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Abstract

We combine a dynamic programming approach (stochastic optimal control) with a multi-stage
stochastic programming approach (MSP) in order to solve various problems in personal finance
and pensions. Stochastic optimal control produces an optimal policy that is easy to understand
and implement. However, explicit solution may not exist, especially when we want to deal with
constraints, such as limits on portfolio composition, limits on the sum insured, an inclusion of
transaction costs or taxes on capital gains, which are important issues regularly mentioned in
the literature. Both optimization methods are integrated into one MSP formulation, and in a
short computational time produce a solution, which takes into account the entire lifetime of an
individual with a focus on the practical constraints during the first years of a contract.

Two applications are considered: (A) optimal investment, consumption and sum insured for
an individual maximizing the expected utility of consumption and bequest, and (B) optimal in-
vestment for a pension saver who wishes to maximize the expected utility of retirement benefits.
Numerical results show that among the considered practical constraints, the presence of taxes af-
fects the optimal controls the most. Furthermore, the individual’s preferences, such as impatience
level and risk aversion, have even a higher impact on the controlled processes than the taxes on
capital gains.

1 Introduction

The purpose of this paper is to formulate and solve two optimization problems relevant for personal

finance and pensions in a multi-period stochastic framework. Problem (A) investigates the optimal

investment, consumption and sum insured for an individual maximizing the utility of consumption

and a terminal utility of leaving a positive amount of money upon death over an uncertain lifetime.

Problem (B) is relevant for a pension product design in a defined contribution plan. A pension saver

wishes to maximize the utility of the future retirement benefits by optimally controlling the invest-

ment both before and after retirement as well as the level of the benefits that will be received after
∗Corresponding author at: DTU Management Engineering, Management Science, Technical University of Denmark,
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retirement. The solution determines a pension product that reflects the individual’s risk preferences

and impatience level.

A classical approach for consumption-investment optimization problems is stochastic optimal

control, also referred to continuous time and state dependent dynamic programming. Stochastic

optimal control is common in financial and actuarial literature and focuses on deriving the explicit

(analytical) solutions to a given model. Probably the most influential papers in this field have been

written by Merton (1969, 1971) who defined the original problem of optimizing utility of consump-

tion and terminal wealth over a fixed time horizon for an investor. This work has inspired many

researchers who either expanded the original model or investigated different objective functions, by

introducing for instance the lifetime uncertainty, sum insured and the labor income, Richard (1975),

stochastic interest rate, Munk and Sørensen (2004), salary uncertainty, Cairns et al. (2006), multi-

person household, Bruhn and Steffensen (2011), borrowing constraints, Byung and Yong (2011), or

constant linear taxation, Bruhn (2013). Applications within defined contribution pension scheme

with a focus on the investment strategy either during the accumulation or post retirement phase

(decumulation) together with the optimal time of annuitization, have been considered by Milevsky

and Young (2007) and Gerrard et al. (2004, 2012).

The main advantage of a stochastic optimal control approach is the analytical form of the optimal

solution, which is easy to understand and implement. However, the main drawback of this approach

is that the explicit solution in many cases does not exist, especially, when dealing with more realistic

constraints, such as limits on portfolio composition, limits on the sum insured, an inclusion of transac-

tion costs or taxes on capital gains, which are important issues regularly mentioned in the literature.

Therefore, to overcome these limitations, researchers must apply numerical methods. To focus on the

practicalities of the problem, we choose in this paper a multi-stage stochastic programming (MSP)

approach, which is broadly applied in operations research. MSP is a general purpose framework for

modelling optimization problems where an objective function can take a variety of forms. It is based

on the scenario trees that represent the range of possible outcomes for the uncertainties. Rather

than finding a generic optimal policy, the optimal solution is computed numerically at each node in

the scenario tree, for the specified decision variables. MSP can easily address realistic considerations

and constraints, as long as they have an algebraic form.

A stochastic programming approach is more common within portfolio management and asset-

liability management than within the areas concerning the individual investors such as optimal

investment-consumption decisions. See e.g. Mulvey et al. (2006, 2007) who argue that multi-period

investment models combined with Monte Carlo simulation can address important considerations for

long-term investors, and Ferstl and Weissensteiner (2010) who present a stochastic linear program-

ming model for optimal asset allocation in a situation where a financial company wishes to minimize

the conditional value at risk. Nevertheless, applying stochastic programming or other numerical ap-

proaches to find the optimal decisions from the individual investors’ point of view can also be found

in the literature. See e.g. Horneff et al. (2008) considering an individual characterized by Epstein-Zin
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preferences, Cai and Ge (2012) investigating the asset allocation for an investor with a loss aversion

objective, a predetermined objective and a greedy objective, Consigli et al. (2012) comparing invest-

ment opportunities offered by traditional pension products and unit-linked contracts with variable

life annuities, and Blake et al. (2013) deriving the optimal investment for a loss averse pension saver

with an interim and final target.

However, the main drawback of a multi-stage stochastic programming approach is that the prob-

lem size grows quickly as a function of the number of periods and scenarios. In particular, taking

into consideration the entire lifetime of an individual can be challenging in terms of computational

tractability. Several studies investigated the methods that could overcome this issue. For example,

Grinold (1977, 1983) presents and compares different methods of approximating the general multi-

stage optimization problem upon horizon, and concludes that a dual equilibrium technique will give

improving approximations of the optimal solution as the horizon increases, and perfect approxima-

tions in the limit. Barro and Canestrelli (2005, 2006) show that a dynamic portfolio problem written

as a multistage stochastic program can be rewritten as a discrete time optimal control problem,

whereas Barro and Canestrelli (2011) further extends this work to a broader class of multistage

stochastic programming problems, and reformulates the problems as discrete time stochastic optimal

control problems. Due to this reformulation one can solve large optimization problems in a low

computational time.

Finally, Geyer et al. (2009a) argue that stochastic optimal control and stochastic programming

can be combined and integrated into one multi-stage programming formulation. The authors model

the optimal investment-consumption problem using stochastic linear programming and combine it

with the closed-form solution obtained by Richard (1975). The mixed approach can accurately

replicate the first-stage investment and consumption decisions derived by Richard (1975). They

argue that stochastic programming and stochastic optimal control complement each other, especially

in the areas where one or the other does not perform well on its own. Thus, the main advantage

of the mixed approach is the optimal solution that is obtained under the realistic assumptions and

within a short computational time.

Inspired by the advantages of the mixed approach, we apply this method for two optimization

problems relevant for personal finance and pensions. Problem (A), similarly to Geyer et al. (2009a), is

based on the explicit solution derived by Richard (1975). Our paper, however, differs from the model

presented in Geyer et al. (2009a) in several aspects. The most important improvement is adding

the sum insured to the model. The explicit solutions for optimal consumption, investment and sum

insured derived by Richard (1975) assume the life insurance policy in the model. Therefore, the sum

insured must be included in the MSP formulation. Furthermore, we focus on the optimal controls at

all stages, and not only the first-stage decision as done in Geyer et al. (2009a). Finally, instead of

approximating the objective function by a piecewise-linear interpolant, we solve the problem directly

using a nonlinear solver, thus removing the approximation error from the results.

Our work differs from Richard (1975) by including realistic constraints such as limits on portfolio
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composition, limits on the sum insured, an inclusion of transaction costs and taxes on capital gains.

We show that the optimal investment and sum insured derived by Richard (1975) is for a large

variety of parameters problematic from a practical point of view. First, the optimal investment

implies shorting the risk-free asset and gearing the mutual fund, which is often a limitation for a

private investor. Second, the sum insured is for most of the individual’s lifetime negative, which

cannot happen in practice. Third, while transaction costs have a minor impact on the optimal

controls, the presence of taxes on capital gains affects the optimal investment strategy significantly.

Another contribution of this paper is a formulation and the solution for problem (B). This problem

is relevant for pension product design in defined contribution pension plans, and its uniqueness

from the classical stochastic optimal control perspective lies in defining the optimal investment for

the period before and after retirement, whereas the optimal consumption only during the period

after retirement. All the aforementioned studies investigating the optimal investment-consumption

problems consider the optimal controls over the same period; none of them defines the optimal

controls over different periods. Therefore, we derive the explicit formula for the optimal value function

and the optimal controls using Hamilton-Jacobi-Bellman techniques for such a model. We further

solve problem (B) by using the mixed optimization approach.

The paper is organized as follows. Section 2 describes problems (A) and (B) in more detail

together with their optimal solutions obtained via dynamic programming. Section 3 explains how

to build a bridge between dynamic programming and multi-stage stochastic programming by in-

corporating both optimization methods in one MSP formulation. Section 4 focuses on defining the

MSP model, i.e. the objective function and the constraints, and scenario tree generation. Section 5

presents the numerical results of the optimal controls obtained via two different optimization meth-

ods, and the impact on the controls of the modifications considered during the first years of the

contract. Finally, Section 6 summarizes the paper and suggests the future work. The paper includes

two appendices: Appendix A explains the application of the mutual fund theorem, and Appendix B

presents a derivation of the optimal value function and controls for problem (B).

2 Model description

The section presents the general model assumptions relevant for problems (A) and (B).

One of the main decisions for the individual/pension fund is how to allocate the savings between

different financial assets. We assume that the savings can be invested in N assets: one risk-free

(bonds) and N − 1 risky assets (stocks). Given that the economy is represented by a standard

Brownian motion W defined on the measurable space (Ω,F), where F is the natural filtration of W ,
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the asset prices Sit can be modeled by a geometric Brownian motion,

dSit = αiS
i
tdt+ σiS

i
tdW

i
t , (1)

Si0 = si0 > 0,

where αi and σi are constants, and ∀{i,j}=1,...,N−1 dW
i
t and dW j

t are correlated with a coefficient

corrij . The risk-free asset is defined by αN = r and σN = 0. Merton (1971) shows that without loss

of generality we can assume that all the risky assets are included in one mutual fund, the prices of

which are modeled by a geometric Brownian motion,

dSt = αStdt+ σStdWt,

where α is the expected rate of return on the risky fund and σ is the volatility of the risky fund. See

App. A for details. We also assume that the individual is allowed to borrow money at the risk-free

rate r in order to buy the risky assets, as well as to take a short position in those assets.

Further, assume that P and P∗ are equivalent probability measures on the measurable space

(Ω,F). P denotes the objective measure, whereas P∗ is used by the pension fund for pricing both

market and life insurance risk. Thus, consistently with Richard (1975)’s assumptions, we consider

life insurance policies as standard tradable financial contracts.1

The individual has an uncertain lifetime modeled by a finite state Markov chain Z, defined on a

measurable space (Ω,F). The state process Z indicates whether or not the person is alive; it takes

values in {0, 1}, and starts in 0 at time 0, i.e. the person is alive. The mortality rates, µt and µ∗t

(respectively, under P and P∗) are defined by the jump intensities of the process Z. They are assumed

to be continuous and deterministic (as defined later in Sec. 5) and satisfy µt → ∞ and µ∗t → ∞,

which implies that limt→∞ P(Zt = 1) = limt→∞ P∗(Zt = 1) = 1.

The cash-flows accompanying the savings account are formalized by the continuous processes:

a deterministic contribution process lt that, depending on the problem, is interpreted either as the

labor income that is contributed to the account or the percentage of the labor income that is paid

to the retirement savings (premiums),2 and a consumption process ct determining the consumption

of the savings for the private purposes or the benefits that the pension fund pays to the retiree.

Finally, we assume that the individual is risk averse and has a CRRA utility function u charac-

terized by a constant relative risk aversion 1 − γ, constant elasticity of intertemporal substitution

1/(1− γ) (EIS) and time dependent weights wt reflecting the importance of present consumption in

1A similar approach to life insurance contracts can also be found in Kraft and Steffensen (2008). The assumption
about tradability of life insurance is not substantially different from considering a case where policy holders are allowed
to make alterations to their contracts. Apart from realistic issues with health and other types of assymetric information
(which do not appear in our model), this is certainly what appears in practice.

2The model could be extended by adding a stochastic contribution process. However, the explicit solutions to
problems (A) and (B) can be derived only if the labor income is assumed to be spanned by the stock risk. Otherwise,
the explicit solutions to the control problems do not exist.
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contrast to future consumption characterized by the impatience factor ρ:

u(t, c) = 1
γw

1−γ
t cγ , where w1−γ

t = e−ρt.

Parameter γ is defined for (−∞, 1)\{0}, whereas for γ = 0 we have the case of the logarithmic utility.

Below, we define the model setup specific for the particular problems.

2.1 Problem (A) - optimal investment, consumption and sum insured

We keep the original settings defined in Richard (1975) and recall only the most important assump-

tions and results that are crucial for this paper.

Savings dynamics. The individual has a bequest motive and upon death her heirs receive an

amount on the savings account plus the sum insured, Xt + It. The premium for the coverage is µ∗t It,

where µ∗t is the natural premium intensity decided by the life insurance company, also called pricing

mortality. In particular, we allow for negative It, which means that the person sells the amount It

to the pension fund and purchases life annuities.

The wealth dynamics while the person is alive develop as follows:

dXt =
(
r + πt(α− r)

)
Xtdt+ πtσXtdWt + ltdt− ctdt− µ∗t Itdt, (2A)

X0 = x0,

where r is the return on the risk-free asset, α is the expected rate of return on the mutual fund, σ is

the volatility of the mutual fund, π is the proportion invested in the mutual fund, and 1− π in the

risk-free asset.

Optimization problem. Since the individual has a bequest motive, she obtains the utility from

the amount that she will leave upon death to her heirs:

U(t, x) = 1
γ v

1−γ
t xγ ,

where v is the weight for this utility. It sounds reasonable to define v in terms of the weights for the

utility of consumption w, hence v denotes the weight put on her heir’s consumption relative to her

own,

v1−γ
t = λ−γw1−γ

t ,

where λ is a constant. The individual can control consumption, investment and sum insured, in order

to maximize the utility of consumption and bequest. Given the wealth dynamics, Xt, the problem
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is mathematically formulated as:

V A(t, x) = sup
π,c,I∈Q[t,T̃ )

Et,x

[∫ T̃

t
e−

∫ s
t µτdτ

(
u(s, cs) + µsU(s,Xs + Is)

)
ds

]
, (3A)

V A(T̃ , x) = 0,

where Et,x is the conditional expectation under P, given that the person is alive at time t and holds

wealth Xt = x, and Q[t, T̃ ) is the set of control processes for the time [t, T̃ ) which are admissible

at time t. T̃ is a fixed time point at which the investor is dead with certainty. Both utilities are

multiplied by factor e−
∫ s
t µτdτ denoting the probability that the individual survives until time s > t,

given she has survived until time t. Furthermore, the utility of bequest is multiplied by the mortality

intensity rate µs, which represents the probability that the person dies within a short period after

time s. The utility functions u and U are assumed to be strictly concave in c and X+I, respectively.

The optimal value function for this problem is given by

V A(t, x) =
1

γ
fA(t)1−γ(x+ gA(t)

)γ
, (4A)

where

fA(t) =

∫ T̃

t
e
− 1

1−γ
∫ s
t

(
µτ−γ(µ∗τ+ϕ)

)
dτ

[
ws +

(
µs

(µ∗s)
γ

)1/(1−γ)

vs

]
ds, ϕ = r + (α−r)2

2σ2(1−γ)
, (5A)

gA(t) =

∫ T̃

t
e−

∫ s
t (r+µ∗τ )dτ lsds, (6A)

and the optimal investment, consumption and sum insured are of the form:

π∗t = α−r
σ2(1−γ)

Xt+gA(t)
Xt

, c∗t = wt
fA(t)

(
Xt + gA(t)

)
, I∗t =

(
µt
µ∗t

)1/(1−γ)
vt

fA(t) (Xt + gA(t))−Xt.

(7A)

Equations (4A)-(7A) correspond to equations (25) and (40)-(44) in Richard (1975).

2.2 Problem (B) - optimal investment with optimal life annuities

The application of this problem is relevant for a pension product design in a defined contribution

pension scheme, both occupational and private. As seen in most of the European pension markets,

premiums are defined as a fixed percentage of the salary. In the occupational pension schemes this

percentage is typically decided by the employer, whereas private schemes allow the customer to

choose both the size and the frequency of the premiums. When entering the contract, the individual

is often given a choice of different pension products characterized by various investment strategies

and a type of benefits. For example, one can choose between a conservative, moderate or aggressive
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investment strategy, but it is the pension fund that decides how to invest the savings such that it

reflects the customer’s preferences. In a different kind of product, such as a unit-linked, it is the

pension saver who can decide on the portfolio allocation and adjust it during the contract as she

wishes. Both types of products typically offer an option to add a guarantee to the contract, but

in this work we assume that the benefits are directly linked to the market and no guarantees are

provided. In terms of the benefits, one can typically choose between a lump sum payment (T̃ = T ),

life annuities (T̃ →∞) or temporary life annuities (10-25 years, T̃ <∞). The size of the benefits is

calculated by the pension fund according to the actuarially fair principles.

The considered optimization problem allows for controlling the investment strategy both before

and after retirement, as well as the size and distribution of the benefits after retirement. The optimal

solution determines a product that is customized to the individual’s risk and impatience preferences.

In case of death, the pension fund inherits all the individual’s savings.

Savings dynamics. We split the problem into a before retirement period (accumulation phase,

t < T ) and an after retirement period (decumulation phase, t ≥ T ). In practice the pension saver

is not allowed to withdraw the pension savings for the consumption reasons or receive the benefits

before retirement, and it is also reasonable to assume that the premiums paid to the pension fund

are set to 0 after retirement. Thus, ct = 0 for t ∈ [t0, T ) and lt = 0 for t ∈ [T, T̃ ). Since the person

has no bequest motive, she has an additional income of µ∗tXt, which is the amount that the pension

fund pays to be her only inheritor. With these assumptions the definition of savings dynamics are

of the form

dXt =

{
(r + πt(α− r) + µ∗t )Xtdt+ πtσXtdWt + ltdt, t ∈ [t0, T ),

(r + πt(α− r) + µ∗t )Xtdt+ πtσXtdWt − ctdt, t ∈ [T, T̃ ),
(2B)

Xt = x0.

Optimization problem. The pension saver wishes to maximize the utility of pension benefits, or

in other words, the utility of consumption after retirement, while being able to control the invest-

ment strategy and the distribution of the benefits. She obtains no utility from consumption before

retirement, i.e. u(t, c) = 0 for t ∈ [t0, T ), hence the problem is formulated as follows:

V B(t, x) = sup
π∈Q[t,T̃ ), c∈Q[max(t,T ),T̃ )

Et,x

[∫ T̃

max(t,T )
e−

∫ s
t µτdτu(s, cs)ds

]
, (3B)

V B(T̃ , x) = 0.

where, as before, Et,x is the conditional expectation under P, given that the person is alive at time

t and holds savings Xt = x, and Q[t, T̃ ) is the set of control processes for time [t, T̃ ) which are

admissible at time t. The control processes in this problem are the proportion in the risky fund
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πt and the benefits ct. As in problem (A), we take into consideration the uncertain lifetime of the

individual by multiplying the utility function by the factor e−
∫ s
t µτdτ . At time T̃ the investor is

assumed to be dead with certainty. The utility function u is assumed to be strictly concave in c.

Even though the individual obtains no utility from consumption before retirement, the investment

process πt is controlled both before and after retirement. Thus, the novelty of this problem from the

stochastic optimal control point of view lies in defining the optimal consumption and investment over

different (but partially overlapping) periods. The research to date has tended to focus on deriving

the explicit solution for the controls over the same period; either until retirement, see e.g. Cairns

et al. (2006) and Bruhn and Steffensen (2011), after retirement, see e.g. Gerrard et al. (2004, 2006)

and He and Liang (2013), or generally over the life cycle, see e.g. Merton (1969, 1971), Richard

(1975), Milevsky and Young (2007), and Kraft and Steffensen (2008). Because, to the best of our

knowledge, neither Problem (B) or the case of deriving optimal controls over different periods has

been considered by other researchers, we derive the optimal value function and the optimal controls,

see Appendix B for details.

The optimal value function is of the form:

V B(t, x) = 1
γ fB(t)1−γ(x+ gB(t)

)γ
, (4B)

where fB(t) = e
− 1

1−γ
∫ T
t (µτ−γ(µ∗τ+ϕ))dτ ∫ T̃

T e
− 1

1−γ
∫ s
T

(
µτ−γ(µ∗τ+ϕ)

)
dτ
ws ds, t ∈ [t0, T ),

fB(t) =
∫ T̃
t e
− 1

1−γ
∫ s
t

(
µτ−γ(µ∗τ+ϕ)

)
dτ
ws ds, t ∈ [T, T̃ ),

(5B)

{
gB(t) =

∫ T
t e−

∫ s
t (r+µ∗τ )dτ lsds, t ∈ [t0, T ),

gB(t) = 0, t ∈ [T, T̃ ),
(6B)

and the optimal controls are given by

π∗t = α−r
σ2(1−γ)

Xt+gB(t)
Xt

, t ∈ [t, T̃ ), c∗t = wt
fB(t)Xt, t ∈ [T, T̃ ). (7B)

Since the utility function u is concave in c, the retirement benefits must be non-negative. Further-

more, we must have that X
T̃

= 0, which ensures that all the savings that belong to the pension saver

have been paid out during the distribution phase.

In both problems the functions gA(t) and gB(t) are of the same form. The first function has been

defined by Richard (1975) as human capital and represents the expected present value of future earn-

ings, or, in other words, what an individual’s labor force is worth in the financial market. Function

gB(t) represents the present value of the future premiums, i.e. the fraction of the human capital that
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is contributed to the pension savings account.

3 Combined MSP and optimal control

In this paper we further investigate a combined stochastic programming and stochastic optimal

control approach that was originally presented in Geyer et al. (2009a). We cannot apply purely

stochastic optimal control because the explicit solution can only be derived for simple models, which

often cannot be applied in practice, and as soon as we add some realistic constraints, explicit solutions

do not exist. In particular, we show in Sec. 5.1 that the optimal investment and sum insured derived

by Richard (1975) is for a large variety of parameters problematic from a practical point of view. First,

the optimal investment implies shorting the risk-free asset and gearing the mutual fund. Second,

the sum insured is negative for most of the individual’s lifetime. Third, while transaction costs have

a minor impact on the optimal controls, the presence of taxes on capital gains affects the optimal

investment strategy significantly.

To include the aforementioned constraints, one can choose the MSP approach, however, the

main drawback of this approach is the limited ability to handle many time periods under sufficient

uncertainty. The scenario tree grows exponentially with the number of time periods, and solving the

problem soon becomes computationally intractable. For example, to deal with a long horizon one has

to choose long and increasing intervals between the decisions, see e.g. Carino et al. (1998), Dempster

et al. (2003) and Consigli et al. (2012), add a steady state terminal value term to the objective

function and approximate the infinite horizon problem using the dual equilibrium technique, see e.g.

Grinold (1977, 1983) and Carino et al. (1998), or apply different scenario reduction algorithms, see

e.g. Heitsch and Römisch (2009a,b).

Each of the mentioned methods can handle the long time horizon problems, however, each method

has also some drawbacks. For example, choosing long intervals between the stages implies that the

individual does not have an opportunity to change her decisions for a considerable amount of time,

and the optimal decisions may differ from those made more frequently. Furthermore, the impact of

choosing increasing rebalancing intervals relative to constant intervals remains unknown. The dual

equilibrium technique implies the approximation of the infinite horizon according to some assumed

discount factor, and does not include the uncertainties during the steady state. Finally, despite the

increasing research on scenario reduction algorithms, modelling the entire lifetime of an individual

with yearly intervals still remains computationally intractable, unless one simplifies the tree during

the later years to the branching factor of one. However, if the branching factor at any node is lower

than the number of non-redundant assets, the scenarios may allow for arbitrage opportunities, which

would affect the optimal decisions, see e.g. Kouwenberg (2001), Klaasen (2002) and Geyer et al.

(2014).

In the light of these limitations, the mixed approach sounds appealing. It allows us to model

the entire lifetime of the individual under realistic assumptions, with short intervals between the
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Figure 1: The first years decisions are solved by the MSP model, whereas the decision over the remaining lifetime of
the individual are solved using HJB techniques.

decisions, and in a short computational time. The decisions are made under enough uncertainty

both during the period modeled by MSP, and in the later years modeled by stochastic optimal

control. Even though this approach assumes that the more realistic constraints are imposed only

during the first years, and not the entire lifetime, the empirical results (Sec. 5) show that the impact

of the constraints is visible even if they are imposed only for a short period of time, such as 6 years.

We argue that the initial decisions are the most important because the customer needs an advice

about her personal finance and pension at the present moment. A financial advisor or a pension

fund typically would hold regular meetings with the customer and rerun the model for a different

set of parameters than those initially chosen. This is necessary not only because the expectations

about the economy change, but also because the customer might change her risk and impatience

preferences. To what extend it is possible to neglect certain constraints and having a simpler model

in the long run, is not trivial and left to future research.

To define the objective function for the mixed approach we split the lifetime of the individual into

two periods: t ∈ [t0, TMSP ) and t ∈ [TMSP , T̃ ). We apply the MSP approach during the first interval

and stochastic optimal control during the remaining lifetime of the individual, see Fig. 1. The

mathematical formulation for problem (A), defined in eq. (3A), can be rewritten using its recursive

properties in the following way:

V A(t, x) = sup
π,c,I∈Q[t,TMSP )

Et,x

[ ∫ TMSP

t
e−

∫ s
t µτdτ

(
u(s, cs) + µsU(s,Xs + Is)

)
ds+ e−

∫ TMSP
t µτdτV A(TMSP , XTMSP

)

]
.

(8A)

The above definition is convenient because it separates the problem into two intervals, which allows

for applying different optimization methodologies in each interval. The crucial part of the model is

to insert the optimal value function derived explicitly into the objective function of the MSP model,

thus we can ensure that the MSP formulation incorporates the decisions for the entire lifetime and

not only for the first years. We start with the latest period, t ∈ [TMSP , T̃ ), and calculate the optimal

value function at time TMSP , i.e. V A(TMSP , XTMSP
) according to (4A). Then, we insert this function

into eq. (8A) and solve the optimization problem using a multi-period stochastic model. In this

way we construct one MSP formulation that covers the entire lifetime of the individual. We proceed
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analogously with problem (B). The mathematical formulation for the optimization problem defined

in eq. (3B) can be rewritten as

V B(t, x) = sup
π∈Q[t,TMSP ), c∈Q[max(t,T ),TMSP )

Et,x

[ ∫ TMSP

max(t,T )
e−

∫ s
t µτdτu(s, cs)ds+ e−

∫ TMSP
t µτdτV B(TMSP , XTMSP

)

]
,

(8B)

where V B(TMSP , XTMSP
) is given in eq. (4B).

4 MSP formulation

The main elements of multi-stage stochastic programming are a scenario tree and an optimization

model.

A scenario tree consists of nodes n ∈ Nt representing the range of possible outcomes for the

uncertainties. All the nodes are uniquely assigned to stages t = t0, . . . , TMSP such that at the first

stage there is a root node n0, at the subsequent stages, n ∈ Nt, t > t0, each node has a unique ancestor

n−, and at all the stages except for the final stage, n ∈ Nt, t < TMSP , each node has children nodes

n+. The nodes at the final stage TMSP are called the leaves. A scenario Sn consists of a leaf n and

all its predecessors n−, n−−, . . . , n0, or equivalently, a single branch from the root to the leaf. The

number of scenarios in the tree equals the number of leaves. Each node has a probability prt,n, so

that ∀t
∑

n∈Nt prt,n = 1, and the probability of each scenario Sn is the product of the probabilities

of all the nodes in the scenario, prSn = prTMSP ,n · prTMSP−1,n− · prTMSP−2,n−− · . . . · prt0,n0 .

The optimal decisions along the tree are computed numerically at each node of the tree, given

the information available at that point. Decisions do not depend on the future observations but

anticipate possible future realizations of the random vector. After the outcomes have been observed,

the decisions for the next period are made and depend both on the realizations of the random vector

and the decisions made in the previous stage. This combination of anticipative and adaptive models in

one mathematical framework makes this approach particularly appealing in financial applications; the

investor can specify the composition of a portfolio by taking into account possible future movements of

asset returns (anticipation), and rebalance the portfolio (take recourse decisions) as prices change, see

Zenios (2008). The applications of MSP specifically in individual asset liability management can be

found e.g. in Ziemba and Mulvey (1998), Kim et al. (2012) and Konicz and Mulvey (2013), whereas

for a general introduction to stochastic programming we refer the reader to Birge and Louveaux

(1997) and Ruszczyński and Shapiro (2003).

4.1 Objective and constraints

The first years decisions for the optimization problems considered in this paper are modeled by a

TMSP -period model. The decision variables are defined with respect to the nodes n in the scenario
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tree, where Nt denotes the set of nodes corresponding to stage t, and J is the set of available financial

assets. For each period t = t0, ..., TMSP , node n ∈ Nt, and asset class i ∈ J we define the following

decision variables and parameters:

Parameters:

x0 initial value of the savings,

lt labor income/premiums paid to the savings account at time t,

µt mortality rate for a y + t-year old individual,

qy+t probability that a y + t-year old individual dies during the following period,

q∗y+t probability that a y + t-year old individual dies during the following period

used for pricing life insurance/life annuities,

prt,n probability of being at node n, n ∈ Nt, obtained via scenario generation, see Sec. 4.3,

ri,t,n return on asset i at node n corresponding to stage t, obtained via scenario generation.

Decision variables:

P̃i,t,n ≥ 0 amount of asset i purchased in period t and node n,

S̃i,t,n ≥ 0 amount of asset i sold in period t and node n,

X̃i,t,n holdings of asset i at the beginning of period t, at node n, after rebalancing,

X̃−t,n holdings in all assets at the beginning of period t, at node n, before rebalancing,

X̃−t0,n0
= x0, X̃−t,n =

∑
i∈J (1 + ri,t,n)X̃i,t−1,n− , t = t1, ..., TMSP , n ∈ Nt,

C̃t,n consumption/benefit in period t and node n,

Ĩt,n sum insured in period t and node n (problem (A) only).

We use capital letters with the tilde to denote the variables of the MSP formulation as opposed to

the lowercase letters denoting the parameters for the model. Expression 1{(·)=t} denotes an indicator

function equal to 1 if (·) = t and 0 otherwise.

The entire MSP formulation that replicates the assumptions made in dynamic programming model

setup, consists of the objective function and three constraints: the budget constraint, the asset

inventory constraint and the constraint on positivity of certain variables. With only these three

constraints we can replicate the continuous time models presented in Sec. 2. Afterwards, in Sec.

4.2, we modify these equations in order to investigate the impact of various factors, such as limits

on portfolio composition, limits on the sum insured, transaction costs, and taxes on capital gains.

4.1.1 Problem (A)

The problem of optimizing the expected utility function of consumption and a terminal utility of

leaving a positive amount of money upon death, where the investment, consumption and sum in-

sured are the controlled processes, can be modeled with the set of the following equations.
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The objective function is obtained by substituting the integrals with the sums and the expectation

operator E with its discrete definition in the eq. (8A).

The budget constraint (10A), or alternatively, the cash flow balance constraint specifies that the

amount invested in the purchase of new securities plus consumption must be equal to the amount

gained from the sale of the securities plus labor income that is paid to the savings account plus any

initial savings x0 that the person has at the beginning of the contract. Moreover, we add the term

q∗y+tĨt,n to the left hand side of the equation, which is the price for the life insurance that the investor

pays at each period. The inclusion of the sum insured variable Ĩt,n in the budget constraint and in

the objective function for problem (A) is an important part of the model that distinguishes our work

from Geyer et al. (2009a).

Constraint (11A) calculates the value of the savings. It is equal to the accumulated capital

gains/losses on the assets held in portfolio from the previous period plus any amount purchased in

the current period minus sold securities.

The continuous time versions of the problems assume the utility function u to be strictly concave

in c, and U to be strictly concave in Xt + It. Furthermore, for γ < 0, u(0) = U(0) = −∞, therefore

we define the positivity constraints (12A). For γ ∈ (0, 1) we have u(0) = 0 and U(0) = 0, so the

positivity constraints are substituted with non-negativity constraints.

This leads to the model:

max

TMSP−1∑
s=t0

∑
n∈Ns

prs,n · e
−

∫ s
t0
µτdτ

[
u(s, C̃s,n) + qy+s U

(
s, X̃−s,n + Ĩs,n

)]
+

∑
n∈NTMSP

prTMSP ,n · e
−

∫ TMSP
t0

µτdτ · V A
(
TMSP , X̃

−
TMSP ,n

)
, (9A)

∑
i∈J

P̃i,t,n + C̃t,n + q∗y+tĨt,n = x01{t=t0} +
∑
i∈J

S̃i,t,n + lt, t = t0, . . . , TMSP − 1, n ∈ Nt, (10A)

X̃i,t,n =
(
1 + ri,t,n

)
X̃i,t−1,n−1{t>t0} + P̃i,t,n − S̃i,t,n, t = t0, . . . , TMSP − 1, n ∈ Nt, i ∈ J , (11A)

C̃t,n > 0, X̃−t,n + Ĩt,n > 0, t = t0, . . . , TMSP − 1, n ∈ Nt. (12A)

4.1.2 Problem (B)

The problem of maximizing the expected utility of retirement benefits, where the investment process

is controlled both before and after retirement, whereas the benefits are controlled only after retire-

ment, can be modeled using MSP formulation as follows.
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The objective function (9B) is a discrete version of eq. (8B) where the integrals are substituted

with the sums and the expectation operator E with its discrete definition.

The budget constraint (10B) specifies that the amount invested in the purchase of new securities

plus consumption must be equal to the amount gained from the sale of the securities plus premium

that is paid to the savings account plus any savings x0 that the person has at the beginning of the

contract. We also add the term q∗y+tX̃
−
t,n to the right hand side of the balance equation, denoting

the price that the pension fund pays the pension saver to be her only heir. Furthermore, we add the

pension benefit to the side of the outgoing payments for t ≥ T .

Constraint (11B) calculates the value of the savings on the pension account. This constraint is

identical to the asset inventory balance for problem (A).

The utility function u is assumed to be strictly concave in c, and for γ < 0, we have u(0) = U(0) =

−∞. Therefore, we assume that the benefits are positive, (12B), or, for γ ∈ (0, 1), non-negative.

This leads to the following MSP formulation:

max

TMSP−1∑
s=max(t0,T )

∑
n∈Ns

prs,n · e
−

∫ s
t0
µτdτu(s, C̃s,n)

+
∑

n∈NTMSP

prTMSP ,n · e
−

∫ TMSP
t0

µτdτ · V B
(
TMSP , X̃

−
TMSP ,n

)
, (9B)

∑
i∈J

P̃i,t,n + C̃t,n1{t≥T} = x01{t=t0} +
∑
i∈J

S̃i,t,n + lt + q∗y+tX̃
−
t,n, t = t0, . . . , TMSP − 1, n ∈ Nt, (10B)

X̃i,t,n =
(
1 + ri,t,n

)
X̃i,t−1,n−1{t>t0} + P̃i,t,n − S̃i,t,n, t = t0, . . . , TMSP − 1, n ∈ Nt, i ∈ J , (11B)

C̃t,n > 0, t = max(t0, T ), . . . , TMSP − 1, n ∈ Nt. (12B)

4.2 Additional constraints

The reason for modelling the first years decisions with MSP is that this optimization method can

easily capture the practical constraints such as limits on portfolio composition, limits on the sum in-

sured, transaction costs, and taxes on capital gains. These constraints are commonly used in financial

applications solved with MSP approach, see e.g. Geyer et al. (2009a) and Ferstl and Weissensteiner

(2011), but rare in investment-consumption problems solved with stochastic optimal control. Below,

we present how to modify the original constraints or add other constraints to the MSP formulation

presented in Sec. 4.1.
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Limits on portfolio composition. A feature that is interesting from the point of view of a private

investor, a pension saver and a pension fund, is the limit on the portfolio composition. For instance,

no pension fund allows for borrowing or short selling of the assets. Alternatively, if the investor has

certain preferences about the minimum and maximum percentage of her wealth invested in a certain

asset, we would like to include it in the optimization model. The limits on the portfolio composition

can be incorporated in the MSP formulation by adding the following constraints:

X̃i,t,n ≥ di
∑
j∈J

X̃j,t,n, X̃i,t,n ≤ ui
∑
j∈J

X̃j,t,n, t = t0, . . . , TMSP − 1, n ∈ Nt, i ∈ J , (16)

where di and ui are the lower and upper limits for the holdings of asset i. In particular, di and ui

can be extended to be time dependent, which would be suitable for a person with specific preferences

only for a certain year.

Limits on the sum insured. Richard (1975)’s model does not assume any constraint on the size

or the sign of the sum insured It. Including such a constraint in the dynamic programming approach

is definitely not trivial to solve and to our knowledge the explicit solution for this case has not been

derived. The MSP model allows for adding the limits on the sum insured in a straightforward way:

Ĩt,n ≥ dins, Ĩt,n ≤ uins, t = t0, . . . , TMSP − 1, n ∈ Nt. (17)

As shown later in Sec. 5.1, being able to control the sign of the sum insured is especially important

from the practical point of view. A negative sum insured means that it is the individual who sells the

life insurance to the pension fund for the price of q∗y+tĨt,n. Specifically, one should give up the part Ĩt,n

of the savings upon death in return for the extra premium q∗y+tĨt,n. Theoretically, we could interpret

this situation as investing a part of the savings in a life annuity, nevertheless, from a practical point

of view having a negative sum insured sounds strange.

Transaction costs. Similarly, the presence of transaction costs tci makes the considered problems

more realistic. Investigating how the transaction costs affect the optimal controls is of practical

importance. We add the costs as a percentage of the traded amount by modifying the budget

equations (10A) and (10B). We subtract the costs from the amount of the assets sold in a given

period, and add the costs to the amount purchased. The modified budget equations are defined as

follows:∑
i∈J

P̃i,t,n(1 + tci) + C̃t,n + q∗y+tĨt,n = x01{t=t0} +
∑
i∈J

S̃i,t,n(1− tci) + lt, (10A’)∑
i∈J

P̃i,t,n(1 + tci) + C̃t,n1{t≥T} = x01{t=t0} +
∑
i∈J

S̃i,t,n(1− tci) + lt + q∗y+tX̃
−
t,n, (10B’)
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for t = t0, . . . , TMSP − 1 and n ∈ Nt.

Taxes on capital gains. Worth consideration are also taxes on capital gains τ i. Generating a

scenario tree for the MSP model allows us to subtract taxes only from the positive capital gains, i.e.

netri,t,n =

{
ri,t,n(1− τ i), ri,t,n > 0,

ri,t,n, ri,t,n ≤ 0.
(18)

This requires changing the asset inventory balance constraints (11A) and (11B) as follows:

X̃i,t,n =
(
1 + netri,t,n

)
X̃i,t−1,n−1{t>t0} + P̃i,t,n − S̃i,t,n, t = t0, . . . , TMSP − 1, n ∈ Nt, i ∈ J .

(11A’,11B’)

This is also convenient in contrast to the stochastic optimal control approach, where the asset prices

are modeled by the Black Scholes model, and one can only adjust the expected returns and volatility

of the asset returns by introducing αi,net = αi(1− τ i) and σi,net = σi(1− τ i), see e.g. Bruhn (2013).

The taxes are then subtracted from both positive (gains) and negative (losses) returns. The latter

can be interpreted as a possibility to deduct the taxes from the negative capital income.

Other modifications. There are plenty of economic factors whose impact on the optimal control

would be interesting to investigate but are beyond the scope of this paper. Probably the most relevant

from a practical perspective is modelling the asset returns using a different model than Black Scholes.

Geyer et al. (2009b) extended their previous work by applying the first-order unrestricted vector

autoregressive process (VAR) to model asset returns. They find that there is a substantial difference

in asset allocation which reflects the impact of time-varying investment opportunities, which, not

surprisingly, shows the sensitivity of the model to the assumptions in the scenario generation.

4.3 Scenario generation

The uncertainty associated with the market returns is modeled by an N − 1-dimensional random

process. The multivariate return process evolves in discrete time, and the underlying probability

distributions are approximated by discrete distributions in terms of a scenario tree.

We have tested a number of scenario generation methods for stochastic programming, including

sampling, simulation, scenario reduction techniques and the methods based on matching the statis-

tical properties of the underlying process, see e.g.Kaut and Wallace (2005) and Heitsch and Römisch

(2009a). Since we combine the stochastic programming with the optimal control approach in one

mathematical framework, our goal is to generate a scenario tree with the prices for the securities

following the Black Scholes model defined in eq. (1). Specifically, we aim for constructing a multi-

period scenario tree with a discrete representation of a normal distribution N
(
αi − σi2/2, σi

)
, where
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the returns in two adjacent periods are independent and identically distributed. Therefore, the most

suitable approach in our study is the moment matching method.

The moment matching approach has been first described in Høyland and Wallace (2001) and is

based on solving a nonlinear optimization problem where both the asset returns and the probabilities

of each node are the decision variables defining the scenario tree. This algorithm has later been

improved in Høyland et al. (2003) where, instead of solving a nonlinear optimization problem, the

authors suggest to perform a number of transformations that ensure that the required moments are

matched. Since then, further improvements to this method have been made. Gülpınar et al. (2004)

suggest a combined simulation and optimization approach. The asset returns are first simulated

and then fixed in the optimization model, so that the only decision variables in the model are the

probabilities associated with each node. This method can moreover be applied to generate the entire

tree at once, and not node by node, as in the aforementioned approaches. Ji et al. (2005) is the first

to propose a linear programming (LP) moment matching approach, though only for a single period

tree. Similarly as in the previous paper, the outcomes of asset returns must be predetermined.

Inspired by that work, Xu et al. (2012) design a new approach that combines simulation, the K-

means clustering approach, and linear moment matching to generate the multi-stage scenario tree.

This method ensures that the statistical properties are matched well, the generated scenario tree has

a moderate size, the solution time is reduced, and at least two branches are derived from each non-

leaf node. Finally, Chen and Xu (2013) improve this work by removing the simulation component

and applying the K-means clustering method directly onto the historical dataset combined with LP

moment matching. This approach significantly reduces the computational time while preserving the

required statistical properties.

Despite the advantages of the newest scenario generation methods described above, for the pur-

pose of our study we choose one of the older algorithms, namely Høyland and Wallace (2001), which

we further improve by adding a priori the non-arbitrage constraints, see Klaasen (2002). This method

matches the statistical properties of a geometric Brownian motion better than other algorithms in a

situation when having as low a branching factor as possible is a priority. The algorithms described in

Xu et al. (2012) and Chen and Xu (2013) are definitely more efficient and can capture more complex

models for asset returns, such as the vector autoregressive and multivariate generalized autoregres-

sive conditional heteroscedasticity models, but they require a larger branching factor. For our choice

of assets and the distribution parameters, the satisfactory statistical match is obtained for a branch-

ing factor of at least 8, whereas the algorithm presented in Høyland and Wallace (2001) allows to

generate the required scenario tree with only 4 branches. Our priority is to investigate the impact

of some realistic constraints that are hard to implement in the stochastic optimal control approach,

therefore to study more time periods, we choose a scenario tree with fewer branches.
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5 Numerical results

We first present realistic examples illustrating problems (A) and (B) in the original model setup

(continuous time) and the solutions obtained by the MSP model presented in Sec. 4.1. Afterwards,

we add or modify the particular constraints as described in Sec. 4.2 and investigate their impact on

the optimal controls during the first years of the contract.

Parameters. If not specified in the captions of the tables and figures, the following parameters

have been chosen for testing the models:

• Market: the number of assets, N = 3; two risky and one risk-free asset, the expected rates

of returns on the assets are, respectively, α1 = 0.05, α2 = 0.07, r = α3 = 0.02, the volatility

of the assets, σ1 = 0.2, σ2 = 0.25, σ3 = 0, and the correlation between the risky assets is

corr12 = corr21 = 0.5; all parameters are adjusted for inflation.

• Utility function: risk aversion, 1 − γ = 4, corresponding to the optimal proportion in risky

asset after retirement π∗t equal to 25%, the impatience factor for the utility weights, ρ = 0.04,

intuitively chosen such that ρ ≥ r, and the weight on the utility of bequest relatively to the

utility of consumption, λ = 5, implying that the optimal amount which the inheritors receive

upon death is approximately equal to three and a half years of the person’s consumption while

she is alive, X∗t + I∗t ≈ 3.5c∗t (λ is only relevant for problem (A)).

• Contract: age at the beginning of the contract, age0 = 45, retirement age, ageT = 65, the final

age at which the person is assumed to be dead with certainty, T̃ = 110, type of retirement

benefits (problem (B)): life annuity.

• Lifetime uncertainty: the mortality intensity model is of the form µt = µ∗t = θ+ 10β+δ(y+t)−10,

where y is the age of the person at time t0, and θ, β and δ are constants.3 The model has been

calibrated to the mortality rates among Danish women in 2010 over age 40, Finanstilsynet

(2010), where θ = 0.0, β = 4.59364, δ = 0.05032. We approximate the probability that a

y + t-year old individual dies during the next year by the mortality rate, i.e. qy+t ≈ µt and

q∗y+t ≈ µ∗t .

• Scenario tree: number of MSP stages, TMSP = 6, branching factor in a single tree (number of

nodes), bf = 4, number of trees notree = 50, which implies in total 45 × 50 = 51, 200 scenarios.

• Cash-flows:

3In principle the mortality intensity model does not assume that an individual is dead at time T̃ with probability
1. However, for T̃ = 110, this error is negligible.

19



– Problem (A). Labor income lt = 27, 000 EUR, corresponding to the average Danish dispos-

able income (after taxes) for a 45-year old individual, Danmarks Statistik (2010), average

savings of a 45-year old individual, x0 = 60, 000 EUR,

– Problem (B). Before retirement : premiums, lt = 4, 000 EUR, corresponding to 15% of

the salary. Assuming that the person has been contributing to the pension account for

around 15 years, accumulated with some capital gains, gives the value of the initial savings

of x0 = 75, 000 EUR; After retirement : premiums, lt = 0, the value of the savings is

estimated from the expected savings for a 70 year old person (see before retirement case),

i.e. x0 = E[XB
25] = 225, 000 EUR.

Similarly as Geyer et al. (2009a), we have chosen to consider the small-scale optimization problems

rather than the large-scale problems. On the first place, we are interested in replicating the optimal

controls obtained from the continuous time models. The small-scale models are sufficient to evaluate

whether a similar solution can be achieved by running the MSP model. With only three assets: one

risk-free and two risky assets, the first four moments of a normal distribution can be approximated

with 4 nodes. 6 periods with 4 nodes each give in total 45 = 1, 024 scenarios. Additionally, we rerun

each program notree = 50 times for different scenario trees, and present the results in terms of means

and standard errors from sampling. We use the notation X∗t , π∗t , c
∗
t and I∗t for the expected optimal

value of savings, investment, consumption, and sum insured (average across all the scenarios) both

from the Richard (1975)’s model and from the combined model.

Each problem has been implemented using Matlab 8.2.0.701 (R2013b) for calculation of the

explicit solutions, GAMS 24.1.3 with CONOPT 3 (3.15L) solver for scenario generation, and GAMS

with MOSEK 7.0.0.75 solver for the MSP formulation and solution of the stochastic programming

models. The running time of each model for one scenario tree takes only a few seconds on a Dell

computer with an Intel Core i5-2520M 2.50 GHz processor and 4 GB RAM. Due to the linearity of

the constraints, one can also approximate the objective function by a piecewise-linear interpolant, see

e.g. Kontogiorgis (2000) and Rasmussen (2011), and solve the problem using a linear solver. We have

tested a number of both linear and nonlinear solvers, and we find that for the considered problems,

in terms of speed, robustness and accuracy, MOSEK, which uses an interior point algorithm, is the

best suited solver.

5.1 Numerical results for problem (A)

We start with analyzing the optimal controls obtained explicitly by solving Richard (1975)’s model

and the MSP solutions replicating this model (no additional constraints). Fig. 2 (top left and right)

shows the development in the expected values of the savings account, X∗t , optimal consumption,

c∗t , and sum insured, I∗t , in 1000 EUR (left figure), as well as the optimal proportion in both risky

assets, π∗t , and optimal proportion in the first risky asset π∗1t (right figure) during the entire lifetime

of the individual. The markers, which represent the optimal decisions obtained from the MSP
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model, closely follow the continuous lines representing the explicit solutions. Table 1 shows the exact

numbers plotted on the figure for the first five years of the contract. Since we compare a continuous

time model with a combined continuous and discrete time model, we expect the discrepancies. The

explicit solutions are calculated based on the assumption that the labor income, consumption, sum

insured, as well as capital gains occur simultaneously. In the MSP solutions we first account for

the cash-flows, and then make the investment decisions based on the value of the savings after the

cash-flows. Therefore, the investment control obtained in the MSP formulation is compared with the

average continuous time investment over the two adjacent time periods. The standard deviations

calculated from testing different scenario trees are negligibly small, which means that increasing the

number of scenarios will not necessarily improve the precision of the results.

Richard (1975)’s model implies that the initial proportion in risky assets for our choice of pa-

rameters is given by π∗t0 = 180%, where the distribution between the risky assets is specified by

the mutual fund theorem as π∗1t0 = 0.33π∗t0 and π∗2t0 = 0.67π∗t0 . The optimal solution favours the

asset with a higher return but also a higher volatility, therefore π∗1t < π∗2t , ∀t. These proportions

decrease smoothly over time as the individual manages to increase her savings due to labor income

and capital gains. After retirement π∗t remains constant, which is a classical result known in the

literature. The MSP solution closely follows the explicit solutions, though it consistently remains a

few percentages below the original solutions. In particular, the MSP solution slightly favors the first

risky asset (with a higher return and a higher volatility) and the ratio π∗1t /π
∗
t is 0.35. The optimal

consumption rate increases at a very slow pace over the entire lifetime. The increase is caused by

the choice of impatience factor ρ and risk tolerance γ in relation to the choice of market parameters

αi, σi, and the mortality rates, as explained later in the analysis of Figure 4.

Interestingly, for our parameters choice the sum insured I∗t is positive only during the first year

of the contract. Afterwards I∗t is negative, which is also consistent with Richard (1975) conclusions.

Recall that the amount paid out to the inheritors upon the person’s death is equal to the value of

the savings plus the sum insured. Therefore I∗t can be negative as long as X∗t + I∗t > 0. The size and

the sign of sum insured depends on parameter λ. Choosing λ = 1 means that the individual puts

an equal weight on her consumption and the bequest motive, therefore the optimal legacy amount is

approximately equal to the optimal consumption while the person is alive, i.e. X∗t + I∗t ≈ c∗t . Fig.

2 and Table 1 show the case for λ = 5, where the optimal death sum corresponds to approximately

three and a half years of optimal consumption while the person is alive, i.e. X∗t + I∗t ≈ 3.5c∗t .

The example takes as input some realistic parameters, however, some of the optimal controls

are problematic from a practical point of view. First, the proportion in risky assets is higher than

100% for t ≤ t3. It may happen that the individual does not have an opportunity to borrow money

and short the risk-free asset. Second, the sum insured is negative for t > t0. Thus, rather than to

purchase a life insurance from the pension company, the individual should sell a life insurance to the

pension company. Specifically, she should give up the part I∗t of her savings upon death in return for

the extra premium q∗y+tI
∗
t . Theoretically, we could interpret this situation as investing a part of the
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Figure 2: Problem (A). Explicit solution and MSP solution for the expected value of the savings, optimal consumption
and sum insured (left, top, in 1000 EUR). Optimal investment in both risky assets and in the first risky asset (right,
top, π∗

t = π∗1
t + π∗2

t ). The MSP solution for the expected optimal investment in both risky assets (left, middle) and in
the first risky asset (right, middle) given different constraints. The MSP solution for the expected optimal sum insured
given different constraints (bottom, in 1000 EUR).

savings in a life annuity, nevertheless, from a practical point of view, having a negative sum insured

sounds strange.

We have shown that the closed-form solutions can be replicated well and the patterns and the

level of the optimal controls are consistent with the continuous time models. Therefore, we find

the model reliable and use it as a tool to analyze the optimal controls under the effects of various

modifications during the first years of the contract.
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A borrowing constraint and a positive sum insured constraint. Figure 2 (middle left and

right, and bottom plot) and Table 1 show the optimal solutions that simultaneously account for two

additional constraints: (i) the individual does not have a possibility to borrow money in order to

invest more than she has in other assets (this constraint is defined in eq. (16) where ui = 100%),

and (ii) the individual is not allowed to sell the life insurance to the pension fund, It > 0, as defined

in eq. (17). As expected, the constraints directly affect the optimal investment and sum insured.

The optimal investment π∗t is now equal to its upper limit 100% and decrease faster than in the

original model setup. The constraint naturally also implies a change in the distribution between

the risky assets. Before, the ratio of the first risky asset to the total risky investment was given by

π∗1t /π
∗
t ≈ 0.35. With the new constraints the ratio starts with 0.15 at t0 and with time converges to

the original optimal ratio, which implies that π∗1t increases until the optimal ratio between the risky

assets is reached. The optimal sum insured is positive and converges to its lower limit 0. Finally,

the value of the savings, and as follows, the optimal consumption, is lower, due to more conservative

investment and positive costs for the sum insured q∗y+tIt.

Transaction costs. Secondly, we investigate the effect of transaction costs tci. These have been

defined as a constant percentage of a traded amount and are the same for purchases and sales and

for all assets, see eq. (10A’). As a result, the amount invested in risky assets is lower during the

first few years than in the original problem, but after a few years stays above the original π∗t . We

conclude that introducing the transaction costs implies that the development of the risky investment

over time is smoother, i.e. it decreases as in all other cases but the difference between the maximum

and minimum value is smaller. We explain it by the fact that rebalancing portfolio is expensive.

A smoother optimal investment implies the lower traded amount, hence lower costs. Other optimal

controls, i.e. consumption and sum insured, are not much affected by the transaction costs. As well

as the total savings, the optimal values are slightly lower (lower absolute value for the sum insured).

Fig. 2 (middle, left and right) shows the results for tci = 0.5%, but we have also investigated higher

costs, tci = 1%, and the patterns for the optimal controls remain similar.

Taxes on capital gains. Finally, we investigate the impact of taxes on capital gains on the optimal

decisions. We have integrated a linear taxation on the positive returns on asset i, τ i, as defined in

eq. (18). In comparison with other constraints, taxes on capital gains are the most influential for the

optimal decisions. Only τ i = 20% causes already a loss of 15% of the expected savings after 5 years

relatively to the original problem. Less savings implies less money to consume and to purchase a life

insurance. Both the consumption and the absolute value of the sum insured decrease, but the biggest

impact can be seen on the investment controls. The optimal percentage in stocks is only π∗t0 = 80%

comparing to the original π∗t0 = 178%, while the proportion in the first risky asset is only π∗1t0 = 4%.

Subtracting taxes only from the positive returns makes the scenario tree asymmetric and favours the

risk-free asset (the positive outcomes are lower, whereas the negative outcomes are as severe as they
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were before). A similar conclusion has been drawn by Geyer et al. (2009a). The MSP solution is also

more volatile for this case than for other considered constraints; the investment controls vary within

3-8% for different scenario trees.

5.2 Numerical results for problem (B)

Problem (B) is relevant for a pension product design in a defined contribution pension plan. While in

certain products (such as unit-linked products) the individual can decide on the investment strategy

both before and after retirement, except for choosing the type of the benefits (lump sum payment,

temporary or life long benefits), she cannot control control how the benefits will be distributed.

This decision belongs to the pension fund. However, the pension fund can take into consideration

the pension saver’s risk preferences γ, the market parameters hidden under the variable ϕ, the

impatience factor ρ and both regular and pricing mortality intensities µt and µ∗t , and design the

payout profile such that the individual’s preferences are included.

Optimal annuity concept. The optimal pension benefits are of the form c∗t = wt
fB(t)Xt, see eq.

(7B). Inserting the definitions of functions wt and fB(t) leads to

c∗t = Xt
āy+t

, t ∈ [T, T̃ ) (19)

where āy+t is a traditional single-life annuity that pays 1 EUR per year continuously to an individual

who is y + t years old, i.e.

āy+t =

∫ T̃

t
e−

∫ s
t

(
r̄+µ̄τ

)
dτds,

where

r̄ = 1
1−γρ−

γ
1−γϕ, ϕ = r + (α−r)2

2σ2(1−γ)
, µ̄τ = 1

1−γµτ −
γ

1−γµ
∗
τ .

Parameters r̄ and µ̄t are the utility adjusted interest rate and mortality rate, respectively.

Figures 3 and 4 show the expected optimal benefits c∗t for the individuals with different risk

aversion 1 − γ and impatience factor ρ. Fig. 3 shows the initial value of the benefit at time of

retirement, c∗T , and its sensitivity on γ and ρ. Given the value of the savings account XT = 265, 000

EUR and no premiums after retirement, the size of the benefits for t = T varies between 12, 800 EUR

and 19, 500 EUR. The lowest initial benefit is for patient persons who prefer more risky investment,

i.e. those characterized by f.ex. ρ = 0.0 and γ = 0, whereas the highest benefits will be received still

by those who prefer more risky investment but are impatient, i.e. ρ = 0.04 and γ = 0. The tendency

is similar for the risk averse retirees— the impatient ones will receive the highest annuities in the

beginning of the retirement.
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Figure 3: Sensitivity of the optimal benefits at the beginning of retirement c∗T to risk aversion 1 − γ and impatience
factor ρ. The numbers are in 1000 EUR. xT = 265. Other parameters are as specified in Sec. 5.
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Figure 4: Optimal benefits c∗t for the first 30 years of retirement. Sensitivity of the benefits to various choices of the
impatience factors and risk preferences. The numbers are in 1000 EUR. xT = 265. Other parameters are as specified
in Sec. 5.

Fig. 4 shows the development of the size of the benefits during retirement (the payout profile)

for different values of γ and ρ. We immediately notice that the optimal payout profile is different

for individuals with different patience levels and risk preferences. The annuity payments can be

constant, decreasing or increasing. To be precise, it is the value of the impatience factor ρ relatively
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to the average return on investment adjusted for the risk aversion level 1− γ that drives the wealth

process, which controls the development of the payments. Impatient persons (f.ex. with ρ = 0.08)

wish to receive the highest benefits in the first years of the retirement, whereas those more patient

(ρ = 0.02) receive lower benefits in the beginning. The latter allows for larger capital gains during

retirement, thus on average the benefits during the individual’s older years are higher than upon

retirement. Parameter γ affects mostly the size of the benefits. The more risky investment gives on

average a higher return, thus higher benefits. Furthermore, risk averse persons (f.ex. γ = −3) will

receive each year smoother benefits (the difference between c∗65 and c∗95 is smaller) than a person with

a low risk aversion, such as γ = 0.

Basic constraints. We present the results for problem (B) for the time before retirement t < T

and after retirement t ≥ T on Fig. 5 and Table 2. Fig. 5 shows the development in the expected

values of the savings account X∗t and optimal benefits c∗t (in 1000 EUR) before retirement (top, left)

and after retirement (middle, left). The figures on the right show the optimal proportion in the first

risky asset π∗1t during the lifetime of the individual for the case before retirement (top, right) and

after retirement (middle, right). Given that at age 45 the individual has x0 = 75, 000 EUR on her

savings account and she continues to pay the premiums of lt = 4, 000 EUR every year, which are

invested in a conservative way, i.e. γ = −3, she should expect that her savings at retirement will

reach 265,000 EUR, which will define the pension benefits at almost c∗t = 18, 000 EUR at age 65. The

size and development of the benefits is optimal given she puts more weight on the benefits just after

retirement than on those in the future, and given she is risk averse, i.e. ρ = 0.04 and γ = −3. The

optimal investment is more conservative than in problem (A) because it is proportional to the sum

of the value of the savings and the present value of the pension contributions relatively to the value

of savings, see eq. (7B). Since the pension contributions lt are much lower than the labor income

in problem (A), π∗t is much lower than in problem (A) starting with 45% at age 45 and decreasing

afterwards. After retirement, the optimal proportion in risky assets remains constant at 25%. The

ratio of the investment in the first risky asset to the total risky assets according to the mutual fund

theorem remains the same, i.e. π∗1t /π
∗
t = 33%, both before and after retirement.

Similarly as in problem (A) we conclude that the MSP solution closely follows the optimal con-

trols derived explicitly. The model provides a realistic solution that can be applied by a pension fund.

Nevertheless, there is a number of constraints whose effect on the optimal control is worth investi-

gating. Incorporating the pension saver’s preferences such as the limits on the portfolio composition,

or other practical constraints such as transaction costs and taxes on capital gains using stochastic

optimal control is not trivial, therefore, to investigate the desired factors and to add flexibility to the

model, we choose the mixed approach.

Limits on portfolio composition. Imagine a 70 year old pension saver who simply is not satisfied

with the way the pension fund invests her savings. In particular, she believes that the first risky
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Figure 5: Problem (B) before and after retirement. Explicit solution and MSP solution for the expected value of the
savings and optimal benefits before retirement (left, top, in 1000 EUR). Explicit solution and MSP solution for the
expected value of the savings and optimal benefits after retirement (left, middle, in 1000 EUR). Optimal investment
in risky assets before retirement (right, top) and after retirement (right, middle). The MSP solution for the expected
optimal investment after retirement given different constraints in both risky assets (bottom, left) and in the first risky
asset (bottom, right). π∗

t = π∗1
t + π∗2

t .
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asset is more valuable and does not agree that after retirement only 9% of her savings are invested in

this asset (see Table 2, original constraints). She prefers a higher percentage in the first risky asset

and defines her new preferences, for instance, as minimum 15% should be invested in the first risky

asset. Such a constraint can easily be incorporated in the MSP model by adding eq. (16), where

constant d1 is set to be equal 15%. The optimal solution for this case is shown on Figure 5 (middle

left and right) and Table 2. Both the total investment in risky assets and the investment in each

of the risky assets remain constant as before. Though, both values are now higher. The pension

saver’s preferences are taken into account and π∗1t raises from 9% in the original model setup to 15%,

whereas the investment in both risky assets increases from 25% to 29%. The fact the π∗t increases as

well can be explained by the fact that there exists an optimal ratio between the risky assets which

the model tries to remain as closely as possible.

The MSP formulation allows for adding various limits on the portfolio. The limits can be both

from above and below, and separately for each asset class. We have investigated various combina-

tions of limits on a particular asset, and without presenting the numbers, we came to the following

conclusions. None of these constraints have much effect on the overall value of the savings or the

optimal benefits, but adding a limit just to one asset class directly affects the distribution between

all three asset classes. Imposing a higher percentage on an asset class than the percentage given by

the optimal control in the case without constraints, results in setting this asset exactly to this limit.

And, vice versa, limiting the amount of savings in a given asset class from above when the original

optimal investment suggests a higher amount, results in new optimal investment equal to the limit.

Furthermore, the limit set on one of the risky assets, triggers the change in the same direction of the

percentage of the second risky assets.

Transaction costs. In problem (A) we concluded that adding transaction costs, defined as a

percentage of a traded amount, implies a smoother development in the proportion invested in risky

assets. In this case, where the original optimal investment is constant, the development of π∗t is

no longer constant, but actually slowly decreases. The reason for that is that while the value of

the savings decreases, trying to rebalance the portfolio each year to a constant proportion is more

expensive than rebalancing to the decreasing proportion. As before, the changes in the optimal

benefits are so small that it is hard to conclude how the transaction costs affect the benefits, except

for the obvious fact, that the savings are slightly lower, which implies lower benefits.

Taxes on capital gains. Finally, to strengthen the conclusions we drew from investigating the

effect of adding taxes on the positive returns in problem (A), we repeat this investigation for problem

(B). The results are similar: the impact of taxes on the optimal investment is significant. Without

taxes the optimal investment in both risky assets was given π∗t = 25% and in the first risky asset

π∗1t = 9%. With the presence of taxes, the optimal controls are down to π∗t = 11% and π∗1t = 1%.

Again, we explain this fact by the asymmetry in the scenario tree caused by subtracting the taxes only
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from the positive capital gains. It is interesting though that taxes affect the size of the investment

but not its development, i.e. the proportions remain constant as in the case of the original problem.

Furthermore, the MSP solution is not as volatile as for problem (A). The standard deviations are

low, which shows a stability for different scenario trees. In terms of other controls, similarly as in

problem (A), the presence of taxes significantly affects the value of the savings, implying lower and

decreasing pension benefits.

6 Conclusions and future work

We have presented a model combining two optimization technologies: multi-period stochastic pro-

gramming and dynamic programming, to obtain optimal decisions related to various problems within

personal finance and retirement. The optimization methods complement each other well. MSP al-

lows for building flexible and practical models, which are difficult to solve with the stochastic optimal

control approach. The explicit formulas, however, can handle any number of periods and are useful

for the validation of the results obtained by the MSP. The considered problems are solved using a

nonlinear solver.

The numerical results show that among the considered limits on portfolio composition, limits

on the sum insured, transaction costs and taxes on capital gains, the presence of taxes affects the

optimal controls the most, and the changes in both the value of savings and the controlled processes

are significant.

Except for the contribution regarding computational methods, the paper introduces an important

aspect regarding designing pension benefits in a defined contribution pension scheme. Problem (B)

suggests how the pension fund could decide on the initial size of the benefits and their development

during the decumulation phase so that the individual’s risk and impatience preferences are captured.

Interestingly, the pension saver’s preferences have a higher impact on the size and development of

the benefits than limits on portfolio composition, transaction costs or taxes on capital gains.

The model can be improved in various ways. The most interesting would be the extension of

the MSP part to even more periods while still keeping the running time of the program within a

couple of minutes. Another suggestion is to introduce the bond market instead of the risk-free asset

and/or the uncertainty on the labor income/premiums. Finally, since the stochastic programming

approach allows the objective function to take a variety of forms, it could be of interest to consider

a different utility function such as loss aversion framework, where an individual can control both the

gains and losses in savings relative to a pre-defined target, or a multi-objective function, which takes

into account other preferences than risk aversion and impatience.
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A Application of the mutual fund theorem

The mutual fund theorem has been originally defined in Merton (1971) for an individual with a known
lifetime who wishes to maximize the expected utility of consumption. Richard (1975) extended this
result and proved that the theorem obtains also for an investor with the uncertain time of death
optimizing the utility of consumption and bequest.

Theorem 1 (Merton (1971), p. 384). Given n assets with prices Si whose changes are log-normally
distributed, then (1) there exists a unique pair of ”mutual funds” constructed from linear combina-
tions of these assets such that, independent of preferences (i.e., the form of utility function), wealth
distribution, [probability distribution of lifetime or life insurance opportunities, Richard (1975), p.
194], or time horizon, individuals will be indifferent between choosing from a linear combination of
these two funds or a linear combination of the original n assets.

Corollary 1 (Merton (1971),p. 386). If one of the assets is ”risk-free” (say the N th), then one
mutual fund can be chosen to contain only the risk-free security and the other to contain only the
risky assets in the proportions:

∀i=1,...,N−1 θi =
∑N−1
j=1 [σij ]

−1(αj−r)∑N−1
i=1

∑N−1
j=1 [σij ]−1(αj−r)

,

where {αi, σij} define the physical distribution of the returns, σij = σiσjcorrij, and corrij is the
correlation coefficient between assets i and j.

Hence, without loss of generality, we can work with only two assets, one risk-free and the other a
mutual fund of risky assets with a log-normally distributed price St defined by

dSt = αStdt+ σStdWt,

where

α =

N−1∑
i=1

θiαi, σ2 =

N−1∑
i=1

N−1∑
j=1

θiθjσij , dW =

N−1∑
i=1

θi
σi
σ dWi.

We assume in our study one risk-free asset and a mutual fund consisting of N−1 risky assets. The
optimal proportion between the risk-free asset and the mutual fund during the period [TMSP , T̃ ) is
calculated explicitly using stochastic optimal control (Hamilton-Jacobi-Bellman techniques). There-
after, we apply the mutual fund theorem to find the optimal allocation between the risky assets in
the mutual fund.

B Derivation of the optimal controls for problem (B)

We derive the optimal value function and the optimal controls for the problem of maximizing the
utility of consumption, where the control processes are specified over different time periods: invest-
ment is controlled both before and after retirement, πt ∈ Q[t0, T̃ ), and consumption is controlled only
after retirement, ct ∈ Q[max(t0, T ), T̃ ). The problem is solved first for the period after retirement,
where we refer to Bruhn and Steffensen (2011), and then for the period before retirement, which is
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one of the contributions of this paper. In the latter we insert the optimal value function obtained in
after retirement period as the boundary condition at time T .

After retirement period. The problem of optimizing expected utility of consumption after re-
tirement in the case where the person controls investment π∗t , life insurance I∗t , and consumption c∗t ,
and has no bequest motive, has been solved in Bruhn and Steffensen (2011). The authors derive the
optimal value function

V (t, x) = 1
γ f

1−γ
t xγ , (20)

and the explicit formulas for the optimal controls

π∗tXt = α−r
σ2(1−γ)

Xt, c∗t = wt
ft
Xt, I∗t = 0,

where

ft =

∫ T̃

t
e
− 1

1−γ
∫ s
t

(
µτ−γ(µ∗τ+ϕ)

)
dτ
wsds, ϕ = r + (α−r)2

2σ2(1−γ)
. (21)

Before retirement period. We apply Hamilton-Jacobi-Bellman techniques to solve the problem.
We first define the HJB equation for the considered period, based on the savings dynamics defined
in eq. (2B):

∂V (t,x)
∂t − µtV + sup

π

{
lt
∂V (t,x)
∂x +

(
r + πt(α− r) + µ∗t

)
x∂V (t,x)

∂x + 1
2π

2
t σ

2x2 ∂2V (t,x)
∂x2

}
= 0,

V (T, x) = 1
γ f

1−γ
T Xγ

T .

The boundary condition is equal to the optimal value function at time T given by eq. (20).
To solve the problem we first guess the solution and verify that it is a correct guess:

V (t, x) = 1
γ f

1−γ
t

(
x+ gt

)γ
.

We find the functions ft and gt by plugging in the derivatives to the HJB equation:

1−γ
γ f−γt

∂ft
∂t

(
x+ gt

)γ
+ f1−γ

t

(
x+ gt

)γ−1 ∂gt
∂t

= µt
1
γ f

1−γ
t (x+ gt)

γ − ltf1−γ
t

(
x+ gt

)γ−1

− (r + µ∗t )(x+ gt)f
1−γ
t (x+ gt)

γ−1 + (r + µ∗t )gtf
1−γ
t (x+ gt)

γ−1 − 1
1−γ

(α−r)2
2σ2 f1−γ

t (x+ gt)
γ ,

and obtain for t ∈ [t0, T ):

gt =

∫ T

t
e−

∫ s
t (r+µ∗τ )dτ lsds, (22)

ft = e
− 1

1−γ
∫ T
t (µτ−γ(µ∗τ+ϕ))dτ

fT = e
− 1

1−γ
∫ T
t (µτ−γ(µ∗τ+ϕ))dτ

∫ T̃

T
e
− 1

1−γ
∫ s
T

(
µτ−γ(µ∗τ+ϕ)

)
dτ
ws ds. (23)
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The optimal investment is then given by:

∂
∂π : π∗t = −α−r

σ2x

∂V (t,x)
∂x

∂2V (t,x)
∂x2

= 1
1−γ

α−r
σ2

x+gt
x .
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control model t0 t1 t2 t3 TMSP − 1

X∗
t

expl. 60.0 72.9 86.0 99.2 112.6
orig. constraints 60.0 72.8 85.8 99.0 112.4

(0.0) (0.0) (0.1) (0.1) (0.1)
πt ≤ 1 and It ≥ 0 60.0 71.0 82.6 94.9 107.7

(0.0) (0.0) (0.0) (0.0) (0.0)
tci = 0.5% 60.0 71.2 83.8 96.8 110.2

(0.0) (0.0) (0.0) (0.1) (0.1)
τ i = 20% 60.0 68.6 77.5 86.6 95.9

(0.0) (0.2) (0.3) (0.5) (0.7)

π∗
t

expl. 1.80 1.50 1.27 1.10 0.97
orig. constraints 1.78 1.48 1.26 1.09 0.96

(0.01) (0.00) (0.00) (0.00) (0.00)
πt ≤ 1 and It ≥ 0 1.00 1.00 1.00 0.95 0.89

(0.00) (0.00) (0.00) (0.00) (0.00)
tci = 0.5% 1.43 1.37 1.24 1.11 1.04

(0.01) (0.01) (0.01) (0.00) (0.00)
τ i = 20% 0.80 0.69 0.60 0.53 0.47

(0.08) (0.07) (0.06) (0.05) (0.05)

π∗1
t

expl. 0.60 0.50 0.42 0.37 0.32
orig. constraints 0.62 0.52 0.44 0.38 0.34

(0.01) (0.01) (0.01) (0.01) (0.01)
πt ≤ 1 and It ≥ 0 0.15 0.21 0.27 0.29 0.29

(0.01) (0.01) (0.01) (0.01) (0.01)
tci = 0.5% 0.46 0.44 0.41 0.38 0.36

(0.01) (0.01) (0.01) (0.01) (0.01)
τ i = 20% 0.04 0.04 0.03 0.03 0.03

(0.05) (0.05) (0.04) (0.04) (0.03)

c∗t

expl. 20.8 20.8 20.9 20.9 20.9
orig. constraints 20.8 20.8 20.9 20.9 20.9

(0.0) (0.0) (0.0) (0.0) (0.0)
πt ≤ 1 and It ≥ 0 20.6 20.6 20.6 20.7 20.7

(0.0) (0.0) (0.0) (0.0) (0.0)
tci = 0.5% 20.7 20.7 20.8 20.8 20.8

(0.0) (0.0) (0.0) (0.0) (0.0)
τ i = 20% 20.5 20.4 20.3 20.2 20.1

(0.0) (0.0) (0.0) (0.0) (0.0)

I∗t

expl. 9.5 -3.2 -16.2 -29.3 -42.6
orig. constraints 9.5 -3.2 -16.1 -29.2 -42.4

(0.0) (0.0) (0.1) (0.1) (0.1)
πt ≤ 1 and It ≥ 0 8.8 5.0 3.0 1.7 0.9

(0.0) (0.4) (0.1) (0.1) (0.0)
tci = 0.5% 9.3 -1.9 -14.4 -27.3 -40.5

(0.0) (0.0) (0.0) (0.1) (0.1)
τ i = 20% 8.6 -0.4 -9.6 -18.9 -28.6

(0.0) (0.1) (0.3) (0.4) (0.5)

Table 1: Problem (A). Explicit solution and MSP solution with various modifications for the expected value of the
savings, optimal consumption and sum insured (in 1000 EUR) and optimal investment in both risky assets and in the
first risky asset (π∗

t = π∗1
t + π∗2

t ). The numbers are presented in terms of means and standard errors (in parenthesis).
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control model t0 t1 t2 t3 TMSP − 1

before retirement

X∗
t

expl. 75.0 82.2 89.5 97.1 105.0
orig. constraints 75.0 82.2 89.6 97.3 105.1

(0.0) (0.0) (0.0) (0.0) (0.0)

π∗
t

expl. 0.45 0.42 0.40 0.38 0.37
orig. constraints 0.44 0.42 0.40 0.38 0.36

(0.00) (0.00) (0.00) (0.00) (0.00)

π∗1
t

expl. 0.15 0.14 0.13 0.13 0.12
orig. constraints 0.16 0.15 0.14 0.13 0.13

(0.00) (0.00) (0.00) (0.00) (0.00)

after retirement

X∗
t

expl. 225.0 217.0 209.0 201.0 193.0
orig. constraints 225.0 216.7 208.4 200.1 191.8

(0.0) (0.0) (0.0) (0.0) (0.0)
π1
t ≥ 15% 225.0 216.9 208.7 200.5 192.3

(0.0) (0.0) (0.0) (0.0) (0.1)
tci = 0.5% 225.0 215.9 207.6 199.3 190.9

(0.0) (0.0) (0.0) (0.0) (0.0)
τ i = 20% 225.0 214.5 204.0 193.7 183.5

(0.0) (0.1) (0.1) (0.2) (0.3)

π∗
t

expl. 0.25 0.25 0.25 0.25 0.25
orig. constraints 0.25 0.25 0.25 0.25 0.25

(0.00) (0.00) (0.00) (0.00) (0.00)
π1
t ≥ 15% 0.29 0.29 0.29 0.29 0.29

(0.00) (0.00) (0.00) (0.00) (0.00)
tci = 0.5% 0.26 0.25 0.25 0.25 0.24

(0.00) (0.00) (0.00) (0.00) (0.00)
τ i = 20% 0.11 0.11 0.11 0.11 0.11

(0.01) (0.01) (0.01) (0.01) (0.01)

π∗1
t

expl. 0.08 0.08 0.08 0.08 0.08
orig. constraints 0.09 0.09 0.09 0.09 0.09

(0.00) (0.00) (0.00) (0.00) (0.00)
π1
t ≥ 15% 0.15 0.15 0.15 0.15 0.15

(0.00) (0.00) (0.00) (0.00) (0.00)
tci = 0.5% 0.09 0.09 0.09 0.09 0.09

(0.00) (0.00) (0.00) (0.00) (0.00)
τ i = 20% 0.01 0.01 0.01 0.01 0.01

(0.01) (0.01) (0.01) (0.01) (0.01)

c∗t

expl. 17.8 17.9 17.9 17.9 18.0
orig. constraints 17.8 17.8 17.8 17.9 17.9

(0.0) (0.0) (0.0) (0.0) (0.0)
π1
t ≥ 15% 17.8 17.8 17.9 17.9 18.0

(0.0) (0.0) (0.0) (0.0) (0.0)
tci = 0.5% 17.7 17.7 17.7 17.8 17.8

(0.0) (0.0) (0.0) (0.0) (0.0)
τ i = 20% 17.3 17.3 17.2 17.1 17.0

(0.0) (0.0) (0.0) (0.0) (0.0)

Table 2: Problem (B) before and after retirement. Explicit solution and MSP solution with various modifications for
the expected value of the savings and optimal benefits (in 1000 EUR), and optimal investment in both risky assets
and in the first risky asset (π∗

t = π∗1
t + π∗2

t ). The numbers are presented in terms of means and standard errors (in
parenthesis). 37
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