Skip to main content
Log in

A generator for test instances of scheduling problems concerning cranes in transshipment terminals

  • Regular Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

We present a test data generator that can be used for simulating processes of cranes handling containers. The concepts originate from container storage areas at seaports, but the generator can also be used for other applications, particularly for train terminals. A key aspect is that one or multiple cranes handle containers, that is, they store containers, receiving the containers in a designated handover area; retrieve containers, handing the containers over in the handover area; or reshuffle containers. We present a generic model and outline what is captured by the test data itself and what is left to be estimated by the user. Furthermore, we detail how data are generated to capture the considerable variety of container characteristics, which can be found in major terminals. Finally, we present examples to illustrate the variety of research projects supported by our test data generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alicke K (2002) Modeling and optimization of the intermodal terminal Mega Hub. OR Spectr 24:1–17

    Article  Google Scholar 

  • Ballis A, Golias J (2002) Comparative evaluation of existing and innovative rail–road freight transport terminals. Transp Res Part A Policy Pract 36(7):593–611

    Article  Google Scholar 

  • Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res 202:615–627

    Article  Google Scholar 

  • Bierwirth C, Meisel F (2015) A follow-up survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res 244(3):675–689

    Article  Google Scholar 

  • Box GE, Muller ME (1958) A note on the generation of random normal deviates. Ann Math Stat 29(2):610–611

    Article  Google Scholar 

  • Boysen N, Briskorn D, Emde S (2015) A decomposition heuristic for the twin robots scheduling problem. Nav Res Logist 62:16–22

    Article  Google Scholar 

  • Boysen N, Briskorn D, Meisel F (2017) A generalized classification scheme for crane scheduling with interference. Eur J Oper Res 258(1):343–357

    Article  Google Scholar 

  • Boysen N, Fliedner M (2010a) Cross dock scheduling: classification, literature review and research agenda. Omega 38:413–422

    Article  Google Scholar 

  • Boysen N, Fliedner M (2010b) Determining crane areas in intermodal transshipment yards: the yard partition problem. Eur J Oper Res 204:336–342

    Article  Google Scholar 

  • Boysen N, Fliedner M, Jaehn F, Pesch E (2013) A survey on container processing in railway yards. Transp Sci 47(3):312–329

    Article  Google Scholar 

  • Briskorn D, Angeloudis P (2016) Scheduling co-operating stacking cranes with predetermined container sequences. Discret Appl Math 201:70–85

    Article  Google Scholar 

  • Briskorn D, Emde S, Boysen N (2016) Cooperative twin-crane scheduling. Discret Appl Math 211:40–57

    Article  Google Scholar 

  • Briskorn D, Fliedner M (2012) Packing chained items in aligned bins with applications to container transshipment and project scheduling. Math Methods Oper Res 75:305–326

    Article  Google Scholar 

  • Cichenski M, Jaehn F, Pawlak G, Pesch E, Singh G, Blazewicz J (2016) An integrated model for the transshipment yard scheduling problem. J Sched 20(1):57–65

    Article  Google Scholar 

  • Cramton P, Shoham Y, Steinberg R (eds) (2006) Combinatorial auctions. MIT Press, Cambridge

    Google Scholar 

  • Daganzo C (1989) The crane scheduling problem. Transp Res Part B 23(3):159–175

    Article  Google Scholar 

  • Dorndorf U, Schneider F (2010) Scheduling automated triple cross-over stacking cranes in a container yard. OR Spectr 32:617–632

    Article  Google Scholar 

  • Ehleiter A, Jaehn F (2016) Housekeeping: foresightful container repositioning. Int J Prod Econ 179:203–211

    Article  Google Scholar 

  • Erdogan G, Battarra M, Laporte G (2014) Scheduling twin robots on a line. Nav Res Logist 61:119–130

    Article  Google Scholar 

  • Expósito-Izquierdo C, Melián-Batista B, Moreno-Vega M (2012) Pre-marshalling problem: heuristic solution method and instances generator. Expert Syst Appl 39(9):8337–8349

    Article  Google Scholar 

  • Froyland G, Koch T, Megow N, Duane E, Wren H (2008) Optimizing the landside operation of a container terminal. OR Spectr 30:53–75

    Article  Google Scholar 

  • Gonzalez J, Ponce E, Mataix C, Carrasco J (2008) The automatic generation of transhipment plans for a train-train terminal: application to the Spanish–French border. Transp Plan Technol 31:545–567

    Article  Google Scholar 

  • Hall NG, Posner ME (2001) Generating experimental data for computational testing with machine scheduling applications. Oper Res 49:854–865

    Article  Google Scholar 

  • Hartmann S (2004) Generating scenarios for simulation and optimization of container terminal logistics. OR Spectr 26:171–192

    Article  Google Scholar 

  • HHLA (2017). HHLA container terminal altenwerder. https://hhla.de/en/container/cta/how-cta-works.html. Accessed 13 Nov 2017

  • Jaehn F, Kress D (2018) Scheduling cooperative gantry cranes with seaside and landside jobs. Discret Appl Math 242:53–68

    Article  Google Scholar 

  • Jaehn F, Wiehl A (2017) Approximation algorithms for the twin robots scheduling problem. Working paper

  • Kim K, Park Y-M (2004) A crane scheduling method for port container terminals. Eur J Oper Res 156:752–768

    Article  Google Scholar 

  • Kim KH, Kim KY (1999) An optimal routing algorithm for a transfer crane in port container terminals. Transp Sci 33:17–33

    Article  Google Scholar 

  • Kim KH, Lee KM, Hwang H (2003) Sequencing delivery and receiving operations for yard cranes in port container terminals. Int J Prod Econ 84:283–292

    Article  Google Scholar 

  • Kim NS, Wee BV (2009) Assessment of CO\(_2\) emissions for truck-only and rail-based intermodal freight systems in Europe. Transp Plan Technol 32(4):313–333

    Article  Google Scholar 

  • Koch T (2004) Automatik-Portalkrane im CTA-Containerlager. Hebezeuge und Fördermittel 44(11):632–636

    Google Scholar 

  • Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of resource-constrained project scheduling problems. Manag Sci 41:1693–1703

    Article  Google Scholar 

  • Lee D-H, Cao Z, Meng Q (2007) Scheduling of two-transtainer systems for loading outbound containers in port container terminals with simulated annealing algorithm. Int J Prod Econ 107:115–124

    Article  Google Scholar 

  • Lee D-H, Hui Q, Miao L (2008a) Quay crane scheduling with handling priority in port container terminals. Eng Optim 40:179–189

    Article  Google Scholar 

  • Lee D-H, Hui Q, Miao L (2008b) Quay crane scheduling with non-interference constraints in port container terminals. Transp Res Part E 44:124–135

    Article  Google Scholar 

  • Leyton-Brown K (2011) Cats website. http://www.cs.ubc.ca/~kevinlb/CATS/. Accessed 13 Apr 2017

  • Leyton-Brown K, Shoham Y (2006) A test suite for combinatorial auctions. In: Cramton P, Shoham Y, Steinberg R (eds) Combinatorial auctions. MIT Press, pp 451–478

  • Li W, Wu Y, Petering MEH, Goh M, de Souza R (2009) Discrete time model and algorithms for container yard crane scheduling. Eur J Oper Res 198:165–172

    Article  Google Scholar 

  • Lim A, Rodrigues B, Xiao F, Xu Z (2004) Crane scheduling with spatial constraints. Nav Res Logist 51:386–406

    Article  Google Scholar 

  • Lim A, Rodrigues B, Xu Z (2007) A m-parallel crane scheduling problem with a non-crossing constraint. Nav Res Logist 54:115–127

    Article  Google Scholar 

  • Martinez M, Gutierrez I, Oliveira A, Arreche Bedia L (2004) Gantry crane operations to transfer containers between trains: a simulation study of a Spanish terminal. Transp Plan Technol 27:261–284

    Article  Google Scholar 

  • Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul (TOMACS) 8(1):3–30

    Article  Google Scholar 

  • Narasimhan A, Palekar US (2002) Analysis and algorithms for the transtainer routing problem in container port operations. Transp Sci 36:63–78

    Article  Google Scholar 

  • Ng WC (2005) Crane scheduling in container yards with inter-crane interference. Eur J Oper Res 164:64–78

    Article  Google Scholar 

  • Ng WC, Mak KL (2005a) An effective heuristic for scheduling a yard crane to handle jobs with different ready times. Eng Optim 37:867–877

    Article  Google Scholar 

  • Ng WC, Mak KL (2005b) Yard crane scheduling in container terminals. Appl Math Model 29:263–276

    Article  Google Scholar 

  • Nossack J, Briskorn D, Pesch E (2018) Container dispatching and conflict-free yard crane routing in an automated container terminal. Transp Sci (to appear)

  • Peterkofsky R, Daganzo C (1990) A branch and bound solution method for the crane scheduling problem. Transp Res Part B 24:159–172

    Article  Google Scholar 

  • Port of Hamburg (2017a). Container handling 1990 to 2016. https://www.hafen-hamburg.de/en/statistics/containerhandling. Accessed 13 Apr 2017

  • Port of Hamburg (2017b). Top world container ports. https://www.hafen-hamburg.de/en/statistics/top-20-container-ports. Accessed 13 Apr 2017

  • Rotter H (2004) New operating concepts for intermodal transport: the mega hub in Hanover/Lehrte in Germany. Transp Plan Technol 27:347–365

    Article  Google Scholar 

  • Saanen Y, van Valkengoed M (2006) Comparison of three automated stacking alternatives by means of simulation. In Kuhl ME, Steiger NM, Armstrong FB, Oines JA (eds) Proceedings of the winter simulation conference 2005, pp 1567–1576

  • Speer U (2017) Optimierung von automatischen Lagerkransystemen auf Containerterminals. Springer, Berlin

    Book  Google Scholar 

  • Speer U, Fischer K (2016) Scheduling of different automated yard crane systems at container terminals. Transp Sci 51(1):305–324

    Article  Google Scholar 

  • Speer U, John G, Fischer K (2011) Scheduling yard cranes considering crane interference. Lect Notes Comput Sci 6971:321–340

    Article  Google Scholar 

  • Stahlbock R, Voß S (2008) Operations research at container terminals: a literature update. OR Spectr 30:1–52

    Article  Google Scholar 

  • Steenken D, Voß S, Stahlbock R (2004) Container terminal operations and operations research: a classification and literature review. OR Spectr 26:3–49

    Article  Google Scholar 

  • Vis IFA, Carlo HJ (2010) Sequencing two cooperating automated stacking cranes in a container terminal. Transp Sci 44:169–182

    Article  Google Scholar 

  • Yang CH, Choi YS, Ha TY (2004) Simulation-based performance evaluation of transport vehicles at automated container terminals. OR Spectr 26(2):149–170

    Article  Google Scholar 

  • Zhu Y, Lim A (2006) Crane scheduling with non-crossing constraints. J Oper Res Soc 57:1464–1471

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wiehl.

Additional information

This work has been supported by the German Science Foundation (DFG) through the grant. “Scheduling mechanisms for rail mounted gantries with respect to crane interdependencies” (BR 3873/7-1 and JA 2311/2-1).

Appendix

Appendix

1.1 Distributions

The test data generator offers the following distribution functions (version 1.08).

  • Uniform distribution function:

    Input: \(a,b \in \mathbb {Z}, a \le b\)

    Let [ab] be the interval that limits the output. We generate a random value \(x'\) using uniform distribution \({\mathcal {U}}[a-1,b]\). To achieve integer numbers, we round this value \(x = \lfloor x' \rfloor + 1\). Output: \(x \in \{a,a+1,...,b\}\)

  • Normal distribution function:

    Input: \(\mu ,\sigma ^2 \in \mathbb {R}^+\)

    We generate a random value \(x'\) using normal distribution \(\mathcal {N} (\mu ,\sigma ^2)\). To achieve integer numbers, we round this value \(x = \lfloor x' + 0,5 \rfloor \). Output: \(x \in \mathbb {Z}\)

  • Truncated normal distribution function:

    Input: \(\mu ,\sigma ^2 \in \mathbb {R}^+\) and \(a,b \in \mathbb {Z}, a \le b\)

    Let [ab] be the interval that limits the output. We generate a random value \(x'\) using normal distribution \(\mathcal {N} (\mu ,\sigma ^2)\). To achieve integer numbers, we round this value \(x = \lfloor x' + 0,5 \rfloor \). We reject x and restart the function if \(x<a\) or \(x>b\) applies. Output: \(x \in \{a,a+1,...,b\}\)

  • Arbitrary distribution function:

    Input: \(p_1,p_2,...,p_C \in \mathbb {R}^+\) and \(v_1,v_2,...,v_C\)

    Let C be the number of classes, where each class \(c=1,...,C\) has a probability \(p_{c}\) and a value \(v_{c}\). The value can be a number or an alphanumeric value. First, we calculate normalized probabilities \(p_{c}^n = p_{c} / \sum _{i=1}^{C}p_i\)\(\forall c=1,...,C\). In the next step, the value \(v_c\) is assigned to x with the probability of occurrence \(P(X=v_{c})=p_{c}^n\)\(\forall c=1,...,C\). Output: \(x \in \{ v_1, v_2,...,v_C\}\)

We use Mersenne Twister (MT 19937) to generate pseudo-random 32-bit integer numbers. These numbers are converted into uniformly distributed numbers in the interval [0, 1). Afterward, we modify the numbers to obtain the required probability distributions (e.g., \({\mathcal {U}}[a,b]\) or \(\mathcal {N} (\mu ,\sigma ^2)\)). Obviously, this procedure is simple for uniform distribution. However, to obtain normal distribution we use the Box–Muller transformation (Box and Muller 1958). For the arbitrary distribution, interval [0, 1) is divided into C intervals. Each interval \(c=1,\ldots ,C\) represents a class where the width of the interval is equal to the probability of occurrence \(p^n_c\). To determine output value \(v_c\), we identify the interval in which the random number is located.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briskorn, D., Jaehn, F. & Wiehl, A. A generator for test instances of scheduling problems concerning cranes in transshipment terminals. OR Spectrum 41, 45–69 (2019). https://doi.org/10.1007/s00291-018-0529-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-018-0529-z

Keywords

Navigation