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Abstract

We present a stochastic version of the single-level, multi-product dynamic lot-
sizing problem subject to a capacity constraint. A production schedule has to be
determined for random demand so that expected costs are minimized and a con-
straint based on a new backlog-oriented δ-service-level measure is met. This leads
to a non-linear model that is approximated by two different linear models. In the
first approximation, a scenario approach based on random samples is used. In the
second approximation model, the expected values of physical inventory and back-
log as functions of the cumulated production are approximated by piecewise linear
functions. Both models can be solved to determine efficient, robust and stable pro-
duction schedules in the presence of uncertain and dynamic demand. They lead
to dynamic safety stocks that are endogenously coordinated with the production
quantities. A numerical analysis based on a set of (artificial) problem instances is
used to evaluate the relative performance of the two different approximation ap-
proaches. We furthermore show under which conditions precise demand forecasts
are particularly useful from a production-scheduling perspective.
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1 Introduction

In make-to-stock production environments, production planners often face an uncertain
dynamic demand when deciding about the timing and sizing of production quantities.
These decisions are often made for a finite planning horizon divided into discrete time
periods, e.g., days or weeks. One principle approach to deal with this demand uncertainty
is to determine and/or adjust planned production quantities whenever demand for the
current period has actually been realized, i.e., the demand is known with certainty. The
drawback of this approach is that it can induce substantial system nervousness and,
in multi-level supply chains, lead to the notorious bullwhip effect. The other principle
approach is to determine dynamic demand forecasts and to establish a production plan
that is fixed or “frozen” for the next periods. This schedule is then executed irrespective
of the demand realizations for those next periods. While the latter approach leads to
more stable planning and production systems, it typically requires safety stocks in order
to meet an uncertain customer demand. If demand is uncertain and dynamic, cost-
minimizing planned safety stocks must be dynamic as well. If multiple different product
types compete for scarce production capacity, their production quantities and safety stocks
need to be coordinated. Furthermore, if setup times and/or setup costs lead to lot sizes
covering the demand for multiple consecutive periods, these production lots substantially
reduce the need to hold specific safety stocks. Both in the academic literature and in
current management practice, these problems are addressed in an often inconsistent and
unsatisfactory manner, see Fleischmann (2003). We hence treat these problems jointly
and consistently in the context of a proposed Stochastic Capacitated Lot-Sizing Problem
(SCLSP), which is a stochastic generalization of the established deterministic Capacitated
Lot-Sizing Problem (CLSP).

In this SCLSP, we assume that unmet demand can be back-ordered and that the man-
agement uses a constraint on the resulting expected backlog, i.e., the cumulated open (or
yet unmet) back-orders, to control the service that is offered to the customers. To this
end, the newly developed δ-service-level measure is introduced and used. As both the
expected physical inventory and the backlog in the SCLSP are non-linear functions of the
production quantities, a non-linear model formulation is developed first. Since we are not
aware of a way to solve this first model directly, we further introduce two approximations
of the SCLSP by numerically tractable mixed-integer linear models. The first approxima-
tion is based on a sample of scenarios, each representing a single realization of the demand
process. The second approximation operates with piecewise linear approximations of the
expected values of physical inventory and backlog for a given cumulated production quan-
tity. Both modeling approaches are solved using a specific Fix-and-Optimize algorithm
as introduced in Helber and Sahling (2010) and Sahling (2010).

The outline of the paper is as follows: In section 2 we present the problem in more de-
tail, analyze service-level measures and discuss the related literature. The model variants
of the SCLSP are developed in sections 3 to 5. The Fix-and-Optimize algorithm used to
solve both approximation models is outlined in section 6. Section 7 presents numerical
results with respect to the accuracy of the approximation models and the relationship be-
tween demand forecasts, lot sizes and dynamic planned safety stocks. Section 8 concludes
and outlines future research topics.
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2 Problem statement, service-level measures and rel-

evant literature

2.1 Capacitated lot sizing subject to dynamic and stochastic
demand

We assume that a single production system or machine is required to produce K different
products. This machine has a (regular) capacity bt in each of the T discrete periods of
the planning horizon. It can be extended by overtime at a cost oc per time unit. We do
not consider the sequence of the products within any period. If a product k is produced
during period t, i.e., with production quantity qkt > 0, a setup time tsk ≥ 0 is required
and a setup cost sck ≥ 0 occurs. The processing time for a unit of product k is tbk. The
cost of holding one unit of physical inventory for one period is denoted as hck.

The demand of product k in period t is modeled as a random variable Dkt with a
given probability distribution, given expected value E[Dkt] and variance VAR[Dkt]. The
demand for the product-period combination (k, t) is assumed to be independent from
those for any other combination (k̂, t̂) with k 6= k̂ and/or t 6= t̂. Estimators of E[Dkt]
and variance VAR[Dkt] are assumed to be provided by a forecasting system. In order
to avoid production schedules that systematically create new backlog at the end of the
planning horizon, we assume that for each product k, the total production

∑T
t=1 qkt over

the entire planning horizon must at least be sufficient to meet the expected total demand∑T
t=1 E[Dkt].
If in any period t the cumulated (random) demand

∑t
τ=1Dkτ of product k exceeds

the cumulated (deterministic) production
∑t

τ=1 qkτ , the unmet demand is back-ordered
and a positive value of the (random) backlog

BLkt = max

(
0,

t∑
τ=1

(Dkτ − qkτ )
)

(1)

occurs. The opposite case results in a positive value of the (random) physical inventory:

Y Pkt = max

(
0,

t∑
τ=1

(qkτ −Dkτ )

)
(2)

Due to the non-linear maximum functions in equations (1) and (2), both the expected
physical inventory E[Y Pkt] and the expected backlog E[BLkt] are non-linear functions of
the cumulated production in periods 1 to t.

Below we develop a new service-level constraint to limit the total expected backlog
relative to the maximum possible total expected backlog. The overall objective is to
minimize the expected costs due to setups, inventory and overtime.

If the demand was deterministic and we did not allow any backorders, this setting
would describe the Capacitated Lot-Sizing problem (CLSP) which has already attracted
a great deal of research, in particular as it is extended to multi-level production systems
with multiple capacity constraints and/or to systems in which the setup state can be
carried over from one period to the next.

In this paper, however, we assume that demand is stochastic. We still aim at a
production plan that is capacity feasible. In addition, this production plan has to be
robust in the sense that it systematically reflects demand uncertainty and leads to an a
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priori given service level. After the formal presentation of the model we will show that it
leads to dynamic safety stocks that are coordinated with the production quantities.

Note that with respect to the lot sizing aspect of the problem, we are working with a so-
called “big-bucket” model as we assume in the (S)CLSP that multiple different products
can be produced during a single period. We do not consider the sequence within those
periods or setup carry-overs at period borders. If one assumes that (relatively stable)
demand forecasts are provided for larger time periods, such as weeks, this appears to be a
natural approach. However, in principle it would also be possible to formulate stochastic
versions of established “small-bucket” models and hence to integrate sequencing decisions.

2.2 Service-level measures

In order to limit the (expected) backlog associated with a production plan subject to
random demand, one can penalize it in the objective function using a backlog cost pa-
rameter. However, as such a parameter reflects essentially opportunity costs and is hence
debatable, it is frequently proposed to limit backorders and/or backlog via a constraint on
a suitably defined service-level measure. The following three different service-level mea-
sures are frequently discussed in the inventory management literature considering random
demand, see Tempelmeier (2006, pp. 26-27):

• The α-service level represents the probability that a stockout occurs during a (pro-
duction or procurement) cycle, or during a period in the rare case of a discrete time
model. While this measure may be mathematically tractable and hence attractive
from the mathematical point of view, it offers no insights as to how severe the stock-
out event is once it occurs. From a managerial perspective, the usefulness of this
service-level measure seems to be limited.

• The β-service level (or “fill rate”) is the fraction of the demand per cycle that is met
immediately, i.e., without backlogging. In a stationary environment these cycles are
stochastically identical, so that their average length and hence the β-service-level
can be computed. However, if production quantities qkt ≥ 0 are determined for each
product-period-combination (k, t), a β-service-level constraint per production cycle
can only be enforced once the setup epochs are known. This makes it difficult to
simultaneously determine production quantities. Furthermore, the β-service-level
does not reflect the waiting time of the customer. Only the size of the backorder
within a cycle is relevant, but not the time required to meet the back-ordered de-
mand.

• Finally, the γ-service level (here for a specific period t) is defined as

γt = 1− expected backlog in period t

expected demand in period t
. (3)

The attractive feature of this measure is that it reflects backlog and hence, to some
extent the waiting time of the customers. It can be defined either (as above) for a
specific period t, or as an average over the entire planning horizon. However, in a
particular period the expected demand may be smaller than the expected backlog
or even be zero. Therefore this measure can be negative or even undefined (if the
expected demand is zero). From a management perspective, the γ-service level
measure does not seem to offer a clear interpretation.
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In the context of dynamic lot sizing, a backlog-oriented measure seems to be desirable
that reflects both the size of the backorders and the waiting time of the customers, but
other than the γ-service-level measure, it should be well-defined and have a clear and
transparent interpretation. For this reason, we now define the new δ-service-level measure
conceptually as follows:

δ = 1− total expected backlog

total maximum expected backlog
. (4)

The maximum expected backlog in a period equals the expected cumulated demand
including that that of the considered period. It occurs if nothing is produced up to that
period. Formally, the δ-service level for product k with random demand Dkt, determin-
istic production quantity qkt, and random backlog BLkt = max(0;

∑t
τ=1(Dkτ − qkτ )) is

computed as

δkt = 1− E[BLkt]∑t
τ=1 E[Dkτ ]

(5)

for a single period t and averaged over T periods as

δk = 1−
∑T

t=1 E[BLkt]∑T
t=1(T − t+ 1)E[Dkt]

. (6)

The average value of the expected backlog of product k is 1
T

∑T
t=1 E[BLkt]. Further-

more, the average throughput is 1
T

∑T
t=1 E[Dkt] if we assume that long-run production

meets long-run demand. By Little’s Law we have for the average expected waiting time
E[Wk] of product k

E[Wk] =
1
T

∑T
t=1 E[BLkt]

1
T

∑T
t=1 E[Dkt]

=

∑T
t=1 E[BLkt]∑T
t=1 E[Dkt]

. (7)

We can use equation (7) to eliminate the expected backlog from (6) to find the equiv-
alent result

δk = 1−
∑T

t=1 E[Dkt]∑T
t=1(T − t+ 1)E[Dkt]

· E[Wk]. (8)

which shows that the δ-service level is a linear function of the average expected waiting
time E[Wk]. Note that this definition of the δ-service level of product k has a clear
interpretation: It represents the expected percentage of the maximum possible demand-
weighted waiting time that the customers of product k are protected against. If no
demand is back-ordered, no backlog occurs and we obtain δk = 1. If nothing is produced
and delivered until period T , all the demand is back-ordered and the maximum possible
backlog occurs. In this situation we get δk = 0. All other cases lie somewhere within the
interval [0; 1]. Based on this δ-service-level measure, we develop our optimization models
in the next sections. Note that it is not possible to transform this δ-service level over the
entire planning horizon into a β-service-level constraint per cycle as used by Tempelmeier
and Herpers (2010) since this requires the additional knowledge of the setup pattern to
compute their service measure.
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2.3 Related work

Numerous publications address dynamic lot-sizing problems under a broad variety of
differing assumptions. However, the overwhelming majority of these works assumes a
deterministic setting as the recent reviews by Karimi et al. (2003), Jans and Degraeve
(2008), Robinson et al. (2009) and Buschkühl et al. (2010) showed.

While the literature on discrete time, dynamic stochastic lot sizing appears to be rel-
atively limited, a broad body of literature deals with inventory policies. These policies
determine on the one hand (often stationary) safety stocks and on the other hand pro-
duction (or order) quantities as demand is realized over time, see, e.g., the textbooks by
Tempelmeier (2006), Zipkin (2000) and the discussion in the older review by Sox et al.
(1999). A more recent survey of the “Stochastic Economic Lot Scheduling Problem” was
given by Winands et al. (2011) who stated that “... the finite production capacity has to
be dynamically distributed among the products in order to be reactive to the stochastic
demands, processing and setup times...” (Winands et al. (2011, p. 1)). These “dynamic”
and “reactive” elements are the defining features of a production policy serving as a gen-
eral rule how to act in a future and yet uncertain situation. A typical assumption is that
demands “... arrive according to stationary and mutually independent stochastic pro-
cesses...” (Winands et al. (2011, p. 3)). Our work, however, aims at a specific schedule
instead of a general policy for the case of both uncertain and non-stationary demand.

Much of the literature on stochastic lot sizing neither considers non-stationary demand
distributions, capacity constraints over multiple products nor the attempt to determine
production quantities in advance of the demand realization. The resulting inventory
policies can easily lead to a nervous planning system and to the notorious bullwhip effect
in multi-level systems. In addition, these approaches also do not reflect the popular
practice to operate with “frozen” schedules (Zhao et al. (2001)) to achieve at least some
degree of planning stability in the presence of dynamic and/or uncertain demand. Their
deficiencies have led to some recent publications. Tunc et al. (2011) addressed the cost
of using stationary safety stocks in the case of non-stationary demand and Kanet et al.
(2010) emphasized the general positive effect of dynamic planned safety stocks. Absi and
Kedad-Sidhoum (2009) presented models to determine production quantities for given
values of maximum lost sales and minimum safety stock levels, but did not endogenously
determine the latter values.

In a seminal paper for the case of dynamic uncertain demand, Bookbinder and Tan
(1988) described three fundamental strategies for probabilistic lot-sizing problems subject
to a service-level constraint. In the “static uncertainty” approach, both the timing and
the size of production quantities (for a single product) are determined in advance of the
demand realizations. The other extreme is the “dynamic uncertainty” approach which
assumes that production decisions for a period are made when precise period demands are
finally known. To strike a compromise between the extremes, Bookbinder and Tan (1988)
proposed the “static-dynamic uncertainty” approach in which the production epochs are
fixed beforehand, thus yielding a stable setup pattern, but production quantities are only
determined once the demand has been realized. Customer service is reflected via the
α-service level which limits the probability of a stock-out or back-order event.

In this paper, we use an adapted version of the “static uncertainty” approach as a
benchmark to evaluate our own schedules. The basic idea of this approach as presented by
Bookbinder and Tan is to transform a single-product dynamic lot-sizing problem subject
to random demand and an period-specific α-service level constraint into a corresponding
deterministic dynamic lot-sizing problem of the Wagner-Whitin type by adjusting the
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demand data. In order to determine the adjusted demand data dt for each period t,
Bookbinder and Tan compute the required cumulated production in periods 1 to t for
each period t that yields a desired α-service level in period t. The adjusted demand
dt for the deterministic dynamic lot-sizing problem of the Wagner-Whitin type is then
simply this required cumulated production until period t minus the required cumulated
production until period t − 1. They furthermore approximate the expected value of the
physical inventory by the expected value of the net inventory position, which can be crude.

Several authors solved stochastic uncapacitated lot sizing problems based on scenario
trees. Guan and Miller (2008) presented a dynamic programming approach which deter-
mines a solution for the stochastic uncapacitated lot sizing problem in polynomial time.
Guan et al. (2006) adapted the well-known valid inequalities proposed by (Pochet and
Wolsey 2006, p. 321) and showed that these are also valid for the case of stochastic
demand. Based on these results, Di Summa and Wolsey (2008) presented simplified valid
inequalities and reformulations. Brandimarte (2006) proposed a model formulation of the
stochastic capacitated lot sizing problem that is also based on a scenario tree. The author
reformulated this lot sizing problem as a simple-plant location problem and proposed a
Fix-and-Relax heuristic.

Tempelmeier and Herpers (2010) have recently argued that it may be desirable to
determine both the timing and the size of production orders based on forecasted demand
and keep both fixed or “frozen” over the complete planning horizon, i.e., to follow the
“static uncertainty approach”. This seems to be particularly important if production
schedules have to be coordinated over multiple products due to multi-level production
processes or capacity restrictions of the production system. Tempelmeier and Herpers
(2010) studied such a stochastic version of the CLSP. They assumed in a specific β-
service-level constraint, that during each production cycle only a maximum fraction of
the demand of this particular cycle may be back-ordered. In their paper, a modified
version of the ABC-heuristic by Maes and van Wassenhove (1986) was used to determine
production quantities. In a subsequent paper, Tempelmeier (2011) presented a different
solution approach based on column generation to solve the same problem. It significantly
outperforms the adapted ABC-heuristic. The research presented in our paper is on the
one hand closely related to those presented in Tempelmeier and Herpers (2010) and Tem-
pelmeier (2011). Instead of limiting back-orders via a β-service-level constraint, we aim at
limiting backlog and hence take the customer waiting time into account using the δ-service
level. Furthermore, we impose a service-level constraint for the entire planning horizon
instead of one for each single production cycle. On the other hand, the most closely
related papers were presented by Martel et al. (1995) and Sox and Muckstadt (1997) who
penalized backlog in the objective function via a penalty cost which did not give them a
direct control on the backlog and motivated us to work with a backlog-oriented service
level measure.

3 The non-linear stochastic capacitated lot-sizing prob-

lem (SCLSP) with a δ-service-level constraint

Based on the assumptions in section 2.1, the δ-service level introduced in section 2.2, and
the notation in Table 1, we now state the SCLSP as follows:
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Table 1: Notation used for the SCLSP model

Indices and index sets:
K set of products (k ∈ {1, . . . ,K})
T set of periods (t ∈ {1, . . . , T})

Deterministic parameters:

bt available capacity in period t
δk minimum δ-service level of product k
hck holding cost of product k per unit and period
M big number
oc overtime cost per unit of overtime
sck setup cost of product k
tbk production time per unit of product k
tsk setup time of product k

Random variables:
BLkt backlog of product k in period t
Dkt demand of product k in period t
Ykt net inventory position of product k at the end of period t
Y Pkt physical inventory of product k at the end of period t

Decision variables:
ot overtime in period t
qkt production quantity (lot size) of product k in period t
xkt binary setup variable of product k in period t

SCLSP Model

min Z =
∑
k∈K

∑
t∈T

hck · E[Y Pkt] +
∑
k∈K

∑
t∈T

sck · xkt +
∑
t∈T

oc · ot (9)

subject to: ∑
k∈K

(tsk · xkt + tbk · qkt) ≤ bt + ot, ∀t (10)

qkt −M · xkt ≤ 0, ∀k, t (11)

Yk,t−1 + qkt − Ykt = Dkt, ∀k, t (12)

Y Pkt = max(0, Ykt), ∀k, t (13)

BLkt = max(0,−Ykt), ∀k, t (14)∑
t∈T

qkt ≥
∑
t∈T

E[Dkt], ∀k (15)∑
t∈T

E[BLkt] ≤ (1− δk)
∑
t∈T

(T − t+ 1)E[Dkt], ∀k (16)

qkt ≥ 0, ∀k, t (17)

ot ≥ 0, ∀t (18)

xkt ∈ {0, 1}, ∀k, t (19)
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The objective (9) is to minimize the total expected costs of physical inventory, set-
ups, and overtime. Constraints (10) guarantee that the capacity needed for setups and
production does not exceed the sum of regular and overtime capacity. Constraints (11)
enforce setups in production periods. The inventory balance equations (12) relate the
(random) end-of-period inventory position Ykt to the random demand, the production
quantity and the inventory position from the previous period. In the following equations,
(13) and (14), the physical inventory as well as the backlog are determined. Constraints
(15) make sure that at least the expected cumulated demand of product k is produced
until the last period T . Furthermore, constraints (16) ensure that the backlog does not
exceed the target δ-service level.

In this context of the SCLSP, we can now formally introduce the concept of a dynamic
safety stock sskt of product k in period t. Though the safety stock is not explicitly modeled
in the SCLSP, it can be derived from its solution. Assume to this end that an arbitrary
solution to the SCLSP is given. This solution does only not specify production quantities
qkt, but also production cycles, each starting with a setup period and ending with the
last period preceding the next setup. We now define the safety stock sskt of product k in
period t as the difference between the cumulated production quantities and the cumulated
expected demand served by the lots up to period t:

sskt =
t∑

τ=1

qkτ −
min(T,min(θ|(θ≥t)∧(xk,θ+1=1)))∑

τ=1

E[Dkτ ] ∀k, t (20)

Note that the safety stock is constant within a production cycle, but can differ from
cycle to cycle. Note furthermore that it can be both positive and negative. In our
numerical analysis in section 7 we will use examples to show the impact of different
problem parameters on these safety stocks.

Unfortunately, we are not aware of a method available to solve the SCLSP in the
non-linear form presented above. For this reason we develop below two different models
to approximate the SCLSP. Both can be solved using standard methods for mixed-integer
programming.

As a benchmark, we compare the solutions of these approximation models in sections 4
and 5 to those obtained by a modified “static uncertainty approach” as proposed by Book-
binder and Tan (1988), see section 2. Following Bookbinder and Tan (BT), we have to
transform the SCLSP into an corresponding deterministic model with specific determin-
istic demand. To this end, we determine for each product k and period t the necessary
cumulated production of product k over periods 1 to t such that a given period-specific
δ-service level (5) is met in period t. The deterministic demand in the corresponding BT
model for a product in period t is then simply this required cumulated production over
periods 1 to t minus the required cumulated production over periods 1 to t− 1 leading to
the desired δ-service level in the respective periods. This demand data is then used in a
deterministic CLSP. As a benchmark, we hence extend the approach by Bookbinder and
Tan by

• replacing the period-specific α-service level constraint by a period-specific δ-service
level constraint,

• considering a constrained resource and overtime as in constraints (10), and

• adding a constraint (15) on the total production.
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For the resulting schedules we then determine the expected value of the backlog and the
physical inventory under uncertain demand and finally the costs. As these schedules meet
the required δ-service level for each single period, they also always meet the aggregate
service level constraint (16). As a matter of fact, they tend to exceed the aggregate
constraint which leads to schedules that are more costly than those that match but do not
exceed the aggregate service level constraint. As this benchmark approach was inspired
by Bookbinder and Tan, we call it CLSP-BT.

4 Linear approximation of the SCLSP via a scenario

approach

4.1 Approximating expected values by sample averages using
scenarios

The basic idea of the first approximation model is to consider a set of demand scenarios
s ∈ S. Each such scenario s is a random trajectory that represents one of several equally
likely paths of realizations of the random demand variables Dkt for all k and t. In order to
achieve a robust production plan that meets the required δ-service level, we optimize the
production quantities over the entire set of scenarios s ∈ S. Random variables Dkt, Ykt,
Y Pkt, and BLkt are therefore replaced by their respective scenario-specific realizations
dskt, y

s
kt, yp

s
kt, and blskt for s ∈ S. Furthermore, expected values of these random variables

in the SCLSP are approximated by sample averages as follows:

E[Dkt] ≈
∑

s∈S d
s
kt

|S| , ∀k, t (21)

E[Y Pkt] ≈
∑

s∈S yp
s
kt

|S| , ∀k, t (22)

E[BLkt] ≈
∑

s∈S bl
s
kt

|S| , ∀k, t (23)

Other applications of this sample average approximations can be found, e.g., in Bihlmaier
et al. (2009), Helber and Henken (2010). A general overview of scenario analysis methods
is presented, e.g., in Mißler-Behr (1993), while Freimer et al. (2010) discuss the impact of
different sampling methods in linear models using sample average approximations.

4.2 Formulation of the SCLSP-SCN

The modified or additional notation of this second model is shown in Table 2. With this
notation, the scenario approximation model SCLSP-SCN can be formulated as follows:

SCLSP-SCN Model

min Z =
∑
k∈K

∑
t∈T

hck ·
(∑

s∈S yp
s
kt

|S|

)
+
∑
k∈K

∑
t∈T

sck · xkt +
∑
t∈T

oc · ot (24)

subject to constraints (10), (11), (15), (17), (18), (19) and:
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Table 2: Additional or modified notation used for the SCLSP-SCN model

Indices and index sets:
S set of scenarios (s ∈ {1, . . . , S})

Scenario-specific parameters:

dskt demand of product k in period t and in scenario s

Scenario-specific decision variables:

blskt backlog of product k in period t and in scenario s
yskt net inventory of product k at the end of period t and in scenario s
ypskt physical inventory of product k at the end of period t and in scenario s

ysk,t−1 + qkt − yskt = dskt, ∀k, t, s (25)

ypsk,t ≥ ysk,t, ∀k, t, s (26)

blsk,t ≥ −ysk,t, ∀k, t, s (27)∑
t∈T

∑
s∈S bl

s
kt

|S| ≤ (1− δk)
∑
t∈T

(T − t+ 1)E[Dkt], ∀k (28)

ypskt, bl
s
kt ≥ 0, ∀k, t, s (29)

All the constraints of the SCLSP in section 3 that contain random variables (12,
13, and 14) are replaced by |S| systems of constraints (25)-(27) reflecting independent
scenario-specific realizations of the random variables. Instead of the expected value of
the physical inventory in the objective function (9) and the expected value of backlog in
the δ-service-level restriction (16), we now use sample averages in the objective function
(24) and the service-level constraint (28) as explained in section 4.1. Note that in order
to minimize costs, both backlog and physical inventory will tend to be minimized. For
this reason, it is possible to replace the non-linear maximum function in Equations (13)
and (14) by the new constraints (26) and (27).

If the standard deviation of the demand Dkt equals 0 for all k and t, a single scenario
represents the entire knowledge about the demand. As a result we obtain a version of the
deterministic CLSP in which backlogs are allowed. These backlogs are restricted using
the δ-service-level constraint. If we additionally assume the case of a desired δ-service
level of 100%, the SCLSP-SCN reduces to be the well-known CLSP.

Note that this scenario approach offers a substantial degree of flexibility. In particular,
it is possible to construct scenarios that consistently model probabilistic dependencies of
the demands for different products or periods. This is a potentially very useful feature of
this approximation model.

The realizations of the demand data dskt for product k in period t can be determined
independently for each single scenario s based on the distribution of the random variable
Dkt. However, this so-called Simple Random Sampling (SRS) tends to lead to a substantial
variance of any function computed based on such a sample. As a variance-reducing tech-
nique, Saliby (1990) proposed the so-called Descriptive Sampling (DS) which he showed
to work extremely well for the Newsboy problem, a problem related to the SCLSP. De-
scriptive Sampling requires the ex-ante knowledge of the sample size |S|, which is always
exactly known in our context. The basic idea is to deterministically construct a set of
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Figure 1: Linearized expected backlog and physical inventory over production

|S| values dskt such that their “empirical distribution” follows the underlying theoretical
distribution of the random variable Dkt as close as possible. Assume, e.g., that for a ran-
dom variable Z with probability function FZ(z) a set of size 10 is required. Then the set
elements are determined by inverting the probability function as zi = F−1Z ((i − 0.5)/10)
for i = 1, ..., 10 and finally randomly “shuffled” to induce a random sequence. We imple-
mented the SCLSP-SCN with both Simple Random Sampling and Descriptive Sampling
to analyze the impact of the different sampling methods.

5 Piecewise Linear Approximation of the SCLSP

5.1 Approximating expected values via piecewise linear func-
tions

It is possible to replace the non-linear functions of expected backlog and physical inventory
in the SCLSP by piecewise linear functions. Such a piecewise linearization is shown in
Figure 1 for the case of a single period with normally distributed demand, expected
demand of 100 and variance of 900. (In the single-period case, the period production
equals the cumulated production.) The graph shows that in order to linearize these
functions, a point for the minimal (zero) production is required (q = 0) and one for
the realistic maximum possible production (e.g., q = 200). As we do not have any
a priori knowledge about the optimal cumulated production for any given period, the
other supporting points of the linearization are concentrated as shown in Figure 1 in the
area where the non-linearity of the expected backlog and physical inventory (over the
production quantity) is strongest, i.e., around the expected demand, so that the overall
deviation from the original non-linear functions is small.

Such a linearization is required for each combination of product k and period t for both
the expected physical inventory and the expected backlog as functions of the cumulated
production up to period t. Let L denote the number of segments of the continuous and
piecewise linear functions approximating the non-linear functions of expected inventory or
backlog. In the example in Figure 2, the expected inventory is approximated by a piecewise
linear function with four segments, i.e., L = 4. Each such segment l is characterized by
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Figure 2: Linearization of the expected physical inventory function

an upper limit on the cumulated production cpktl as shown in Figure 2. Assume that l∗

is the index of the segment that corresponds to the cumulated production of product k
in period t, i.e.,

cpkt,l∗−1 ≤
t∑

τ=1

qkτ ≤ cpkt,l∗ . (30)

In the example in Figure 2, we find l∗ = 3 and cpkt,l∗−1 = 80 ≤ ∑t
τ=1 qkτ = 100 ≤

cpkt,l∗ = 110. Now we define wktl as the part of the cumulated production quantity related
to segment l = 1, ..., L of the linearization. Then the following two equations must hold:

t∑
τ=1

qkτ =
l∗∑
l=1

wktl (31)

L∑
l=l∗+1

wktl = 0 (32)

The segments 1 to l∗−1 are filled to their (maximum) “capacity” wktl and pieces l∗+1
to L must be zero:

wktl = cpktl − cpkt,l−1, l = 1, ..., l∗ − 1 (33)

wktl =
t∑

τ=1

qkτ − cpkt,l−1, l = l∗ (34)

wktl = 0, l = l∗ + 1, ..., L (35)

In the example in Figure 2, we hence have wkt1 = 50, wkt2 = 30, wkt3 = 20, and
wkt4 = 0.

Note that the part of the cumulated production quantity wktl that is assigned to seg-
ment l of the linearization must not exceed the difference between the limits of cumulated
production related to segment l, i.e.,

wktl ≤ cpktl − cpkt,l−1, ∀k, t, l (36)

13



In order to determine the supporting points for the approximation of E[BLkt] and
E[Y Pkt], it is necessary to determine for each value of cumulated production cpktl the
corresponding value of the expected backlog

eblktl = E

[
max

(
0;

t∑
τ=1

Dkτ − cpktl
)]

(37)

and the corresponding physical inventory:

eypktl = E

[
max

(
0; cpktl −

t∑
τ=1

Dkτ

)]
(38)

We now consider the special case that the period demand Dkt is normally distributed
with mean E[Dkt] and variance VAR[Dkt] estimated by a forecasting system. We fur-
thermore assume that all demands are mutually independent, such that there is nei-
ther cross- nor autocorrelation. The cumulated demand Zkt =

∑t
τ=1Dkτ has the mean

µZkt =
∑t

τ=1 E[Dkτ ]. As the demand is period-wise independent, we furthermore deter-

mine the standard deviation σZkt =
√∑t

τ=1 VAR[Dkτ ]. Let φ(x) and Φ(x) denote the

density function and the probability function of a random variable X following a standard
normal distribution. Then the expected backlog and also the physical inventory corre-
sponding to a specific (cumulated) production cpktl can be computed via the “first-order
loss function”, see Tempelmeier (2006, p. 292).

eblktl = E[BLktl] = σZkt ·
(
φ

(
cpktl − µZkt

σZkt

)
− cpktl − µZkt

σZkt

[
1− Φ(

cpktl − µZkt
σZkt

)

])
(39)

eypktl = E[Y Pktl] = σZkt ·
(
φ

(
cpktl − µZkt

σZkt

)
+
cpktl − µZkt

σZkt

[
1− Φ(−cpktl − µZkt

σZkt
)

])
(40)

Let eblkt0 and eypkt0 denote the respective values corresponding to zero production.
Hence L + 1 different pairs (cpktl, eblktl) and (cpktl, eypktl) define the supporting points
used to approximate the non-linear functions of expected backlog and inventory over
(cumulated) production. Then the non-linear functions can be approximated as follows:

E[BLkt] ≈ eblkt0 +
L∑
l=1

eblktl − eblkt,l−1
cpktl − cpkt,l−1

· wktl (41)

E[Y Pkt] ≈ eypkt0 +
L∑
l=1

eypktl − eypkt,l−1
cpktl − cpkt,l−1

· wktl (42)

However, we have to ensure that the cumulated production in periods 1 to t is assigned
to the correct pieces of the linearization as required in Equations (33) to (35) and shown
in the example in Figure 2.

If the period demand Dkt follows a distribution type other than the normal distribu-
tion, the values of eblktl and eypktl in Equations (37) and (38) have to be determined based
on the specific features of the respective demand distribution. The general principle of
the piecewise linearization, however, still applies.
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Table 3: Additional notation for SCLSP-PLA model

Indices and index sets:
L set of linearization segments (l ∈ {1, . . . , L})

Deterministic parameters:

eblktl expected backlog of product k in period t for segment l
eblkt0 expected backlog of product k in period t for zero cumulated production
cpktl cumulated production of product k in period t for segment l
eypktl expected physical inventory of product k in period t for segment l
eypkt0 expected physical inventory of product k in period t for zero cumulated pro-

duction

Decision variables:
wktl cumulated production quantity of product k in periods 1 to t assigned to stage

l of the linearization

5.2 Formulation of the SCLSP-PLA

With the additional notation in Table 3, the piecewise linear approximation SCLSP-PLA
of the SCLSP can be defined as follows:

SCLSP-PLA Model

min Z =
∑
k∈K

∑
t∈T

hck ·
(
eypkt0 +

L∑
l=1

eypktl − eypkt,l−1
cpktl − cpkt,l−1

· wktl
)

+
∑
k∈K

∑
t∈T

sck · xkt +
∑
t∈T

oc · ot (43)

subject to constraints (10), (11), (15), (17), (18), (19) and:

qkt =
L∑
l=1

wktl −
L∑
l=1

wk,t−1,l, ∀k, t (44)

wktl ≤ cpktl − cpkt,l−1, ∀k, t, l (45)∑
t∈T

(
eblkt0 +

L∑
l=1

eblktl − eblkt,l−1
cpktl − cpkt,l−1

· wktl
)
≤

(1− δk)
∑
t∈T

(T − t+ 1)E[Dkt], ∀k (46)

wktl ≥ 0, ∀k, t, l (47)

In the objective function (43) and the δ-service-level constraint (46) the linearized
versions of the expected values of physical inventory and backlog are used. The production
quantity per period equals the difference of cumulated production of subsequent periods,
see (44). Constraint (45) was already introduced as (36). Finally, the production quantity
assigned to segment l of the linearization must be non-negative, see (47).
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It should be noted that due to the direction of optimization and the structure of the
service-level constraint, the conditions in Equations (33) to (35) are always met! I.e., it is
not necessary to define additional binary variables to ensure that cumulated production
quantities wktl are properly determined.

6 A Fix-and-Optimize algorithm to solve the two ap-

proximation models

As the deterministic CLSP is already NP-hard (see Florian et al. (1980)), it tends to be
difficult to solve the proposed approximations of the SCLSP to optimality in reasonable
time. Therefore, we use an adapted version of the flexible Fix-and-Optimize heuristic
proposed by Helber and Sahling (2010) as it leads to high-quality solutions for the multi-
level version of the deterministic CLSP, see also Sahling et al. (2009) and Sahling (2010).

In the Fix-and-Optimize heuristic, a sequence of subproblems is solved to (sub-)opti-
mality in an iterative fashion. In such a subproblem, the optimal values for a small number
of binary setup variables are determined while the remaining binary setup variables are
fixed to a given setup pattern from the solution of a previously solved subproblem. Fur-
thermore, all real-valued decision variables are optimized in each subproblem as well. Due
to the reduced number of binary setup variables, the time effort to solve the subproblem
is moderate.

To apply the Fix-and-Optimize heuristic on the proposed approximations, we initially
define the set KT = {1, . . . , K} × {1, . . . , T} of all product-period combinations (k, t).
Subsequently, the subset KT fix ⊆ KT can be defined. This subset KT fix contains those
product-period combinations whose respective binary setup variables are fixed to a given
setup pattern xkt from the solution of a previous subproblem. Given the subset KT fix,
a subproblem can be defined by adding the following constraints to the SCLSP-SCN and
the SCLSP-PLA as well as the benchmark CLSP-BT

xkt = xkt, ∀(k, t) ∈ KT fix. (48)

These additional constraints (48) assign a fixed setup pattern xkt to those binary setup
variables whose product-period combination (k, t) belongs to the set KT fix. Hence, the
optimization of the binary setup variables is limited to those product-period combinations
in the set KT opt = KT \ KT fix. We typically have |KT opt| << |KT fix|. As an initial
solution, we start similarly to Helber and Sahling (2010) with a lot-for-lot setup pattern,
i. e. all binary setup variables xkt are fixed to 1.

We use a product-oriented decomposition so that each subproblem corresponds to a
single product. All binary setup variables of the respective product are optimized within
the subproblem, while the others are fixed. Starting with the first product all products
are considered once per iteration in the increasing sequence of the product index. The
Fix-and-Optimize heuristic stops when a local optimum is reached, i.e., the last iteration
yields no further improvement.
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7 Numerical results

7.1 Accuracy of the different approximations

7.1.1 Description of the test instances

For our numerical investigation, we defined 1,296 (artificial) test instances by systemati-
cally varying different parameters, e.g., the number of products and the number of periods.
Table 4 gives an overview of the parameter values; details are presented in Appendix A.

Table 4: Parameters of the test instances

Number of products K = {5, 10, 20}
Number of periods T = {5, 10, 20}
Inter-period coefficient of variation of expected demand V Cip = {0.2, 0.3}
Demand coefficient of variation V Cd = {0.1, 0.3}
Time between orders TBO = {1, 2, 4}
Utilization of resource due to processing Util = {0.6, 0.75}
Setup time as fraction of period processing time tsrel = {0.0, 0.25}
Service-level goal δ = {0.8, 0.9, 0.95}
Number of scenarios (SCLSP-SCN only) S = {10, 30, 50}

In order to create demand data that is both dynamic and stochastic, we first specified
average demands E[Dk] for 20 different products k as reported in Table 11 of the Appendix.
To create dynamic time series of expected demand E[Dkt] per period t around the mean
E[Dk], we then drew (pseudo) random numbers from normal distributions with mean
E[Dk] and standard deviation V Cip · E[Dk]. In the case of the inter-period coefficient of
demand V Cip = 0.2 this led to the dynamic time series with moderate time variability
reported in Table 12. The more volatile time series for V Cip = 0.3 is given in Table 13.

It is important to distinguish this inter-period variability of the expected demand
E[Dkt] over the different periods t = 1, ..., T from the randomness of the demand Dkt for a
given (k, t) combination. In our models in sections 3 to 5.2, we require that the probability
distribution of Dkt is given for each (k, t) combination. For our numerical study, we now
assume that all random demands Dkt follow a normal distribution with mean E[Dkt]. We
furthermore assume that the standard deviation of demand is time-invariant, proportional
to the average expected demand

E[Dk] =

∑T
t=1 E[Dkt]

T
(49)

and proportional to the demand coefficient of variation V Cd, i.e.,

σkt = σk = E[Dk] · V Cd. (50)

We used this approach to model the usage of a properly designed demand forecasting
system yielding point forecasts of the expected demand E[Dkt] and (as the most simple
case) normally distributed forecasting errors with zero mean and time-invariant standard
deviation, i.e., homoscedasticity of the forecasting residuals. Figure 3 shows examples
of dynamic stochastic demand time series with time-invariant variance. The case with
V Cd = 0.1 (V Cd = 0.3 ) models the use of a more (less) precise forecasting system,
respectively.
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Figure 1: Demand of Product 4 with a 95 % confidential interval

T = 5 T = 10 T = 20
K = 5 |S| = 10 SCN 1,08 4,32 19,83

|S| = 30 SCN 3,64 21,00 105,66
|S| = 50 SCN 7,58 46,00 262,73
|S| = 10 DSCN 1,07 4,47 19,41
|S| = 30 DSCN 3,64 20,00 103,44
|S| = 50 DSCN 7,34 44,01 246,88
SCLSP-PLA 0,51 1,90 16,05
CLSP-BT 0,20 0,34 0,61

K = 10 |S| = 10 SCN 13,82 81,18 575,25
|S| = 30 SCN 3,77 17,71 112,13
|S| = 50 SCN 30,10 186,80 1381,87
|S| = 10 DSCN 3,74 18,17 102,06
|S| = 30 DSCN 14,70 83,80 577,03
|S| = 50 DSCN 30,92 190,51 1401,26
SCLSP-PLA 1,64 6,61 85,95
CLSP-BT 0,57 0,87 2,41

K = 20 |S| = 10 SCN 15,67 70,80 390,30
|S| = 30 SCN 71,93 367,86 2156,08
|S| = 50 SCN 174,84 859,91 5338,12
|S| = 10 DSCN 16,72 69,55 372,68
|S| = 30 DSCN 76,07 388,38 2265,90
|S| = 50 DSCN 185,06 850,47 4910,22
SCLSP-PLA 5,04 24,60 310,96
CLSP-BT 1,20 3,29 5,90

Table 1: Total cost of test instances (δ = 0.95)
V Cf = 0.1 V Cf = 0.2 DevV CF

TBO = 1 1806.47 2969.09 64.36 %
TBO = 2 5066.85 6007.12 18.56 %
TBO = 4 13008.63 14265.49 9.66 %

1

Figure 3: Demand of a product with lower and upper 95% intervals for smaller (V Cd =
0.1) and higher (V Cd = 0.3) demand variability

To determine the scenario-specific demand dskt of product k in period t and scenario
s in the SCLSP-SCN in section 4, realizations were drawn from a normal distribution
with expected value E[Dkt] and standard deviation σk as specified in Equation (50) using
either SRS or DS, see section 4.

7.1.2 Analysis of the numerical results

In our numerical experiments, we used an Intel Xeon CPU with 2.93 GHz and 8 GB of
RAM. The Fix-and-Optimize heuristic was implemented in the 64-bit version of GAMS 23.6.
Each subproblem was solved by CPLEX 12.2 using two parallel threads. Because of the
potentially large number of real-valued decision variables in both approximation models
(number of scenarios in the SCLSP-SCN and linearization segments in the SCLSP-PLA),
each subproblem optimization was aborted as soon as an integrality gap of 0.5% of the
solution was reached or a time limit of 30 seconds was exceeded. If CPLEX did not find
a mathematically feasible solution to the subproblem within this time limit, the time
limit was extended to 300 seconds to find a solution. In the case of the SCLSP-PLA, we
operated with 10 linearization segments which are specific for each product-period com-
bination (k, t) and distributed as shown in Figure 1 to relate expected physical inventory
and backlog to cumulated production.

In Table 5, we illustrate the average results over all 1,296 test instances for the sce-
nario approach SCLSP-SCN based on Simple Random Sampling (SRS) and Descriptive
Sampling (DS), the piecewise linear approximation model SCLSP-PLA and, as a bench-
mark, the modified Bookbinder and Tan approach CLSP-BT as described at the end
of section 3. In the first row we address the service level (SL) and report the percent-
age of problem instances for which the required δ-service level is met for all products in
this instance. Remember that for given production quantities, the expected backlog and
hence also the δ-service level can easily be determined, either exactly (e.g., in our case for
normally distributed demand) or by approximating any theoretical demand distribution
by an empirical distribution. In the next two rows, we report the fraction of problem
instances for which all products in this instance missed the required service level by at
most 1 or 2 percentage points, respectively. E.g., if the SCLSP-SCN based on Simple
Random Sampling (SRS) was solved using 10 scenarios, 61.5% of the problem instances
had solutions which missed the required δ-service level for all products by at most 2 per-
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centage points, whereas this holds true for 100 % of the problem instances if Descriptive
Sampling is used. The results indicate that DS leads to a substantial variance reduction,
here with respect to the aggregate service level.

Note that the SCLSP-PLA as well as the CLSP-BT always met the service-level target
for all products, while the SCLSP-SCN almost always failed to meet the target exactly
due to the variance of the estimated δ-service level. In the next two rows we compare only
those solutions to test instances for which all products met the required δ-service-level
target and first report the percentage of best solutions “BSol” determined by the respective
model. The percentage of best solutions found by the SCLSP-PLA is exorbitantly high
with 90.43% compared to values between 0.08% and 2.78% for the SCLSP-SCN and 4.86
% for the CLSP-BT. This is due to the fact that we only consider those solutions which
meet the required δ-service level for all products in the instance.

The average deviation “DevBSol” from the best known solution is almost always very
small, except for the benchmark CLSP-BT which delivers a very high deviation. The
reason for this very high deviation is that a constraint on the δ-service level for each
period is imposed in the CLSP-BT, see equation (5). The SCLSP, however, operates with
an aggregate service level constraint only. The period-specific constraint can lead to a
substantial increase of the number of setups and hence the setup costs. The final three
rows “SLP” to “SLP-2%” report over all instances the average of the percentage of the
number of products for which the δ-service level was met or missed by at most 1% or 2%,
respectively. On average, 80.44% of the products in the solutions of the SCLSP-SCN: SRS
for 10 scenarios either met the required δ-service level or missed it by at most 1 percentage
point. The comparison of between SRS and DS shows again the strong variance reduction
due to DS. With respect to the fraction of products that missed the target service level
by at most 1 percentage point, DS with only 10 scenarios led to a fraction of 98.46% and
hence even outperformed SRS with 50 scenarios and a fraction of only 95.07%. The overall
numerical results indicate that the SCLSP-PLA is clearly superior to the SCLSP-SCN,
but the latter still delivers solutions that can be considered to be robust from a practical
point of view.

Table 5: Overall numerical results for all test instances

SCLSP-SCN: SRS SCLSP-SCN: DS SCLSP- CLSP-
|S| = 10 |S| = 30 |S| = 50 |S| = 10 |S| = 30 |S| = 50 PLA BT

SL [%] 0.77 4.71 1.08 1.77 1.47 0.77 100.00 100.00
SL-1% [%] 35.26 64.74 72.53 87.65 100.00 99.85 100.00 100.00
SL-2% [%] 61.50 88.12 98.15 100.00 100.00 100.00 100.00 100.00
BSol [%] 0.08 2.78 0.46 0.85 0.39 0.15 90.43 4.86
DevBSol [%] 2.51 0.58 1.78 1.23 1.09 0.76 1.24 105.72
SLP [%] 49.24 60.10 48.56 47.31 48.86 42.92 100.00 100.00
SLP-1% [%] 80.44 93.28 95.07 98.46 100.00 99.99 100.00 100.00
SLP-2% [%] 92.92 98.46 99.88 100.00 100.00 100.00 100.00 100.00

As the DS generates much better results than the SRS, we only report further results
for DS which explains why percentages in the following tables do not necessarily add up
to 100%. In Table 6, a detailed analysis with respect to the number of products and
periods is given. An entry “***” indicates that a quantity could not be computed as
not a single instance met the service level constraint for all products. For the SCLSP-
SCN, the solution quality tends to be higher for smaller test instances. In the case of
the SCLSP-SCN, the fraction of solutions which met the required δ-service level for all
products decreases with the number of products and periods. Only for at most 3.7% of
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Table 6: Numerical results for all test instances based on the number of products and
periods

K = 5 K = 10 K = 20 T = 5 T = 10 T = 20
SL [%] DS, |S| = 10 3.70 1.39 0.23 2.55 1.16 1.62

DS, |S| = 30 2.55 1.62 0.23 2.55 0.69 1.16
DS, |S| = 50 2.08 0.23 0.00 1.39 0.00 0.93
SCLSP-PLA 100.00 100.00 100.00 100.00 100.00 100.00
CLSP-BT 100.00 100.00 100.00 100.00 100.00 100.00

SL-1% [%] DS, |S| = 10 92.82 92.59 77.55 74.54 90.74 97.69
DS, |S| = 30 100.00 100.00 100.00 100.00 100.00 100.00
DS, |S| = 50 100.00 100.00 99.54 99.54 100.00 100.00
SCLSP-PLA 100.00 100.00 100.00 100.00 100.00 100.00
CLSP-BT 100.00 100.00 100.00 100.00 100.00 100.00

BSol [%] DS, |S| = 10 1.62 0.69 0.23 1.62 0.69 0.23
DS, |S| = 30 0.69 0.23 0.23 0.93 0.23 0.00
DS, |S| = 50 0.46 0.00 *** 0.00 *** 0.46
SCLSP-PLA 85.19 91.44 94.68 83.80 94.44 93.06
CLSP-BT 4.86 5.09 4.63 6.25 4.17 4.17

DevBSol [%] DS, |S| = 10 1.32 1.18 0.00 0.50 1.21 2.38
DS, |S| = 30 1.13 1.18 0.00 1.03 0.58 1.55
DS, |S| = 50 0.70 1.25 *** 0.66 *** 0.90
SCLSP-PLA 1.30 1.21 1.20 1.95 1.28 0.47
CLSP-BT 103.20 104.73 109.23 52.75 92.56 171.86

SLP [%] DS, |S| = 10 53.80 46.99 41.13 48.45 47.27 46.20
DS, |S| = 30 45.32 56.69 44.57 54.02 47.40 45.17
DS, |S| = 50 43.15 43.63 41.99 47.07 38.37 43.33
SCLSP-PLA 100.00 100.00 100.00 100.00 100.00 100.00
CLSP-BT 100.00 100.00 100.00 100.00 100.00 100.00

SLP-1% [%] DS, |S| = 10 98.56 98.84 97.97 96.23 99.27 99.88
DS, |S| = 30 100.00 100.00 100.00 100.00 100.00 100.00
DS, |S| = 50 100.00 100.00 99.98 99.98 100.00 100.00
SCLSP-PLA 100.00 100.00 100.00 100.00 100.00 100.00
CLSP-BT 100.00 100.00 100.00 100.00 100.00 100.00
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the test instances with K = 5, a solution that is feasible for all products has been found.
This portion decreases to 0.23% for test instances with 20 products. The influence of
the number of periods is less distinct. From the perspective of individual products, it
is interesting that for at least 40% of the products the required service-level has been
reached. If it has not been reached, it has usually been missed by at most one percentage
point. Again the huge average deviation “DevBSol” of the CLSP-BT is eye-catching, in
particular for larger number of periods.

In Table 7, numerical results are presented with respect to the variability of demand
(reflecting the forecast error) and the target δ-service level. While the SCLSP-PLA again
performs extremely well under any conditions, the solution quality of the SCLSP-SCN
seems to deteriorate as the demand variability or the target service-level increase. During
our numerical investigation, we realized that the influence of the remaining parameters
on the quality of the solutions is limited.

Table 8 reports the average run time of the Fix-and-Optimize algorithm for the dif-
ferent model variants. The solution times tend to increase with the number of products,
periods, and–in case of the SCLSP-SCN–with the number of scenarios. Furthermore, the
piecewise linear approximation model SCLSP-PLA appears to outperform the SCLSP-
SCN from the computational perspective as well. For example, a test instance with 5
products and 20 periods can be solved using the SCLSP-PLA in 16 seconds on average.
By contrast, the solution of the SCLSP-SCN with 50 scenarios and DS requires on average
185 seconds. The very fast solutions times of the CLSP-BT are attended by the costly
results discussed earlier.

Based on this analysis, the reader might be tempted to conclude that the SCLSP-SCN
is essentially useless. However, it should be noted that the scenario approach offers some
kind of flexibility that does not exist in the other approximation model SCLSP-PLA: It
is possible to model within a scenario s of the SCLSP-SCN a probabilistic dependency of
the demand for two different product-period combinations (k, t) and (k̂, t̂), respectively.
In our problem specification in section 2.1, we explicitly ruled this possibility out, but it
might be relevant in a practical setting and we do not see a way to incorporate it in the
SCLSP-PLA.

7.2 Impact of forecast (in-)accuracy on costs and planned dy-
namic safety stocks

From the planner’s perspective, the randomness of demand is reflected in the errors of
the forecasts from the forecasting system. A large standard deviation σk of the demand
of product k leads to a large standard error of the demand forecast. For this reason, we
now study the impact of demand variability (as the source of forecasting inaccuracy) on
costs and safety stocks.

To this end, we consider from Table 4 the six cases with K = 5, T = 10, V Cip = 0.3,
Util = 0.75, tsrel = 0.25, and now a target δ-service level of either 95% or 99%. Each test
instance was solved to optimality using the SCLSP-PLA. The total costs of each solution
are given for each combination of TBO and V Cd in Tables 9 and 10. In both tables,
we report the relative cost increase due to the increased demand variability (or forecast
inaccuracy).

As the setup costs (and hence the TBO) increase, the total costs also increase. They
furthermore rise with the target δ-service level or the demand variability. The relative
growth of the costs due to a higher demand variability is much stronger for low setup
costs (TBO = 1) than for high setup costs (TBO = 4). The phenomenon is particularly
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Table 7: Solution quality for all test instances based on V Cd and the given δ-service level

V Cd = 0.1 V Cd = 0.3 δ = 0.80 δ = 0.90 δ = 0.95
SL [%] DS, |S| = 10 2.62 0.93 4.86 0.46 0.00

DS, |S| = 30 2.16 0.77 4.17 0.23 0.00
DS, |S| = 50 1.23 0.31 1.62 0.69 0.00
SCLSP-PLA 100.00 100.00 100.00 100.00 100.00
CLSP-BT 100.00 100.00 100.00 100.00 100.00

SL-1% [%] DS, |S| = 10 100.00 75.31 94.91 85.42 82.64
DS, |S| = 30 100.00 100.00 100.00 100.00 100.00
DS, |S| = 50 100.00 99.69 100.00 100.00 99.54
SCLSP-PLA 100.00 100.00 100.00 100.00 100.00
CLSP-BT 100.00 100.00 100.00 100.00 100.00

BSol [%] DS, |S| = 10 1.08 0.62 2.55 0.00 ***
DS, |S| = 30 0.62 0.15 0.93 0.23 ***
DS, |S| = 50 0.15 0.15 0.46 0.00 ***
SCLSP-PLA 93.98 86.88 88.43 97.45 85.42
CLSP-BT 0.00 9.72 0.00 0.00 14.58

DevBSol [%] DS, |S| = 10 0.88 2.22 1.28 0.68 ***
DS, |S| = 30 0.84 1.81 1.15 0.00 ***
DS, |S| = 50 0.83 0.49 0.85 0.55 ***
SCLSP-PLA 0.07 2.40 0.21 0.02 3.48
CLSP-BT 121.56 89.88 190.96 81.74 44.47

SLP [%] DS, |S| = 10 51.47 43.15 57.34 44.16 40.43
DS, |S| = 30 49.72 48.00 55.69 46.10 44.79
DS, |S| = 50 44.39 41.46 50.34 40.93 37.51
SCLSP-PLA 100.00 100.00 100.00 100.00 100.00
CLSP-BT 100.00 100.00 100.00 100.00 100.00

SLP-1% [%] DS, |S| = 10 100.00 96.92 99.54 98.10 97.74
DS, |S| = 30 100.00 100.00 100.00 100.00 100.00
DS, |S| = 50 100.00 99.98 100.00 100.00 99.98
SCLSP-PLA 100.00 100.00 100.00 100.00 100.00
CLSP-BT 100.00 100.00 100.00 100.00 100.00
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Table 8: Average solution time (in CPU seconds) for all test instances

T = 5 T = 10 T = 20
K = 5 DS, |S| = 10 SCN: SRS 1,08 4,32 19,83

DS, |S| = 30 SCN: SRS 3,64 21,00 105,66
DS, |S| = 50 SCN: SRS 7,58 46,00 262,73
DS, |S| = 10 SCN: DS 1,07 4,47 19,41
DS, |S| = 30 SCN: DS 3,64 20,00 103,44
DS, |S| = 50 SCN: DS 7,34 44,01 246,88
SCLSP-PLA 0,51 1,90 16,05
CLSP-BT 0,20 0,34 0,61

K = 10 DS, |S| = 10 SCN: SRS 13,82 81,18 575,25
DS, |S| = 30 SCN: SRS 3,77 17,71 112,13
DS, |S| = 50 SCN: SRS 30,10 186,80 1381,87
DS, |S| = 10 SCN: DS 3,74 18,17 102,06
DS, |S| = 30 SCN: DS 14,70 83,80 577,03
DS, |S| = 50 SCN: DS 30,92 190,51 1401,26
SCLSP-PLA 1,64 6,61 85,95
CLSP-BT 0,57 0,87 2,41

K = 20 DS, |S| = 10 SCN: SRS 15,67 70,80 390,30
DS, |S| = 30 SCN: SRS 71,93 367,86 2156,08
DS, |S| = 50 SCN: SRS 174,84 859,91 5338,12
DS, |S| = 10 SCN: DS 16,72 69,55 372,68
DS, |S| = 30 SCN: DS 76,07 388,38 2265,90
DS, |S| = 50 SCN: DS 185,06 850,47 4910,22
SCLSP-PLA 5,04 24,60 310,96
CLSP-BT 1,20 3,29 5,90

Table 9: Total costs of test instances (δ = 0.95)

V Cd = 0.1 V Cd = 0.3 Rel. Increase
TBO = 1 1806.47 2969.09 64.36 %
TBO = 2 5066.85 6007.12 18.56 %
TBO = 4 13008.63 14265.49 9.66 %

Table 10: Total costs of test instances (δ = 0.99)

V Cd = 0.1 V Cd = 0.3 Rel. Increase
TBO = 1 2758.99 12343.53 347.39 %
TBO = 2 7027.14 17134.86 143.84 %
TBO = 4 19548.03 33527.46 71.51 %

dramatic if a very high service level is demanded (δ = 99%). This result shows that as
setup costs and setup times are reduced in an attempt to achieve “lean production”, it
becomes c.p. more important to have an accurate forecasting system, i.e., to reduce the
perceived demand variability.

We finally address the topic of dynamic safety stocks by studying Product 4 (out of
the five products) in more detail. The expected demand per period as well as the lower
and upper limits of the 95% demand intervals are depicted in Figure 3.
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In Figure 4 we present for a target δ-service level of 99% the production quantities,
the expected physical inventory, the expected backlog and the safety stocks as defined in
Equation (20) for the case of a TBO = 4. The figures show that the overall expected
physical inventory and the safety stock is substantially higher for the case with high
demand variability (V Cd = 0.3) than for the case with low demand variability (V Cd =
0.1). The safety stocks are clearly dynamic and differ from lot to lot. They can also be
negative, as in Periods 1 and 2, so that they lead to a substantial planned backlog in
Period 2.

8 Conclusions, managerial insights, and outlook

In this paper, we have proposed and evaluated different models to coordinate production
quantities and safety stocks subject to random demand and a capacity-constrained pro-
duction system. The solution of the models leads to robust production plans that contain
dynamic safety stocks. We have furthermore presented a well-defined backlog-oriented
δ-service level measure that overcomes the deficiencies of the γ-service level measure. It
offers a clear interpretation and can in addition be directly related to the average wait-
ing time of the demands. It can also be easily incorporated into dynamic and stochastic
production planning models like the SCLSP. A Fix-and-Optimize heuristic was used to
solve the two numerically tractable approximation models for the SCLSP as well as a
model variant with period-specific service level constraints based on ideas suggested by
Bookbinder and Tan (1988). Our numerical study shows that the model variant based on
a piecewise linear approximation of the non-linear functions of expected backlog and ex-
pected physical inventory performs particularly well. The other modeling approach based
on a scenario technique turns out to be less accurate, but more flexible with respect to
probabilistic dependencies of the demands within a single scenario. To determine demand
realizations for the scenario approach, Descriptive Sampling as proposed by Saliby (1990)
clearly outperformed a Simple Random Sampling approach and showed a surprisingly
high degree of accuracy even for small numbers of scenarios.

One important managerial insight can be derived from the comparison of the numerical
results of the CLSP-model inspired by Bookbinder and Tan to enforce a period-specific
δ-service level measure as opposed to an aggregate multi-period δ-service level measure
in our approximation models: Imposing a period-specific service constraint can be much
more expensive than imposing only an aggregate service level constraint and tolerating
occasional backlogs. If the management is mainly interested in robust schedules that
minimize system nervousness and bullwhip effects while meeting aggregate service level
constraints, the models presented in this paper turn out to be very useful to determine
such schedules. Our numerical examples have furthermore shown the potentially strong
impact of demand variability (or forecast inaccuracy) on safety stocks and the costs of
the schedule. We have in addition emphasized the dynamic nature of safety stocks in
the case of dynamic demand and production quantities as well as the value of precise
demand forecasts for production systems operating with small production lots and short
production cycles. Our models can finally also be used to quantify the benefit from an
improved forecasting accuracy, which is in our eyes an important indirect managerial
aspect of our work.

Future research should address the case of multi-level supply chains and/or additional
randomness due to random production capacities and the use of the models within a
rolling horizon context.
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Figure 2: TBO = 4 and δ = 0.99

3

Figure 4: TBO = 4 and δ = 0.99

A Test sets

Table 11 reports the mean E[Dk] of the demand. For each product k and period t, the
expected dynamic demand E[Dkt] is drawn from a normal distribution with mean E[Dk]
and standard deviation V Cip ·E[Dk]. The drawn demand series are given in Table 12 for
V Cip = 0.2 and in Table 13 for V Cip = 0.3.

For a problem instance from Table 4 with K products and T periods, the first K rows

25



Table 11: Series of expected demand E[Dk]

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
E[Dk] 67 135 105 80 79 72 85 136 56 100 150 108 150 126 63 114 66 75 117 93

Table 12: Series of expected demand E[Dkt] for V Cip = 0.2

k \ t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 74 64 77 42 70 51 83 48 89 80 77 67 41 66 69 89 85 78 80 71
2 140 99 128 120 111 83 109 140 99 77 94 141 164 95 133 131 152 120 114 90
3 88 105 95 78 122 156 88 78 147 146 93 101 111 103 79 102 95 77 105 102
4 67 82 95 113 82 77 75 60 91 85 65 71 83 73 68 111 77 47 97 77
5 93 69 80 79 103 100 80 60 96 61 68 98 67 85 87 77 52 72 58 52
6 79 70 87 52 93 96 73 77 81 93 86 66 76 83 61 50 74 71 70 81
7 103 104 90 73 75 94 94 91 76 106 95 107 100 115 71 87 74 52 78 71
8 144 151 126 135 158 175 97 100 104 119 130 196 115 134 202 97 141 100 71 143
9 56 61 45 55 45 43 24 57 40 58 66 58 58 52 58 50 71 64 54 51
10 107 127 118 97 106 123 97 85 94 85 91 87 67 115 137 109 91 108 137 60
11 131 172 163 136 118 192 204 142 188 167 123 166 147 129 174 75 148 132 148 122
12 84 90 122 124 65 118 94 145 85 130 102 71 109 102 89 71 109 73 84 127
13 137 152 110 136 129 138 123 128 63 193 140 147 159 129 91 182 106 177 96 179
14 128 139 125 130 84 105 131 82 139 106 136 85 131 121 116 98 163 102 100 138
15 52 99 50 44 45 55 63 51 78 77 55 73 65 62 59 48 69 43 67 81
16 85 135 93 130 111 89 112 177 103 159 77 121 113 105 110 112 137 129 102 94
17 68 76 52 66 71 71 54 62 70 55 55 66 92 53 59 56 54 66 59 82
18 85 66 109 96 59 66 76 68 65 90 80 84 90 83 54 73 70 86 74 91
19 92 115 104 98 120 91 156 119 69 70 122 80 72 74 137 92 124 140 84 107
20 93 94 114 98 66 94 107 83 109 99 94 93 81 77 90 85 92 95 91 128

Table 13: Series of expected demand E[Dkt] for V Cip = 0.3

k \ t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 48 76 69 76 68 58 57 69 56 70 56 104 83 84 73 62 48 96 65 68
2 80 119 77 145 68 98 135 183 120 63 163 166 121 164 178 104 159 114 141 119
3 113 59 104 63 100 143 106 81 104 158 158 28 112 52 85 120 185 117 159 69
4 90 57 123 68 117 69 67 76 76 101 109 135 58 73 77 82 111 43 89 54
5 47 66 99 91 55 92 69 88 73 76 96 80 72 74 51 70 87 50 104 81
6 101 58 95 109 28 78 67 107 71 37 46 64 66 34 30 79 102 100 40 51
7 103 61 91 70 101 74 77 98 106 80 108 80 64 48 75 69 44 87 113 72
8 211 192 199 191 113 136 113 125 183 100 118 118 113 194 142 117 140 91 97 148
9 39 41 61 61 34 69 58 55 47 28 52 27 79 47 39 94 67 56 48 70
10 98 149 76 105 153 133 43 114 96 220 83 94 99 127 113 23 90 86 113 74
11 72 108 146 222 146 126 204 142 187 226 147 220 115 227 103 200 206 164 208 153
12 117 136 108 149 97 126 87 119 93 161 128 113 45 102 150 56 132 89 105 81
13 101 140 146 207 80 121 157 106 164 152 187 123 108 133 79 192 198 191 152 79
14 108 174 125 118 130 113 188 121 125 156 156 199 152 91 95 124 139 166 118 132
15 79 76 67 50 67 61 72 52 36 58 29 53 55 12 63 51 60 44 36 46
16 102 156 112 137 97 131 64 118 152 46 83 109 92 139 103 143 168 153 42 96
17 72 37 91 47 92 75 81 46 75 78 49 53 57 97 79 57 56 54 75 43
18 66 84 85 75 31 78 75 81 57 89 82 58 90 100 59 91 53 109 88 37
19 133 89 150 134 182 123 131 75 110 140 129 114 134 156 108 192 115 238 148 108
20 78 87 57 51 119 94 108 99 129 84 23 160 136 108 94 118 74 107 101 69

and T columns were taken from Tables 12 and 13, respectively.
The holding cost hck and the processing times tbk are all assumed to be 1 for all

products k. The overtime cost oc is equal to 100 for one unit of overtime. The setup cost
sck is derived based from the average expected demand E[Dk] of product k

E[Dk] =

∑T
t=1E[Dkt]

T
∀k (51)

and the time-between-orders TBO

sck =
E[Dk] · TBO2 · hck

2
∀k. (52)

from the solution of the standard Economic Order Quantity model.
The setup time tsk of product k depends on the given parameter tsrel and the average

expected processing time E[Dk] · tbk for the average period demand of product k

tsk = tsrel · E[Dk] · tbk ∀k. (53)
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To create dynamic capacity parameters bt, we divided the expected capacity require-
ment for processing by the utilization Util due to processing:

bt =

∑K
k=1 tbk · E[Dkt]

Util
∀t. (54)

Note that for instances with setup times, the actual utilization can be substantially
higher, in particular in cases with low TBOs and hence many setups.
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