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Abstract In the present paper, we present a mid-term planning model for thermal
power generation which is based on multistage stochastic optimization and involves
stochastic electricity spot prices, a mixture of fuels with stochastic prices, the effect
of CO2 emission prices and various types of further operating costs. Going from data
to decisions, the first goal was to estimate simulation models for various commodity
prices. We apply Geometric Brownian motions with jumps to model gas, coal, oil
and emission allowance spot prices. Electricity spot prices are modeled by a regime
switching approach which takes into account seasonal effects and spikes. Given the
estimated models, we simulate scenario paths and then use a multiperiod general-
ization of the Wasserstein distance for constructing the stochastic trees used in the
optimization model. Finally, we solve a 1-year planning problem for a fictitious con-
figuration of thermal units, producing against the markets. We use the implemented
model to demonstrate the effect of CO2 prices on cumulated emissions and to apply
the indifference pricing principle to simple electricity delivery contracts.
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1 Introduction

Dealing with the stochasticity of commodity and electricity prices is a key issue in
contemporary energy markets and cannot be neglected by the producers of electrical
power. In this paper, we propose a multistage stochastic optimization model for market-
oriented power production planning. Optimization has a long history in this field, and
in the last years stochastic optimization approaches have become more and more
important. See, e.g., Takriti et al. (1996), Gollmer et al. (2000), Philpott and Schultz
(2006), Sen and Yu (1993) and the overview Wallace and Fleten (2003).

In particular, we formulate an optimization model for thermal electricity production.
Different types of fuels are bought at spot markets and stored to produce electric energy.
Finally, the production is sold at an electricity spot market. Costs involve fuel costs as
well as fixed and variable operating costs. In addition, we allow for trading at CO2 spot
markets to have available the necessary amount of emission certificates. The aim is to
maximize the asset value—consisting of a cash position and the value of stored fuel—
at the end of the planning horizon. Because the problem is stochastic, we maximize a
mixture of expectation and average value at risk.

We aim at a simplified model for mid-term planning that can be used for repetitive
calculation. Each step from data to final decisions is described. We implement and
solve concrete 1-year planning problems for a fictitious configuration of thermal units
optimizing against the market prices.

Besides formulating the multistage stochastic optimization problem, which will be
done in Sect. 2, this paper also discusses the estimation of the related price models.
Oil, gas, coal and CO2 prices are modeled as Geometric Brownian motions with
jumps. Electricity prices have properties that differ considerably from those of other
commodities. In particular, they show strong seasonalities as well as spiking behavior.
We therefore estimate electricity spot prices based on the related forward curve and
deviations between this curve and actual prices, by introducing a new regime switching
model. We estimate these models for European price data and analyze their in- and
out-of-sample performance.

The concrete formulation of the optimization model uses the framework of tree-
based multistage stochastic optimization. Based on the distance concept developed in
Pflug and Pichler (2012), trees are constructed accordingly to a novel tree approxi-
mation method proposed in Kovacevic and Pichler (2012). This approach builds on a
multiperiod generalization of the Wasserstein distance to a distance between processes.

Based on the implemented framework, we bring evidence for two aspects to be
considered in production planning: We implement a small realistic thermal system
and use it to analyze the effects of increasing CO2 prices on the accumulated CO2
emissions. Furthermore, we demonstrate the use of the model to calculate indifference
prices for electricity delivery contracts with given contract size.

The paper is organized as follows: In Sect. 2, we develop the optimization model.
Section 3 then gives a deeper view of the involved risk factors, describes the price
models used and the related estimation procedures, and analyzes the estimation
quality. In the final section, we give an overview of a tree-based reformulation
of the optimization model and describe the tree reduction approach as well as a
basic numerical example. Also in Sect. 4, we utilize the implemented system for a
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case study on indifference pricing and for some sensitivity analysis of CO2 prices.
Finally, in the appendices, we give further details of the estimation procedure, show
some empirical results, and the full specification of the reformulated optimization
model.

2 The optimization model

Consider the decision problem of an electricity producer, who owns some thermal
production units I = {1, . . . , I } and uses fuels J = {1, . . . , J } to produce electrical
power over some planning horizon T = {τ0, . . . , τT }. Fuels have to be bought,
electricity is sold at an electricity spot market, and further restrictions and costs (in
particular related to CO2 emissions) have to be observed.

Clearly the producer has to take some risk: All kinds of prices are considered as
stochastic in the following, and hence these risk factors are modeled as stochastic
processes. Starting with some state space Ω and defined on a related filtered proba-
bility space (Ω,Σ,P), with Σ representing some filtration and P a probability mea-
sure, we refer to the price processes in the following way: For each sample path
ω ∈ Ω and point in time τt ∈ T , we denote by P f

t, j (ω) the fuel spot price for
fuel j ∈ J , by Px

t (ω) the electricity spot price, and by Pc
t (ω) the spot price for

CO2 emission certificates. As usual, the filtration Σ = (Σt )t∈T is modeled as the
filtration generated by the random vector (P f

t , Px
t , Pc

t ), i.e., Σt = σ((P f
t,, Px

t , Pc
t ), t

∈ {0, 1, . . . , T }).
The basic decisions are made regarding the electric energy xt,i j (ω) produced by

unit i ∈ I using fuel j over time period [τt , τt + Δt ] (where Δt = τt+1 − τt is
measured in hours), the amount ft, j (ω) of fuel j bought at time t , and the amount
ct (ω) of CO2 emission certificates bought (if positive) or sold at time t . In our setup it
is possible for a generating unit to use more than one fuel during the same time period,
which means that we are seeking for an optimal fuel mix. Further (derived) decision
variables will be defined later on.

In practice, amounts of fuels are measured by a huge variety of units, depending
on the particular fuel and the concrete market location. To avoid in this paper the
usage of conversion factors as much as possible, all amounts of fuel are expressed by
their energy content in MWh. As a consequence, all fuel prices as well as the price
of electricity are expressed in EUR/MWh. CO2 emissions and the amounts of traded
certificates are expressed in (metric) tons and hence the certificate price in EUR/tonne.
Because electricity is produced and simultaneously sold over periods [τt , τt+1], the
prices Px

t have to be interpreted as weighted mean prices achieved over the whole
period.

In the following description, all decision variables related to time τt are considered
asΣt -measurable, which means that decisions have to be taken based on information
available at time t . In order to shorten notation, from now on we will not explicitly
mention the dependence of random variables on states ω, if no confusion is possible.
In any case, it should be kept in mind that equations and inequalities involving random
variables have to be understood as holding almost surely. Furthermore, we follow the
convention that equations containing free indices i ∈ I , j ∈ J or t ∈ {0, 1, . . . , T }
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726 R. M. Kovacevic, F. Paraschiv

are intended to hold for all possible values of these indices, i.e., ∀i ∈ I , j ∈ J and
for 0 ≤ t ≤ T , if no special assumptions are stated.

2.1 Thermal power plants, fuels and the basic cost model

It is not possible to produce negative amounts of energy, and we do not allow for
selling back fuel, which leads to the restrictions

xt,i j ≥ 0, ft, j ≥ 0. (1)

Different types of power plants are characterized by their efficiencies for producing
electricity with different fuels, the maximum power produced and the cost structure,
which together define the merit order of turbines in the system. In the simplest setup, the
produced energy is modeled as proportional to the amount of fuel used for conversion,
i.e., for each generator i we use multiplicative factors ηi j representing the efficiency
of producing electric energy with fuel j . The maximum power (in MW) that can be
produced with generator i is denoted by βi . This means that the generated electric
energy is restricted by

J∑

j=1

xt,i j ≤ βi ·Δt . (2)

Three kinds of cost are used throughout this paper: fuel costs, variable and fixed
operating costs. The fuel used for producing an amount of energy xt,i j is given by
xt,i j/ηi j ; hence, the related fuel costs are given by P f

t+1, j (ω) · xt,i j/ηi j . It is assumed
that the fuel price is known only after deciding about the amount of fuel used. The
variable operating costs γi per operating time (in EUR/h) include variable personnel
costs and maintenance costs. The usage time is estimated by xt,i j/βi . Finally, we also
model fixed operating costs, including personnel as well as maintenance and capital
costs. At first glance, it might seem that fixed costs do not influence the optimal
solution. However, we assume that fixed costs have to be paid at each decision period
and we will distinguish between positive and negative amounts of cash. Because
interest paid on a negative cash position (debt) is higher than interest on positive cash,
fixed costs have an effect on the risk of the decision problem.

In our examples, we aim at mid-term planning with weekly decisions; therefore,
we will not use switching, ramping, or minimum power production constraints. Such
constraints are most relevant in hourly (or daily) decision models and lead to mixed
integer models. While comparably efficient formulations exist for deterministic plan-
ning (see, e.g., Torre et al. 2002 or Carrion and Arroya 2006), it is very difficult to
include mixed integer constraints in a large stochastic problem, especially if calcu-
lation time is critical. As an example see, e.g., Nowak et al. (2005). We also do not
use production-dependent efficiencies, which would lead to nonconvex optimization
problems. By avoiding such complications, it is possible to increase the complexity
of the stochastic model, in particular to use more scenarios.
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2.2 Storage, CO2 and cash accounting

In the following we introduce storages st, j (ω) for each fuel j (in MWh), CO2 emissions
et (ω) cumulated up to time t (in metric tons), an account at (ω) for CO2 allowance
certificates cumulated up to time t (in metric tons), and a cash position wt (ω) (in
EUR). These variables depend on the decisions described in the previous section and
hence are also stochastic processes, adapted to the filtrationΣ . With initial amount s0

j
and maximum amount s̄ j , each storage j develops according to

s0, j = s0
j , st, j = st−1, j + ft, j −

I∑

i=1

xt−1,i j

ηi j
∀t > 0, (3)

0 ≤ st, j ≤ s̄ j . (4)

Note that Eq. (3) models storage as the amount stored immediately before the beginning
of the next production period (τt , τt+1]. It is assumed that fuels are bought and stored
at times τt , while they are used for electricity production over periods (τt , τt+1].

The production during any period (τt , τt+1] is restricted by the stored amount of
fuel at the beginning of the period, i.e.,

I∑

i=1

xt,i j

ηi j
≤ st, j . (5)

Storage costs are based on a cost factor ζ j (EUR/MWh/h) for each fuel and are averaged
for each time period. CO2 emissions and the related costs are modeled in the following
way: At the beginning, the amount e0 of CO2 emitted before the planning horizon is
known and during each period emissions et accumulate as follows:

e0 = e0, et = et−1 +
J∑

j=1

I∑

i=1

εi j

ηi j
· xt−1,i j ∀t > 0. (6)

Here, εi j denotes the amount of emissions (in metric tons, t) per MWh of fuel j
produced by unit i . At each time, it is possible to buy (ct > 0) or sell (ct < 0) CO2
allowance certificates at prices Pc

t . The transactions are accumulated on an account
at , which is finally cleared against the actual cumulated emissions et , both in tons.
Again, we start with a known amount a0 of certificates bought before the beginning
and describe the certificate position by

a0 = a0, at = at−1 + ct ∀t > 0. (7)

Clearly the emission accounts have to be restricted by

at ≥ 0, et ≥ 0. (8)
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728 R. M. Kovacevic, F. Paraschiv

As we will see, a penalty, payable at the end of the planning horizon, ensures that
emissions do not exceed the certificates hold.

Given all cash flows from fuel usage, storage, CO2 emissions and certificates, we
are able to define accounting equations for the cash position. At time t = 0 we start
with

w0 = w0 −
J∑

j=1

P f
0, j f0, j . (9)

For 0 < t < T , it is necessary to account for interest, fuel costs, cash flows from selling
electricity and from trading with certificates, storage costs, and finally for operating
costs. The cash position is split into a positive and a negative part w+

t , w
−
t which

allows to apply different interest rates for borrowing (w−
t > 0) and lending (w+

t > 0):

wt = w+
t − w−

t , w+
t ≥ 0 w−

t ≥ 0 ∀t > 0. (10)

We use interest rates ρb for borrowing and ρl for lending such that ρb > ρl . Because
of the difference between the two interest rates, it is possible to avoid the explicit
complementarity constraintsw+

t ·w−
t = 0: Any unnecessary amountw−

t is penalized
harder than its counterpart w+

t by the higher interest rate. These effects accumulate in
the cash position and finally influence the objective function (defined later on). Hence,
superfluous amounts will be avoided in the optimal solution.

Finally, with ζ j denoting storage costs per MWh and hour for fuel j, γi (EUR/h)
denoting variable operating costs of generating unit i per hour and κi (EUR/h) denoting
fixed operating costs of generating unit i per hour, the cash position updates in the
following way:

wt = (1 + ρl)w
+
t−1 − (1 + ρb)w

−
t−1 (11)

−
J∑

j=1

P f
t, j ft, j − Pc

t ct

+Px
t ·

I∑

i=1

J∑

j=1

xt−1,i j

−
J∑

j=1

ζ j
(st, j + st−1, j )

2
Δt−1

−
I∑

i=1

⎛

⎝γi

βi
·

J∑

j=1

xt−1,i j − κi ·Δt−1

⎞

⎠ 0 < t < T

At time T no fuel is bought, but the certificates have to be cleared. If the accumulated
certificates aT do not suffice, i.e., the difference between actual cumulative emissions
eT and aT is positive, then this difference is valued at the actual certificate price plus a
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penalty of θ = 100 EUR/t (see, e.g., Environmental Agency (GB) 2009). The resulting
amount has to be paid. On the other hand, remaining certificates just lose their value.

Analogously to (10), the positive part u+ of the difference can be modeled by

eT − aT = u+ − u−, u+ ≥ 0, u− ≥ 0. (12)

Hence the cash position at time T is given by

wT = (1 + ρl)w
+
T −1 − (1 + ρb)w

−
T −1 (13)

+Px
T ·

I∑

i=1

J∑

j=1

xT −1,i j

−
J∑

j=1

ζ j
(sT, j + sT −1, j )

2
ΔT −1

−
I∑

i=1

⎛

⎝ γi

βi
·

J∑

j=1

xT −1,i j − κi ·ΔT −1

⎞

⎠

−(θ + Pc
T )u

+.

Note that because positive differences are penalized in the cash position and the cash
position affects the objective function via (14), u+ and u− will not be simultaneously
positive in the optimal solution of the full optimization problem.

2.3 The objective function and the overall optimization problem

The producer aims at maximizing the revenue over the planning horizon. The decision
is based on the sum of the cash position and the market value of fuels stored at time
T . This is the asset value vT (ω) at the end of the planning horizon, a ΣT -measurable
random variable:

vT = wT +
J∑

j=1

sT, j · P f
T, j . (14)

In this specification, it is assumed that the certificates lose their value at the clearing
time T . Because vT is a random variable, we define the objective as a mixture of
expectation and average value at risk. For a random variable X with c.d.f. F the
average value at risk is defined as

AV@Rα(X) =
α∫

0

F−1(p). (15)
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730 R. M. Kovacevic, F. Paraschiv

See Eichhorn and Römisch (2005), Pflug and Römisch (2007) for more details on
AV@R and the related class of polyhedral risk and acceptability measures and Eich-
horn et al. (2004) for further applications in electricity production. Summarizing the
setup, we can write the decision problem of the producer as

max
x, f,c,(s,w,w+,w−,v,a,e.u+,u−)

λ · E[vT ] + (1 − λ) · AV@Rα(vT ) (16)

s.t. (1)−(14)

x, f, c �Σ
s, w, v, a, e, u �Σ.

The trade-off between the two objectives—the expectation and the AV@R—is defined
by the weighting factor 0 ≤ λ ≤ 1. The constraints x, f, c �Σ and s, w, v, a, e �Σ—
the non-anticipativity constraints—require that all decision processes are adapted to
the underlying filtrationΣ , i.e., that decisions at time t are based only on information
available up to time t .

3 Price models

In this section, we describe the underlying data used for the price models, show esti-
mation procedures and discuss the results. For the calibration of the gas price model,
we take daily GPL spot gas prices provided by Bloomberg, sample period April 2007–
December 2011. For the oil prices, we look at Brent Crude daily spot oil prices over the
sample period: May 2003–December 2011 (index EUCRBREN, source Bloomberg).
Spot coal prices for Europe are published weekly, for example, by McCloskeys key
physical prices for North West Europe (NWE) steam coal marker. We thus take the
Index MSCMEUET, source Bloomberg, data sample from 9th December 2005 to
25th June 2012. We further look at CO2 emission allowances, taking daily obser-
vations (EUETSSY1 price index provided by Bloomberg) between April 2008 and
December 2011. For electricity we take EEX Phelix hourly electricity prices quoted
at the European Energy Exchange (EEX), between September 2008 and December
2011.

In Table 2, we show descriptive statistics of the gas, coal, oil and emission allowance
(EUA) prices. The skewness and kurtosis coefficients suggest a leptokurtic distribution
with negatively skewed returns in all three investigated markets. This is also confirmed
by the Jarque–Bera test results which clearly reject the null hypothesis of a normal dis-
tribution for both levels and daily returns. Furthermore, autocorrelations die out slowly
in levels, which is consistent with a very persistent, possibly non-stationary variation.
To investigate the stationarity properties of the analyzed commodity prices we employ
three-unit root tests (Table 3). The results suggest that, at conventional significance
levels, logarithmic spot prices are non-stationary. This is similar to Daskalakis et al.
(2009) and clearly contradicts the common assumption of mean reverting behavior in
commodity prices.
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3.1 Preliminaries

We aim at an optimization problem with five driving random factors (gas, coal, oil,
CO2 and electricity prices). The first question in estimating the related price models is
whether it is worthwhile to estimate a joint model. While it seems reasonable that some
dependencies between those markets might be relevant, the literature on joint models
for commodity prices is scarce. We can mention in this sense (Paschke and Prokopczuk
2009), who proposed a multi-factor model for the joint dynamics of related commodity
spot prices in continuous time, with an application on crude/heating oil and gasoline
prices. Another example is Pilz and Scholgl (2009), who derive a hybrid commodity
and interest rate market model. However, the study refers mainly to futures commodity
markets with application to oil prices. Miltersen (2003) shows how to build a stochastic
model for commodity price behavior that matches the current term structure of forward
and futures prices. Casassus et al. (2010) found that long-term co-movement among
commodities is driven by economic relations, as an application for oil prices. However,
all cited models are applied to oil/gasoline prices. To our knowledge, a joint model
tested simultaneously for different European commodity prices (gas, oil, coal, etc.)
was not published so far.

As a starting point we investigated whether there are significant co-movements in the
commodity prices in such a way that a joint simulation model can be derived. Thus,
we applied Principal Component Analysis (PCA) to identify possible joint factors
driving the commodity prices. For this purpose, we looked at daily data between April
2008 and December 2011 for gas, (crude) oil, CO2 emission allowances and electricity
prices as described in the previous section. The coal prices were left apart, since we
have available only weekly observations in this case. In general, we observe very low
correlations (see Table 4). There is some correlation (<0.2) between CO2 emission
rights and oil prices, between CO2 and gas (<0.1) as well as between gas and electricity
(<0.1). The PCA shows that the first factor explains 31 %, the first two factors explain
58 % of the variance, etc. The eigenvalues of all four factors are relatively close, so we
cannot conclude clearly that there are factors which explain most of the variation of all
included prices (see Table 5). The rotated component matrix also shows that basically
each factor drives one commodity (see Table 6). Thus, there is no clear evidence for
the use of a joint factor model. Furthermore, we performed a cointegration analysis
pairwise and included all prices at once in the analysis, but did not get conclusive
results.1

3.2 Modeling commodity prices: gas, oil, CO2 and coal prices

3.2.1 Overall approach

The descriptive statistics of gas, oil and EUA spot prices indicates that they are likely
to be characterized by non-stationarity and jumps, as indicated by the skewness and
kurtosis. A model based on the standard Geometric Brownian motion process would

1 Results are available on request.
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be too limited in this case. We therefore apply Merton’s jump diffusion model (Merton
1976)—Geometric Brownian motion augmented by Poisson jumps (GBMPJ) which,
according to the literature (e.g., Schwartz 1997; Bierbrauer et al. 2007 or Meade 2010),
shows a good performance in modeling the dynamics of commodity prices.

We estimate the Merton model following the discussion in Honoré (1998). The
occurrences of jumps are modeled as Poisson process with dJt ∼ Po(λdt), and
the jump amplitude Yt is assumed to be log-normally distributed, i.e., ln(1 + Yt ) ∼
N (μ, δ2). Thus, the log spot price ln(St ) at time t has the form:

ln(St ) = ln(S0)+
(
α − 1

2
σ 2

)
t + σWt +

∑

0<s≤t

ln(1 + YsdJs). (17)

The model parameters ψ = (α, σ, λ, μ, δ) in Eq. (17) are estimated by maximum
likelihood, following consistently the procedure proposed by Honoré (1998, pp. 3–8).

3.2.2 Results

Our parameter estimates for gas, oil, coal and EUA prices are summarized in
Table 1. For a robustness check, we also perform an out-of-sample test by rees-
timating the parameters for a shorter sample which ends on 1st December 2010.
It shows that the estimated parameters are not sample dependent. The jump inten-
sity λ has the largest value for the gas prices. Oil prices show the lowest jump
intensity estimates. This is consistent with the kurtosis, skewness and Jarque–Bera
values which are the largest in case of gas (and the smallest for oil), as shown in
Table 2.

Figures 9, 10, 11 and 12 show the means and quantiles of 50,000 scenarios sim-
ulated for oil, EUA, gas and coal spot prices based on the GBMPJ model starting in
1st December 2011 for a horizon of 300 days (52 weeks in case of coal) and com-
pare it with the evolution of the real prices in the subsequent time period. One can
see that the scenario means reflect the spot price dynamics in a realistic way for all
commodities.

3.3 Modeling electricity prices

3.3.1 Preliminaries

Electricity prices have properties that differ considerably from those of financial assets,
or even of other commodities (see Keles et al. 2011; Blöchlinger 2008). Therefore,
we treat them separately. The seasonal behavior of electricity prices is one of the
most complicated among all commodities. It is predominantly caused by the almost
inelastic short-term demand for electricity. Beside this, the capacity to store electricity
is very limited and it is expensive or even damaging to change the production of
big generating units. These facts can be seen as causes for spikes and for negative
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electricity prices. From an economic perspective, negative prices can be rational, e.g.,
if the costs to shut down or ramp up a power plant unit exceed the loss for accepting
negative prices (see Keles et al. 2011). Therefore, since 1st September 2008, negative
price bids are allowed at the German power exchange EEX. Historical spot market
data over the investigated period show a total amount of about 100 h with negative
prices. Mostly, they occur during the night and early morning hours (2300–0800) as
displayed in Fig. 13.

Beside the deterministic impact factors, electricity spot prices are also influenced
by uncertain factors like power plant outages and fluctuant renewable electricity gen-
eration. These uncertainties are drivers of the stochastic component of the spot prices.
Thus, we derive a new regime switching model which takes into account the deter-
ministic component of electricity prices, as well as the market expectation using an
hourly price forward curve (HPFC) as input. Subsequently, the regime switching model
reflects big fluctuations of the market spot price around the HPFC: upward and down-
ward spikes may occur with a certain probability, which also allows simulating negative
prices.

3.3.2 Regime switching model for electricity prices

An important characteristic of electricity prices is their spiking behavior, also called
“jump groups” (see Keles et al. 2011): Prices may jump into another price level, called
“spike regime”, and afterwards jump back to the base price level, called “base regime”.
Therefore, regime switching approaches for electricity prices are often employed in
literature (see, for e.g., Keles et al. 2011).

We calibrate our model using a HPFC generated for the next trading day at EEX
(first day HPFC), but also consider the fluctuation of spot prices around the HPFC, due
to risk factors such as power plant outages, fluctuant renewable electricity generation,
etc. The HPFC gives us an important information about the expectation of the future
spot prices. Since spot prices may vary for each hour of the day, probabilities for upward
or downward spikes are derived for each hour of each week day (168 parameters). The
probability values quantify the likelihood that the spot price is in the “base regime” or
in one of the upper or lower spike regimes. Furthermore, we assume that upward or
downward spikes are exponentially distributed and we determine the expected spike
size for each hour of each week day. The model can be described by

MCPt =
⎧
⎨

⎩

f L
t − Spike−

t with probability p−
h

ft · exp(rt ) with probability 1 − p−
h − p+

h
f U
t + Spike+

t with probability p+
h

with

Spike+
t ∼ Exp(λ+

h )

Spike−
t ∼ Exp(λ−

h )

rt ∼ N (0, σ 2
h )
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f L
t = ft ∗ exp(−αh)

f U
t = ft ∗ exp(αh)

where

MCPt Market clearing price (or spot price) for time t measured in hours

ft Forward price for hour t from HPFC

h Index of the week hour that corresponds to time t , i.e., h(t) : t →
{1, . . . , 168}

Spike+
t Spike (upward), exponentially distributed with parameter λ+

h

Spike−
t Spike (downward), exponentially distributed with parameter λ−

h

f U
t Upper limit of the Gauss dynamics

f L
t Lower limit of the Gauss dynamics

rt Normally distributed random variable N (0, σ 2
h )

Parameters:

p+
h Probability for spike upwards

p−
h Probability for spike downward

σ 2
h Volatility of the Gaussian dynamics

λ+
h Parameter of the exponential distribution for upward spikes

λ−
h Parameter of the exponential distribution for downward spikes

αh Delimitates the upper/lower bounds of the “base regime.”

We calibrate our model using as input the first day HPFC. We generate one HPFC
for each day between September 2008 and December 2011, and we extract always
the first day of each curve. We construct this way the first day HPFC, which con-
tains updated information about the next day expected price. It is of great importance
to look at the updated curve, since the level of electricity prices can change signif-
icantly also on short term. In Appendix A, we describe the derivation of HPFCs.
The Gaussian regime around the first day HPFC is delimited by the bands f L

t
and f U

t . Deviations from the HPFC are driven by the normally distributed ran-
dom variable rt . Upper and lower spikes occur with probabilities p+

h and p−
h , and

their magnitude is exponentially distributed. The model parameters are estimated
using a maximum likelihood estimation procedure, as discussed in the next subsec-
tion.
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3.3.3 Estimation procedure for the electricity model

Observations are given at (hourly) time points t = 1, . . . , T . Let h(t) : t →
{1, . . . , H} a function that maps to each time point t the index of the corresponding
week hour (H = 168 is the number of hours per week). In the first step, the observa-
tions are assigned to different regimes. The values that separate the Gaussian from the
lower or from the upper spike regime, respectively, for each time band h′ = 1, . . . , H
are set to αh′ := α ·sh′ . Parameter α > 0 is unique for all hours and sh′ is the estimated
standard deviation of rt := ln MCPt − ln ft for all t = 1, . . . , T with h(t) = h′, i.e.,
before assigning the observations to different regimes, but taking into account only
positive prices. Define for each hour h′ = 1, . . . , H the sets

DL(h′) := {t = 1, . . . , T | h(t) = h′ ∧ MCPt < ft · e−αh′ }
DU(h′) := {t = 1, . . . , T | h(t) = h′ ∧ MCPt > ft · eαh′ }
DG(h′) := {t = 1, . . . , T | h(t) = h′ ∧ ft · e−αh′ ≤ MCPt ≤ ft · eαh′ }

that contain the indices of the hours that belong to one of the three regimes. Then, for
each h′ = 1, . . . , H the parameters are found by

λ−
h′ = #elements inDL(h′)∑

t∈DL(h′)( ft · e−αh′ − MCPt )

λ+
h′ = #elements inDU(h′)∑

t∈DU(h′)(MCPt − ft · eαh′ )

σ 2
h′ = 1

#elements inDG(h′)
∑

t∈DG (h′)
(ln MCPt − ln ft )

2.

The value of α is chosen so that the log-likelihood function

ln L (σ1, . . . , σH , λ
+
1 , . . . , λ

+
H , λ

−
1 , . . . , λ

−
H |α)

=
H∑

h′=1

∑

t∈DL(h′)
ln φexp( ft · e−α·sh(t) − MCPt | λ−

h′)

+
H∑

h′=1

∑

t∈DU(h′)
ln φexp(MCPt − ft · eα·sh(t) | λ+

h′)

+
H∑

h′=1

∑

t∈DG (h′)
ln φnorm(ln MCPt − ln ft | 0, σh′)
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is maximized, where

φexp(x | λ) =
{
λe−λx , x ≥ 0
0 x < 0

,

φnorm(x |μ, σ) = 1√
2πσ 2

exp

{
−1

2

(
x − μ

σ

)2
}

are the densities of the exponential and the normal distribution with parameters λ > 0
and μ = 0, σ > 0, respectively.

3.3.4 Results

Our estimation results for all hours of each week day are presented in Tables 7 and
8. The expected values for each hour of the upward or downward spikes, 1/λ+

h and
1/(−λ−

h ) are given in EUR/MWh. We observe that large spikes are expected to occur
during the night hours, as well as during the midday and evening peak hours. Fur-
thermore, we have a higher volatility σ 2

h during the midday and evening peak hours.
For each hour h, the probabilities for upward and downward spikes, p+

h and p−
h , are

denoted in %. There is a larger probability that electricity prices fall into the lower
“spike regime” during the night hours. This result is in line with our findings from
Fig. 13. For each day hour, there is a higher probability that large spikes occur during
Sundays, which is also confirmed by the literature (see, for e.g., Keles et al. 2011).
The parameter αh was estimated at 1.6.

After calibrating the model, several simulations were carried out to evaluate the
goodness of fit in- and out-of-sample. Figure 14 summarizes the quantiles over 50,000
scenarios for the spot electricity prices, for a horizon of 1 month, starting in September
2008 (for an in-sample test) and in December 2011 (out-of-sample). We observe that
the simulated electricity spot prices reflect the daily, weekly and annual cycles of
electricity prices. Furthermore, the model generates important properties like single
peaks or jump groups and the mean reverting property is captured very well by the
model.

From the graphical comparison of simulated and historical prices, it can be con-
cluded that the simulated electricity price curve is similar to the observed one. In
addition, different quality factors such as the R2 and the mean average percentage
error (MAPE)2 are computed for different estimation samples. The results in the fol-
lowing table show that the model performance is not sample dependent:

Estimation sample R2 MAPE

01/09/2008–01/12/2011 0.559 0.168

01/09/2008–01/12/2010 0.572 0.157

2 The MAPE represents the normalized deviation of simulated prices from historical ones in absolute
numbers (see Keles et al. 2011, p. 12).
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4 Implementation of the production planning model and applications

In the following we apply the described optimization model to a concrete configuration
of thermal power plants. The prices used for coal, gas and oil as well as for CO2
certificates were simulated from the price models analyzed in Sect. 3 and afterwards
reduced to tractable trees. The implementation is used to consider two practical case
studies: First, we analyze the effects of increasing CO2 prices on the decisions made
and second, we analyze minimum production costs of electricity delivery contracts in
the framework of indifference pricing.

4.1 The tree reformulation

Problem (16) cannot be solved directly. In order to solve concrete instances within the
framework of multistage stochastic optimization, it has to be reformulated on a discrete
probability space. The setup follows the approach described in Pflug and Swietanowski
(2000), Pflug and Römisch (2007), see also Birge and Louveaux (1997) where alterna-
tive approaches can be found: Consider a finite probability spaceΩ = (ω1, . . . , ωK ),
representing K scenario paths. Any stochastic process defined on this sample space
can be represented as a finite tree with node set N = {0, 1, . . . , N }. The levels
of the tree correspond to the decision stages. Let Nt be the set of nodes at level
t , for t = 0, . . . , T . The last level NT contains the K leaves of the tree which
can be identified with the scenario paths: NT = Ω = (ω1, . . . , ωK ). The tree
structure represents the filtration of the process and can be defined by stating the
(unique) predecessor node n− for each node n. The set of child nodes is denoted
by n+. There is a unique root node, by convention denoted with 0, which repre-
sents the present. Furthermore, each node n carries a probability Qn ≥ 0 with∑

j∈Nt
Q j = 1 for all points in time t . By construction there is a one to one

relation between any node n and an assigned pair (ω, t), which means that each
node is related to the state of the system at time t in sample path ω and vice
versa.

The price processes Px, P f , Pc are represented w.r.t. the nodes n of the tree, i.e.,
we write Px

n , P f
n , Pc

n instead of Px
t (ω), P f

t (ω), Pc
t (ω). In similar manner, the decision

variables x, f, c, s, w, v, a, e are related to the nodes: So far xt,i j denoted the random
vector of produced energy in period (t, t + 1]. From now on (in discretized models)
xn,i j will denote the value of the produced energy planned at node n and produced
in the time period between n and its successor nodes. This formulation automatically
ensures measurability.

Furthermore, almost sure constraints are obtained by formulating them for all nodes
of a stage Nt and the objective function is based on the probabilities related to the
nodes: The expectation is directly calculated by weighting the values at each leaf node
with the respective probability. For the AV@R, we use its well-known epigraphical
representation (see, e.g., Rockafellar and Uryasev 2000). Figure 8 shows the full finite
state space reformulation, which is an LP.

It should be noted that typically the used trees are not very dense: If the time horizon
is 1 year and the decision periods have a length of 1 week, a binary tree would lead
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to a number of nodes around 9 × 1015. While for LPs without integer variables, it
is easily possible to solve instances with several millions variables and constraints,
even binary trees will lead to instances that cannot be calculated anymore. Therefore,
the trees must be sparse, i.e., most of the paths in the tree do not branch most of the
time.

In our model, it is possible to buy and sell emission certificates. This can lead to
unbounded solutions (arbitrage opportunities) because predictability is high for sparse
trees. In order to avoid this difficulty, we allow trading of certificates only in nodes
with more than one significantly distinct successors: we add constraints

n ∈ N b¬0 : an = an− + cn, (18)

where N b¬0 denotes the set (excluding the root) of nodes with more than two successor
nodes such that the related prices go in different directions.

Tree construction is done in three steps: Starting from an estimated model for the
relevant prices, we simulate scenario paths and use a tree reduction method (Dupacova
et al. 2003, as an alternative Heitsch and Römisch 2011) to construct a big scenario
tree (with, e.g., several thousand leaf nodes). In the last step, the big tree is reduced to
a smaller tree (with several hundred leaf nodes), which is finally used as the basis for
the reformulated optimization model as described above. We base this reduction on
a multistage distance between trees, which generalizes the Wasserstein distance and
was recently proposed and analyzed in Pflug and Pichler (2012). The exact algorithm
can be found in Kovacevic and Pichler (2012).

The advantage of this approach lies in the fact that the multistage distance is able
to account for the development of information over time in a proper way: While
the Wasserstein distance evaluates the similarity between trees based on values and
probabilities and uses only one relevant σ -algebra, the multistage distance uses values
and probabilities as well, and also takes into account the whole filtrations represented
by the respective tree structures using all conditional probabilities.

4.2 System specification and basic results

The thermal system consists of three combustion turbines, two combined cycle plants
and one steam turbine. The steam turbine is fired with coal, whereas the other plants
are able to use both gas and oil. The steam turbines are more efficient than the sim-
ple combustion turbines and the combined cycle plants are more efficient than the
steam turbine. On the other hand, combustion turbines emit more CO2 than com-
bined cycle turbines and steam turbines emit more CO2 than combustion turbines.
The same order also holds for fixed and variable operating costs, and for the size
(maximum power) of the turbines. The exact numbers have been derived from typical
engines described in Konstantin (2007) and can be found at http://homepage.univie.
ac.at/raimund.kovacevic/publications.html.

Storage capacity is sufficient for approximately 3 weeks full production and the
system starts with a small amount of stored fuel at the beginning. Again the related
data, including storage costs, can be found at the above homepage.
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Fig. 1 Simulated scenario paths for all used commodities

As described before, we use historical data to estimate models for gas, oil, coal
and electricity prices as well as CO2 emission prices. The cash position starts with
a budget of 1 million EUR. In addition, interest on the cash position is given by
2.5 % and interest on debt is 12.5 %. Finally, the average value at risk is calcu-
lated at the level α = 0.05. The mixture parameter λ is set to 0.5 in the standard
case.

From the estimated models, we simulate scenario paths for all commodities (see
Fig. 1), calculate weekly averages, and finally construct a tree containing price and
probability information. In particular, we use a medium size tree with 52 stages rep-
resenting the weeks of a year, 350 leaf nodes, representing the scenarios, and all in all
5,950 nodes. The pure structure of the resulting tree is depicted in Fig. 2 and represents
the filtration of the involved price and decision processes. This formulation resulted in
LP problems with 331,665 constraints and 359,635 decision variables. The model was
implemented in AIMMS 3.12 and the interior point algorithm of GUROBI 4.6 was
used to solve all discussed instances. The mean running time for instances related to
the efficient frontier calculation below was 1.92 s, while one instance of indifference
pricing (see Sect. 4.3.2) took 22.3 s on average.

As the first result, Fig. 3 shows the development of the asset value vt over time,
while Fig. 4 shows an estimated p.d.f. of the asset value at the end of the planning
horizon in more detail.

While we use the arbitrary value λ = 0.5 for the mixing parameter in the basic
setup, it is possible to calculate an efficient frontier for the trade-off between expected
end value and risk by calculating optimal solutions, when λ is varied between 0 and
1. The results are shown in Fig. 5: For a given risk, E(vT ) − AV@R(vT ), the points
on the line show the largest expected end value possible—which is related to a certain
value of λ.
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Fig. 2 Tree structure representing the filtration of the approximating processes used for numerical examples

Fig. 3 Standard case: Development of the cash position over time

4.3 Two case studies

4.3.1 Varying CO2 emission prices

For political reasons, European CO2 emission prices are low at the time being and do
not substantially reduce CO2 emissions. We use the basic model to implement a simple
analysis of the effect of increasing CO2 prices on the optimal decisions. It should be
kept in mind that this is an analysis from the viewpoint of a producer with a certain
given thermal system, not a market view.

The price scenarios are varied such that all CO2 prices are increased by 5, 10, 20, 30
and 50 %. For each of these scenarios, problem (16) is solved to obtain the related
optimal values and decisions. Figure 6 depicts the effect of these price variations on
the (accumulated) amount of CO2, emitted over the whole planning horizon. Further
results show that for the analyzed thermal system, an overall increase of CO2 prices
by 1 % reduces the expected asset value by 1.66 %, but (on average) reduces the
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Fig. 4 Standard case: distribution (distribution function) of the cash position at the end of the planning
horizon

Fig. 5 Efficient frontier for the trade-off between expected end value E[vT ] and riskiness E[vT ] −
AV@Rα(vT ) of the end value

accumulated CO2 emissions by only 0.035 %. The bimodal shape of the p.d.f. is
mainly caused by the two types of gas/oil plants—if CO2 prices increase, production
is gradually switched to the more efficient combined cycle plants.
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Fig. 6 Effect of an increase in CO2 prices on the accumulated CO2 emissions. The distribution of emissions
is represented by a kernel density estimate

4.3.2 Indifference pricing for electricity delivery contracts

Assume now that in addition to producing electricity for the spot market, one also
considers electricity delivery contracts with given contract size. For simplicity, we
consider contracts with a fixed (and constant) amount E of electricity deliverable dur-
ing all weeks (52) of the planning horizon at a fixed, agreed price K per MWh. Hence,
the generator has to produce some electricity and sell it at a fixed price, regardless
of the actual development of prices. Only excess production capacity can be used for
trading at the spot market.

The question arises at which price K —given our thermal system—the producer is
willing to close a deal with given contract size. In the following we use indifference
pricing as an approach to find this minimum price: The indifference principle states that
the seller of a product compares his optimal decisions with and without the contract
and then requests a price such that he is at least not worse off when closing the contract.
This idea goes back to insurance mathematics (Bühlmann 1972) but has been used for
pricing a wide diversity of financial contracts in recent years; see Carmona (2009) for
an overview.

To implement indifference pricing within our framework, problem (16) is solved to
find the optimal value v∗ without the analyzed contract. In the second step, a modified
optimization problem is formulated to find the minimal bid price: Because the producer
should be indifferent, one constraint is given by

λ · E[vT ] + (1 − λ) · AV@Rα(vT ) ≥ v∗. (19)
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Fig. 7 Indifference prices for varying contract size

Next, it is allowed to buy electricity yt ≥ 0 at the spot market, and we ensure that the
contract is fulfilled:

∑

i∈I, j∈J

xt,i j + yt ≥ E (20)

Finally, the calculation of the cash position has to be corrected for the fact that parts
of the electricity are sold at the contracted price K instead of the actual spot prices:
The third line of (11) is replaced by

Px
t ·

⎛

⎝
I∑

i=1

J∑

j=1

xt−1,i j − E

⎞

⎠ + K · E . (21)

In order to find the indifference price, we then solve the optimization problem

min
x, f,c,y,K ,(s,w,v,a,e)

K

s.t. (1)− (14), using (21)
(19), (20) x, y, f, c �Σ

s, w, v, a, e �Σ,
(22)

Figure 7 shows the indifference prices for different contract sizes. It can be seen
that the price is very high for small amounts of energy and decreases fast, due to scale
effects in production. For large contract sizes, the price increases again, because for
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those amounts it is necessary to buy more and more electricity and to bear the resulting
price risk.

The indifference approach can easily be modified for pricing forward contracts as
contracts with delivery during some (future) part of the planning horizon. In the same
way, it is possible to analyze fuel contracts: In this case, the producer seeks for the
maximum price he is willing to pay for a fixed amount of fuel delivered during some
specified period, such that he is indifferent with respect to the objective value.

5 Conclusions

In this paper, we described a multistage stochastic optimization model for a thermal
electricity production system with different types of fuels, the related random spot
prices, fuel storage and CO2 emission certificates. In addition, costs involve fixed and
variable operating costs. We maximize a mixture of expectation and average value at
risk and derive the distribution of the asset value (a cash position plus the value of the
fuel) at the end of the planning horizon. Going from data to some applications, several
tasks had to be handled:

– We specified a flexible model for mid-term planning, such that iterative analysis—
repeatedly using the optimization model—can be done in reasonable time.

– Our risk factors were the fuel prices for oil, gas, coal and CO2 emission certificates
prices which are modeled as Geometric Brownian motions with jumps. We further
estimated electricity spot prices based on the related forward curve and deviations
between this curve and actual prices. All models show a good in- and out-of-sample
performance and they can be used for a realistic simulation of the future evolution
of prices.

– Simulated hourly and daily commodity prices were aggregated to weekly average
price scenarios and reduced to stochastic trees, suitable for stochastic multistage
optimization.

– A concrete instance of the multistage optimization model—modeling weekly deci-
sions over a full year—was implemented with fictitious but reasonable data, and
used for some case studies: We analyzed variations in the overall level of CO2
prices and their effects to the production. Furthermore, we investigated the pricing
of electricity delivery contracts with fixed amount and price in the framework of
indifference pricing.

The implementation was developed in discussion with practitioners from Siemens
AG Austria and we hope to develop further some aspects of this work in our
future research. In particular, we will work to enhance the tree construction. Fur-
thermore we see indifference pricing as an important approach at energy mar-
kets (applicable to all kinds of delivery contracts and forward contracts) and
will try to understand deeper its theoretical and practical properties and implica-
tions.
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Appendix A: Construction of the hourly price forward curves

For the derivation of the HPFCs, we follow the approach introduced by Fleten and
Lemming (2003). At any given time, the observed term structure at EEX is based only
on a limited number of futures/forward products. Hence, a theoretical hourly price
curve, representing forwards for individual hours, is very useful but must be con-
structed using additional information. We model the hourly price curve by combining
the information contained in the observed bid and ask prices with information about
the shape of the seasonal variation.

Let ft be the price of the forward contract with delivery at time t , where time is
measured in hours, and let F(T1, T2) be the price of forward contract with delivery in
the interval [T1, T2]. Since only bid/ask prices can be observed, we have:

F(T1, T2)bid ≤ 1
∑T2

t=T1
exp(−r t/a)

T2∑

t=T1

exp(−r t/a) ft ≤ F(T1, T2)ask, (23)

where r is the continuously compounded rate for discounting per annum and a is the
number of hours per year. A realistic price forward curve should capture informa-
tion about the hourly seasonality pattern of electricity prices. For the derivation of
the seasonality shape of electricity prices, we follow Blöchlinger (2008) (chapter 6).
Basically we fit the HPFC to the seasonality shape by minimizing

min

[
T∑

t=1

( ft − st )
2

]
(24)

subject to constraints of the type of Eq. (23) for all observed instruments. ft is the
value of the HPFC at time t and st is the seasonality curve at hour t .3 For details see
Fleten and Lemming (2003). To keep the optimization problem feasible, overlapping
contracts as well as contracts with delivery periods which are completely overlapped
by other contracts with shorter delivery periods are removed. For the derivation of the
shape st , we follow the procedure discussed in Blöchlinger (2008), see pp. 133–137.

3 In the original model (Fleten and Lemming 2003), applied for daily steps, a smoothing factor prevents
large jumps in the forward curve. However, in the case of HPFCs, Blöchlinger (2008) (p. 154), concludes
that the higher the relative weight of the smoothing term, the more the hourly structure disappears. We want
our HPFC to reflect the hourly pattern of electricity prices and therefore in this study we set the smoothing
term to 0.
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Appendix B: Estimation procedure for the Merton model

The model parameters ψ = (α, σ, λ, μ, δ) in Eq. (17) are estimated by maximum
likelihood. St denotes the price of a commodity at time t . Observations are available
at equally distributed time points ti = i ·Δ for i = 0, . . . , T , whereΔ is the sampling
frequency. For simplification, let an observation at time ti be denoted by Si . The density
function of the log return xi+1 = ln Si+1 − ln Si is

p(x;ψ) =
∞∑

j=0

e−λΔ(λΔ) j

j ! φ

(
x;

(
α − 1

2
σ 2

)
Δ+ jμ, σ 2Δ+ jδ2

)
, (25)

where φ(x; m, v) is the density function of the normal distribution for mean m and
variance v. The density of the log returns is evaluated by an infinite sum as in the
probability function of the Poisson distribution. For practical reasons, it is approxi-
mated by the first 100 terms of the sum in the estimation. The log-likelihood function
becomes

l(x1, . . . , xT ;ψ) =
T∑

i=1

ln p(xi ;ψ). (26)

However, it has been pointed out by Honoré (1998) that the likelihood function (26)
may become unbounded for some parametric specifications if it is maximized without
further restrictions on the parameter space. As a solution, it is proposed to link the
variance of the standard Brownian motion σ 2 and the variance of the jump diffusion
amplitudes δ2, i.e., to set δ2 = mσ 2 for a fixed positive m ∈ M , where M is a compact
set on R

+. Then, the new log-likelihood function

lm(x1, . . . , xT ;ψ∗) = l(x1, . . . , xT ; (α, σ, λ, μ,√mσ)) (27)

can be maximized with respect to the reduced parameter vector ψ∗ = (α, σ, λ, μ) for
a fixed value of m. As argued in Honoré (1998), lm(·;ψ∗) is bounded in contrast to
l(·;ψ). Finally, a consistent estimatorψ is obtained by choosing the value of m which
maximizes lm(·;ψ∗

m).

Appendix C: Tree formulation of the optimization model

See Fig. 8.
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Unit Description

Sets and indices
I = {1, . . . , I } Set of thermal units
i ∈ I Thermal unit i

J = {1, . . . , J } Set of fuels
j ∈ J Fuel j

T = {τ0, . . . , τt . . . , τT } Considered points in time
t ∈ {0, . . . , T }
Δt = τt+1 − τt hours (h) Length of time intervals
N = {0, . . . , N } Set of nodes in a stochastic tree with root 0
n ∈ N Node n
NT ⊆ N Set of leaf nodes (scenarios)
N¬T ⊆ N \ NT Set of all nodes excluding the leaf nodes
N¬0 Set of all nodes excluding the root node

N b¬0 Set of all nodes with more than one
successors, excluding the root node

Decision variables

xt,i j MWh Electricity produced by unit i with
fuel j during period (τt , τt+1]

yt MWh Electricity bought from spot market during period (τt , τt+1]
ft, j MWh Fuel of type j bought at time t

ct (metric) tons CO2 certificates bought at time t

Calculated variables
st, j MWh Stored amount of fuel j at time t

wt EUR Cash position

w+
t , w

−
t EUR Positive and negative parts of the cash position

vt EUR Asset value
at (metric) tons Cumulated amount of CO2 certificates, bought up to time t
et (metric) tons Cumulated amount of CO2, emitted up to time t

u+, u− (metric) tons Positive and negative parts of the difference between
emitted CO2 and the emission certificates held at time T

Unit Description

Random factors

Pf
t, j EUR/MWh Mean spot price of fuel j over period (τt , τt +Δt ]

Px
t EUR/MWh Mean electricity spot price over period (τt , τt +Δt ]

Pc
t EUR/tonne Mean spot price for CO2 certificates over period (τt , τt +Δt ]

Parameters

ηi j Efficiency of burning fuel j with generator i

εi j tons/MWh Amount of CO2 emitted by unit i per MWh of fuel burnt
β j MWh Maximum power that can be produced by generator i

γi EUR/h Variable operating costs of machine i when fuel j is used
κi EUR/h Fixed operating costs of machine i
ς j EUR/MWh Storage costs for fuel j

σ j MWh Maximum storage for fuel j

ϑ EUR/tonne Penalty for excessive CO2 emissions
λ Mixing factor for the objective function
α Parameter of the average value at risk, AV@Rα
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Fig. 8 Tree formulation of the optimization problem
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Appendix D: Estimation results

See Tables 2, 3, 4, 5, 6, 7, 8 and Figs. 9, 10, 11, 12, 13, 14.

Table 2 Descriptive statistics of gas, coal, oil and EUA spot prices (P) and logarithmic returns (LR)

Gas Oil EUA Coal

P LR P LR P LR LR

Mean 19.366 0.001 70.226 0.001 14.513 −0.001 70.633 0.001

Median 21.225 0.000 68.345 0.001 14.140 0.000 67.940 0.002

Maximum 39.750 0.251 145.860 0.135 28.590 0.156 139.710 0.148

Minimum 7.000 −0.350 25.240 −0.113 5.950 −0.145 42.460 −0.216

SD 5.857 0.050 27.274 0.022 4.690 0.027 21.032 0.041

Skewness −0.285 −0.339 0.410 −0.067 0.838 −0.229 0.918 −0.573

Kurtosis 2.095 9.501 2.424 5.431 3.722 7.859 3.578 6.576

Jarque–
Bera

60.471** 2,258.719** 93.685** 553.361** 147.509** 1,055.005** 50.625** 192.072**

Probability 0 0 0 0 0 0 0 0

No. of
observa-
tions

1,270 1,269 2,242 2,241 1,064 1,063 328 327

ρ(1) 0.985 −0.109 0.997 −0.033 0.994 0.033 0.987 0.151

ρ(2) 0.973 −0.008 0.995 0.013 0.989 −0.023 0.967 0.081

ρ(3) 0.961 −0.001 0.992 0.027 0.983 −0.046 0.946 −0.039

ρ(4) 0.948 −0.031 0.99 0.015 0.978 0.049 0.925 0.09

ρ(5) 0.936 0.048 0.987 −0.034 0.972 −0.042 0.903 0.021

One (two) star(s) denote significance at the 1 % (5 %) level; ρ(t) are autocorrelation coefficients at lag t

Table 3 Unit root test results for gas, coal, oil and EUA logarithmic spot prices

Test Null
hypothesis

Gas Oil EUA Coal

C TC C TC C TC C TC

ADF Unit root −2.667 −2.646 −1.781 −2.273 −1.038 −1.727 −1.929 −1.692

PP Unit root −2.458 −2.435 −1.778 −2.272 −1.051 −1.741 −1.993 −1.785

KPSS Stationarity 0.633* 0.473** 4.015** 0.538** 1.918** 0.389** 0.420* 0.148*

The results are presented in both versions: by considering a constant C or a trend and a constant (TC) in
the test equation. One (two) star(s) denote significance at the 1 % (5 %) level. ADF refers to Augmented
Dickey-Fuller test, PP to the Philips–Peron test and KPSS to the Kwiatkowski–Phillips–Schmidt–Shin test.
The lag structure of the ADF test is selected automatically on the basis of the Bayesian Information Criterion
(BIC). For PP and KPSS tests, the bandwidth parameter is selected according to the approach suggested by
Newey and West (1994)
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Table 4 PCA of commodity
prices: correlation matrix

Gas Electricity CO2 Oil

Correlation

Gas 1.000 0.097 0.094 0.044

Electricity 0.097 1.000 −0.003 0.005

CO2 0.094 −0.003 1.000 0.196

Oil 0.044 0.005 0.196 1.000

Sig. (1-tailed)

Gas 0.002 0.002 0.093

Electricity 0.002 0.460 0.436

CO2 0.002 0.460 0.000

Oil 0.093 0.436 0.000

Table 5 PCA of commodity
prices: total variance explained

Component Explained variation

Eigenvalue % of Variance Cumulative %

1 1.243 31.077 31.077

2 1.067 26.675 57.752

3 0.896 22.408 80.160

4 0.794 19.840 100.000

Table 6 PCA of commodity prices: component matrix and rotated component matrix

Unrotated Rotated

1 2 3 4 1 2 3 4

Gas 0.478 0.542 −0.650 0.234 0.020 0.998 0.049 0.046

Electricity 0.196 0.772 0.589 −0.135 0.002 0.049 0.999 −0.003

CO2 0.723 −0.257 −0.056 −0.639 0.098 0.046 −0.003 0.994

Oil 0.673 −0.334 0.351 0.559 0.995 0.020 0.002 0.098

Table 7 Estimates of the regime switching model for the night hours

23 24 1 2 3 4 5 6 7 8

1/λ+
h

Mo 22.968 15.031 10.507 10.41 9.699 9.034 8.279 11.347 9.747 6.74

Tue 9.759 13.252 6.462 6.81 9.399 7.37 5.931 7.501 9.229 8.993

Wed 1.425 3.323 7.546 10.522 6.643 4.633 5.193 4.374 6.194 8.493

Thu 3.672 5.305 4.03 4.76 3.521 1.126 3.16 4.543 9.749

Fri 1.865 4.45 2.298 3.101 2.821 4.765 7.175 10.922 15.333
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Table 7 continued

23 24 1 2 3 4 5 6 7 8

Sat 7.256 8.212 6.42 8.599 8.785 7.619 6.326 6.297 7.053 6.768

Sun 6.391 5.214 8.732 5.643 6.531 7.798 7.112 5.419 6.661 7.213
1/(−λ−

h )

Mo −5.55 −6.123 −9.334 −16.204 −12.309 −12.885 −13.394 −8.513 −7.871 −4.311

Tue −9.455 −3.72 −2.889 −7.691 −12.892 −14.614 −7.855 −4.867 −8.388 −4.693

Wed −9.077 −7.043 −7.673 −6.897 −10.703 −8.845 −7.368 −7.442 −22.79 −14.166

Thu −2.12 −5.167 −5.136 −6.089 −5.095 −5.13 −12.701 −7.143

Fri −17.454 −4.688 −7.946 −8.739 −7.05 −6.83 −4.563 −23.412 −6.556

Sat −3.728 −23.612 −38.221 −34.27 −17.243 −15.134 −13.106 −11.639 −19.041 −50.885

Sun −2.435 −5.529 −12.877 −28.122 −9.876 −7.973 −7.705 −10.351 −9.335
σ 2

h
Mo 6.88 5.958 6.135 6.244 6.403 5.925 6.229 6.478 7.835 10.209

Tue 6.624 6.079 4.847 5.489 5.625 6.119 6.047 5.75 6.422 10.604

Wed 5.908 4.879 5.504 5.658 5.889 5.616 5.357 5.405 6.417 10.769

Thu 5.831 4.348 5.882 5.756 5.96 6.258 6.049 4.724 5.671 10.386

Fri 5.803 4.893 5.396 5.481 5.428 5.304 5.461 5.261 5.501 10.335

Sat 6.289 5.823 4.794 5.15 4.725 5.509 5.908 5.421 5.929 6.234

Sun 6.656 6.052 6.203 5.103 5.34 5.068 4.264 4.687 3.739 4.24
p+

h
Mo 1.77 3.54 4.425 5.31 6.195 7.965 7.965 2.655 5.31 4.425

Tue 2.655 2.655 3.54 5.31 6.195 9.735 9.735 3.54 5.31 2.655

Wed 0.885 0.885 0.885 1.77 3.54 7.965 6.195 0.885 1.77 0.885

Thu 0 0.885 0.885 2.655 2.655 5.31 3.54 0.885 4.425 1.77

Fri 1.77 3.54 0 2.655 7.08 9.735 7.08 3.54 6.195 2.655

Sat 3.54 3.54 3.54 2.655 3.54 4.425 5.31 4.425 7.965 5.31

Sun 11.504 12.389 11.504 21.239 22.124 23.894 23.894 24.779 24.779 23.894

p−
h
Mo 0.885 3.54 20.354 25.664 34.513 39.823 35.398 20.354 3.54 7.965

Tue 0.885 3.54 7.965 11.504 14.159 18.584 18.584 7.08 0.885 3.54

Wed 0.885 1.77 3.54 10.619 11.504 15.929 15.929 6.195 1.77 3.54

Thu 0 0 1.77 5.31 11.504 14.159 9.735 5.31 3.54 4.425

Fri 0 2.655 1.77 3.54 7.08 10.619 7.965 5.31 4.425 3.54

Sat 1.77 1.77 3.54 4.425 10.619 12.389 15.929 19.469 15.929 4.425

Sun 0 4.425 7.965 15.929 23.009 30.973 32.743 36.283 42.478 27.434
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Table 8 Estimates of the regime switching model for the day hours

9 10 11 12 13 14 15

(a)
1/λ+

h
Mo 4.319 3.452 5.313 81.671 33.664 0 0

Tue 9.798 9.493 12.096 14.018 1.031 5.746 0

Wed 9.377 6.01 5.635 9.255 0.512 3.646 0

Thu 5.526 1.021 4.811 12.62 4.3 2.829 1.913

Fri 9.041 3.689 1.181 11.062 4.556 1.126 0.403

Sat 3.94 3.899 4.253 1.571 3.914 4.726 2.441

Sun 5.875 7.171 7.367 8.937 7.55 9.714 6.877
1/(−λ−

h )

Mo −3.994 −3.492 −3.917 −2.231 −1.575 −1.485 −4.238

Tue −6.42 −5.589 −6.203 −2.858 −3.169 −3.639 −2.96

Wed −3.182 −1.258 −1.689 0 0 0 −0.536

Thu −6.579 −1.99 −0.923 −1.395 −1.789 −0.815

Fri −4.719 −6.549 −9.617 −4.34 −0.286 −2.638 −5.335

Sat −38.794 −19.761 −6.676 −0.921 −1.478 −1.175 −7.156

Sun −5.846 −4.762 −7.409 −4.587 −5.324 −7.451 −6.562
σ 2

h
Mo 9.13 8.989 8.93 10.167 9.165 8.82 8.143

Tue 10.723 10.946 9.839 10.318 8.637 8.335 8.093

Wed 10.623 11.535 10.137 11.443 10.323 9.88 9.83

Thu 9.162 8.591 8.66 10.631 8.619 8.267 8.277

Fri 8.663 8.589 9.013 9.67 8.177 7.78 7.668

Sat 5.838 6.307 6.451 6.949 7.169 6.4 5.393

Sun 5.002 5.312 5.597 5.81 6.483 6.385 5.815
p+

h
Mo 1.77 0.885 1.77 0.885 0.885 0 0

Tue 1.77 1.77 1.77 1.77 0.885 0.885 0

Wed 2.655 1.77 1.77 1.77 1.77 0.885 0

Thu 1.77 0.885 2.655 3.54 2.655 1.77 0.885

Fri 1.77 0.885 1.77 1.77 0.885 1.77 0.885

Sat 3.54 1.77 0.885 0.885 0.885 0.885 2.655

Sun 22.124 10.619 8.85 7.08 7.965 5.31 9.735
p−

h
Mo 3.54 2.655 3.54 6.195 1.77 1.77 3.54

Tue 2.655 2.655 1.77 1.77 1.77 1.77 2.655

Wed 1.77 0.885 0.885 0 0 0 0.885

Thu 2.655 1.77 0.885 0.885 0 0.885 0.885

Fri 1.77 0.885 0.885 0.885 0.885 1.77 2.655

Sat 3.54 2.655 2.655 0.885 0.885 2.655 1.77

Sun 13.274 7.08 2.655 3.54 2.655 6.195 7.08
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Table 8 continued

16 17 18 19 20 21 22

(b)
1/λ+

h
Mo 0 0 9.39 49.756 55.066 16.289 20.02

Tue 0 0 108.808 49.593 6.199 12.786 8.424

Wed 3.397 0 25.292 8.222 39.668 19.207 0.31

Thu 4.965 2.968 15.388 31.012 5.122 2.616 0

Friday 2.156 1.69 0.674 0 3.211 0 1.023

Sat 4.056 6.51 6.215 4.407 3.829 6.006 5.787

Sun 6.578 6.461 8.071 5.738 5.825 5.823 6.666
1/(−λ−

h )

Mo −3.884 −3.945 −2.222 0 −2.33 −3.646 0

Tue −3.992 −4.443 −10.627 0 −0.658 −4.546 −5.862

Wed −4.399 −3.669 −2.091 −6.921 −6.943 −9.205 −12.505

Thu −2.458 −0.537 0 0 0 −9.764 −6.959

Fri −5.423 −3.546 −1.484 −3.687 −6.77 −4.309 −10.269

Sat −8.807 −4.368 −4.272 0 −1.999 −2.15 0

Sun −6.279 −4.601 −2.325 0 0 −0.397 0
σ 2

h
Mo 7.654 7.494 9.793 12.301 8.071 8.836 7.914

Tue 7.823 7.973 7.787 11.565 10.138 9.022 7.179

Wed 8.146 7.694 8.866 9.48 8.79 8.474 7.587

Thu 7.458 7.965 8.943 8.304 8.348 8.57 7.214

Fri 7.529 7.664 6.959 7.02 8.893 7.085 6.095

Sat 4.882 5.38 8.104 8.396 8.281 7.178 6.018

Sun 5.432 4.898 7.165 7.673 8.038 7.608 6.954
p+

h
Mo 0 0 0.885 1.77 1.77 2.655 1.77

Tue 0 0 2.655 0.885 0.885 1.77 2.655

Wed 0.885 0 1.77 0.885 1.77 0.885 0.885

Thu 1.77 0.885 1.77 2.655 0.885 0.885 0

Fri 1.77 1.77 0.885 0 0.885 0 0.885

Sat 2.655 3.54 4.425 2.655 4.425 4.425 3.54

Sun 11.504 11.504 9.735 11.504 12.389 12.389 10.619
p−

h
Mo 5.31 2.655 1.77 0 0.885 1.77 0

Tue 2.655 1.77 0.885 0 0.885 3.54 1.77

Wed 1.77 1.77 0.885 0.885 0.885 1.77 0.885

Thu 2.655 1.77 0 0 0 0.885 0.885

Fri 2.655 3.54 3.54 3.54 0.885 4.425 0.885

Sat 0.885 1.77 0.885 0 1.77 1.77 0

Sun 11.504 15.929 5.31 0 0 0.885 0
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Fig. 9 50,000 oil scenarios quantiles with start in 01/12/2011 for 300 days horizon

Fig. 10 50,000 EUA scenarios quantiles with start in 01/12/2011 for 300 days horizon
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Fig. 11 50,000 gas scenarios quantiles with start in 01/12/2011 for 300 days horizon

Fig. 12 50,000 coal scenarios quantiles with start in 01/12/2011 for 52 weeks horizon
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Fig. 13 Occurrence of negative prices during Sept. 2008–Dec. 2011 on different hours

Fig. 14 50,000 EEX Phelix spot prices in sample scenarios quantiles starting in 01/09/2008 on a horizon
of 1 month
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