar to Greedy 1: after updating some w̃i in Step 4

using (25), the dynamic table with values KP (p, I<i+1, w̃), 0 ≤ p ≤ W , can be updated

in O(W ) time.

Example 6. Like above, consider (C, c) = (10, (2, 3, 4)), the EMDFF fλ
0 (14) with

λ ≤ 0.2, and the resulting UCS c̃ = (2, 3, 4). In Step 3 of the above procedure we obtain

the MCS c̃′ = 10
9
(2, 3, 4).
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Example 7. Let (C, c) = (10, (3
2
, 2, 3, 4)). Take the EMDFF fλ

0 (14) with λ ≤ 0.15,

which gives the UCS c̃ = (3
2
, 2, 3, 4). In Step 3 we obtain the CS c̃ = 10

9
(3

2
, 2, 3, 4). Step 4

gives the MCS c̃′ = 10
9
(2, 2, 3, 4).

All items whose value is positively lifted in Step 4 cannot be known a priori in

general. However, this is in any case a subset of the items which originally do not

satisfy condition (21).

The proposed CS tightening technique generalizes some preprocessing techniques for

item sizes, see, e.g., [CCM07, BM03, BM10], and the tightening procedure for conserv-

ative scales under search information [FS04b].

3.4 Computing extremal MCS as lifted covers

As argued in the beginning of the section, it is enough to consider only EMCS in the

models (4) and (3). We can generate facets of the binary knapsack polyhedron as EMCS.

For that, it is possible to adapt the method for extremal UCS from [CN07], however

it is rather time-consuming. Our choice was to construct the well-known lifted cover

inequalities [cf. NW88, chapter II.2].

A cover for a binary knapsack instance (W,w) ∈ R+ × R
n
+ is a subset C ⊆ I =

{1, . . . , n} of items with the property
∑

i∈C wi > W . Thus, all feasible solutions satisfy

the cover inequality
∑

i∈C xi ≤ |C| − 1. If the cover is minimal, i.e., no item can be

removed, then the corresponding inequality represents a facet of the set

P (W,w) ∩ {xi = 0, i �∈ C}

with P (W,w) being the convex hull of the knapsack fillings, defined by (5). The in-

equality can be lifted to a facet of P (W,w) using the following

Proposition 16 (Sequential lifting, cf. [NW88]). Suppose S ⊆ B
n, Sδ = S ∩ {x ∈ B

n :

x1 = δ} for δ ∈ {0, 1}, and ∑n
j=2 πjxj ≤ π0 (26)

is valid for S0. If S1 = ∅, then x1 ≤ 0 is valid for S. If S1 �= ∅, then

α1x1 +
∑n

j=2 πjxj ≤ π0 (27)
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is valid for S for any α1 ≤ π0 − ζ0, where ζ0 = max{∑n
j=2 πjxj : x ∈ S1}. Moreover,

if α1 = π0 − ζ0 (“maximal lifting”) and (26) gives a face of dimension k of conv(S0),

then (27) gives a face of dimension k + 1 of conv(S).

Note the similarity between the condition (27) and the maximality condition of

Theorem 12.

Like in the previous subsection, we have to decide which items should constitute a

cover and in which order the remaining items should be lifted. To diversify the search,

we employed the UCS produced by (E)MDFFs as hints. Namely, let w̃ be such a

UCS, randomized similar to Step 2 of the MCS heuristic (see previous subsection). We

sorted the items according to non-increasing values hiw̃i/wi, where hi are the objective

coefficients of (19). In this order, we first added the items to a cover C. In the reverse

order, the items were removed from C to minimize it. Again in the direct order, the

remaining items were lifted.

3.5 A few words about UCS

The unbounded conservative scales, Definition 2, are products of DFFs; the notions of

maximality and extremality for them can be defined identically to those for CS. We can

use the principles of this section to tighten UCS as well. A characterization of maximal

UCS, whose proof is left to the reader, has the form similar to Fact 10 of [CM09]:

Theorem 17. Let there be given a tuple (W,w) ∈ R+ × R
n
+. A vector w̃ ∈ R

n is a

maximal UCS for (W,w) if and only if the following holds:

w̃i = min
k∈N

{
W −maxa∈Zn

+

{∑
j �=i w̃jaj : w�a ≤ W, ai = k

}
k

}
, ∀i ∈ I (28)

The paper [CN07] describes a method to enumerate extremal maximal UCS. They

discovered that the number of (useful) facets is extremely small, which will be confirmed

by our experiments with lifted covers as EMCS.

4 An SLP heuristic for CS in orthogonal packing

For orthogonal packing, specifically for the feasibility problem OPP, the conservative

scales in all d dimensions should be optimized simultaneously to provide the best possible
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volume bound. This exact approach appears too difficult in practice already in 2D

[CM09]. The middle way, to select CS in each dimension under consideration of CS in the

other dimensions, was approached in the previous section heuristically. Here we discuss

a more thorough method that can be classified as Sequential Linear Programming. We

also discuss its convergence properties which are used to derive anti-stalling measures.

4.1 The basic variant of the heuristic

Our goal is to construct a set of conservative scales in d dimensions producing the

maximal volume bound, see model (4). Using definition (8) of the CS polyhedron

D(P (W,w)), model (4) can be re-written as

maximize
∑n

i=1

∏d
k=1 w̃k

i (29a)

subject to a�w̃k ≤ Wk ∀a ∈ P (Wk, w
k), k = 1, d (29b)

w̃k ∈ R
n
+ k = 1, d. (29c)

The linear constraints (29b) are disjoint for each k = 1, d. Problem (29) is a multilinear

programming problem with disjoint constraints (MLPP) [MF09, Dre92]. In the case d =

2, (29) is a special bilinear programming problem [cf. CM09]. Generalizing Conjecture 2

of [CM09] we put the following

Conjecture 18. Problem (29) is strongly NP-hard.

Obviously, when the conservative scales w̃k for some d−1 dimensions k ∈ {1, . . . , d}\
{k0} are fixed, (29) simplifies to the following LP (cf. (9) and (19)):

max
{
h�w̃ : w̃ ∈ R

n
+, a�w̃ ≤ Wk0 , ∀a ∈ P (Wk0 , w

k0)
}

(30)

with hi =
∏

k �=k0
w̃k

i , i = 1, n. The LP (30) looks for a “best” CS w̃k0 to combine with

the fixed vectors. Such LPs can be considered iteratively, which is the idea for our

heuristic.

This heuristic can be related to SLP methods which are well-known for non-linear

programming problems [Kel60, PGLE82, ZKL85, SW10, BGNW04]. Convergence re-

sults are known only for Trust Region-like variants of the method, see [ZKL85].
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Starting with the original sizes wk, k = 1, d as conservative scales, the LP (30) is

solved many times, each time for a different k0, and each time the k0-th CS w̃k0 is

replaced by the LP’s solution. A formal description is given in Figure 3.

Input: OPP instance (W1, . . . ,Wd, w
1, . . . , wd); iteration limit tmax

Output: status ‘infeasible’ or ‘unknown’

S0. Let w̃k = wk, ∀k = 1, d; (initialize CS with the original sizes)

S1. for t = 1, tmax

for k0 = 1, d

Solve (30) with hi =
∏

k �=k0
w̃k

i , ∀i = 1, n;

Replace w̃k0 with the corresponding solution vector;

S2. if h�w̃k0 >
∏

k Wk (the LP value exceeds the container volume)

then Stop; (the OPP instance is infeasible)

end for k0

end for t

Figure 3: The basic variant of the LP-based CS-heuristic

We illustrate the heuristic using the 2D case. Let d = 2, item lengths l = w1, heights

h = w2, container sizes L = W1, H = W2. The heuristic would proceed as follows: first,

we look for a CS l̃(1) for (L, l) which “best combines” with h:

(i) l̃(1) ∈ arg max {h�l̃ : l̃ is a CS for (L, l)}.

Note that this is a bar relaxation of the OPP instance (Section 2.2). Then we look for

a CS h̃(1) for (H, h) which “best combines” with the recently found l̃(1):

(ii) h̃(1) ∈ arg max {l̃(1)�h̃ : h̃ is a CS for (H, h)}

. . . and so on:

(iii) l̃(2) ∈ arg max {h̃(1)
�
l̃ : l̃ is a CS for (L, l)};

(iv) h̃(2) ∈ arg max {l̃(2)�h̃ : h̃ is a CS for (H, h)};
. . .
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(which converges to a stationary point (l̃(t0), h̃(t0)) of (29), see the next subsection).

On the other hand, we could have started by looking for a CS h̃(1) for (H, h) which

“best combines” with the original lengths l:

(i) h̃(1) ∈ arg max {l�h̃ : h̃ is a CS for (H, h)};
(ii) l̃(1) ∈ arg max {h̃(1)

�
l̃ : l̃ is a CS for (L, l)};

(iii) h̃(2) ∈ arg max {l̃(1)�h̃ : h̃ is a CS for (H, h)};
(iv) l̃(2) ∈ arg max {h̃(2)

�
l̃ : l̃ is a CS for (L, l)};

. . .

(which converges to a, generally different, stationary point (l̃(t1), h̃(t1)) of (29)). In fact,

we are going to compute both such sequences together, see Subsection 4.3.

The presented heuristic has the following nice property:

Lemma 19. The sequence of values of the LP (30) solved by the heuristic of Figure 3

is monotone non-decreasing (and hence, the sequence of lower bounds for the OPP in-

stance).

4.2 A local optimality criterion and convergence

According to Lemma 19, the sequence of modified volume bounds produced by the

heuristic is non-decreasing. On the other side, it is bounded by the optimum of (29).

We can ask: does the heuristic converge to a local or even a global optimum?

First we investigate a necessary criterion for the iterates to represent a local optimum:

Theorem 20. Let there be given a set of conservative scales (w̃1, . . . , w̃d). If, for each

k0 = 1, d, the CS w̃k0 is an optimum of the LP (30) with the objective coefficients hk0

satisfying hk0
i =

∏
k �=k0

w̃k
i , i = 1, n then (w̃1, . . . , w̃d) is a stationary point of (29).

Proof. Let us perturb the point (w̃1, . . . , w̃d) by (∆1, . . . , ∆d) so that w̃k +∆k remains a

feasible CS for (Wk, w
k), k = 1, d. Let us compute the volume bound in the new point:

∑
i

∏
k(w̃

k
i + ∆k

i ) =
∑

i

∏
k w̃k

i +
∑

i

∑
k ∆k

i

∏
j �=k w̃j

i + o(maxk ‖∆k‖). (31)

The assumed optimality of w̃k in (30) for each k implies ∆k�
hk ≤ 0 or, equivalently,

∑
i ∆

k
i

∏
j �=k w̃j

i ≤ 0, ∀ k.
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Together with (31) this shows that (w̃1, . . . , w̃d) satisfies the first-order necessary opti-

mality conditions.

Our convergence proof needs some assumptions on the implementation, which are

provided free of charge when the LPs (30) are solved by the simplex method:

Theorem 21. Consider the heuristic of Figure 3. Let us assume the following special-

ization of the algorithm:

(i) Only basic solutions are computed for (30).

(ii) If the current CS w̃k0 is an optimum of the LP (30) then it is not replaced. This

is sure to happen if w̃k0 is used as a starting point in the simplex method for (30).

Then the set of iterates (w̃1, . . . , w̃d) maintained by the heuristic arrives at some sta-

tionary point of (29) in a finite number of steps.

Proof. The sequence of values of the LP (30) is non-decreasing and bounded. By select-

ing always basic solutions, we obtain a finite number of possible objective values. Thus,

the sequence of LP values achieves a maximum in a finite number of steps.

Moreover, after this has happened, the iterates (w̃1, . . . , w̃d) will not change, thus

satisfying the assumptions of Theorem 20 showing that they are a stationary point.

The restriction to consider only basic solutions in the heuristic is not at all disad-

vantageous, which is shown by Fact 9 in Section 3.

As it will be seen from the experiment, the heuristic does not always converge to a

global optimum.

4.3 Implementation and anti-stalling features

Here we discuss the implemented version of the heuristic whose basic variant was given

in Figure 3. The full version computes several CS sequences in parallel, which are all

monotone in the sense of Lemma 19; it performs anti-stalling checking as suggested by

Theorem 21. However, some operations were simplified, compared to theory, without

diminishing practical efficiency. The pseudo-code is given in Figure 4.
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In Subsection 4.1 we noticed that it makes generally some difference, in which dimen-

sion k00 ∈ {1, . . . , d} we start to compute a new CS at first. The order of dimensions,

for which CS are computed, determines the sequence of the produced CS. We propose to

maintain d sequences, differing by the dimension k00 of the first modified CS (k00 = 1, d).

The conservative scales obtained in iteration t ∈ N (Step S3 of Figure 4) are stored in

the matrix (w̃1,t, . . . , w̃d,t); they all belong to different sequences. For example, the

sequence started at k00 = 1 is (w̃1,1, w̃2,2, . . . , w̃d,d, w̃1,d+1, . . . ); each element of the se-

quence is computed so as to maximize the lower bound on (29) when combined with

the last d − 1 elements. To be precise, the CS w̃k0,t belongs to the sequence started at

k00(k0, t) = ((k0 − t) mod d) + 1 ∈ {1, . . . , d}. Vector w̃k0,t is computed in Step S3 by

the LP (30) with the objective coefficients

hk0 =
(
hk0

i

)n

i=1
=

( d−1∏
p=1

w̃
((k0−p−1)mod d)+1,t−p
i

)n

i=1

(assuming w̃k,t = wk, ∀t ≤ 0.)

Note that we have to use expressions of the form (. . . mod d)+1 for dimension indexes

because the first index is 1 and not 0. Then the LP value of the sequence started at

certain k00 ∈ {1, . . . , d} and computed in iteration t ∈ N equals (with k0 = k0(k00, t) =

((k00 + t− 2) mod d) + 1)

zk00,t = hk0
�
w̃k0,t =

n∑
i=1

d−1∏
p=0

w̃
((k00+t−p−2)mod d)+1,t−p
i . (32)

Because of Lemma 19, the following monotonicity holds:

zk00,t ≤ zk00,t+1, ∀k00 = 1, d, t ∈ N.

Following Theorem 21, we employ the simplex method for LPs (30). In order to

guarantee convergence, we should use w̃k0,t−d as the starting point. Instead, we used

w̃k0,t−1, i.e., just the last iterate. This was done because of simplicity: storing basis

information over several iterations caused numerical difficulties because of the expanding

master problem.3

3Note that when the starting point was not used at all, i.e., the LP was always solved completely

from scratch, the results were significantly worse. The reason is that some components of the objective

function h may become 0 (see Section 4.3), which can lead to non-maximal CS. To improve them in

this variant, we found the following modification helpful: for any i = 1, n, if hi = 0, set it to 10−6. This

variant produced results similar to the default and is not reported in the experiment.
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Theorem 20 provides a stalling criterion: if the iterates of one sequence repeat for

one cycle, i.e., if w̃((k0−p−1)mod d)+1,t−p = w̃((k0−p−1) mod d)+1,t−p−d, p = 0, d− 2 holds for

some k0 and t then we have a stationary point. Then it makes sense to restart the

sequence from a different starting point (there is no global convergence in general). We

tested several variants of anti-stalling measures. Numerically best appears the following

simplified variant: if the computed CS w̃k0,t is already known from before, we replace

it by a new CS constructed by DFFs, see below and Step S5. However, this variant

does not guarantee convergence to a stationary point because it can quit the monotone

sequence prematurely.

In the basic version of the heuristic, because of the monotonicity (Lemma 19), the

objective coefficients (hi)
n
i=1 are always not altogether zero. When replacing repeated

CS by new ones obtained from DFFs (Step S5), it can happen that in the next iterations,

the objective coefficients (hk0
i )n

i=1 are altogether zero for some k0 (because for each index

i = 1, n, some of the CS in other dimensions has a zero component). In this case we

perform one additional iteration with DFFs, i.e., all CS (w̃1,t, . . . , w̃d,t) are computed by

DFFs and the iteration counter t is incremented (Step S2). For new starting points we

used the EMDFF fp
FS,1 (15) with parameters p starting with value 1 and increasing by

1 with each usage. This scheme and this function proved by far the best for the SLP

approach.

All conservative scales computed by the heuristic in Steps S2, S3, and S5 of Figure 4

are saved and used to compute alternative volume bounds in Step S6.

5 Results

First, in Section 5.1 we specify the set and parameters of (E)MDFFs. (E)MDFFs were

used both on their own as well as to give start vectors for (E)MCS heuristics (Section 3).

In Section 5.2 we tested our approaches on randomly generated 3D OPP instances.

We show the effects of some parameters and tune the approaches. In particular, we

tested bounds from pure (E)MDFFs, (E)MCS, and SLP (Section 4).

In Section 5.3 we tested (E)MCS, (E)MDFFs, and set-partitioning LP bounds (3)

on 1D BPP instances from [CAV10].
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In Section 5.4 we tested the same approaches on known and new randomly generated

2D OPP instances as well as on some known 2D BPP instances. Here we additionally

took the bilinear programming method from [CM09] for comparison.

As we observed in Section 2.3, the set of DFFs (resp., UCS) is in general a true subset

of DDFFs (resp., CS) for a given instance. This does not hold for instances where each

item size in each dimension occurs frequently enough to cover the full container size,

i.e., where the binary occurrence restriction is not relevant for DFF. For such instances

the effect of CS maximization is investigated at the end of Section 5.4.

The experiments were performed on an Intel Xeon X5670 2.93 GHz processor. The

algorithms were implemented in GNU C++ 4.1.2 as a single-threaded application. We

used IBM ILOG CPLEX 12.3 Academic license [IBM10] as a linear programming li-

brary. To solve binary knapsack problems, including column generation, we used simple

dynamic programming recursion [MT90]. All running times are reported in seconds.

The test instances and results are available on the CaPaD web page http://math.tu-

dresden.de/∼capad. The software can be provided on request and will be published on

the same site after publication of the paper.

5.1 The (extremal) maximal DFFs applied

Table 1 specifies the eight (E)MDFFs reviewed in [CAV10, RAV10], which were used

here on their own (as described in Section 2.4) as well as in Step 1 of the MCS heuristic

and as sorting hints for EMCS, Sections 3.3 and 3.4. From each DFF except the identity,

at most nUCS = 20 UCS vectors were produced by Lemma 3 in the default setting.

5.2 3D orthogonal packing feasibility (3D OPP)

Since we do not know any 3D OPP instances in the literature, we had to generate own

instances. Below we describe the generation procedure in detail and give test results for

various parameter settings.
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Table 1: The (extremal) maximal dual-feasible functions used

Function Parameters∗ References

identity - -

fp
FS,1 p ∈ {1, . . . , nUCS} (15), [FS01, FS04b]

fλ
0 λ ∈ ⋃n

i=1{wi,W − wi} ∩ [0, W
4

] uniformly (14), [FS01, FS04b]

fp
CCM,1 p ∈ [1, W

2
) uniformly (16), [CAV10, RAV10]

fp
V B,2 p ∈ {2, . . . ,W} uniformly cf. [CAV10]

fλ
BJ,1 λ ∈ {2, . . . ,W − 1} unif., W mod λ �= 0 [CAV10]

fp,λ
LL,2 λ as above, p =

⌈
rand(0, 20) + λ

W mod λ
− 1

⌉
[CAV10]

fp,λ
DG,1 λ, p as for fp,λ

LL,2 [CAV10]

∗: rand(a, b) returns a uniformly distributed random number in [a, b)

5.2.1 Generation of instances

To generate test instances, we applied an idea from [BKRS09] which is similar to that

used for the 2D OPP instances from [CJCM08]: given the percentage e of container

volume which should be waste, distribute the remaining volume among the items. While

in [CJCM08] this was done exactly using integer factorization (which has the interesting

effect that the items are more often larger in width than in height), we computed the

sizes as real numbers and always rounded them down. Due to the relatively large

integer container sizes (the containers are cubes with sizes W1 = W2 = W3 = 1000), the

deviation from the nominal waste percentage e was small (below 0.5%). We considered

e ∈ {0%, 2%, . . . , 40%}.
In addition to the nominal waste percentage e, we also parameterized the maximal

item side aspect ratio rmax which means the upper bound on the ratio of some two sides

of an item. Obviously, if rmax = 1, all items are cubes. We considered rmax ∈ {1, 3, 20},
where rmax = 3 can be characterized as moderate and rmax = 20 as pretty bulky.

The exact generation procedure was as follows. For each tuple (n, e, rmax), 100

instances were generated. Every instance was generated in the following way: the

nominal total volume of the items, 109(1 − e), was separated into n intervals by n − 1

uniformly distributed numbers z1, ..., zn−1 in (0, 109(1 − e)). The numbers z1, ..., zn−1

were sorted and item volumes were set as follows: v1 = z1, vn = 109(1 − e) − zn−1,
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and vi = zi − zi−1 for i ∈ {2, ..., n − 1}. If the ratio vi/vj of the volumes of some two

items i, j ∈ I was higher than 8000, the generation procedure restarted. To obtain the

three sides of an item i ∈ I, its volume vi was factorized with the help of three random

numbers ak, k ∈ {1, 2, 3}, whose sum was 3. These numbers were calculated in the same

way as the volumes. The side of item i in dimension k had the length wk
i =

⌊
vi

ak/3
⌋
. If

item i was in one dimension larger than 1000 or rmax times the length of another side,

the volume vi was factorized again. To get cubes, we set ak = 1 for k ∈ {1, 2, 3}.

5.2.2 Tuning algorithm parameters

First, we played with some parameters of the new algorithms, in order to tune them.

Table 2 shows the results for instances of size n = 15. For each value of the maximal item

side aspect ratio rmax ∈ {1, 3, 20}, 2100 randomly generated instances were considered,

namely 100 instances for each nominal waste percentage e ∈ {0%, 2%, . . . , 40%}. The

column groups of Table 2 give the following results: pure (E)MDFFs (Section 5.1), MCS

by Greedy 1 (dynamic), MCS by Greedy 2 (static) (both Section 3.3), EMCS by lifted

covers (Section 3.4), and SLP (Section 4). For each of the (E)MCS heuristics, we show

variants with and without randomization (parameter ν̄). Especially for (E)MDFFs and

Greedy 1 (which works best among (E)MCS) we investigate the effect of the parameter

nUCS (maximal number of UCS produced by each of the (E)MDFFS, Section 5.1, default

value 20). For SLP we show the anti-stalling effect of CS repetition checking (Step S5 of

Figure 4), always setting the iteration limit tmax = 10. The result obtained in the first

SLP iteration in Step S4 (bar relaxation, Section 2.2) is reported in the column LP[0].

For the lines rmax ∈ {1, 3, 20} and the mentioned columns, Table 2 shows the per-

centage of solved (i.e., proved infeasible) instances. Lines tLift, tAll, and nCS give the

following averages: running time to construct (M)CS, overall time, and the number of

different CS obtained in each approach, respectively.

The EMCS heuristic produces very few different CS, still giving good results, which

corresponds to the observations in [CN07]. Moreover, EMCS give these competitive

results in very short time.

For the maximal number of UCS produced by each (E)MDFF from Table 1, the

value nUCS = 20 seems to be the best compromize between time and quality. Probably
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501.152
5.01

(1,
100)

52.534
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335.473
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we could improve the (E)MDFF and (E)MCS results by changing the set of (E)MDFFs

used.

Randomization proved a very effective technique in the (E)MCS heuristics.

For the “bulky” instances (rmax = 20), the LP[0] value mostly dominates the bound

from (E)MDFFs. This dominance noticeably increases in the subsequent iterations of the

SLP heuristic. For cubic and moderately bulky instances, the LP[0] value is very weak

compared to (E)MDFFs, which becomes the converse after a few SLP iterations. The

weakness of LP[0] for cubes can be explained by a greater loss of geometric information.

The stalling prevention feature (Step S5 in Figure 4) proved very effective.

5.2.3 Varying number of items

Table 3 is similar to Table 2 but also considers instances with n = 40 and n = 100.

It reports some more data: the average time for column generation (tColGen) and the

final number of columns (nCols) for SLP and the running time of MCS-1,2 heuristics in

the naive implementation (tnäıve
Lift ). For (E)MCS heuristics we accepted parameter values

ν̄ = 1 and nUCS = 20. We see that with larger n, the advantage of (E)MDFFs and

(E)MCS over SLP on cubic instances grows. The worst-case-optimal implementation of

MCS-1,2 heuristics is much faster than the naive variant.

5.2.4 Some detailed results

Table 4 details the results of Table 2, line rmax = 20, for each nominal waste percentage

e ∈ {0%, 2%, . . . , 40%} and for each SLP iteration. We see that SLP converges rather

quickly.

5.3 1D bin packing

The test bed from [CAV10] includes 9 instance classes. They all have the following

parameters: bin size W = 100 and n items with sizes in the set {wmin, . . . , 100}. Several

values of n (100, 500, 1000) and wmin (1, 20, 35) are used. For each pair (n,wmin) there

are 1000 instances. Our comparison is reported in Table 5.
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We observe that (E)MDFFs produce good results in small time (we do not know the

(E)MDFF parameters and nUCS for the excellent results in [CAV10]). The chosen EMCS

heuristic is very weak on these instances. Note that we set the (E)MCS randomization

parameter ν̄ = 0 here. The time to compute the exact LP bound is rather small. This

can be explained by the small absolute value of bin capacity W = 100: the number of

distinct integer item sizes was below 100 and we could group equal items, modeling each

packing pattern as a feasible point of the bounded knapsack problem [MT90, KPP04].

Without grouping, the LP time was prohibitively large.

5.4 2D packing

For 2D packing we considered published instances of OPP and BPP and new instances

of OPP. Some of the new instances were generated in such a way that the sets of UCS

and CS coincided. The exact bilinear programming method of [CM09] was compared.

5.4.1 2D OPP instances of Clautiaux et al.

At first we considered the 27 infeasible OPP instances from [CJCM08]. (In their pa-

per, only 26 infeasible instances are cited, but the complete set has 15 feasible and 27

infeasible instances). The container size is 20×20 and the number of items n ≤ 23.

The code of [CM09] was kindly provided to us by the authors. It performs a branch-

and-cut algorithm to find a pair of conservative scales maximizing the volume bound

(4). We used the constrained version of this algorithm (2SDP). 2SDP is the version

where only binary knapsack solutions are considered. This corresponds to Definition 1.

The results are given in Table 6. The first column contains instance names; in each

name, the first number is the percentage of waste and the second is the number of items

n. Further columns report the results of various algorithms. At first we report two exact

algorithms for OPP: the schedule-or-postpone exact algorithm for 2D OPP [CJCM08]4

and the graph-theoretical exact algorithm from [FSvdV07] (data taken from [CJCM08]),

executed on a Pentium M 1.8 GHz. For the schedule-or-postpone algorithm, ‘fails’ is

the number of backtracks and ‘chpts’ is the number of choice points (position fixings).

4We report here new values given to us by F. Clautiaux in private correspondence.
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Table 6: The 27 infeasible instances from Clautiaux et al. [CJCM08]

Clautiaux et al. Graphs, FS BiLin EMDFF MCS-1 SLP
inst fails chpts t nodes t vol t solved solved t solved t iter.

00N10 1 0 0 1 0 1.05 0.01 0 1 0.01 1 0.01 0
00N15 33 32 0.03 127 0 1 > 1h 0 0 0.01 0 0.02 > 10
00N23 105 104 0.03 - -∗ 1.002 31.01 0 0 0.01 1 0.02 0
00X23 11904 11903 2.38 - - 1 > 1h 0 0 0.01 0 0.04 > 10
02N20 2 1 0.02 1 0 1.08 0.01 0 0 0.01 1 0.02 2
03N10 2 1 0 1 0 1.13 0.01 0 1 0.01 1 0 0
03N15 70 69 0.03 13 0 1 > 1h 0 0 0.01 0 0.01 > 10
03N16 2706 2705 0.66 9891 2.00 1 > 1h 0 0 0.01 0 0.02 > 10
03N17 3 2 0.02 431 0 1 > 1h 0 0 0.01 0 0.02 > 10
04N15 996 995 0.17 35 0 1.01 0.03 0 0 0.01 1 0.02 0
04N17 17 16 0.03 1 0 1.04 0.02 0 0 0.01 1 0.01 0
04N18 626 625 0.08 24593 10.00 1.01 0.02 0 0 0.01 1 0.02 0
05N15 2558 2557 1.08 1 0 1.07 0.02 0 0 0.01 1 0.01 0
05N17 67 66 0.02 1 0 1 > 1h 0 0 0.01 0 0.02 > 10
05X15 989 988 0.25 18369 2.00 1.02 0.02 0 0 0.01 1 0.01 0
07N10 1 0 0.02 17 0 1 > 1h 0 0 0 0 0.01 > 10
07N15 1 0 0 61 0 1.08 0.01 0 1 0.01 1 0.01 0
07X15 167 166 0.06 1 0 1 > 1h 0 0 0.01 0 0.01 > 10
08N15 1 0 0 1 0 1 > 1h 0 0 0.01 0 0.01 > 10
10N10 1 0 0.03 5 0 1.06 0.01 0 1 0.01 1 0.01 0
10N15 589 588 0.22 7 0 1.03 0.01 0 0 0.02 1 0.01 0
10X15 298 297 0.05 77 0 1 > 1h 0 0 0.01 0 0.02 > 10
13N10 1 0 0 17 0 1 > 1h 0 0 0.01 0 0 > 10
13N15 2 1 0.03 1 0 1 > 1h 0 0 0.02 0 0.01 > 10
13X15 43 42 0.02 1 0 1.17 0.01 0 0 0.01 1 0.01 1
15N10 no data no data 1 > 1h 0 0 0.01 0 0 > 10
15N15 2 1 0.02 1 0 1 > 1h 0 0 0.01 0 0.01 > 10
mean 815 814 0.20 2236 0.58

∑
13

∑
0

∑
4 0.01

∑
13 0.01 0

∗: Instances not solved by the original graphs algorithm, time limit unknown [CJCM08].

Then we report results of 2SDP [CM09] (column BiLin), EMDFF, MCS-1, and SLP. The

results of 2SDP report the proved lower bound on (4), denoted by “vol”. The results of

SLP report the number of iterations; when it is 0, it means that the infeasibility proof

was done by pure bar relaxation (step S4).

(E)MDFFs could not solve any instance, even when setting nUCS = 2000. The 2SDP

code from [CM09] solved 13 instances, 12 of them rather quickly and one more (instance

00N23) after 30 seconds. The same 13 instances were solved by SLP, 11 of them in

iteration 0 (by the bar relaxation).

5.4.2 2D BPP instances from [CM09]

We tested the 83 2D BPP instances considered in [CM09]. Similarly to the results of the

previous subsection, our heuristic in a few iterations obtained exactly the same bounds

as the exact bilinear programming method 2SDP.



G. Belov, V. M. Kartak, H. Rohling, G. Scheithauer. November 25, 2011 37

5.4.3 Random 2D OPP instances

Table 7: Randomly generated instances with n = 20

(E)MDFF MCS-1 MCS-2 EMCS LP[0] (S4) SLP (S6) BiLin
% solved:
rmax = 20 0.5 11.4 7.1 11.0 13.3 14.8 12.4
rmax = 3 0.0 0.0 0.0 0.0 2.4 3.8 2.4
rmax = 1 0.0 1.0 1.0 0.0 0.0 3.8 3.8
Means:

% solved 0.2 4.1 2.7 3.7 5.2 7.5 6.2
tLift 0.000 0.120 0.064 0.078
tAll 0.002 0.122 0.066 0.079 0.035 0.075 1.67∗

nCS 196 211 210 71
∗: For BiLin, only the time for solved instances was considered (time limit 60 seconds).

In the two previous subsections we observed similar behavior of SLP and BiLin. To

compare these methods on a broader basis, we generated random 2D OPP instances in

a similar way to 3D OPP (Section 5.2.1), 10 instances for each maximal item side aspect

ratio rmax ∈ {1, 3, 20} and for each waste percentage e ∈ {0%, 2%, . . . , 40%}, in total

630 instances. The number of items was n = 20. Their results are reported in Table 7.

We observe a slight advantage of SLP both in time and quality. For (E)MCS heuristics,

almost all the running time was spent for CS construction, as opposed to the 3D case,

where the computation of the modified volume bounds takes a long time.

5.4.4 Random instances with UCS ≡ CS

As we observed in Section 2.3, the set of DFFs (resp., UCS) is in general a true subset

of DDFFs (resp., CS) for a given instance. This does not hold for instances where each

item size in each dimension occurs frequently enough to almost cover the full container

size, i.e., where the binary occurrence restriction is not relevant for DFF. For example,

the following instance has this property:

L = H = 100, 4 items 18×31, 3 items 18×41, 2 items 28×31, 2 items 28×41.

We generated several classes of such instances in the following way. Let container

sizes be L = H = 1000. Let cL
min, cL

max, cH
min, cH

max denote the minimum and maximum

item size along the L and H axis, respectively. Let kL and kH denote the number of

distinct item sizes in dimensions L and H, respectively. We generated these sizes in
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each dimension randomly uniformly and combined them to 2D items taking care that

each size occurs frequently enough to (at least almost) cover the container size, i.e.,

∣∣{i : li = li0}
∣∣ ≥ ⌊

L/li0
⌋
, ∀i0 = 1, n

(and similarly for H). Additional items with sizes from this set were added until the total

item area was approximately 106(1 − e), where e ∈ {0%, 2%, . . . , 40%) is the nominal

percentage of waste as in Section 5.2.1. For each value of e, 10 instances were generated.

The generation program can be downloaded with the instances.

Table 8 reports the results for nine test classes whose parameters

(cL
min, c

L
max, k

L, cH
min, c

H
max, k

H) are given in the first column. For eight of the classes, 210

instances were generated per class. The other class, (50,400,3,15,100,6), contains only

160 instances, because starting with waste percentage e = 32%, no instance could be

generated with reasonable effort so that total item area would not exceed 106(1 − e).

The number of instances per class is given in the second column. Further columns

report: the average number of items n in the class and the results of the methods

(E)MDFF, MCS-2, LP[0], SLP, and BiLin. We observe a slight advantage of the

Table 8: Randomly generated instances with CS ≡ UCS

Instance class N inst. mean n (E)MDFF MCS-2 LP[0] (S4) SLP (S6) BiLin

ν̄ = 0 ν̄ = 1

% s t % s tAll % s tAll % s t % s t % s t

50,400,2,50,400,2 210 22.8 20.0 0.00 24.3 0.04 19.5 0.04 19.0 0.02 24.3 0.07 24.3 0.02

50,400,3,50,400,3 210 25.9 4.8 0.00 11.0 0.05 6.2 0.05 9.0 0.04 11.0 0.12 11.0 0.05

50,400,4,50,400,4 210 31.6 1.9 0.00 7.1 0.07 1.4 0.07 6.2 0.07 8.6 0.20 8.6 0.26

50,400,3,50,400,6 210 36.6 1.4 0.00 2.9 0.07 0.5 0.06 2.9 0.09 2.9 0.29 3.3 0.21

50,400,3,15,100,6 160 155.7 1.9 0.00 5.6 0.33 0.0 0.26 5.6 4.07 5.6 20.95 10.0 0.58

50,400,3,20,150,4 210 72.9 3.3 0.00 6.7 0.13 1.4 0.11 6.7 0.58 7.1 2.08 8.1 0.14

50,400,3,20,150,6 210 104.1 1.9 0.00 3.3 0.20 0.0 0.17 3.8 1.38 3.8 5.78 3.8 0.52

15,200,3,15,200,3 210 105.6 0.5 0.00 2.9 0.19 0.0 0.15 2.4 3.82 3.3 58.20 3.8 0.15

25,200,3,20,150,4 210 112.3 1.0 0.00 2.9 0.18 0.0 0.14 3.3 2.56 3.3 9.62 3.3 0.20

Means 72.0 4.1 0.00 7.4 0.13 3.3 0.11 6.6 1.33 7.8 10.54 8.4 0.23

method BiLin. It should be noticed that their program uses additional lower and upper

bounds for (4), which explains the short running times. For MCS-2, we see that only
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the non-randomized version (ν̄ = 0) has advantages over (E)MDFFs. This is in a big

contrast to all previous 2D and 3D test classes and can probably be explained by the

structure of the instances (many equal sizes).

We see that even on such instances, MCS are much stronger than (E)MDFFs and

are comparable with SLP.

6 Conclusions

We reviewed the classical lower-bounding tools for packing problems, (data-dependent)

dual-feasible functions. We proposed to strengthen their values (conservative scales)

by maximization techniques. Furthermore, we proposed an SLP heuristic to construct

extremal maximal conservative scales and investigated its convergence properties. The

SLP heuristic is based on a simplification of the original multilinear optimization prob-

lem to a linear one by fixing the CS in all dimensions but one to constants.

The main theoretical and experimental observations of the paper are the following:

• All known DFFs can have just a single value for one original size, while (U)CS

can have different values for equal original sizes.

• Some DDFFs from the literature can have different values for equal original sizes,

which establishes exact correspondence between DDFFs and CS.

• (Extremal) maximal DFFs do not always produce maximal (U)CS.

• A maximal (U)CS can be characterized as follows: each knapsack variable takes

a positive value in some of the feasible points satisfying the corresponding valid

inequality with equality.

• The optimized implementations of the MCS greedy heuristics are rather fast. Their

running time would further decrease for smaller absolute container sizes.

• Randomization often proved a very effective technique in the (E)MCS heuristics.

• For 1D packing, (E)MDFFs and maximized CS have similar performance, however

weaker than LP.

• For 2D packing, SLP and bilinear programming are comparable. (E)MDFFs and

(E)MCS are often weaker.
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• For 3D packing, (E)MDFFs and (E)MCS proved especially efficient for cubic in-

stances. (E)MCS are competitive with SLP. EMCS by lifted covers are fast; only

very few of them are required.

• The set of UCS (resp., DFFs) is in general a true subset of CS (resp., DDFFs) for

a given instance. Maximization of CS obtained from (E)MDFFs proved efficient

even on instances where the sets of CS and UCS are equivalent (where each item

size in each dimension occurs frequently).

As outlook we can pose the following topics:

• Till now we do not know any ‘closed-form’ maximal DDFF.

• The chosen EMCS heuristic (lifted covers) is very weak for large-scale 1D bin

packing. This result poses the question about the relative efficiency of facet-

defining and other maximal cuts constructed from relaxed polyhedra.
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[RAV11] J. Rietz, C. Alves, and J.M. Valério de Carvalho. Worst-case analysis of maximal

dual feasible functions. Optimization Letters, 2011.

[RD08] J. Rietz and S. Dempe. Large gaps in one-dimensional cutting stock problems. Dis-

crete Applied Mathematics, 156(10):1929 – 1935, 2008.

[RST02] J. Rietz, G. Scheithauer, and J. Terno. Families of non-IRUP instances of the

one-dimensional cutting stock problem. Discrete Applied Mathematics, 121:229–245,

2002.

[SW10] C. Still and T. Westerlund. A linear programming-based optimization algorithm for

solving nonlinear programming problems. European Journal of Operational Research,

200(3):658 – 670, 2010.

[WHS07] G. Wascher, H. Haußner, and H. Schumann. An improved typology of cutting and

packing problems. European Journal of Operational Research, 183(3):1109–1130,



44 Conservative scales in packing problems

2007.

[ZKL85] J. Zhang, N.-H. Kim, and L. Lasdon. An improved successive linear programming

algorithm. Management science, 31(10):1312–1331, 1985.



G. Belov, V. M. Kartak, H. Rohling, G. Scheithauer. November 25, 2011 45

Input: OPP instance (W1, . . . ,Wd, w
1, . . . , wd); iteration limit tmax

Output: status ‘infeasible’ or ‘unknown’

S0. Assume w̃k,t = wk, ∀k = 1, d, ∀t ≤ 0; (initialize CS with the original sizes)

for t = 1, tmax

for k0 = 1, d

S1. Compute the objective function for the k0-th LP:

hk0 =
(
hk0

i

)n

i=1
=

( d−1∏
p=1

w̃
((k0−p−1)mod d)+1,t−p
i

)n

i=1

S2. if hk0 = 0 then

Compute w̃k,t, k = 1, d using (E)MDFFs;

Set t← t + 1 and tmax ← tmax + 1;

end for k0

for k0 = 1, d

S3. Solve w̃k0,t ∈ arg max {hk0
�
w̃ : w̃ is a CS for (Wk0 , w

k0)},
using w̃k0,t−1 as a start point in the simplex algorithm;

S4. if h�w̃k0,t >
∏

k Wk (the LP value exceeds the container volume)

then Stop; (the OPP instance is infeasible)

S5. Anti-stalling feature (simple variant):

if w̃k0,t = w̃k0,p for some p < t

then Replace w̃k0,t using (E)MDFFs;

end for k0

S6. Compute the volume bounds from all known CS:

if max
{∑

i

∏
k w̃k,pk

i : pk ∈ {0, . . . , t}, ∀k; ∃k : pk = t
}

>
∏

k Wk

then Stop; (the OPP instance is infeasible)

end for t

Figure 4: The full version of the SLP heuristic.
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