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Abstract

We propose an interactive method for decision making under uncer-
tainty, where uncertainty is related to the lack of understanding about
consequences of actions. Such situations are typical, for example, in de-
sign problems, where a decision maker has to make a decision about a
design at a certain moment of time even though the actual consequences
of this decision can be possibly seen only many years later. To overcome
the difficulty of predicting future events when no probabilities of events
are available, our method utilizes groupings of objectives or scenarios to
capture different types of future events. Each scenario is modeled as a
multiobjective optimization problem to represent different and conflict-
ing objectives associated with the scenarios. We utilize the interactive
classification-based multiobjective optimization method NIMBUS for as-
sessing the relative optimality of the current solution in different scenar-
ios. This information can be utilized when considering the next step of the
overall solution process. Decision making is performed by giving special
attention to individual scenarios. We demonstrate our method with an
example in portfolio optimization.

Keywords: Multiple objective programming, interactive methods, sce-
narios, uncertainty handling, Pareto optimality, classification of objectives



1 Introduction

In multiple criteria decision making (MCDM), uncertainty can appear in many
different forms. For instance, the decision maker (DM) can be uncertain about
preferences, the underlying model can be inaccurate, or there may be imperfect
knowledge concerning consequences of actions, etc. In this paper, we focus on
the latter type of uncertainties that require the DM to make a decision at a
specific point in time with imperfect knowledge of the future. In practice, this
can mean, for instance, that the DM must decide about the current design of a
system that operates under uncertainty related to future changes of the system’s
working environment or types of future tasks to be performed so that the overall
system’s performance is best.

A variety of MCDM methods has been designed to take uncertainty into
account (see e.g., Stewart (2005)), but most of them require a formal way of
incorporating uncertainty into the model. Unfortunately, in practice there are
plenty of situations in which uncertainty is very difficult or even impossible to
be characterized in a formal way. More specifically, there is no data or knowl-
edge available about the probability of events or the possibility and necessity
of events, and in such cases MCDM methods based on probability theory or
possibility theory may turn out to be impractical. However, even though our
understanding about the future is in many cases rather limited, it is still possi-
ble to use intuition and utilize approaches such as scenario planning to build a
framework in which decision making can be supported.

In scenario planning, the effects of different actions are systematically con-
sidered under a few different scenarios representing possible future states of
the world. The motivation of combining MCDM and scenario planning is that
MCDM can enrich the evaluation process in scenario planning while scenario
planning can provide a deeper understanding of the uncertainties present in
MCDM Stewart (2005). Scenario planning approaches have already some his-
tory in the MCDM literature, for instance, in the form of so-called multistage
approaches (see e.g., Klein et al. (1990)). However, typically these early meth-
ods have not been motivated by using scenario planning ideology but through
stochastic programming.

In recent years, new ways to apply scenario planning within MCDM have
been presented. One approach is to regard instances of the possible combina-
tions of initial objectives and scenarios as metaobjectives in the sense of the
metacriteria defined in Stewart et al. (2013), following on from earlier work in
Goodwin and Wright (2001). In this approach, it is recognized that good per-
formance on each objective under each scenario is a desired aim of the decision
maker. It may be necessary to trade off performances for the same objective
under different scenarios against each other; or to trade-off performances for
different objectives under the same scenario against each other. In fact more
complicated trade-offs could be considered, although these may be more difficult
for the decision maker to express directly. In principle, the complete decision
problem may then be viewed as a higher dimensionality multiobjective problem,
to which any multiobjective optimization method may be applied (by treating
all metaobjectives as decision objectives). In view of the dimensionality of the
resultant problem, however, the methods proposed in this paper allow perfor-
mance of metaobjectives to be evaluated across subsets of these, for example, to
explicitly analyze scenario-wise performance of actions with respect to different



objectives, or vice versa.

In Urli and Nadeau (2004), this kind of an approach is used in a visual in-
teractive multiobjective optimization method based on improving one objective
at a time so that the extent of improvement is decided by studying the con-
sequential impacts on the other objectives. The solution process continues by
considering a new objective until a satisfactory compromise solution is found.
In Durbach and Stewart (2003), an approach based on a model consisting of one
scenario-specific goal programming problem in each scenario is presented. This
is followed by an aggregation of scenario-wise results into an overall result. How-
ever, one has to still decide how to aggregate the results obtained with different
scenarios to get a robust solution that does not only consider the worst-case
performance of the actions Pomerol (2001). Yet one related approach is given
in Oliveira and Antunes (2009), in which scenarios are dealt with in the spirit of
the best/worst case approach with interval coefficients in a linear optimization
model. In Gutiérrez et al. (2004), a single objective dynamic lot size problem
is considered under different scenarios yielding a multiobjective optimization
problem.

Scenario planning with a collection of metaobjectives for each scenario can
be viewed as a multiobjective optimization problem with a large number of
objectives that had been decomposed into smaller-sized scenario-specific multi-
objective problems. In Engau and Wiecek (2007, 2008), coordination methods
have been proposed to find a preferred solution for the original large-scale prob-
lem by only solving the smaller-sized subproblems, while integrating both the
DM’s preferences and trade-off information obtained from a sensitivity analy-
sis. The basic approach is to solve a sequence of subproblems, each concerned
with a single scenario, so that each new decision may impair objective function
values already attained in the prior scenarios, but only to a pre-specified tol-
erance. The tolerances are set by the DM allowing for a preferred trade-off to
be sought among the different scenarios. The solution process stops once the
DM is satisfied with the function values in all scenarios, and the final solution
is guaranteed to be weakly Pareto optimal to the overall problem. In Wiecek
et al. (2009), the notion of multiscenario multiobjective optimization has been
formalized for engineering design problems in which scenarios represented design
disciplines, operating conditions of a product being designed, markets, types of
users, etc. The design problem for each scenario is modeled as a multiobjective
optimization problem while the designer’s preferences can change among the
scenarios.

In this paper, based on the very preliminary ideas presented in Eskelinen
et al. (2010), we propose an interactive method for solving optimization prob-
lems with multiple scenarios and multiple objectives in each scenario. Similar
to Engau and Wiecek (2008), the method utilizes the scenario-wise optimal so-
lutions to support producing a final decision that is acceptable for all scenarios.
However, in our method, the solution process focuses all the time on improving
the current overall solution to perform well in all the scenarios, whereas the
scenario-wise solutions are used to show the relative performance of the overall
solution in different scenarios. Another major difference to Engau and Wiecek
(2008) is that the method proposed is built on the interactive NIMBUS method
Miettinen (1999); Miettinen and Mikeld (2006), which provides a classification-
based elicitation of preference information from the DM. In view of the new
features, the method significantly facilitates computations and offers strong de-



cision making support. The benefits include guaranteed Pareto optimality of
the solutions (instead of only weak optimality) and the availability of a well-
established computational platform and decision support methodology provided
by the IND-NIMBUS software http://ind-nimbus.it.jyu.fi/ Miettinen (2006).

In practice, the method provides the DM with information about subopti-
mality (or lack of optimality) of decisions in different scenarios. At each stage,
the DM is presented with the current overall solution of the decision problem
involving all multiple objectives as well as the solutions of the smaller prob-
lems consisting of metaobjectives associated with a scenario. The former is
used to demonstrate the current optimal solution, whereas the latter shows the
suboptimality of the current solution in different scenarios. The suboptimality
information can be used to support, for instance, the consideration of which
objective values should still be improved and which objective values are allowed
to be relaxed. In this way, we can provide a valuable contribution to support
understanding of the relative strengths and weaknesses of different solutions,
options or alternatives in various scenarios.

It should be emphasized that we do use the term ”scenario” in the broad
sense of scenario planning, i.e., to describe a possible future state of the world
with an aim to aid facilitating a "strategic conversation”. We are aware that
some literature uses the term with a narrower technical focus as representative
realizations of a random variable. Nevertheless, the broader "strategic conver-
sation” sense does better reflect the thinking behind our method, and for this
reason we will retain the term ”scenario” in this broader sense in our description
of the method proposed.

Besides scenario planning, the method is applicable to virtually any multiob-
jective optimization problem where groupings of objectives are relevant. That is,
we can consider problems with meaningful decompositions of objectives into any
number of possibly overlapping sets. For that reason, we formulate our method
in terms of abstract subsets of objectives instead of scenarios and metaobjec-
tives. For example, in group decision making, the objectives of each DM can
form a subset so that each subproblem only considers the objectives of a single
DM.

The rest of this paper is structured as follows. In Section 2, we formulate the
multiobjective optimization problem with subsets of objectives and introduce
the main elements of the NIMBUS method that are integral for our method. We
introduce our grouping-based interactive method in Section 3 and demonstrate it
with a portfolio optimization example in Section 4. Finally, we draw conclusions
in Section 6.

2 Problem formulation and basics of NIMBUS

We consider a multiobjective optimization problem, referred to in the following
as a decision problem,

minimize f(x) =[f1(x),.. ., [x(x)] (1)
subject to x € X,
where f;: X — R with 1 <14 <k, k > 2, are objective functions and X C R™ is
a nonempty feasible set and R™ is a Euclidean vector space. A vector x € X is
called a decision (vector), and its image z = f(x) an objective vector consisting



of objective (function) values. The image set Z = f(X) is called an attainable
set.

An objective vector z € Z is said to be Pareto optimal if there does not
exist another objective vector z € Z such that z; < z; forall ¢ = 1,...,k and
z # z. Furthermore, an objective vector z € Z is said to be weakly Pareto
optimal if there does not exist an objective vector z € Z such that z; < z; for
alli = 1,...,k. Clearly, every Pareto optimal objective vector is also weakly
Pareto optimal. A decision x € X is said to be (weakly) Pareto optimal if f(x)
is (weakly) Pareto optimal.

The components of an ideal objective vector z* are obtained by minimizing
each of the objective functions subject to the feasible set. It gives informa-
tion about the best individually attainable objective function values. The worst
objective function values in the set of Pareto optimal solutions can be approxi-
mated to form a nadir objective vector (for further details, see Deb et al. (2010);
Miettinen (1999)).

In addition to problem (1), we consider a collection of S subproblems involv-
ing groupings of the original objective functions indexed by s € {1,2,...,S}.
The subproblems, each involving &k, objectives, have the form

minimize £o(x) = [fi(%),..., fir. (x)] @)
subject to x € X,

where 2 < ks < k and each objective function f7, 1 < j < ks, corresponds to
one objective function f;, 1 <1 < k, of problem (1). Given problem (1), the
subproblems of the form (2) are conveniently represented either by the functions
s or by subsets K of the index set K = {1,2,...,k}. In other words, we can
write ff = fq) with {s(1),...,s(ks)} = Ks C K. We have UK = K.

The purpose of solving the subproblems is to allow the DM to evaluate the
performance of a decision in different contexts. In a scenario planning problem,
the decomposition of metaobjectives into scenarios could be reflected in the
decomposition of the set K into subsets K. The subsets K may also overlap,
that is, an objective function f; of problem (1) may appear in one or more of
the subproblems. Pareto optimal decisions of problems (1) and (2) are related
in the following way Engau and Wiecek (2008).

Theorem 1 If a decision x € X is Pareto optimal to (2), then x is weakly
Pareto optimal to (1).

In general, the converse does not hold, that is, a Pareto optimal decision to (1)
may not be even weakly Pareto optimal to (2). This discrepancy allows the
suboptimality of a decision with respect to a given subset of objectives to be
quantified: given a subproblem or grouping s and a Pareto optimal decision
of (1), one can find out by solving (2) what the corresponding objective vector
would be in the case that only the objective functions in f° were considered.
Thus, solving the subproblems provides valuable information to the DM about
the structure of problem (1) and the amount by which different subsets of the
objectives conflict with each other.

To solve problems (1) and (2), we employ elements of the interactive classi-
fication-based multiobjective optimization method NIMBUS Miettinen (1999);
Miettinen and Mékeld (2000); Miettinen and Mikeld (2006) that has successfully
been applied in various design Hakanen et al. (2011); Laukkanen et al. (2010),



control Miettinen (2007) and planning problems Ruotsalainen et al. (2010) (see
e.g., Miettinen et al. (2008) for further references). In NIMBUS, the DM can
direct the interactive solution process by specifying preferences as a classification
of objective functions indicating how the objective values in the current Pareto
optimal objective vector f(x¢) should change to get a more preferred objective
vector. The DM may classify the objective functions into up to five different
classes:

I< for those to be improved (i.e., decreased),
IS for those to be improved till some desired aspiration level 2;,

I= for those to be maintained at their current level,

~
V

for those that may be impaired till an upper bound e; and
I® for those that are temporarily allowed to change freely.

Here, each of the objective functions is assigned to one of the classes and because
of Pareto optimality, some objectives must be allowed to impair in order to
enable improvement in others. If aspiration levels or upper bounds are used,
the DM is asked to provide them.

In the NIMBUS method, new Pareto optimal solutions are generated by
solving a scalarized problem which includes preference information given by
the DM in the form of a classification. In our method, we use the scalarized
problem of the so-called synchronous NIMBUS method Miettinen and Mékeld
(2006), which has the form

k
minimize  max {us () = 2. w3 (£5(3) ~ )} + 3 wifix)

7 ®)
subject to  fi(x) < fi(x¢) foralli € ISUISUIT,

fi(x) <eg; forallieI?,

x e X,

where x€ is the current decision, z* is the ideal objective vector, Z; are the
aspiration levels for the objective functions in IS, ¢; are the upper bounds
for impairing the objective functions in IZ, p > 0 is a relatively small scalar
bounding trade-offs, and coefficients w; (1 < i < k) are constants used for
scaling the objectives (e.g., based on estimated ranges, i.e., nadir minus ideal
values of the objectives so that w; times the range equals 1 for each ).

By comparing the objective values before and after the classification, the
DM can see how attainable the desired changes were. For further details of
NIMBUS, its other elements, an algorithm and proofs related to the Pareto
optimality of solutions generated, see Miettinen and Mékeld (2006).

When solving problems (1) and (2), it is not necessary to apply the NIMBUS
method separately to each of the subproblems (2). Instead, it suffices to solve
problem (1) repeatedly, because irrelevant objectives can be allowed to change
freely with an appropriate classification. Therefore, our method can be readily
deployed on top of an existing software implementation of the NIMBUS method,
IND-NIMBUS, http://ind-nimbus.it.jyu.fi/, Miettinen (2006). Moreover, the
augmentation term in (3) ensures that the obtained solutions are (properly)
Pareto optimal to both (1) and (2) (see, e.g., Miettinen (1999)). In what follows,



we describe our method for grouping-based problems and details of how it uses
the scalarized problem (3) to solve problems (1) and (2).

3 Method for grouping-based multiobjective op-
timization with NIMBUS

Our method is structured as an interactive multiobjective optimization method
with iterating optimization and decision stages. Pareto optimal solutions to
(1) are generated in the optimization stage using the NIMBUS scalarization
(3) and evaluated in the decision stage subject to groupings, i.e., subproblems.
This means that additional information is provided to the DM about Pareto
optimality of the solution considered with respect to the subproblems. We
assume that the computational cost of solving the decision problem (1) is not
much higher than the cost of solving a subproblem (2) due to the same feasible
set as we are using a scalarization-based multiobjective optimization method
(generating one Pareto optimal solution at a time based on the preferences of
the DM). We therefore perform the optimization stage for the decision problem
containing all the objectives to get an overall solution. However, we expect
the cognitive load to be high for the DM when assessing these Pareto optimal
solutions with respect to the individual groupings and therefore perform the
decision stage in a grouping-wise manner.

Our interactive method for grouping-based multiobjective optimization uti-
lizes the basic idea of the NIMBUS method, that is, the classification of objec-
tives. With the help of classification, the DM can direct the solution process
towards the most preferred solution. By solving (3) with each grouping to be
minimized at a time, we get to see grouping or scenario-wise Pareto optimal ob-
jective vectors and can assess the relative optimality of a solution with respect
to each grouping separately. This information can help the DM in directing the
solution process in the consideration of what objective values should still be im-
proved and what objective values can be allowed to impair. In other words, the
aim is to support gaining understanding of the relative strengths and weaknesses
of different solutions in various groupings.

The algorithm of our grouping-based interactive method is the following (the
steps where the actions of the DM are expected are indicated in italics):

1. Set all objectives in I<.

2. Generate a Pareto optimal solution x° for (1) by solving the NIMBUS
scalarized problem (3) with the current classification.

3. For each grouping s, set its objectives in I< and the other objectives in
I° and solve (3). Denote the solution by x* for each grouping.

4. Present to the DM the current objective vector £(x¢) = [f1(x°),. .., fr(x°)].
Furthermore, for each grouping (i.e., for each s), present to the DM some
or all of the following:

(a) grouping-wise objective values £*(x°) and information whether £*(x°)
is Pareto optimal in the grouping s and/or

(b) Pareto optimal objective vector of the grouping s, that is, £°(x*)
and/or



(c) visualization or some other means to support comparison (e.g. dis-
tance) of corresponding objective function values in £#(x°) and £*(x*).

5. Ask the DM whether he/she is satisfied with the current solution x¢? If
yes, then stop with x¢ as the final solution. Otherwise, continue.

6. Ask the DM to classify the objectives into (up to) the five classes and
return to step 2.

Let us point out that thanks to the fact that solutions generated by NIMBUS
are Pareto optimal, we know that the overall solutions and the grouping-wise
solutions generated by the method proposed are Pareto optimal. For the sake
of clarity, we have presented the algorithm in a general form, but the steps of it
do not have to be followed faithfully. For example, in steps 3 and 4, not every
grouping has to be considered, but only those ones that the DM is interested in
(at that iteration). Thus, the DM can focus on different aspects of the problem
in consecutive iterations.

In step 4, various visualizations or other means can be used according to the
desires of the DM to support comparison and analysis. For example, visual clues
can be used in the user interface to draw attention to those groupings where the
current solution violates some prescribed limits, either absolute or relative to a
corresponding Pareto optimal objective vector. Overall, the user interface plays
an important role in what comes to both the cognitive load and the effectiveness
of the method.

With a large number of objectives, classification should be allowed as per
objective grouping to make the classification phase more manageable (instead of
forcing the DM to classify every objective). However, if the objective groupings
overlap, then it is possible that the classifications made for two groupings are
in conflict with each other for some objective. Then, the DM must resolve
the conflict to be able to represent the resulting classification in a concise and
intuitive way.

Figure 1: Graphical representation of the ideal, current and nadir values for
each objective (big bar) and with respect to its grouping (small bar).

In Figure 1, we give an example of how comparison of solutions can be
implemented. For each of the four objectives, a horizontal bar graph (big bar)
is used to represent the range (based on the components of the ideal and the
nadir objective vectors) and the current value of the objective (the bar between
the end points). To be more specific, in each big bar the left and the right
edges correspond to the components of the ideal and the nadir objective vectors
of (1), respectively, and the right edge of the darker bar corresponds to the
current value of the objective. To represent the range and the current value



of the objective with respect to its grouping, a half-height bar is drawn on top
of the big bar. The latter bar is always enclosed in the former because the
components of the ideal objective vector are equal, and the components of the
nadir objective vector within a grouping are always lower than or equal to the
nadir objective value with respect to all the objectives.

Another way to visualize the solution process by using absolute values of
the objectives is presented in the example in the following section. This may
be a more intuitive approach, especially in cases where different objectives have
commensurate units.

In NIMBUS, the DM can also generate new Pareto optimal solutions as inter-
mediate ones between any two Pareto optimal solutions available. This option
can be offered to the DM also in our method as an alternative to classification
in step 6 whenever the DM so desires.

4 Example

We have proposed a general-purpose method, which has not been tailored for
any specific application domain. In this section, we demonstrate our method
with a simulated example problem. The example is not drawn from a specific
case study, but represents a class of frequently encountered problems as both
illustration and test of our method. The example is built up around the well-
known Markowitz portfolio optimization problem Markowitz (1952) whose aim
is to determine the asset allocation in a portfolio so that the portfolio’s expected
return is maximized while the risk related to the expected return (variance) is
minimized. (Even though modern portfolio theory does not consider variance
as a suitable risk measure, we consider this well-known problem since our ob-
jective is simply to demonstrate how the method proposed can be applied.) We
extend this problem by introducing a third objective to maximize the amount
of dividends obtained through the portfolio.

Let n be the number of assets and x; be the amount of funds invested in
asset ¢, ¢ = 1,...,n. In this example, for purposes of illustration we postulate
three scenarios (i.e., S = 3) which are taken into account while considering the
performance of a portfolio, and the same three objectives are considered in each
of these scenarios (i.e. ks = 3 for all s = 1,...,3). Thus, the total number
of objective functions is nine, i.e., K = 9. Corresponding to (1) and (2), the
optimal portfolio is found by solving the following single period multiobjective
portfolio optimization problem (see, e.g., Ehrgott et al. (2004); Steuer et al.
(2005) for similar kinds of formulations):

min  f{(x) =xT¥x

max f5(x) =Tlx
s — dT
max f3 (x) o X (@)
s.t. sz = 1, ZT; > 0,
i=1
s=1,...,3.
The overall solution is obtained by solving the problem (4) simultaneously for all
s =1,...,3, and each scenario-wise solution by solving (4) separately for each
s = 1,...,3. The decision vector x € R" reflects how the funds Z?:l T; are

distributed over n assets. The vector Ts and the n x n matrix X, represent the



expected value and a covariance matrix, respectively, related to the underlying
random variable vector r,, which reflects the returns related to n assets in
scenario s. The expected value and the variance of a random variable r’x are
denoted by 7x and xT¥,x, respectively (as described in Markowitz (1952)).
The vector ds determines the relative amount of dividend paid in cash for each
asset ¢ = 1,...,n in scenario s. We assume that there is a dividend policy
related to each asset so that the amount of dividend related to an asset is not
going hand in hand with the price of the asset (see, e.g., Ross et al. (2006)).
Furthermore, like in Markowitz (1952), we assume that the underlying problem
is to be solved when we have already somehow obtained (e.g., through modelling
or historical data etc.) the necessary data related to each scenario s.

As said, we consider three different scenarios that are based on the occur-
rence of events A and B. At a certain moment during a single period investment
plan either A or B occurs once or not at all and the events exclude each other.
When either of these events occurs, it can be predicted how it will affect some
particular asset returns. In other words, in each case we are able to produce
scenario related data ¥4, Ts and ds. However, we are able to do only very sub-
jective speculation whether either of these events occurs or not (no reliable past
experience, statistical data, or probabilities are available). Regardless of these
events we have to fix the portfolio at the moment and the decision cannot be
postponed. In what follows, scenarios 1, 2 and 3 refer to the cases (not A and
not B), (A and not B) and (not A and B), respectively. With three basic objec-
tives and three scenarios we end up with nine objectives (i.e., metaobjectives)
in formulation (1). We have chosen altogether n = 24 assets to be considered
in our example.

In what follows, we demonstrate a possible course of the solution process
by using the method proposed. The values used in the example are derived
directly from the objective function values obtained by solving the problem
(4). However, these values have been transformed to make them more readable.
That is, the performance of a portfolio in scenario s is presented by values
c; =100-/f5, ¢5 = 100- f5 and ¢§ = 10- f§ which are the standard deviation (as
percentages) for the rate of return, the expected rate of return (as percentages)
and a dividend index, respectively.

Since the portfolio optimization model assumes that the rate of return as a
random variable is normally distributed in the risk evaluation, we can use as
a guideline the normal distribution property that with a probability 98% the
transformed rate of return will have values in range ¢§ + 3 - ¢§ (of course, the
lower bound is here the interesting one). Furthermore, the dividend index ¢
reflects the relative (with respect to the assets considered) amount of dividend
paid for an asset. We also emphasize that there is no direct risk related to the
amount of dividends, and therefore they can be used to compensate potentially
low rate of return values.

Next, we apply our grouping-based interactive method to this example with
an aim to build up a robust portfolio which performs relatively well under all
three scenarios.

Iteration round 1

The solution process starts by making the NIMBUS classification I< =
{cl,...,c3} in step 1 of the first iteration round, i.e., by setting all nine objective
functions to be minimized. In step 2, we calculate an overall Pareto optimal so-
lution for the whole problem by solving the NIMBUS scalarized problem (3) and
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in step 3, a Pareto optimal solution is calculated for each scenario (i.e. group-
ing) by optimizing the performance of the objectives of this scenario only. For
example, the scenario-wise solution for scenario 1 is obtained by solving prob-
lem (3) with the classification 1< = {cl,c}, et} and I¢ = {c?,c3,c3,¢},¢3,c3}.
The resulting overall solution is shown with black, and the scenario-wise Pareto
optimal solutions with white and different tones of gray in Figure 2 (step 4).
One should note that on each scenario-wise Pareto optimal solution, only the
objective values ¢!, ..., ¢} related to this particular scenario i are shown, as these
indicate the reference level for the optimal performance in this scenario. In this
respect, the objective values of each solution in the other scenarios are not that
interesting and, thus, they are not shown to make the figure more readable.
For example, on the scenario-wise Pareto optimal objective vector for scenario 1
(white bars in Figure 2), only the first three objective values related to scenario
1 are shown, but the objective values related to scenarios 2 and 3 are not shown.

By showing the scenario-wise optimal solutions in the same figure with the
overall solution, one can see at a glance how good the overall solution is rela-
tive to scenario-wise Pareto optimal solutions that would be obtained by only
considering one scenario at a time. This helps the DM in focusing the solution
process to improving the most promising objectives. For example, it is useless
to try to improve a poor overall performance in some scenario at the expense of
other scenarios, if the scenario-wise Pareto optimal solution in this scenario is
also poor.

Iteration round 1

T
I Current objective vector
"1 POOV of scenario 1
[C———""1 POOV of scenario 2
[ POOV of scenario 3

11 1 2 2 2 3 3 3
¢ % G ¢ % G ¢ % G

min max max min max max min max max

Figure 2: The initial overall solution of the example and the Pareto optimal
objective vectors (POOVs) of different scenarios. The scenario-wise POOVs are
shown partially, i.e., on each objective vector, only the three objective values
related to the corresponding scenario are shown.|

Let us assume that our primary objective is to obtain a good performance

in scenario 1, but the performance in the case of the other scenarios is not as
important. This may be because the other scenarios are regarded less likely,
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Iteration round 2

T
I Current objective vector
[ POOV of scenario 1
""" POOV of scenario 2
[ POOV of scenario 3

1 1 1 2 2 2 3 3 3
1 & G G G G ¢, G G
min max max min max max min max max
Figure 3: The overall solution and the Pareto optimal objective vectors

(POOVs) of different scenarios after the first classification round.

c

although there may also be other reasons (of politics or public image, for ex-
ample) which may stress the importance of certain scenarios even when not
necessarily more likely than other scenarios. As can be seen from Figure 2, the
current overall solution is already relatively good in scenario 1 compared to a
scenario-wise optimal solution in this scenario. However, we are not yet fully
happy with this solution, and we want to test whether the rate of return and
dividend index in this scenario (¢} and c3, respectively) could still be improved.
Thus, in step 5 of our algorithm we decide to continue. To compensate these
improvements, we allow the standard deviation in scenarios 1 (c}) and 3 (c})
to slightly increase. In step 6, we include these statements into our model by
making a classification I< = {c},c3}, I = {c?,¢3,¢c3,c3,c3} and IZ = {ci,c}}
with e} = 4.0 and 3 = 3.0, and proceed to step 2 of the next iteration round.

Iteration round 2

As a result, we get a new Pareto optimal overall solution and the corre-
sponding scenario-wise solutions (Figure 3). The rate of return in scenario 1
(c3) has now improved from 7.3 to 10.0, but it is still smaller than in the cor-
responding Pareto optimal scenario-wise solution (which has also improved, as
we allowed c} to deteriorate). Nevertheless, we think that the objective values
in scenario 1 are now on a satisfactory level and, thus, we decide to focus next
on improving the performance of the other scenarios. We notice that both in
scenarios 2 and 3, the rate of return (c2 and c3, respectively) is quite far from
the scenario-wise Pareto optimal solution. We are not satisfied with this, but
want to improve these objectives. To compensate this, we allow the dividend in-
dices of scenarios 2 and 3 (c3 and c3, respectively) to change freely, as we do not
consider the amount of dividend that important, if either of these scenarios was
realized. Thus, we make a classification I< = {c2,¢3}, I= = {cl,cl,c}, e3¢5}
and I® = {c%, 3}, and proceed to step 2 of the next iteration round.
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Iteration round 3

T
I Current objective vector
[ POOV of scenario 1
""" POOV of scenario 2
[ POOV of scenario 3

1 1 1 2 2 2 3 3 3
1 C2 C3 Cc C C Cc C2 C3

1 2 3 1
min max max

c

min max max min max max

Figure 4: The overall solution and the Pareto optimal objective vectors
(POOVs) of different scenarios after the second classification round. We are
now satisfied with this solution and stop the solution process here.

Iteration Round 3

As a result, we get again a new Pareto optimal overall solution and corre-
sponding scenario-wise solutions (Figure 4). Now, the rate of return in scenarios
2 and 3 (c% and c3, respectively) has improved somewhat compared to the previ-
ous round at the expense of the dividend index c3, which was allowed to change
freely. We also allowed the dividend index cj to change freely, but its perfor-
mance has, in fact, improved in this round. The worst relative performance
compared to the optimal scenario-wise performance seems to be now obtained
in scenario 3, but we consider this to be on a satisfactory level. Thus, we stop
here (step 5) by saying that the last portfolio seems to give robust performance
especially in scenario 1, but also in scenarios 2 and 3. Naturally, it is assumed
that this interpretation is related to the knowledge about the events A and B
so that we are able to evaluate what the tolerable performance is under each
scenario. One should also note that even though the final solution can be con-
sidered to be robust with respect to the scenarios considered, it is not Pareto
optimal to any single scenario.

In this example, we used a visualization that actually presents all the al-
ternative information options (a)—(c) in step 4 of the algorithm. Although the
information about Pareto optimality is not explicitly indicated, the DM can eas-
ily see if the objective values of the current overall solution coincidence with the
scenario-wise solutions. Nevertheless, to further augment the visual illustration,
the same information can also be presented in a numerical form. For example,
Table 1 shows the course of the solution process about how we ended up with
this solution.
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min  maxr  maxr | min maxr  maxr | min  mar  max

ct c3 3 c 3 3 c c3 c3
Round 1 2.7 7.3 5.9 7.2 135 4.8 1.8 5.2 4.8
Round 2 4.0 10.0 6.1 7.2 135 4.8 2.7 5.2 4.8

Round 3 | 4.0 10.0 6.1 7.2 14.2 5.5 | 2.7 6.3 3.5

Table 1: Transformed objective function values for the overall solutions obtained
in the example

5 Discussion

In general, the aim of scenario planning is to provide a robust performance in
all the different scenarios. In this respect, our NIMBUS based method pro-
vides a convenient way to include scenarios in multiobjective modeling, as its
classification-based approach is an intuitive way to deal with groupings of ob-
jectives based on their performance in different scenarios. The ease of use of the
classification approach is also likely to help comprehending the relative perfor-
mance of the objectives as well as the course of the solution process.

In the example, we used absolute objective values with suitable scaling fac-
tors to fit them on the same chart. Another way is to scale each objective, for
example, to a relative 0-1 scale, which might be a more suitable approach in
some cases. However, in our example, we had the same unit in the objectives
standard deviation and the expected rate of return and, thus, the meaning of
the unit would have blurred if some relative scaling was used.

One should also note that the visualization style shown in Figures 2—4 is not
the only possible way to illustrate the current solution. The aim of the applied
method is to provide the DM with enough information needed to understand the
overall performance of the current solution, but not to overload the DM with an
excessive amount of information. Naturally, any other means to visualize mul-
tiobjective problems could also be applied here to provide further information.
For example, Figures 2-4 show only one possible scenario-wise Pareto optimal
solution, but figures of the Pareto optimal frontiers in each scenario could also
be illustrative. In practice, this would, however, only work with few objectives,
but in case of more than three objectives, some advanced means to support the
visualization would be needed (see e.g. Lotov and Miettinen (2008); Miettinen
(pear)). Yet, another way to make the method proposed more profound is to
also present the metaobjective-wise optimal solutions (that would indicate the
best possible level of each single metaobjective) along with the scenario-wise
optimal solutions. One should, however, always consider also the possible cons
of the applied visualization, as too much information of various forms might
even complicate understanding the situation rather than clarify it.

5.1 Application areas of the method proposed

The method proposed is expected to be especially suitable for such multiob-
jective optimization problems, where scenario planning has already been suc-
cessfully applied. The origins of scenario planning are in supporting strategic
planning in organizational and managerial decision making (see e.g., Maack
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(2001); Schoemaker (1995)), which often are also multiobjective problems and,
thus, potential application areas of the method proposed, too.

In recent years, scenario planning has also been found useful in environmental
management. In this area, scenarios can deal with, for example, the impacts of
climate change for which both the possible impacts and the related uncertainties
are of great extent (see e.g., Duinker and Greig (2007)), or with the impacts
of such uncertainties that cannot be explicitly considered in underlying models
due to the complexity of corresponding ecosystems Bennett et al. (2003). An
example of the possible practical use of the method proposed in environmental
management is the planning of protective actions for flood management, which
include, for example, land area planning and terracing. These are typically cases
where the flooding normally stays within reasonable limits, but we should also
be prepared for such flooding scenarios that become realized, for example, only
once in 50 years. Then, our method can be used to consider the extent of the
protective actions so that normally they would not become too expensive but
in scenarios of severe flooding, a reasonable level of protection would still be
obtained.

Another environmental example is the water management on an area of
agriculture eutrophicating the underneath water system. The eutrophication
could be reduced for example, by allocating protective zones between the fields
and water areas or by building wetland areas that filter nutrients. However,
there can be considerable uncertainties in the future related to, for example, the
extent of agriculture on that area and the annual amount of raining due to the
climate change. Both these are clearly scenario type uncertainties, under which
the water management actions can be considered so that in each scenario the
water quality would be on a satisfactory level, but without setting too strict
restrictions on the agriculture.

In industry, scenario planning is well-suited, for example, in process and
control design Pajula and Ritala (2006); Suh and Lee (2001). Our method can
be used to consider optimization problems having uncertainty, for example, in
a future market situation. In these problems, the method can be applied both
in cases where scenarios are used to represent alternative future events and in
cases where scenarios represent future events that can all happen in time. The
latter may come into question, for example, in an optimal design problem in
which the scenarios correspond to various anticipated use cases or operating
conditions that must be accounted for in the design.

5.2 Other possible uses of the method proposed

The initial motivation of the method proposed is to support the use of scenarios
in multiobjective optimization, but we have formulated the problem so that the
method can be applied to any case where groupings of objectives are relevant.
For example, another natural situation for using groupings is group decision
making, where the objectives of each decision maker form one grouping. Then,
the method proposed shows the relative goodness of the current solution in
terms of the Pareto optimal solution for each individual decision maker.

When applying the method proposed to group decision making, several deci-
sion makers may share the same objectives. The method proposed allows using
single objectives in multiple groupings when calculating the grouping-wise op-
timal solutions.
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6 Conclusions

We have introduced an interactive method for solving optimization problems
involving multiple scenarios (or groupings) and multiple objectives in each sce-
nario. This enables the decision maker to focus on a single scenario at a time
and find a solution which is preferred for all scenarios.

The new grouping-based interactive method is based on the interactive clas-
sification-based NIMBUS method. NIMBUS provides an intuitive framework for
combining multiobjective optimization with scenario planning, as its classifica-
tion-based approach allows an easy way to deal with groupings of objectives
based on their performance in different scenarios. The scenario-wise informa-
tion is used to support understanding the relative goodness of the overall so-
lution in each scenario, but all the time the solution process itself focuses on
finding a better overall solution that is satisfactory in all the scenarios. Apply-
ing the NIMBUS method also guarantees the Pareto optimality of the solutions
generated. Because of the existence of the IND-NIMBUS implementation of
NIMBUS, our new method is ready to be applied once a user interface module
for grouping-based classification and visualization is made.

We have demonstrated our method with an example in portfolio optimization
with three objectives and three scenarios. The example showed that with the
method proposed (and suitable means to visualize it), the cognitive load on
understanding and solving the problem can be decreased.
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