Skip to main content
Log in

Quadratic scalarization for decomposed multiobjective optimization

  • Regular Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

Practical applications in multidisciplinary engineering design, business management, and military planning require distributed solution approaches for solving nonconvex, multiobjective optimization problems (MOPs). Under this motivation, a quadratic scalarization method (QSM) is developed with the goal to preserve decomposable structures of the MOP while addressing nonconvexity in a manner that avoids a high degree of nonlinearity and the introduction of additional nonsmoothness. Under certain assumptions, necessary and sufficient conditions for QSM-generated solutions to be weakly and properly efficient for an MOP are developed, with any form of efficiency being understood in a local sense. QSM is shown to correspond with the relaxed, reformulated weighted-Chebyshev method as a special case. An example is provided for demonstrating the application of QSM to a nonconvex MOP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Benson H (1978) Existence of efficient solutions for vector maximization problems. J Optimiz Theory Appl 26(4):569–580

    Article  Google Scholar 

  • Benson H (1979) An improved definition of proper efficiency for vector maximization with respect to cones. J Math Anal Appl 71(1):232–241

    Article  Google Scholar 

  • Bertsekas D (1982) Constrained optimization and Lagrange multiplier methods. Academic Press

  • Bertsekas D (1999) Nonlinear programming. Athena Scientific

  • Boţ R, Grad SM, Wanka G (2009) Duality in vector optimization, 1st edn. Springer Publishing Company, USA

    Google Scholar 

  • Bonettini S (2011) Inexact block coordinate descent methods with application to non-negative matrix factorization. IMA J Numer Anal 31(4):1431–1452

  • Borwein J (1977) Proper efficient points for maximizations with respect to cones. SIAM J Control Optimiz 15(1):57–63

    Article  Google Scholar 

  • Bowman VJ (1976) On the relationship of the Tchebycheff norm and the effcient frontier of multiple-criteria objectives. In: Thieriez H (ed) Multiple criteria decision making, vol 130., Lecture notes in economics and mathematical systems. Springer, Berlin, pp 76–85

  • Burachik R, Kaya C, Rizvi M (2014) A new scalarization technique to approximate Pareto fronts of problems with disconnected feasible sets. J Optimiz Theory Appl 162(2):428–446

    Article  Google Scholar 

  • Chankong V, Haimes YY (1983) Multiobjective decision making theory and methodology. Elsevier Science, New York

    Google Scholar 

  • Charnes A, Cooper W (1961) Management models and industrial applications of linear programming. Wiley, New York

    Google Scholar 

  • Dandurand B (2013) Mathematical optimization for engineering design problems. Ph.D. thesis, Clemson University

  • Dandurand B, Guarneri P, Fadel G, Wiecek MM (2014) Bilevel multiobjective packaging optimization for automotive design. Struct Multidisc Optimiz 50(4):663–682

    Article  Google Scholar 

  • Dandurand B, Wiecek M (2015) Distributed computation of Pareto sets. SIAM J Optimiz 25(2):1083–1109

    Article  Google Scholar 

  • Drummond LMG, Svaiter BF (2005) A steepest descent method for vector optimization. J Comp Appl Math 175:395–414

    Article  Google Scholar 

  • Ehrgott M (1998) Discrete decision problems, multiple criteria optimization classes and lexicographic max-ordering. In: TJ Stewart, RC van den Honert (eds) Trends in multicriteria decision making, lecture notes in economics and mathematical systems, vol. 465. Springer-Verlag

  • Ehrgott M (2005) Multicriteria optimization. Lecture notes in economics and mathematical systems, 2nd edn. Springer-Verlag, Berlin

    Google Scholar 

  • Ehrgott M, Wiecek M (2005) Multiobjective programming. In: Figueira J, Greco S, Ehrgott M (eds) Multiple criteria decision analysis: state of the art surveys. Springer, Boston, pp 667–722

    Google Scholar 

  • Eichfelder G (2008) Adaptive scalarization methods in multiobjective optimization. Vector optimization. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Eichfelder G (2009) An adaptive scalarization method in multiobjective optimization. SIAM J Optimiz 19(4):1694–1718

    Article  Google Scholar 

  • Faulkenberg S, Wiecek M (2012) Generating equidistant representations in biobjective programming. Comp Optimiz Appl 51(3):1173–1210

    Article  Google Scholar 

  • Fliege J, Svaiter BF (2000) Steepest descent methods for multicriteria optimization. Math Methods Operat Res 51:479–494

    Article  Google Scholar 

  • Fliege J, Drummond LMG, Svaiter BF (2009) Newton’s method for multiobjective optimization. SIAM J Optimiz 20(2):602–626

    Article  Google Scholar 

  • Flores-Bazán F, Hernández E (2011) A unified vector optimization problem: complete scalarizations and applications. Optimization 60(12):1399–1419

    Article  Google Scholar 

  • Gale D (1960) The Theory of Linear Economic Models. McGraw-Hill Book Company

  • Galperin EA (2004) Set contraction algorithm for computing Pareto set in nonconvex nonsmooth multiobjective optimization. Math Comp Model 40(7–8):847–859

    Article  Google Scholar 

  • Galperin EA, Wiecek MM (1999) Retrieval and use of the balance set in multiobjective global optimization. Comp Math Appl 37(4/5):111–123

    Article  Google Scholar 

  • Geoffrion AM (1968) Proper efficiency and the theory of vector maximization. J Math Anal Appl 22:618–630

    Article  Google Scholar 

  • Grippo L, Sciandrone M (2000) On the convergence of the block nonlinear Gauss–Seidel method under convex constraints. Operat Res Lett 26(3):127–136

    Article  Google Scholar 

  • Jilla C, Miller D (2004) Multi-objective, multidisciplinary design optimization methodology for distributed satellite systems. J Spacecraft Rockets 41(1):39–50

    Article  Google Scholar 

  • Kaliszewski I (1987) A modified weighted Tchebycheff metric for multiple objective programming. Comp Operat Res 14(4):315–323

    Article  Google Scholar 

  • Kasimbeyli R (2013) A conic scalarization method in multi-objective optimization. J Global Optimiz 56(2):279–297

    Article  Google Scholar 

  • Kogut P, Manzo R (2014) On quadratic scalarization of vector optimization problems in Banach spaces. Appl Anal 93(5):994–1009

    Article  Google Scholar 

  • Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, Calif pp. 481–492

  • Li D (1996) Convexification of a noninferior frontier. J Optimiz Theory Appl 88:177–196

    Article  Google Scholar 

  • Makinen R, Periaux J, Toivanen J (1999) Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms. Int J Numer Methods Fluids 30(2):149–159

    Article  Google Scholar 

  • Mangasarian O (1969) Nonlinear programming. McGraw-Hill Book Company

  • Maplesoft: Maple 17. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario (2013)

  • Office of Naval Research: Special Notice 13-SN-0009 Special Program Announcement for 2013 Office of Naval Research Research Opportunity: Computational Methods for Decision Making. http://www.onr.navy.mil/Contracts-Grants/Funding-Opportunities/Broad-Agency-Announcements.aspx. Accessed May 2013

  • Pareto V (1896) Manual d’économie politique. F. Rouge, Lausanne

    Google Scholar 

  • Pascoletti A, Serafini P (1984) Scalarizing vector optimization problems. J Optimiz Theory Appl 42(4):499–524

    Article  Google Scholar 

  • Peri D, Campana E (2003) Multidisciplinary design optimization of a naval surface combatant. J Ship Res 47(1):1–12

    Google Scholar 

  • Rastegar N, Khorram E (2014) A combined scalarizing method for multiobjective programming problems. Euro J Operat Res 236(1):229–237

    Article  Google Scholar 

  • Rockafellar R (1974) Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J Control 12:268–285

    Article  Google Scholar 

  • Ruszczyński A (2006) Nonlinear optimization. Princeton University Press

  • Schütze O, Witting K, Ober-Blöbaum S, Dellnitz M (2013) Set oriented methods for the numerical treatment of multiobjective optimization problems. In: E Tantar, AA Tantar, P Bouvry, P Del Moral, P Legrand, CA Coello Coello, O Schütze (eds) EVOLVE: a bridge between probability, set oriented numerics and evolutionary computation. Studies in computational intelligence vol. 447. Springer, Berlin Heidelberg pp. 187–219

  • Steuer RE (1985) Multiple criteria optimization: theory computation and application. Wiley, New York

    Google Scholar 

  • Steuer RE, Choo EU (1983) An interactive weighted Tchebycheff procedure for multiple objective programming. Math Program 26(3):326–344

    Article  Google Scholar 

  • Tind J, Wiecek MM (1999) Augmented Lagrangian and Tchebycheff approaches in multiple objective programming. J Global Optimiz 14:251–266

    Article  Google Scholar 

  • Tseng P (2001) Convergence of a block coordinate descent method for nondifferentiable minimization. J Optimiz Theory Appl 109:475–494. doi:10.1023/A:1017501703105

    Article  Google Scholar 

  • White DJ (1988) Weighting factor extensions for finite multiple objective vector minimization problems. Euro J Operat Res 36:256–265

    Article  Google Scholar 

  • Yu PL (1973) A class of solutions for group decision making. Manag Sci 19:936–946

    Article  Google Scholar 

  • Zeleny M (1973) Compromise programming. In: JL Cochrane, M Zeleny (eds) Multiple criteria decision making pp. 262–301

Download references

Acknowledgments

The views presented in this work do not necessarily represent the views of our sponsors, the Automotive Research Center, a center of excellence of the US Army TACOM, and the National Science Foundation, Grant number CMMI-1129969, whose support is greatly appreciated.Furthermore, we are very grateful to the anonymous referees, whose thorough review and helpful comments aided us considerably in improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Dandurand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dandurand, B., Wiecek, M.M. Quadratic scalarization for decomposed multiobjective optimization. OR Spectrum 38, 1071–1096 (2016). https://doi.org/10.1007/s00291-016-0453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-016-0453-z

Keywords

Navigation