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Abstract In this paper, we consider the integrated planning of resources in a ser-
vice maintenance logistics system in which spare parts supply and service engineers
deployment are considered simultaneously. The objective is to determine close-to-
optimal stock levels as well as the number of service engineers that minimize the total
average costs under a maximum total average waiting time constraint. When a failure
occurs, a spare part and a service engineer are requested for the repair call. In case
of a stock-out at spare parts inventory, the repair call will be satisfied entirely via an
emergency channel with a fast replenishment time but at a high cost. However, if the
requested spare part is in stock, the backlogging policy is followed for engineers. We
model the problem as a queueing network. An exact method and two approximations
for the evaluation of a given policy are presented. We exploit evaluation methods in a
greedy heuristic procedure to optimize this integrated planning. In a numerical study,
we show that for problems with more than five types of spare parts it is preferable to
use approximate evaluations as they become significantly faster than exact evaluation.
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Moreover, approximation errors decrease as problems get larger. Furthermore, we test
how the greedy optimization heuristic performs compared to other discrete search
algorithms in terms of total costs and computation times. Finally, in a rather large case
study, we show that we may incur up to 27% cost savings when using the integrated
planning as compared to a separated optimization.

Keywords Maintenance logistics - Queueing - Spare parts inventory - Field service -
Approximate evaluation - Heuristic optimization

1 Introduction

Maintenance logistics is an important discipline that has received considerable atten-
tion both in practice and in the scientific literature. This attention is related to the often
high investments associated with capital-intensive assets, which require a high oper-
ational availability. The unplanned downtime of advanced capital equipment can be
extremely expensive. Consequently, these unplanned downtimes should be avoided as
much as possible, and if they occur, they should be kept as short as possible (by using
optimal corrective maintenance policies). The latter implies that malfunctioning parts
or components causing the system breakdown are immediately replaced by ready-for-
use ones since repair of a part on-site generally requires too much time. Such a policy
in turn requires high availability of the resources (spare parts, tools, and service engi-
neers) that are needed to execute corrective maintenance. However, these resources
are mostly expensive and need high investments. This creates a large interest in cost
savings; even savings of a few percent constitute a significant amount of money in
absolute terms. Therefore, an optimal availability of resources in maintenance logistics
is necessary to meet the expected operational availability while minimizing the total
service costs. So far the planning of resources such as spare parts, service engineers,
and repair tools has been mostly determined in isolation despite the fact that these
resources have combined impacts on the performance of the system.

Unlike spare parts inventory management which is an indispensable element in
maintenance logistics for any type of system, tools and service engineers are not
always considered as bottlenecks in service logistics. In some cases, the replacement
of failed parts can be done by operators in the production line. This makes the study of
manpower availability unnecessary. Similarly, the required tools for the repair process
are often cheap, and hence, every engineer has his own set of tools.

In this paper, we consider a service logistics system in which besides spare parts,
highly skilled and trained service engineers are needed for the corrective maintenance.
Since these highly skilled service engineers are considered as an expensive resource,
manpower planning becomes necessary. In the current study, tools are no bottleneck for
the system and considered to be always available. This paper focuses on the challenging
multi-resource planning problem for spare parts and service engineers. The objective
is to determine the required capacity of each resource minimizing the total service
costs subject to a specified target on service level.

Before investigating the required capacity, it is important to discuss the competitive
strategy of the service provider. Since both the spare parts and the number of service
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engineers are limited, we have to determine what policy should be followed if either
resource is not immediately available. The two main strategies in any service policy are
the cost-efficient strategy and the responsive strategy, which are in a sense two opposite
extremes (see, e.g., Chopra and Meindl 2013). Depending on where a service provider
wants to position its strategy between these two extremes, an appropriate service policy
can be defined. On the one hand, when the objective is to have the highest service level
(responsive strategy), waiting for resources is not acceptable. Then, a suitable policy
is to use the emergency channel if any resource (either spare part or service engineer or
both) is not available. On the other hand, when cost efficiency is the main objective, any
additional cost (emergency shipment) should be avoided. In such a case, when a spare
part or a service engineer is needed but there is no one available, the repair call has to
wait until the needed resource becomes available via the conventional replenishment
channel (backlogging policy).

In addition to these two extreme policies, various other policies can be applied.
Usually, the nominal repair times of a system (i.e., excluding all extra waitings due
to unavailable resources) are shorter than spare parts replenishment times. Therefore,
in cases where a short waiting time is tolerable, queueing for service engineers is
efficient if they are not immediately available. However, it is arguable to use the
emergency shipment for spare parts in case of a stock-out. In this paper, we consider
a full emergency policy (both for spare parts and for service engineers) in case of a
spare part stock-out. If, however, the spare part is in stock but no service engineer is
immediately available, a backlogging policy is followed for the latter.

The paper is organized as follows: First, we review the related literature in Sect. 2.
In Sect. 3, we describe the model and different policies and scenarios are discussed.
In Sect. 4, the model assumptions are introduced, and the model is investigated in
detail. An exact and two approximation methods are proposed for the performance
evaluations. To gain more insight into the model, numerical experiments are carried
out to compare the results of the approximation methods with exact solutions. A
heuristic to determine a near-optimal policy is developed in Sect. 5. We compare the
optimization result of the proposed heuristic with other optimization algorithms. In
Sect. 6, brief concluding remarks are summarized.

2 Literature review
2.1 Maintenance logistics

Maintenance logistics is a topic widely studied in the literature. One of the important
areas in maintenance logistics that attracted a lot of attention is spare parts manage-
ment. The amount of literature on (multi-item) spare parts optimization models is
extensive and dates back to the pioneering paper of Sherbrooke (1968), who devel-
oped the METRIC (Multi-Echelon Technique for Recoverable Item Control) model.
Sherbrooke (2004) and Muckstadt (2005) give a full overview of further developments
from a methodology point of view in this area. Basten and van Houtum (2014) and van
Houtum and Kranenburg (2015) discuss more recent models on spare parts inventory
control with a focus on the system-oriented perspective.
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In this research, we study the resource management of after-sales service logistics by
considering both spare parts inventory management and manpower (service engineers)
planning. Spare parts management and manpower planning in service logistics have
been studied in isolation in many papers. The integration of spare parts and manpower
planning was, however, rarely considered. The few papers that do study this integration
mainly use simulation as a methodology for the performance analysis (Hertz et al.
2014; Visser and Howes 2007). Hertz et al. (2014) review the literature on simulation
models in after-sales service logistics. Waller (1994) and Papadopoulos (1996) develop
queueing network models for field service support systems considering manpower
allocation and spare parts availability with emergency shipment options. Waller (1994)
studies a model with only one service engineer. The service engineer carries a spare
partkit, which can serve a fraction of all possible failures. If a spare part is not available
in the Kkit, it is ordered from a depot and delivered directly to the customer. During
this time, the service engineer visits other customers for repair. The availability of
the part is known when the service engineer visits the customer. After the arrival
of the part, the customer enters the waiting queue for the service engineers again.
Customers are served by FCFS policy. The problem is modeled as a BCMP queuing
network with two classes of customers, the ones waiting for an initial visit and the
others waiting for a second visit after the arrival of the emergency delivered spare
parts. Then, the model is used to evaluate different inventory and staffing policies.
Papadopoulos (1996) extends this approach by considering multiple service engineers
and introducing priority classes for customers via the application of the priority mean
value analysis (PMVA) algorithm. He models the system as a closed queueing network.

Besides spare parts and service engineers, in a number of systems service tools
are also needed to support the repair actions. Vliegen (2009) studies the integrated
service tools and spare parts planning. In this research, the coupling of demand for
tools and spare parts is considered explicitly. In addition, she also studies the coupling
of tools in returns. This is a key difference with our model. She shows that integrating
the planning of spare parts and repair tools leads to more accurate results and a cost
savings of up to 15%.

Although there is a limited number of analytical models for the integrated spare
parts management and manpower planning, there are quite a number of studies in
other areas that can be used to help solving our problem. We review related literature
in cross-trained manpower planning, assemble to order system, call center staffing and
planning, and lateral transshipment inventory models.

2.2 Cross-trained manpower planning

In service logistics, one of the areas that has received considerable attention is the
planning of skilled service representatives (the manpower) that are responsible for
serving a number of service regions. In some papers, the field service system with
dedicated and flexible (cross-trained) servers is studied. Usually, these papers consider
the case that there are two or three different server types and one flexible team and
use simulation to analyze the system (Agnihothri and Karmarkar 1992; Agnihothri
etal. 2003; Agnihothri and Mishra 2004). Agnihothri and Karmarkar (1992) study the
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performance analysis of service territories by a queueing model and use simulation to
test the accuracy. Agnihothri and Mishra (2004) examine service systems with cross-
trained servers with two and three server types. The spare parts in our model can be
seen as servers that have a specified skill and can serve one type of jobs only, and
the service engineers can be seen as servers that can process any type of jobs (cross-
trained servers). By this analogy, our problem is similar to the cross-trained manpower
planning problem. In Brickner et al. (2010), a system similar to the one in this paper is
modeled using simulation. They simulate a service system with three types of dedicated
server teams and one flexible team. They assume a finite buffer for backorders and
use a priority scheme to select the jobs from the buffer. They analyze the performance
measurement of the system and then find the optimal number of each server type
through a numerical search. In contrast to our model, there is no simultaneous request
of servers in cross-trained manpower planning, so the model evaluation in these models
differs. However, in the analytical papers, they use optimization approaches similar to
ours to find the optimal number of servers.

2.3 Assemble to order system

Using different resources simultaneously for production orders (coupling in demand)
is an aspect that makes our problem similar to assemble to order systems (ATO). In
those systems, several subassemblies are demanded and all have to be available before
an order can be processed. Song et al. (1999) study a generalized model that has both
complete backlogging and lost sales as a special case. In addition, they distinguish total
order service, which means that an order is fulfilled completely or rejected as a whole,
and partial order service, which means that partial fulfillment is allowed. In Song et al.
(1999), an exact performance analysis is carried out using matrix-geometric techniques
that lead to a computationally efficient performance evaluation procedure. The supply
system of each component is modeled as an independent production facility with a sin-
gle exponential processor and a finite buffer, an M/M/1/c queue. Dayanik et al. (2003)
study computationally efficient performance estimates for the same problem. Approx-
imate models for base-stock assembly systems are also studied in Avsar et al. (2009).
Hoen et al. (2011) develop an efficient and accurate approximation for an ATO system
with deterministic lead times, where the lead times can be different for different items.

Song and Zipkin (2003) give an overview of papers on ATO systems. In most of the
studies backlogging is assumed, but in some papers, the lost sales case is considered.
In the ATO system literature, there are models where orders for various product types
arrive stochastically to an ATO system. Each product type needs a set of components
to be assembled. Lu et al. (2003) analyze such an ATO system as a set of queues
driven by a common, multi-class batch Poisson input and derive the joint queue-
length distribution. When comparing our model to these ATO models, we observe the
same structure for demands, and the replenishment and service times in our model are
like the replenishment lead times in an ATO system.

With regard to optimizing the stock levels in an ATO system, only a few papers
consider lost sales. Benjaafar and ElHafsi (2006) study the optimal policy for the
base-stock levels of components used in a single end-product. ElHafsi et al. (2008)
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extend the model of Benjaafar and ElHafsi (2006) to a situation with multiple products.
However, their analysis is restricted to a nested design, i.e., product i has only one
additional component more than producti — 1.

2.4 Call center staffing and planning

By treating the spare parts as servers (in addition to service engineers) and considering
the spare parts replenishment time as a service time, there are quite a number of papers
in the call center area that study similar models. Mostly, they use queueing modeling.
Since call center systems in practice face high traffic and the number of servers is high,
an asymptotic analysis of the call center is often performed. Usually, in the after-sales
service logistics the number of service engineers is not that high, so the asymptotic
results are not useful.

Generally, for problems where there are multi-type customers in call center systems
and servers have different skills, similar approaches can be observed as we use in this
paper. However, as for cross-trained manpower planning, there is no simultaneous
demand for servers in call center models. A survey paper in this area is done by Koole
and Pot (2006) who review the staffing and routing problem of multi-type customers
in a call center. Shumsky (2004) studies an approximation model for a service system
with two dedicated servers and one flexible server by using a queuing model. He
provides an estimation for performance measurement of a call center system. Ormeci
(2004) models a Markovian loss system for a call center with two different customer
classes with different revenue and service and arrival rates. There are three different
servers, two dedicated for each customer type and one flexible server that can serve
both customer types, where the dedicated servers work faster than the flexible one.
She shows that serving a call in its dedicated station, whenever possible, is optimal.
For the shared station, since the customers have different priorities (revenue), there
exists an optimal monotone threshold policy.

Spare parts can be named as dedicated resources since for each repair call a specific
spare part is needed while the service engineers are shared for all types of repair calls.
There are a limited number of studies in which a service system with combination
of shared and dedicated resources is analyzed. Aksin and Harker (2003) consider an
inbound call center system with multi-type customers served by dedicated servers and
one shared resource (IT infrastructure). The shared resource in the system is treated
as a process sharing server. Due to the specific call center system operations, there
is a fundamental difference between our model and that of Aksin and Harker (2003).
Namely, for each call a dedicated server and shared resource are needed but by finishing
the call, both server and shared resource will be free simultaneously.

2.5 Lateral transshipment inventory models

The approximate evaluation methods that we provide are related to the approximate
evaluation methods that are proposed in lateral transshipment inventory models. In
these systems, to determine the optimal policy, evaluation of costs of a given setting
is necessary. For this, the stream of lateral transshipment requests between the ware-
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houses is commonly approximated by Poisson processes (Axsiter 1990; Alfredsson
and Verrijdt 1999; Kukreja et al. 2001; Kutanoglu 2008; Van Kranenburg and Houtum
2009). However, approximating overflow processes in lateral transshipment models
(or similarly accepted arrival processes in our model) with Poisson processes is not
always reliable. van Wijk et al. (2012) perform an extensive numerical study and
show that Poisson approximations do not always give satisfactory accuracy. Here, we
propose other fast approximation methods that give more accurate result than using
Poisson arrival processes. van Wijk et al. (2012) propose a new approximation algo-
rithm for the evaluation of a given policy, using interrupted Poisson processes (IPP,
cf. Kuczura 1973) that is more accurate but computationally more expensive.

Greedy algorithms are commonly used for optimization in lateral transshipment
inventory models. Wong et al. (2005) propose a greedy method with a local search for
multi-item multi-location spare parts systems with lateral transshipments and waiting
time constraints. Van Kranenburg and Houtum (2009) exploit a similar greedy algo-
rithm without any local search for the optimization of their partial pooling structure
in spare parts networks. In both papers, the authors show that the greedy algorithm
performs reasonably well.

Overall, the literature study indicates that the multi-resource planning in mainte-
nance service logistics so far lacks a thorough analysis. In the next section, we develop
a model for the integrated spare parts and service engineers planning. We take advan-
tage of existing models in other applications which we discussed above. In particular,
the evaluation procedures and queueing models that are used in ATO, call center, and
lateral transshipment models help us to develop our evaluation methods. Moreover, in
our optimization problem and algorithm, we use some concepts and techniques that
are presented in the spare parts inventory management and cross-trained manpower
planning literature.

3 Model description

We consider a service region with a local inventory to store K different types of spare
parts. There are different types of repair calls in this service region that arrive randomly
with a rate A. Each repair call requires a specific spare part. A repair call is of type-k
if it requires one unit of type-k spare part. Let p; denote the probability that a repair
call is of type k. For each repair call, a service engineer is also needed to do the job.
A team of service engineers is located in the service region. In this model, we assume
that the service time of a repair call of type k (the time between the moment the
repair job is assigned to a service engineer and the moment the job will be finished)
is exponentially distributed with rate ux. The inventory of type-k parts is managed
according to the base-stock policy, referred to as (Sy — 1, Sx). For each type-k spare
part, the replenishment lead time is exponentially distributed with rate v;. For each
spare part, there is a holding cost per item per time unit. In addition, hiring costs of
service engineers and emergency costs (a cost per repair call that is satisfied via an
emergency channel) are considered in this model.

Depending on the importance of service level and the height of the downtime cost,
different service policies can be followed. Consider a system that, if a failure happens,
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should be fixed as soon as possible while the downtime cost is much higher than
the holding and transshipment costs. In this case, the service policy should apply an
emergency channel for both spare parts and service engineers in case there is a shortage
of any of these resources. So, upon a request arrival, if any of the needed spare part or
service engineer is not available, the repair call is considered to be lost for the internal
system and both the spare part and the service engineer are satisfied via an external
emergency channel with a high cost. However, for systems for which downtime does
not cost much or failures will not stop the whole system, we can assume backlogging
for both spare parts and service engineers. So, when one of them is missing, we just
wait until a spare part or a service engineer becomes available.

The aforementioned scenarios are two extreme strategies. In practice, there are a
variety of policies in between that can be applied. Here, we are not interested in the
full emergency (the most responsive strategy) nor in the full backlogging policy (the
most cost-efficient strategy). Instead, we study a more cost-efficient strategy that has
less effect on the waiting times. Usually, service times take much less time than the
spare parts replenishment. Therefore, the first step to make the most responsive strategy
more cost-efficient is by changing the service engineers policy to backlogging. In other
words, in systems for which a short waiting time is acceptable, it is rational to wait for
service engineers if they are not immediately available but use the emergency shipment
for spare parts in case of a stock-out. That is the scenario we study in this paper.

When the requested spare part is satisfied by an emergency shipment, there are
a number of scenarios for the service engineers that can be applied. In this paper,
we assume that both spare parts and service engineers are satisfied via an emergency
channel in case of a spare parts stock-out. In other words, internal service engineers are
not responsible for emergency repair calls. To explain why this assumption is justified,
let us discuss the possible scenarios where just spare parts are satisfied by emergency
channel. First, suppose the repair request is sent to service engineers after receiving
the spare part emergency shipment. In this case, for systems where service engineers
traveling time to the failure location is a considerable amount of the total service time
(it usually includes service engineers travel time and on-site repair time), this scenario
causes extra waiting time for the system and the service engineers always arrive later
than spare parts emergency shipments. On the contrary, if the pool of service engineers
receives the request already when the failure happens (in the case where the spare part
is going to be satisfied by an emergency channel), the service engineer may arrive to
the location sooner than the emergency shipment, which causes extra waiting time and
decreases the service engineer’s utilization. Furthermore, in practice, there are cases
where the spare parts are transferred by the service engineers to the failure locations.
It results in lower shipment costs and ensures that service engineers and the spare
parts will arrive at the same time. By outsourcing the repair job to the external service
engineers (when the spare part is delivered via the emergency channel), the spare part
and the service engineer will arrive in the failure location at the same time. More
precisely, suppose the emergency shipments are sent from a central station (depot)
where service engineers are always available. So, when the spare part is satisfied by
an emergency shipment, a central service engineer goes directly together with the
requested spare part to the failure location to perform the repair job. Hence, when the
requested spare part is not available in stock, the repair call is satisfied entirely via the
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emergency channel. After all, the other scenario where only spare parts are requested
by emergency shipments is also justified in practice and will be studied in future work.
However, it is less responsive but at the same time, we expect less total cost.

When the spare part is available, the backlogging policy is followed for service
engineers. When no service engineer is available upon a repair call request (while
the spare part is available), the spare part is reserved and the system must wait until
a service engineer becomes available. A maximum accepted average waiting time is
defined for the total waiting time in the service region (not per spare part), and there
is no priority over different spare part types. Therefore, the backorders in the service
engineers queue will be served by a FCFS policy.

All in all, we are interested to find the optimal spare parts stock levels and the
optimal number of service engineers to minimize the total average costs (holding,
service engineers hiring, and emergency costs) under a maximum total average waiting
time constraint. Waiting times are caused by the emergency shipments and by queueing
for service engineers. First, let us summarize some notations.

Notation:

Spare parts: k:1,...K;

Al Total failure rate in the service region;

Dk: Probability that the repair call needs type-k spare part;

Vi The regular replenishment rate for type-k spare part;

v The emergency replenishment rate for type-k spare part;

Wk Service rate for type-k repair job (i.e., the reciprocal of the repair
time);

Sk: Stock level for type-k spare part;

E: Number of service engineers;

wS: Expected waiting time of calls in the spare parts inventory (waiting
for spare parts occurs in case of an emergency shipment);

WE: Expected waiting time of calls in the service engineers queue;

w: Total expected waiting time of all repair calls in the service region.

In the next section, we model the problem based upon the aforementioned scenario
where we have a (full) emergency replenishment in case of a depleted local spare parts
stock and backlogging for service engineers.

4 Performance evaluation

In this section, we describe how a given policy, i.e., a choice of all base-stock levels and
the number of service engineers, can be evaluated, either exactly or approximately. The
service policy is defined as follows. In the case that a repair call arrives in the service
region and the requested spare part is not available, the repair call will be satisfied
entirely (both the needed spare part and the service engineer) by an emergency channel
with a high cost. However, when there is no available service engineer while the spare
part is available, this spare part will be reserved and the repair call will be backlogged
until a service engineer becomes available. Backorders are served according to FCFS
policy.
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Fig. 1 Transition diagram of the model with full spare parts emergency channel and repair backlogging
when there is one type of spare part (K = 1)

e

4.1 Exact evaluation with Markov chain

Let us denote Ny, () as the number of type-k spare parts in the pipeline (replen-
ishment), and N,(t) as the number of calls waiting or being served in the
service engineers queue. Under the above assumptions, the process N(f) =
(Ne (t), Ng; (1), Ngy (1), ..., Ny (1); IZO) is a continuous-time Markov chain with the
following infinite size state space

2=1{0,...,E,...,00} x{0,...,851} x{0,...,8}x---x{0,...,Sg}. (D)

This Markov chain can be analyzed using the matrix-geometric method, but for large
K, the numerical evaluation will be computationally expensive, if not intractable. More
precisely, the dimension of the rate matrix in the matrix-geometric method increases
exponentially with Sy, k=1, ..., K, and with K. For small size problems, we explain
how to find the steady-state probabilities using the matrix-geometric method. In Fig. 1,
we show the transition rate diagram for the Markov chain in the simple case with one
type of spare part (K = 1) with stock level S, and a team of engineers with size E.
In this part, the matrix-geometric method for this problem is explained. For the
sake of simplicity, we assume that the service rate is the same for all types of spare
parts. Using the matrix-geometric method is also possible in case of non-equal service
rates. However, the formulation will be more complex. For the joint process N (¢), we
shall refer to N, (¢) as the level of the process and (NSl (), Ny, (t), ..., Ngy (t)) as the
phase. Let us introduce the following matrices. Let Uy, k = 1, ..., K, denote an upper
diagonal (Sx + 1, Sk + 1) matrix with upper diagonal elements equal to Ay = pgA.
Let By, k =1, ..., K, denote a bi-diagonal lower (Sx + 1, Sy + 1) matrix with j-th
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main diagonal element —(j — 1)vg — Aglyj<s,y for j =1,..., Sp + 1, where 1{;<g,;
is the indicator function, and lower diagonal j-th element jv; for j =1, ..., Sk.

The process N (t) is alevel-dependent quasi-birth-death process for levels O, . . . , E,
and level independent for the rest with the generator G given by:

AY4 0 0 0 0 0 0 ..
ALAl 4 0 e
0 o
G=|: oA A a 0 ], )
0 Af AF Ay 0

0 AFAF Ay 0

where A) = pll, A\ = Bi®@ B, ® - ® By —pull, 1 =0,...,E, and Ay =
U dU; ®---® Uk. A® B is the Kronecker sum of A and B and is equal to
AQ®I+1® B. A® I is the Kronecker product of A and identity matrix, 1.

Let V = (W, V1, ...) denote the steady-state probability of N(¢), i.e., VG = 0
with Vel = 1; eT is a column vector of entries equal to one. The balance equations
are as follows:

VoA + viAl =0, 3)
VieiAy + VAL + Vi At =0, i=1,... E—1, 4
ViiAy + VIAT + Vi Af =0, i =E,E+1,.... ()

The general solution of V; is of type V;_1 Rmin¢,E), i = 1, 2, ... (for details, see Neuts
1981). Then, Egs. (4) and (5) give
-1
Re = —A2 (Af + Reaf) ©6)

—1
R1=—A2<A11+R1+1A6+1) I=E—1,...,1. %)

Equation (6) can be solved using a standard iterative procedure of the matrix-geometric
methods (see, e.g., Latouche and Ramaswami 1999). When R is known, all R; can
be computed using the backward iteration defined in (7).

Inserting the general solution of V; in Eq. (3) yields Vo(A(l) + RlA(l)) = 0. The
latter equation together with the normalization condition

o0
ZV,-eT=VO<I+R1+R1R2+~-~+R1R2...RE_1(I—RE)_1>eT:1

i=0
3
gives Vp, then Vi = VyRy, Vo = V| R, and so forth.
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Based on the steady-state probabilities, the required performance measures can be
determined. For example, the expected number of repair jobs waiting in the service
engineers queue is given by

o0

QF =3 i Ve o

i=1

e .
=D iVERp) €

i=1

o0
=Ve Y i (Rp) e’
i=1

= VeRg(I — Rp) el 9)

Given the expected number of repair jobs waiting in the service engineers queue, we
can derive the expected waiting times using Little’s law.

Note that the inversion of matrices in the computation of R;, i = 1,..., E, is
of complexity ]_[,le (Sx 4 1)3. So, we conclude that the total complexity to find the
steady-state probabilities is equal to

K
E+D[]G+D (10)
k=1

4.2 Approximate evaluation

Performing an exact evaluation for this problem will not be efficient for large size
problem. Hence, we develop a more efficient method to obtain an approximate result.
In this method, the model evaluation is done in two steps. In Sect. 4.2.1, we examine
the spare parts inventory to find the emergency rate and average waiting time that is
caused by emergency shipment. Then, given the spare parts inventory evaluation, we
analyze the service engineers queue in Sects. 4.2.2 and 4.2.4. Note that the results in
Sect. 4.2.1 are exact while we use approximation methods for service engineers queue.

4.2.1 Emergency rate and average waiting time in spare parts inventory

As mentioned before, we have an emergency shipment (loss) system for spare parts
and a backlogging system for service engineers, as long as spare parts are available.
We assign the spare part when a repair call arrives, whether a service engineer is
available or not. The emergency probability for repair calls is defined as the fraction
of calls that will be satisfied by the emergency shipment. Note that this probability is
only a function of spare parts stock levels.

In the following, we show how the number of type-k spare parts in the replenishment
pipeline can be modeled as the number of jobs in an M /M /Sy / Sk queue. For any spare
part of type k, there are Si spare parts, that can be seen as servers. The repair calls
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arrive according to a Poisson process with rate Ay = prA. When a spare part has
been allocated to a call (becomes busy), it takes an exponential time to replenish it by
a new part (service time) with rate vy. When there is no spare part in the inventory
(all servers are busy), the arriving calls will be lost and satisfied by the emergency
channel. It means the maximum number of parts in replenishment in this queueing
model is equal to Si. Let pr = *«/v.. The emergency probability in an M /M / Sk / Sk
(using PASTA property) is given by Erlang B (loss) formula;

S
pkk/Sk!
=S
Dok it

The emergency rate of type-k repair calls as a function of type-k spare parts stock
level is equal to

PE(SK) = (11)

AE(Sk) = A PE(Sp). (12)

In this model, we assume that the emergency replenishment rate is much higher
than the regular one, but still finite. It means when a repair call is satisfied by an
emergency channel, there is still a waiting time until the emergency shipment arrives.
This waiting time is important for the service policy and is included in the maximum
accepted average waiting time of repair calls. For the parts that are requested by
emergency shipment, the average waiting time is equal to I/v¢™. Note that the average
(emergency shipment) waiting time of all repair calls is equal to a weighted sum of
the repair calls that are satisfied by emergency shipment times 1/vf™, as follows

K L
Pk P (S)
WS (S) = Z#. (13)
k=1 k
where S = {§1, ..., Sk} is the vector of base-stock levels.

4.2.2 Average waiting time in service engineers queue—MVA approximation

In this section, we are interested in finding the average waiting time of repair calls that
is caused by the limited number of service engineers. When there is no available spare
part, the call is entirely served externally and hence is lost for the internal system.
Therefore, the arrival rate as experienced by the service engineers queue equals

K K
y=> =y n(1-PS0). (14)
k=1

k=1

Note that arrival streams to the service engineers queue (each arrival stream is related
to one type of repair call) are not renewal processes. Upon arrival, when there is on-
hand spare parts inventory, the call will be forwarded immediately to the engineers
queue. However, when the spare parts inventory become empty, calls are satisfied by
the emergency channel. This dependency of arrivals on spare parts stock inventory
causes arrivals at the internal service engineers pool to be dependent on past arrivals
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and makes arrival streams non-renewal processes. The correlation between inter-arrival
times depends on the spare parts base-stock level. When the base-stock level is zero
or very large, we can say that there is no correlation between inter-arrival times.
For small values of the base-stock level, there is a correlation between inter-arrival
times. However, we have tested the correlation numerically, and we found it almost
negligible. The inter-arrival correlation in different situations was always below 0.05.
Nevertheless, the total arrival process is still a non-renewal process. Apart from that,
there is no correlation between different types of repair call arrivals to the service
engineers queue. The arrival streams to the spare parts inventory are independent
Poisson processes. Moreover, since in each repair call, just one specific spare part is
required, there is no dependency between stocks of different spare parts types. Hence,
the arrival streams for different types of repair calls to the service engineers queue are
independent. We show in the numerical result section that this independency causes our
approximation method to become more accurate when there are more arrival streams
(more spare part types).

We have a multi-class multi-server queue for service engineers with total arrival
rate y and service rate uy for the repair call of type k, k = 1, ..., K. So, the service
times in the service engineers queue follow a hyper-exponential distribution with rate

n which is given by
K

where o is the probability that the repair call that has arrived to the service engineers
queue is of type k, which gives

15)

"‘:l»

a = 2, (16)

14

We have a G/H/E queue for the service engineers queue (H refers to the hyper-
exponential service time). In the G/ H / E queuing system, no exact results are available
for the mean waiting time, but the mean value analysis (MVA) approach can be used
heuristically to derive a simple approximation (see Tijms 2003). First, we need to
have the probability that all servers are busy. Define o = £ as the offered load. As an
approximation, we can use the busy probability of an M /M /E queue (see, e.g., Tijms
2003).

— — . (17)

The following formula gives us the average waiting time (excluding service time)
for an M /M /E queue:
PB
n(E —o)

We do not expect that the average waiting time of an M /M /E queue is a reliable
approximation for the average waiting time in the service engineers queue. Therefore,
to have a better approximation, we consider the coefficient of variations of the inter-
arrival time and the service time in our formulation. Note that the arrival processes
to the service engineers queue do not form a renewal process. However, from now

(18)
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on, we assume it is a renewal process in our approximation method. For the cases
that the service rate per call type-k (ux) is not the same for different spare part types,
the service time is also not exponentially distributed. By knowing the coefficient of
variations of the inter-arrival time and the service time, a better approximation for the
average waiting time is:

652 +c‘2‘> r (19)

WE.(S, E)= .
(S, &) ( 2 n(E —o)

where 2 and ¢2 are the squared coefficient of variation of the service time and the inter-
arrival time, respectively. Note that the average waiting time in the service engineers
queue is a function of all base-stock levels, S, and the number of service engineers, E.

4.2.3 Coefficient of variations

The service times in the service engineers queue follow the hyper-exponential distri-
bution. Therefore, its coefficient of variation is equal to

2K a2
2o 2l (20)

(215:1 "‘k/uk)2

To find the coefficient of variation of the arrival process, we need to analyze the
type-k arrival process to the service engineers queue. Let us denote X as the inter-
arrival time of type-k parts in the service engineers queue. We can show that X has
a phase-type distribution with the following Laplace—Stieltjes transform function (for
proof, see “Appendix 17).

Ki(w) = M (Sgvr + (1 — dy)w)
B o+ o) (S + @)

1)

where dj represents the probability that no spare part of type-k is left in the inventory
given that a type-k repair call has just been accepted. So, for the next arrival, first
a replenishment must happen and then the next arrival will be accepted. Let my (i),
i =0,..., Sk denote the steady-state probabilities in the type-k spare parts queue,
i.e., the steady-state probabilities in an M /M /Sy /Sx queue with arrival rate A; and
service rate vg. The probability dy is given by

= (S — 1) _ VkSkPkL(Sk)
1 — 7 (Sk) Vi ’

(22)
Now, we are able to find the type-k parts arrival process mean and variance using

Laplace-Stieltjes transform function in (21) which are given by

Y= MSeve v
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Pk 20

Fig. 2 Squared coefficient of variation of a single arrival stream versus p; and Sx

di (2 — di)

2.2
St Vic

1
Var(Xy) = — + (24)
)‘k

So, the squared coefficient of variation for the type-k arrival process to the service
engineers queue is equal to

2k
o =veVar(Xp) =1—-2PF + S—k(l - pPhHpE. (25)

Note that PkL is a function of p; and Sk (see Eq. 11). Therefore, the squared coeffi-
cient of variation for the type-k arrival process is a function of only p; and S. Figure 2
shows how CZ’ « changes as a function of p; and Si. As can be seen in the figure, cg’ X
is always between 0.5 and 1. It reaches its minimum when both p; and S; are equal
to 1. When either p; or S goes to infinity, cg’  converges to 1. By contradiction, it is
easy to show that cg’ < L

In the literature, several approximation methods for the coefficient of variations
of a superposition of arrival processes are introduced (see, e.g., Albin 1984; Whitt
1983). None of these methods gives an accurate result for the performance evaluation
in our problem. Some of the approximations in the literature work good when the
arrival processes are renewal (we have non-renewal arrival processes) or when the
coefficient of variation of arrival processes is larger than one. Here, we design the
following method to get an approximate coefficient of variation of the superposition
process in this problem. In this method, we approximate the superposition stream as a
superposition of identical streams with a Coxian-2 inter-arrival times. In the literature,
an exact method is proposed to find the coefficient of variation of the superposition
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process of identical Coxian-2 arrival streams (see, e.g., van Vuuren 2007, p. 23). First
let us denote

j
Lj=> k. (26)
k=1

Now, first suppose we have two types of spare parts. Then, the arrival process to the
service engineers queue is a superposition of two arrival streams. By approximating
these two arrival streams with two identical Coxian-2 arrival streams, we obtain the
equation below as an approximation for the coefficient of variation of the superposition
of the two arrival processes (for a proof, see “Appendix 3”).

L2+ L
Cg _ 212+ L2) Q27
14+2L,
For 3 part types, in a similar way, we find that
L33+ 6L3+ L3
2= a( 3+ 13) (28)

14503 +4L3

For problems with more than 3 types of spare parts, we can use the approach as
explained in “Appendix 3” or in more details in van Vuuren (2007). However, as
an alternative, we propose the following computational efficient iterative procedure.
First, we replace all arrival streams with the same number of identical Coxian-2 arrival
streams with the coefficient of variation given in (26). Then, for each two or three
streams of arrival processes, we use Eqgs. (27) or (28) and replace them with one
arrival stream. We repeat this procedure until we find the coefficient of variation of
the total arrival process.

Now, we have an approximation for the coefficient of variation of the arrival process
to the service engineers queue. Therefore, we can use Eq. (19) as an approximation
for the average waiting time in the service engineers queue.

4.2.4 Average waiting time in service engineers queue—LT approximation

In the previous section, we have shown that the arrival process for the service engi-
neers queue is a superposition of independent phase-type (non-renewal) processes.
Here, by using the Laplace transform (LT) of the arrival process, we propose another
approximation method for the average waiting time based on the exact solution for
the GI/M/E queue (see, Takdcs 1962). We will show numerically that the MVA
approximation method works poorly when there is a small number of spare part types
or the emergency probability is rather high. In these cases, we can use the LT method
that we introduce in this section. First we explain this method for problems with only
one type of spare part in which there is no superposition of arrival processes.
Suppose w* is the root of the equation below in region (0, 1).

X(En(l - w) =, (29)
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where X (w) is given in (21). The solution of the previous equation is given by

S A+ En+ Sv—J(En+ Sv—21)2+4Eni(l —dl).
2En

(30)

Equation (31) gives the exact average waiting time in GI/M/E queues where the
arrival process is renewal.

mmWE=ER%;;§, G1)
where
po[ by 0 (Ea—ium»fj> B .
— o* P Ci(l—X(jm) \ E(l—w*) —j
and o
Cj:li[M j=1.....E (33)

LI1T=X(m

Since the arrival process to the service engineers queue is not renewal and the
service time is not exponentially distributed (when the service rate is not the same for
different spare parts), Eq. (31) does not give the exact solution for the average waiting
time even when there are one type of spare part and one service engineer. The only
case in which the expression is exact is when we have one part type with the stock level
equal to one. In this case, we know that the arrival process is renewal and the service
time is exponential, so this method gives us the exact average waiting time. However,
we use this method as an approximation for cases with non-renewal arrival process,
where there are more than one spare part type, and the service time distribution is
hyper-exponential. To make this approximation more accurate for the cases where
the service time is hyper-exponentially distributed, we scale the average waiting time
based on the coefficient of variation of the service time. Therefore, the equation below
gives a simple approximation for the average waiting time in the service engineers
queue.

2
1+ ¢ ) D (34)

E —
Wll (S’ E)_ ( 2 En(l _w*)Z’

where ¢? is the squared coefficient of variation of the service time which is given in
(20).

When there is more than one type of spare part, we need to find the Laplace trans-
form of the superposition of the various arrival processes. Although finding the exact
Laplace transform of the total arrival process is possible, we end up with a complex
formulation. Moreover, to find the root of Eq. (29), we need a numerical search that
may be computationally expensive when the number of spare part types increases.
Therefore, for multi-part problems, we use the first two moments of the total arrival
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process to fit a simple distribution. To find a suitable option to which we fit the total
arrival process, we need to know in what range the coefficient of variation of the
inter-arrival times belongs. We observe that the coefficient of variation of the total
arrival process is always between 0.5 and 1 (similar to the individual arrival streams).
Therefore, we choose a Coxian-2 distribution for fitting the superposition of the arrival
processes.

Suppose y is the rate of the total arrival process to the service engineers queue
and ¢, is the coefficient of variation of that process. Equation (35) gives the Laplace
transform of the fitted Coxian-2 distribution for the total arrival process, see “Appendix
2” for the proof,

- 2y + 22 — Do
Ry = 12+ a o) (35)

(0 +2y)(wcg +v)

The root v, of the equation X (En(1 —w)) = w (in (0, 1)) is given by
y +2c2y + Enc? — \/(y —2c2y + c2E77)2 +4c2yEn
* a a a a a
Wy, = 22 . (36)
c;En

Similar to the single part problem, Eq. (34) gives an approximate value for the average
waiting time in the service engineers queue with now w™* replaced by .

In the numerical section, we compare this approximation method with the MVA
approximation for different parameters settings. One may think of other types of
approximation like the two-moments approximation of Tijms (2003) for which per-
formance measures of the GI/D/C queue are needed (which are not known in closed
form).

In summary, we propose two approximation methods to calculate the average wait-
ing time in the service engineers queue. Note that W (Wn‘fVa or Wf ) gives us the
expected waiting time of calls that arrive at the service engineers queue. To have the
expected waiting time of all repair calls related to the service engineers queue, we
should multiply it by the fraction of calls that are sent to the service engineers queue.
So, the total expected waiting time in the system as a function of spare parts stock
levels and the number of service engineers is equal to

WS, E) = %WE(S, E) + WS(S), 37)

where W3, defined in (13), is the average waiting time in the spare parts inventory
that is caused by the emergency shipment, and W¥ is the average waiting time in the
service engineers queue that is defined approximately in (19) or (34) using the MVA
and LT evaluation methods, respectively. It can be also determined exactly by dividing
the expression in Eq. (9) by y (14). Note, S is the vector of all spare parts stock levels.
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4.3 Numerical comparison

In this subsection, we validate our approximate evaluation methods. Note that the
average waiting time in the spare parts inventory (W) that we obtain in Sect. 4.2.1, Eq.
(13) is exact. So, to validate our approximation method, we compare the approximate
and the exact solutions of the average waiting time in the service engineers queue. First,
we test the MVA approximation method in instances with five types of spare parts.
We consider different parameter settings and examine the instances where the total
emergency probability is less than 10%. We generate a number of instances randomly
where the service rates are the same for all part types, uy = u, Vk, and vary from 1.5
to 9.6 calls per week. The total arrival rate, A, is equal to 5 calls per week. The stock
level, Sk, varies from 1 to 5 units, and the number of engineers, E, changes from 1 to
5. The replenishment rate increases from 1.2 to 9.6 parts per week.

Figure 3 shows the accuracy of the MVA approximation method (maximum and
average approximation error) as a function of the number of service engineers and the
total emergency probability. The approximation error is shown as a percentage in the
w, where WE |
waiting time (MVA) as given in (19) and W is the exact average waiting time derived
from Eq. (9). In all instances, the approximation error is positive (WE, > WE). As
can be seen in the figure, the approximation error increases with the total emergency
probability. We know that the approximation method performs better when the arrival
process to the service engineers queue is renewal or, in a loose sense, closer to a renewal
process. So, the smaller the emergency probability, the better the approximate result is.

figure and is calculated as 100 x is the approximate average
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MVA average waiting time approximation error (%)
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Fig.3 Average and maximum relative error of the average waiting time approximation (MVA) in compar-
ison with exact solutions for different number of service engineers and as a function of the total emergency
probability (2250 instances, K = 5)
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Fig. 4 Approximate average waiting times error for problems with one, two, and five type of spare parts
(17300 instances, E = 1)

Moreover, the MVA approximation for the average waiting time works best for a single
server queue (E = 1), and increasing the number of service engineers decreases the
quality of our approximation. Here, we just examine the total emergency probability
and the number of engineers as they seem to be the most influential factors on the
approximation error. However, there are other parameters and factors that have an
impact on the approximate average waiting time error, such as stock levels, service
engineers workload, and the individual emergency probability of each spare part type.
Except for the emergency probability and the number of service engineers, we can
not draw a specific conclusion on the effect of other parameters on the approximation
error. For example, it seems that the MVA approximation method works better when
the stock level is higher, for the same values of the emergency probability and the
number of service engineers. However, we have found some instances for which this
does not hold.

To see how the number of spare part types affects the approximation error, we tested
the model for instances with one, two, and five types of spare parts. As shown in Fig. 4,
for the same value of the total emergency probability, the approximation error is lower
when there are more types of spare parts. The reason behind this behavior is related
to the superposition of the arrival processes. We know from the Palm—Khintchine
theorem that the superposition of N independent renewal processes converges to a
Poisson process as N goes to infinity (cf. Heyman and Sobel 2003, Chapter 5.8).
When we have many types of spare parts, the arrival process for service engineers
will be the superposition of a large number of independent processes. This leads to a
process that in a sense is more similar to a Poisson process. The MVA approximation
method gives the exact solution when the arrival process is Poisson. Therefore, we
expect that the MVA approximation method works better when there are more spare
part types in the system.
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Fig. 5 MVA approximation error for different values of the average waiting time (2250 instances, E = 1)

The MVA approximation error versus the average waiting time value is illustrated
in Fig. 5. Note that the (percentual) approximation error can be larger when the average
waiting time has a low value. It generally means that we expect to have a low absolute
error in all instances. In these instances, all the approximation errors that are higher
than 15% are for cases where the average waiting time is less that 0.2 week. Therefore,
for cases where the approximation error (in percentage) is high, the absolute error is
still sufficiently low. In our instances, the highest absolute error for problems with
higher than 15% error is 0.027 weeks (=1 h).

As expected, when the emergency probability is not that low (=0.05) and there
is a small number of spare parts, the MVA approximation method is not accurate.
However, this is not a major problem as in practice the number of spare part types is
high enough to have a very low approximation error. In addition, for problems with a
small number of spare parts types, we can always use the exact evaluation using the
matrix-geometric approach as explained in Sect. 4.1. Furthermore, we observe that
the approximate average waiting time in the service engineers queue is higher than the
exact ones. It means, in an approximate solution where the maximum average waiting
time is satisfied, we know that the exact average waiting time is also less than the
maximum waiting time.

Next, we validate the LT approximation method and compare it with the MVA
approximation. We know that the MVA approximation method works well when there
is a high number of spare part types and the emergency probability is low. So, we are
interested to see whether the LT approximation method can be a better alternative for
the cases with a medium number of spare part types (5 < K < 50) and relatively
high emergency probability (>0.05). We compare the LT and MVA approximation
methods, for instances, with two and five types of spare parts. Figure 6 shows the
average approximation error for the expected waiting time as obtained by the MVA
and LT evaluation methods. We use the same parameter settings as in Fig. 3. As we
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Fig. 6 Average error in expected waiting time approximation for MVA and LT evaluation methods in
instances with two and five types of spare parts. (5000 instances)

expected, the LT method gives always better approximation. The average difference
is larger when the total emergency probability is higher and the number of spare part
types is smaller.

In all instances, we have assumed that the replenishment lead time for all spare part
types is exponentially distributed. Now, we explore the sensitivity of the problem with
respect to the replenishment time distribution. Therefore, we solve a problem with
different replenishment time distributions (with the same rate), to see how much it
affects the average waiting time value in the service engineers queue. We test a problem
with two types of spare parts for six different replenishment time distributions; Erlang
2, Erlang 5, hyper-exponential, deterministic, uniform and exponential distributions
(hence a wide range of values of the coefficients of variation) with the same mean value.
We solve the problem for different stock levels and numbers of service engineers with
all these replenishment time distributions. Although we get almost the same results
(average waiting time in the service engineers queue) for Erlang and exponential
distributions, using other replenishment time distributions gives different values for
the average waiting time. We get up to 50% differences for the average waiting time
value using hyper-exponential, deterministic, or uniform distributions in comparison
with solutions where the exponential replenishment time is used. Therefore, we can
say that the problem is sensitive to the replenishment time distribution with various
values of the coefficients of variation.

In conclusion, we proposed one exact and two approximation methods to evaluate
the model for a given policy. Note that all the instances used for our numerical valida-
tion are small enough to be evaluated using the exact evaluation method. We used these
instances to show how each approximation method performs with respect to the dif-
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ferent parameters and in comparison with other evaluation methods. In summary, the
exact evaluation method is the best option for small size problem. Using this method
is feasible for problems with up to 5 spare part types. Generally, in real situations,
there are many different spare part types and the desired emergency probability is very
small. In this case, the MVA approximation gives reliable solutions, and the approxi-
mation error for the average waiting time in the service engineers queue is sufficiently
small. However, for cases where the emergency probability is not that small or there
is a limited number of spare part types, the LT approximation method gives more
accurate results. The LT approximation method is not as fast as the MVA approach,
but the approximation error is smaller, especially for smaller problems or for problems
with a relatively high emergency probability. The LT method is not computationally
expensive and can be used for problems with any number of spare part types. However,
for large problems (K > 50) where the approximation error is expected to be close to
zero and the difference between LT and MVA approximation error is negligible, we
recommend to use the MVA method as it is faster than the LT approximation.

For the numerical comparison, we only used instances with a small number of spare
parts (K < 5). In our experiments, we measured computation times in milliseconds,
and they were mostly zero. However, for the exact evaluation, some instances (where
K =5and Sy > 4,Vk =1, ...,5) required almost an hour. So, for these instances,
there is a huge difference in computation time between the exact and the approximate
evaluation. This difference will even be larger for instances with a larger number
of spare parts, or higher values of base-stock levels, and a larger number of service
engineers, see Eq. (10). When the number of spare parts becomes too large, the exact
evaluation will be impossible due to the size of the state space.

5 Optimization problem

In the previous section, we described how the system under a given policy, i.e., a
choice for all spare parts base-stock levels and for the number of service engineers,
can be evaluated in an approximate way (for large size problems) and in an exact way
(for small size problems). In this section, we find a suboptimal policy by minimizing
the total average costs under total average waiting time constraints. We consider the
following cost factors and parameters:

C,l(: Cost of type-k repair call emergency shipment

Hy: Holding cost per item per unit of time for a type-k spare part (this cost applies
to parts in the inventory and the pipeline)

O: Cost of hiring a service engineer per unit of time

Wwmax:  Maximum accepted average waiting time

For the objective function, since there is a cost for lost calls (emergency shipments),
besides the number of engineers and stock levels, the emergency rate for each spare
part type is needed. Note that the emergency rate of type-k spare part is a nonlinear but
convex function of the stock level, see (12). For the whole system, there is a maximum
average waiting time that must be satisfied. So, there exists a constraint on the total
average waiting time, given in (37). The total average waiting time is a function of
the number of service engineers E and all spare part stock levels Sx, k = 1, ..., K.
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LetS = {S1, ..., Sk} be the vector of base-stock levels. The optimization problem is
then formulated as follows:

K K
inTC(S,E)=O0.E H; S CEyLs 38
min TC(S, E) +;kk+;kk(k> (38)
WS, E) < WM, (39)

where W (S, E), as given in Eq. (37), is the sum of the expected waiting times for
the emergency shipments and the service engineers, and A,f (Sk) is the emergency rate
given in (12).

5.1 Optimization algorithm

The optimization problem is an integer programming problem with a nonlinear objec-
tive function and constraint. We provide a greedy heuristic algorithm with local search
in which we use our evaluation methods to determine a near-optimal policy to minimize
the total average costs under the maximum average waiting time constraint. Similar
greedy methods are used for spare parts inventory models with lateral transshipment.
Wong et al. (2005) have shown that the greedy algorithm followed by local search
performs very well for their multi-item multi-location spare parts systems problem.
Using a greedy algorithm (without a local search) in Van Kranenburg and Houtum
(2009) for a partial pooling model in spare part networks also gives reasonable results
(compared to the Dantzig—Wolfe lower bound).

The emergency probability, defined in (11), is a decreasing and convex function in
the number of servers Sx. So, the emergency rate for each part type is a decreasing
and convex function of its stock level. Therefore, without considering the waiting time
constraint, we can minimize the holding and the emergency costs for each spare part
type separately with a simple greedy search. Suppose S is the vector solution of this
minimization. Given S°, we find the minimum number of service engineers, E 0 such
that the service engineers queue workload is less than one (stable queue). To solve the
main problem, we start with (S, E9) and follow the search algorithm outlined below.
Note that (S°, E”) may be an infeasible solution (does not satisfy the average waiting
time constraint). In this greedy heuristic, we first find a feasible solution. Then, in
the last step, we attempt to improve the solution, using local search, by changing the
solution while it remains feasible.

The average waiting time for the emergency shipments (W) is decreasing in stock
levels while the average waiting time in the service engineers queue (W%) is an
increasing function in stock levels. So, W (S, E) is not generally a monotone function
in S. Therefore, both decreasing and increasing spare parts stock levels may increase
the total cost and decrease the total average waiting time. This makes the greedy
algorithm more challenging and different from common greedy methods that are used
in spare parts inventory problems. For the service engineers, increasing the number of
engineers always increases the total cost and decreases the total average waiting time.
With these observations, we now present the greedy search algorithm.
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1.

Start with solution S = S® (minimization of holding and emergency costs solely)
and E = E = [%1.

Given S” and E? found in Step 1, calculate the total average waiting time. If it is
less than W™ go to Step 5, otherwise, go to the next step.

Calculate A, AE, and for each type-k spare part, AZ‘ and A, using the formulas
below.

W(S,E)—W(S,E+1)  W(S,E)—W(S, E+1)

Af = = ,
TC(S,E+1)—TC(S, E) 0
AF W(S,E) — W(S + e, E)
K™ max{e, TC(S+er, E) —TC(S, E)}’
_ WS, E) — W(S — e, E)
A =

max {e, TC(S — ey, E) — TC(S, E)}’
A = maxy {AE,AZF,A;},

where € is a very small positive number, e is a basis vector with its kth element
equals to 1 and all other elements equal to 0. Note that, if A equals Ag, we increase
the number of service engineers by one. Otherwise, if A equals A, we increase
the type-k spare part stock level by one, and if it equals to A,” we decrease it by
one.

. Calculate the total average waiting time with the updated solution. If it is less than

W™maX " g0 to the next step. Otherwise, go to Step 3.

. Perform alocal search to decrease the total cost while the solution remains feasible.

The last solution is the (sub)optimal solution.

Since we deal with an integer optimization problem, applying a local search in the

last step of the algorithm may improve the solution considerably. We perform a local
search in the following directions:

Decrease the number of service engineers by one: Decreasing the number of service
engineers decreases the total cost for sure. So, we decrease the number of service
engineers by one, if by doing so the solution remains feasible.

Decreasing or increasing a spare part’s stock level by one: Find a spare part for
which decreasing or increasing its stock level by one gives a feasible solution with
a lower total cost.

Decreasing or increasing a spare part’s stock level by one and at the same time
increasing or decreasing the number of service engineers by one: In this case, we
combine the two aforementioned local search directions by changing a spare part’s
stock level and the number of service engineers by one. If as a result the total cost
is decreased but the solution remains feasible, this update is sorted as the new
(improved) solution.

We search for a local improvement in one of these three directions until no further
improvement is possible. In each step, if there is more than one possible local improve-
ment, start with the one that results in the highest decrease in the total cost.
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In Step 3, we update the capacity of a resource that leads to the highest decrease
in the total average waiting time per unit of cost. When updating a capacity decreases
both the total average waiting time and the total cost, it becomes a super candidate for
this step. So, we use € to ensure that the denominator is positive even when the change
in the total cost is negative for a resource and also to make the corresponding A large
enough to be the best candidate for this step.

This algorithm always stops after a finite number of steps. First, the total average
waiting time converges to zero, when the stock levels and the number of service
engineers go to infinity. Hence, we always reach a feasible solution. Second, the case
in which both the total cost and the total average waiting time decrease by changing a
stock level cannot happen an infinite number of times. The total cost function has an
increasing tail in stock levels, since the emergency cost converges to zero when the
stock levels go to infinity.

Note that there is no guarantee that, by using this greedy heuristic, we obtain the
optimal solution. Since we have an integer programming problem with a nonlinear
constraint, we may have multiple local optimal solutions. This heuristic algorithm gives
one of the local optimal solutions, which may be far from the global optimal solution.
Therefore, to validate our optimization algorithm, we test the results of the algorithm
numerically against other algorithms in the next section. We show that, although our
integrated optimization algorithm is suboptimal, it performs well compared to other
algorithms in terms of total cost and runtime, both on average and in most of the cases.

5.2 Numerical evaluation of the optimization algorithm

In this section, we show how using the approximate evaluation methods affects the
optimization result. Furthermore, we compare the greedy heuristic with two other
optimization algorithms. We illustrate how the integrated optimization model performs
when compared with a separated optimization problem, where spare parts inventory
and service engineers planning are optimized separately, and when compared with the
genetic algorithm (optimization package of MATLAB R2014b). Finally, we analyze
a case study using real data obtained from a company.

5.2.1 Approximate evaluation in optimization

We use instances with K = 2 (1000 instances) and K = 5 (150 instances) where
K is the number of spare part types. The parameter settings are given in the first
two columns of Table 1. For these settings, we solve the optimization problem using
exact, MVA, and LT evaluation methods. Then, we compare the (sub)optimal total
cost for solutions with exact and approximate evaluations (total cost error). The total
cost function for given input values of stock levels (S) and number of service engineers
(E) is exact. Note, with all these methods, there is no guarantee of optimality. Table 1
summarizes the result.

The runtime speed ratio shows how much faster on average we can solve the problem
if we use MVA or LT approximation methods instead of the exact evaluation. Although
in some instances the total cost error can be considerable, the average error for both
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Table1 Maximum and average total cost error of the (sub)optimal results using MVA and LT approximation
methods for instances with 2 and 5 spare part types

Settings K MVA Appr. LT Appr.
Wmax . (0.002 — 0.05week Average total cost error (%) 0.956 0.745
O : 700 — 2000€ /week .
Hy 500 — 3000€ /week Maximum total cost error (%) 79.8 62.7
C/; : 0 — 20000€ /week 2 Instances with positive error (%) 10.10 6.90
Ak 2 0.5 — 3/week Instances with negative error (%)  0.50 0.20
Vi 0.4 — 3/week . .
vzr’f] 103 é week Runtime speed ratio 4 3
Mg 3 — 20/week Average total cost error (%) 0.560 0.382
Maximum total cost error (%) 19.00 19.00
5 Instances with positive error (%) 22.63 17.52
Instances with negative error (%) 0.73 0.73
Runtime speed ratio 15000 9000

. Total cost (Appr. evaluation) — Total cost (exact evaluation)
The total cost error is calculated as 100 x - .
Total cost (exact evaluation)

Positive (negative) error shows we end up with a worse (better) solution using approximate evaluation
methods

approximation methods is very low (less than 1%). As given in Table 1, the average
and maximum total cost error decrease considerably when we have more types of
spare parts as is the case in real systems. In addition, runtime differences for exact
and approximation methods increase exponentially with K. Even for problems with
five types of spare parts (a rather small size problem), we can solve the optimization
problem on average up to 15000 times faster by using approximate evaluation methods.
In real cases, the number of spare parts is rather high, so the approximation error is
expected to be close to zero and the runtime difference for exact and approximate
evaluation methods would be huge.

Let us discuss the positive and negative error results. As we observe in all instances,
both MVA and LT approximation methods overestimate the average waiting time.
However, since there may be several local optimal points, solving the optimization
problem with approximate evaluations may give a different local optimal point than
the one we find using the exact evaluation method. Therefore, although on average
the total cost of solutions where the approximate evaluation is used is higher than in
case we use the exact evaluation, there are some cases where we get better solutions
(lower total cost) by using MVA or LT approximation methods. We have found some
cases where by using MVA or LT method we obtain solutions with the total cost up to
16% lower than solutions based upon the exact evaluation. In Table 1, the percentage
of instances where we get worse solutions using approximate evaluations (positive
error) and percentage of instances where we obtain better solutions (negative error)
are given. Note that in the majority of cases we find the same total suboptimal cost using
approximations and the exact evaluation (but in a much faster runtime). Furthermore,
the optimization solutions that we obtain by using the approximate evaluation is a
feasible solution for the real problem, since the approximate average waiting time is
an upper bound of the exact value. In summary, we obtain a reliable feasible solution in
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a very efficient (fast) way by using the proposed approximation methods for problems
with more than five types of spare parts.

5.2.2 Optimization algorithms comparison

Here, we use the same instances as in Table 1, to compare our integrated optimization
algorithm with the separated optimization problem and the genetic algorithm(GA).
GA is well known for solving nonlinear integer programming problem with nonlinear
constraints. We use the exact waiting time for both integrated and separated optimiza-
tion problems, and we test GA for both exact and MVA evaluation methods (slowest
and fastest evaluation methods). Moreover, to compare the runtime of different algo-
rithms, we also include our greedy algorithm with LT evaluation in this comparison.
For the separated optimization problem, first we optimize the spare parts inventory by
assuming that there is an unlimited number of service engineers. Then, we determine
the smallest number of engineers such that the total average waiting time becomes less
than the maximum acceptable one. Usually, the separated optimization converges in
a smaller number of iterations than the integrated optimization. However, the (exact)
evaluation of each iteration requires the same time as in the integrated optimization.
There is no guarantee that the global optimal solution is obtained in any of these
algorithms.

We expect that the optimal solutions of the integrated planning problem are never
worse than solutions of the separated planning problem. However, we know that the
greedy heuristic algorithm that we use does not necessarily yield the global optimal
solution for the integrated optimization problem. Hence, we may get better solutions
in separated optimization problem if the integrated optimization solution is far from
the global optimum. Fortunately, this happens only in a very small number of cases
as we will show below.

For these five optimization methods, we check the maximum and the average total
(suboptimal) cost differences. In Table 2, we show for each optimization method,
the total suboptimal cost (average and maximum) as compared with the best solution
among other methods (error). Moreover, we show in what percentage of the instances
each algorithm gives the best (or equal to the best) solution among the others. In
addition, the normalized runtime ratio of each method is given in the table. This ratio
shows how much time (on average) it takes to solve the problem with each algorithm
as compared with the fastest one.

We cannot draw a specific conclusion under which condition each of these opti-
mization algorithms performs best. In the instances with two types of spare parts, the
greedy algorithm (with LT evaluation) and the separated optimization are the fastest
algorithms among these five methods. Between these two, the greedy algorithm per-
forms better on average. Although the greedy heuristics with exact evaluation are 3
times slower, we obtain on average more than 2% lower total costs. In addition, we
reach the best solution in a larger number of instances using the greedy algorithm
with exact evaluation. In five types spare parts instances, the greedy algorithm with
LT evaluation is the fastest while other algorithms have much higher runtime ratio.
However, its average and maximum error are not that much different than that of
the greedy algorithm with exact evaluation. The performance of separated optimiza-
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Table 2 Maximum and average total cost error for each optimization algorithm

K Greedy (exact) Greedy (LT) Sep. Opt. GA (exact) GA (MVA)
Average error (%) 0.42 1.16 2.89 0.00 0.93

2 Maximum error (%)  50.00 62.68 96.89 2.21 53.08
Best Solution (%) 95.5 89.2 84.1 99.9 89.0
Runtime ratio 3 1 1 400 25
Average error (%) 0.17 0.55 2.96 0 0.43

5 Maximum error (%)  9.90 19.00 38.94 0 11.13
Best Solution (%) 94.20 77.54 68.12 100 78.26
Runtime ratio 3500 1 600 1500000 30

The percentage number of instances in which each algorithm gives the best solution is given. Runtime ratio
shows the normalized computational complexity. The best solutions are in bold and the worst are italicized

tion is worse (in terms of error and runtime) compared to other ones. Therefore, it
is unnecessary to test the separated optimization with approximate evaluations. The
GA method with exact evaluation performs best but is computationally much more
expensive.

In summary, as we discussed before, for problems with more than five types of spare
parts, using the approximate evaluation is highly recommended. By increasing the size
of the problem, the computation time ratio of the exact against the approximation eval-
uation increases exponentially, and at the same time, the approximation error decreases
considerably (see the drop in maximum error in Table 2). The separated optimization
algorithm is not an interesting option in any case. Both the greedy heuristic and GA
(with approximate evaluations) are possible options to optimize the problem. The GA
gives better solutions but needs more time to run. In the cases where the runtime is
important, the greedy algorithm is a better option. Note that the GA is sensitive to the
lower and upper bounds that we choose at the beginning. Without a good estimator,
one may come up with very conservative lower and upper bounds. In this case, the GA
becomes too slow and may yield worse solutions. Highly conservative bounds may
cause the GA to end up in a solution far from the global optimal solution. To start with
better bounds for the GA, we use the solutions of the greedy algorithm.

5.3 Case study

In this section, we perform a case study with data obtained from a real maintenance
logistics problem of a company. In this problem, there are 93 different spare parts and
a team of service engineers that are responsible for the repair. Most of the parameters
are based on the data of the company. However, we have to estimate the emergency
shipment costs and the service rates. We assume that these two parameters are the
same for all types of spare parts. All these spare parts regard a single system (same
downtime cost), and they are all shipped from the same location. Therefore, using the
same value for emergency shipment costs is a logical choice. Moreover, replacement
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Table 3 Total integrated optimization cost saving compared to the separated planning for different values
of the maximum average waiting time

Wmax () Total cost saving (%) Total emergency probability (%)
Separated solution Integrated solution
6 27.7 12.00 9.04
4.5 23.6 9.00 8.64
3 21.5 6.00 5.59
1.8 13.6 3.60 3.15
0.9 18.8 1.80 1.31
0.3 14.4 0.60 0.54

The total emergency probability of integrated and separated solutions are given in each case

of each spare part type has similar complexity (same level in the product configuration
tree), so the service rate is roughly the same for all types of repair jobs.

In this section, we compare the total cost for the integrated and the separated
planning, and we investigate the use of approximate evaluations in the optimization
algorithms for this (large size) problem. We solve this problem with the greedy heuristic
algorithm and the separated optimization, using MVA and LT approximation and for
different target service levels (W™#). The results are summarized in Table 3. The
coefficient of variation of the total arrival process to the service engineers queue in all
solutions is almost 1 (>0.999). It means that this arrival process is almost a Poisson
process (note that the correlation between the inter-arrivals is negligible). This causes
the approximation error in the MVA and LT methods to be close to zero (<0.1%).
Therefore, we can use the approximate evaluation methods without any concern. Both
methods lead to almost zero approximation error, so using MVA or LT approximation
results in the same solutions (but MVA is faster).

As given in Table 3, the integrated optimization always gives a better solution.
Integrated optimization of spare parts and service engineers results in up to 27% cost
savings compared to the separated planning. The separated optimization always gives
a higher total emergency probability.

Now, we are interested to see how changes in emergency shipment cost and replen-
ishment rate affect the (sub)optimal solution. Suppose there are four possible supply
options which the service provider can use for the emergency shipment; swift (most
expensive), fast (expensive), normal and slow (cheap) shipment options. Table 4 shows
the emergency shipment cost and rate for each of these options (in each case equal
for all types of spare parts). Suppose the maximum accepted average waiting time is
0.9h. We solve the problem by using each of these options to see which one results in
the solution with the lowest total cost. The result is presented in Table 4. In all cases,
we meet the maximum average waiting time constraint, but fast shipment option gives
the lowest total cost, and therefore, it is the best choice to use for emergency ship-
ment. The same analysis can be done for other parameters in the problem to get more
managerial insights for real problems.
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Table 4 Total cost comparison for different emergency shipment options with different emergency cost
and replenishment rate

Slow Normal Fast Swift
cl e 12000 20000 28000 48000
VM (per year) 30 60 70 80
Total cost (€) 4434698.92 4353605.08 4293061.56 4303716.12
Total emergency prob. (%) 1.09 1.31 1.54 1.76

The total cost of the best shipment option (fast shipment) is in bold

6 Conclusion

In this paper, we have introduced a new analytical model for integrated spare parts
inventory management and service engineers planning. A service policy is considered
in which backlogging is followed for service engineers when the spare part is available
whereas the repair call is satisfied entirely via an emergency channel in case of a spare
part stock-out. We have developed exact and approximate methods for performance
evaluation of a given policy. When the number of spare part types is low (K < 5), itis
computationally feasible to use the exact (matrix-geometric) evaluation method. The
approximation methods yield more accurate results when there is a higher number of
spare part types, and they are computationally far more efficient for large problems.
Both MVA and LT approximation errors decrease considerably when the number of
part types increases. In our instances, by increasing the number of spare part types from
one to five, the approximation error decreases almost by half for the same value of the
total emergency probability. The LT approximation method can be used in problems
where neither the exact evaluation nor the MVA approximation method is sufficient.
The LT is not as fast as the MVA method but still much more efficient than the exact
evaluation method. For problems in which the number of spare parts types is not very
large (5 < K < 50) or the emergency probability is not too small (0.05 — 0.1), the LT
approximation method is more accurate and reliable than MVA for the performance
evaluation. We may conclude that among these three evaluation methods there is a
suitable one for each type of problem.

For the optimization problem, we use the evaluation methods in a fast greedy heuris-
tic to determine close to optimal base-stock levels and number of service engineers. We
have shown that the optimization problem can be solved in a much faster time by using
approximate evaluations, while the total cost difference is negligible, specifically for
larger problems (K > 5). In addition, we have compared the greedy algorithm opti-
mization with separated optimization and with a genetic algorithm (GA). Although in
problems with two and five types of spare parts, the GA gives better solutions than the
greedy algorithm, it is more time-consuming. Moreover, the GA works better if we
use the greedy algorithm solution to determine better lower and upper bounds for the
GA. Finally, we used the greedy heuristics algorithm in a case study with 93 types of
spare parts and compared it with separated optimization. In this problem, we showed
that there can be up to 27% cost savings using the integrated planning of spare parts
and service engineers as compared to the separated planning.
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The presented model formulation and application can be extended in several ways.
First, we assumed that in all repair calls a service engineer is needed to do the repair
job. However, the model can simply be extended by assuming that not all repair calls
need a service engineer. In this case, repair call arrival rates to the service engineers
queue should be modified by multiplying them with a probability. Also, other arrival
processes and replenishment and service time distributions should be studied to widen
the area of model application. Furthermore, other service-level formulations, such
as the percentile waiting time, are interesting to investigate. Approximate evaluation
methods that are presented in this paper are appropriate and satisfying. However, one
may think of other approximation methods, like the two-moment type of approxima-
tions (see, e.g., Tijms 2003). But for this approximation, we need the results of GI/D/E
and D/G/E queues which are not known in closed form.

In this model, we consider a service policy that is applicable to many real situations.
However, this is not the only justified scenario for such service logistics systems. Here,
we assume that when the requested spare part is not available, the repair call will be
satisfied entirely by an emergency channel. For future research, it would be of interest
to consider a system in which the emergency channel just provides the spare parts and
the internal service engineers must execute the emergency repair calls as well as the
regular ones.

All in all, the presented approximate evaluation methods are very appropriate to
use for applications in practice. First, the approximation error becomes negligible for
real problems in which often the number of spare part types is rather high. Second, in
the optimization of large problems, by using approximate evaluation methods we can
find the solution much faster while the total cost error is almost zero. Furthermore,
although the presented greedy heuristic algorithm does not give the optimal solution,
it can result in a solution with much lower total cost in comparison with a separated
optimization procedure.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

7 Appendix 1: Inter-arrival times of type-k spare parts to the service
engineers queue

In Sect. 4.2.3, we noted that the inter-arrival times of type-k repair calls in the service
engineers queue has a phase-type distribution with the following Laplace—Stieltjes

transform function.
M (Spve + (1 = di)2)

X = T oGt

where
(S —1)

k — s
1 — i (Sk)
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and mx (i), i = 1, ..., Sk are the steady-state probabilities of the type-k spare parts in
the pipeline (parts on-order). In this appendix, we prove this result. Depending on the
spare part pipeline state, the arrival rate to the service engineers queue will be different.
Note, we are interested in the state of spare part pipeline upon a failure and just before
taking the spare part. When a type-k failure happens and there is at least one (type-k)
part in stock (the pipeline is at most Sy — 1), a part is taken and the repair call arrives at
the service engineers queue. Upon the failure, if there are less than type-k parts in the
pipeline, at least one more part remains in the stock for the next type-k arriving call.
Therefore, the inter-arrival time is exponentially distributed with rate A;. However,
when the arriving call observes Sy — 1 parts of type k in the pipeline, it empties the
spare parts type-k stock and increases the pipeline size to Sk, so a subsequent arrival
to the service engineers queue will only occur after a replenishment with rate Si vy
and then the time until the next failure of type-k. So, in this case, the inter-arrival
time will be the sum of two random variables exponentially distributed with rate Si vk
and Ax. As long as the pipeline size has its maximum value, there is no arrival at the
service engineers queue. We can model this inter-arrival time by means of a phase-
type distribution with two transient states. Suppose state 1 is when there are less than
Sk — 1 parts in the pipeline and state 2 is when there are S; — 1 parts in the pipeline
of the spare part inventory of type k. The matrix Gy gives the generator matrix of this
phase-type distribution:

_ [ Ay _
Gr = [ o } = : (40)
and the initial probability of the (absorbing) Markov chain is given by
k _ [1=m(Si=D—m (S m(S=D] _
D" = [ ot lin(sk)nk k Tik,nk(sk) ] = [1 — dk dk] . (41)

For a phase-type distribution, the Laplace—Stieltjes transform function of time until
absorption (time between type-k arrivals to service engineers queue) is equal to (see,
e.g., Neuts 1981)

X(z) = D*.(z1 — Ap)~".AY (42)

_ )»k (Ska+(l _dk)Z)' (43)
(A + 2) (Sevk + 2)

8 Appendix 2: Fitting a Coxian-2 distribution to a superposition of
arrival processes

To obtain an approximate distribution, it is common to fit a phase-type distribution
on the mean and the coefficient of variation of a given positive random variable. In
our problem, since the analysis of the total arrival process to the service engineers
queue is complex for a large number of spare part types, we propose to fit a phase-type
distribution to the inter-arrival time distribution using its first two moments. The exact
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inter-arrival time mean value, 1/y, is given by (14) and (23). An approximate value of
the squared coefficient of variation of the inter-arrival time is given in (25). As proposed
by van Vuuren (2007), p. 20, in case 0.5 < cg, we can use a Coxian-2 distribution for a
two-moment fit. Suppose 01 and 6, are the rates of first and second phase, respectively,
of the Coxian-2 distribution, and let ¢ denote the transition probability from phase
one to two. Then, the parameters of the fitted Coxian-2 distribution are given by

0, =2y, (44)
g =05/, (45)
0 = q0,. (46)

The Laplace transform function of a Coxian-2 distribution with parameters 61, 6>, and
q gives
O (@(1 —q) + 62)

i(u)) = .
01 + w)(02 + w)

(47)

Using (44-46), we find

Y (2y + (203 — l)a))

X(w) = .
) = 22 1 7)

(48)

9 Appendix 3: Approximate coefficient of variation of inter-arrival times
of the superposition of arrival processes

In this section, we show how we find a simple and accurate approximation for the
coefficient of variation of the superposition of two independent arrival streams to the
service engineers queue. We do it in three steps.

First, note that the coefficient of variation of each single arrival stream in our model
is always between 0.5 to 1. Therefore, Coxian-2 is a good candidate to fit to the arrival
processes. As explained in “Appendix 2”” where we fit a Coxian-2 distribution to the
total arrival process, we can do the same for individual arrival streams, see (44—46).

Second, suppose we have two identical Coxian-2 arrival processes with parameters
01 = 2y, q = 05/c2, 6 = qb1. The distribution of an arbitrary inter-arrival time
of the superposition of these two arrival processes can be described by a phase-type
distribution with 3 phases, numbered 0, 1, 2. In phase i exactly i arrival processes are
in the second phase of the inter-arrival time and 2 — i arrival processes are in the first
phase. The generator matrix @ and the initial probability vector g of this phase-type
distribution are as follows (for more details see van Vuuren 2007, p. 23):

4y e 0

o= 0 -2y —vi2 v |, (49)
0 0 -2

B=(1/2120). (50)
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The squared coefficient of variation of this phase-type process equals

) 2P e 22+ ch)

a= (ﬁQ)fle)z T 14227 Gh

C

where e is the column vector with all elements equal to one.

Third, as an approximation, we can replace two independent arrival streams with
arrival rates y| and y; and coefficient of variations ¢ and ¢ with two identical Coxian-
2 arrival streams with an arrival rate (v1+y2)/2 and squared coefficient of variations Ly
which is given by
= Y c% + r2 c% .

Y1t YL+ 72
Note that, ¥1/(y1+y2) and v2/(y;+y») are the fraction of arrivals that are of types 1 and 2,
respectively (see 16). Then, we can use Eq. (51) as an approximation for the squared
coefficient of variation of the superposition process of the two arrival streams.

L, (52)

2= Lr(24 L»)
a1 420,

The same method applies when we have three or more arrival streams (see van
Vuuren 2007, p. 23). For three arrival steams, the squared coefficient of variation of
the superposition process equals

5,  L33+6L3+L3)
c, = .
1 +5L3+4L3

where L3 is given by Eq. (26). However, as a computationally more efficient procedure,
we can use Egs. (27) and (28) iteratively to find the coefficient of variation of the
superposition process when there are more arrival streams.
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