Skip to main content

Advertisement

Log in

Bi-objective optimization problems with two decision makers: refining Pareto-optimal front for equilibrium solution

  • Regular Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

The Pareto-optimality concept in multi-objective optimization theory is different from the Nash equilibrium concept in noncooperative game theory. When the objective holders are independent decision makers, i.e., human entities or organizations, any solution on the Pareto-optimal front is not necessarily an equilibrium point, hence not a valid solution. The solution has to be a Pareto-optimal-equilibrium (POE) point. In this paper, we convert a bi-objective optimization problem into a two-player game problem by introducing “induced games,” and we propose a new refinement method to find a POE point. We prove that at least one such POE point exists for a class of linear bi-objective optimization problems, and we develop an algorithm to find it. We discuss that the innovative approach considered in this paper is of real future interest to some industrial and social applications. One such example is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aumann RJ (1987) Game theory. The new Palgrave: a dictionary of economics. Palgrave, London

    Google Scholar 

  • Braekers K, Hartl RF, Parragh SN, Tricoire F (2016) A bi-objective home care scheduling problem: analyzing the trade-off between costs and client inconvenience. Eur J Oper Res 248(2):428–443

    Google Scholar 

  • Calvo-Armengo A (2006) The set of correlated equilibria of \(2\times 2\) games. https://pdfs.semanticscholar.org/b1fc/f6eb54ec8ba06227dac40341f8e4a3718aef.pdf

  • Chanron V, Lewis K (2005) A study of convergence in decentralized design processes. Res Eng Des 16(3):133–145

    Google Scholar 

  • Chanron V, Lewis K, Singh T(2004) An investigation of equilibrium stability in decentralized design using nonlinear control theory. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, p 4600

  • Chanron V, Singh T, Lewis K (2005) Equilibrium stability in decentralized design systems. Int J Syst Sci 36(10):651–662

    Google Scholar 

  • Chernikova NV (1965) Algorithm for finding a general formula for the nonnegative solutions of a system of linear inequalities. In: U.S.S.R. Computational Mathematics and Mathematical Physics V, pp 228–233

    Google Scholar 

  • Ciucci F, Honda T, Yang MC (2012) An information-passing strategy for achieving Pareto-optimality in the design of complex systems. Res Eng Des 23(1):71–83

    Google Scholar 

  • Cohon J (2013) Multiobjective programming and planning, reprint edn. Dover Books on Computer Science. Dover Publications

  • Cornuéjols G (2008) Valid inequalities for mixed integer linear programs. Math Program 112(1):3–44

    Google Scholar 

  • Defryn C, Sörensen K, Dullaert W (2019) Integrating partner objectives in horizontal logistics optimisation models. Omega 82:1–12

    Google Scholar 

  • Ehrgott M (2006) Multicriteria optimization. Springer, Berlin

    Google Scholar 

  • Figueira JR, Greco S, Mousseau V, Slowiński R (2008) Interactive multiobjective optimization using a set of additive value functions. In: Branke J, Deb K, Miettinen K, Slowiński R (eds) Multiobjective optimization. Springer, Berlin, pp 97–119

    Google Scholar 

  • Ghotbi E, Otieno WA, Dhingra AK (2014) Determination of Stackelberg-Nash equilibria using a sensitivity based approach. Appl Math Model 38(21–22):4972–4984

    Google Scholar 

  • Gurnani A, Lewis K (2008) Collaborative, decentralized engineering design at the edge of rationality. J Mech Des 130(12):121101–121109

    Google Scholar 

  • Hernandez G, Seepersad CC, Mistree F (2002) Designing for maintenance: a game theoretic approach. Eng Optim 34(6):561–577

    Google Scholar 

  • Hwang C-L, Masud ASM (1979) Multiple objective decision making-methods and applications: a state-of-the-art survey. Volume 164 of Lecture notes in economics and mathematical systems. Springer, Berlin

    Google Scholar 

  • Ignizio JP (1976) Goal programming and extensions. Lexington Books

  • Karray S, Sigué SP (2015) A game-theoretic model for co-promotions: Choosing a complementary versus an independent product ally. Omega 54:84–100

    Google Scholar 

  • Konak A, Kulturel-Konak S, Snyder L (2017) A multi-objective approach to the competitive facility location problem. Procedia Comput Sci 108:1434–1442

    Google Scholar 

  • Lee C-S (2012) Multi-objective game-theory models for conflict analysis in reservoir watershed management. Chemosphere 87(6):608–613

    Google Scholar 

  • Lewis K, Mistree F (1998) Collaborative, sequential, and isolated decisions in design. J Mech Des 120(4):643–652

    Google Scholar 

  • Lewis K, Mistree F (2001) Modeling subsystem interactions: a game theoretic approach. J Des Manuf Autom 4(1):17–35

    Google Scholar 

  • Matheiss TH, Rubin DS (1980) A survey and comparison of methods for finding all vertices of convex polyhedral sets. Math Oper Res 5(2):167–185

    Google Scholar 

  • Miettinen K, Ruiz F, Wierzbicki AP (2008) Introduction to multiobjective optimization: interactive approaches. In: Branke, J., Deb, K., Miettinen, K., Slowiński, R. (Eds.), Multiobjective optimization. Vol. 5252 of Theoretical Computer Science and General Issues. Springer Science & Business Media, pp. 27–57

  • Myerson R (1997) Game theory. Harvard University Press, Cambridge

    Google Scholar 

  • Osborne MJ, Rubinstein A (1994) A course in game theory. MIT Press, Cambridge

    Google Scholar 

  • Peeters R, Potters J (1999) On the structure of the set of correlated equilibria in two-by-two bimatrix games. Tech. rep., CentER, Tilburg University: Econometrics

  • Rao SS (1987) Game theory approach for multiobjective structural optimization. Comput Struct 25(1):119–127

    Google Scholar 

  • Sawaragi Y, Nakayama H, Tanino T (1985) Theory of multiobjective optimization, vol 176. Elsevier, Amsterdam

    Google Scholar 

  • Simon HA (1960) The new science of management decision. Harper & Brothers, New York

    Google Scholar 

  • Starr MK, Zeleny M (1977) Multiple criteria decision making. North-Holland Publishing, Amsterdam

    Google Scholar 

  • Tsionas MG (2018) A Bayesian approach to find Pareto optima in multiobjective programming problems using Sequential Monte Carlo algorithms. Omega 77:73–79

    Google Scholar 

  • Wang X, Geng S, Cheng T (2018) Negotiation mechanisms for an order subcontracting and scheduling problem. Omega 77:154–167

    Google Scholar 

  • Wierzbicki AP (1986) On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spektrom 8(2):73–87

    Google Scholar 

  • Yang S, Wu J, Sun H, Yang X, Gao Z, Chen A (2017) Bi-objective nonlinear programming with minimum energy consumption and passenger waiting time for metro systems, based on the real-world smart-card data. Transportmetrica B Transp Dyn 6:302–319

    Google Scholar 

  • Yu S, Zheng S, Gao S, Yang J (2017) A multi-objective decision model for investment in energy savings and emission reductions in coal mining. Eur J Oper Res 260(1):335–347

    Google Scholar 

  • Zeleny M (1982) Multiple criteria decision making. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadali S. Monfared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A. Aumann’s polyhedron characterization for 4-vertices payoff space

In this section, we describe the characterization of vertices of the Aumann’s polyhedron for \(2\times 2\) bi-matrix games. In fact, we use an expanded form of the characterization proposed in Calvo-Armengo (2006).

We begin by the following Lemma which will be used for converting a \(2\times 2\) bi-matrix game to a more tractable form.

Lemma A.1

(Peeters and Potters 1999) The set of correlated equilibria of a bi-matrix game (AB) does not change if theA-matrix (B-matrix)is multiplied by a positive factor or a fixed row (column) vector is added to all rows (columns) ofA (B).

According to Lemma A.1, we can replace A and B by \(A'\) and \(B'\), respectively, where

$$\begin{aligned} A' = \begin{bmatrix} a_{1} &{} a_{2} \\ 0 &{} 0 \end{bmatrix}, \quad B' = \begin{bmatrix} b_{1} &{} 0 \\ b_{2} &{} 0 \end{bmatrix} \end{aligned}$$
(A.1)

and \(a_{j} = a_{1j}-a_{2j}\), \(j=1,2\) and \(b_{i} = b_{i1}-b_{i2}\), \(i=1,2\). By \({\mathcal {A}}(a_1,a_2,b_1,b_2)\) we denote the correlated equilibria subspace for the bi-matrix game defining by \(A'\) and \(B'\).

If \(a_2,b_2\ne 0\), then by multiplying \(A'\) by \(1/|a_2|\) and \(B'\) by \(1/|b_2|\) the set of correlated equilibria does not change, thus any correlated equilibria subspace can be characterized by the following polyhedra

$$\begin{aligned} {\mathcal {A}}(a,1,b,1), {\mathcal {A}}(a,-1,b,1), {\mathcal {A}}(a,1,b,-1), {\mathcal {A}}(a,-1,b,-1). \end{aligned}$$

Two polyhedra \({\mathcal {A}}(a,-1,b,1)\) and \({\mathcal {A}}(a,1,b,-1)\) are the same if we exchange the role of row-player and column-player. Thus, three polyhedra are remained to be considered, as in Lemma A.2. If we have \(a_2=0\) or \(b_2=0\) in \(A'\) and \(B'\), then, changing the strategies of player 1 or player 2 puts the problem in the form we considered in Lemma A.2.

Lemma A.2

For an Aumann’s polyhedron\({\mathcal {A}}(a,s,b,t)\)with\(|s|=|t|=1\), we have the following facts:

  1. (i)

    The vertices of\({\mathcal {A}}(a,1,b,1)\)could be characterized by

    $$\begin{aligned} \begin{array}{c|lccc} \hbox { Conditions on}\ a ,b &{} \hbox { Vertices of}\ {\mathcal {A}}(a,1,b,1)\\ \hline a,b\le 0 &{} \frac{1}{(a-1)(b-1)} \begin{bmatrix}1 &{} -a &{} -b &{} ab \end{bmatrix}, \; \frac{1}{a+b-ab} \begin{bmatrix}0&a&b&-ab \end{bmatrix}, \; \frac{1}{a+b-1} \begin{bmatrix}-1 &{} a &{} b &{} 0 \end{bmatrix}, \\ &{} \begin{bmatrix}0 &{} 1 &{} 0 &{} 0 \end{bmatrix}, \; \begin{bmatrix}0 &{} 0 &{} 1 &{} 0 \end{bmatrix}\\ a\le 0< b &{} \begin{bmatrix}0 &{} 0 &{} 1 &{} 0\end{bmatrix}\\ b\le 0<a &{} \begin{bmatrix}0 &{} 1 &{} 0 &{} 0\end{bmatrix}\\ a, b>0 &{} \begin{bmatrix}1 &{} 0 &{} 0 &{} 0 \end{bmatrix}\end{array} \end{aligned}$$

    That is, for\(a\le 0\)and\(b\le 0\), polyhedron\({\mathcal {A}}(a,1,b,1)\)may have five different vertices. For other cases, only one point is known.

  2. (ii)

    The vertices of\({\mathcal {A}}(a,-1,b,1)\)could be characterized by

    $$\begin{aligned} \begin{array}{c|lccc} \hbox { Conditions on}\ a ,b &{} \hbox { Vertices of}\ {\mathcal {A}}(a,-1,b,1)\\ \hline a<0, b \in {\mathbb {R}}&{} \begin{bmatrix}0 &{} 0 &{} 1 &{} 0 \end{bmatrix}\\ b< 0 = a &{} \frac{1}{1-b} \begin{bmatrix}1 &{} 0 &{} -b &{} 0 \end{bmatrix},\; \begin{bmatrix}0 &{} 0 &{} 1 &{} 0 \end{bmatrix}\\ b\ge 0 = a &{} \begin{bmatrix}0 &{} 0 &{} 1 &{} 0 \end{bmatrix}, \; \begin{bmatrix}1 &{} 0 &{} 0 &{} 0 \end{bmatrix}\\ b<0<a &{} \frac{1}{(1+a)(b-1)} \begin{bmatrix}-1 &{} -a &{} b &{} ab \end{bmatrix}\\ a>0=b &{} \frac{1}{1+a} \begin{bmatrix}1 &{} a &{} 0 &{} 0 \end{bmatrix}, \; \begin{bmatrix}1 &{} 0 &{} 0 &{} 0 \end{bmatrix}\\ a, b>0 &{} \begin{bmatrix}1 &{} 0 &{} 0 &{} 0 \end{bmatrix}\end{array} \end{aligned}$$
  3. (iii)

    The vertices of\({\mathcal {A}}(a,-1,b,-1)\)could be characterized by

    $$\begin{aligned} \begin{array}{c|lccc} \hbox { Conditions on}\ a ,b &{} \hbox { Vertices of}\ {\mathcal {A}}(a,-1,b,-1)\\ \hline a,b\ge 0 &{} \frac{1}{(a+1)(b+1)} \begin{bmatrix}1 &{} a &{} b &{} ab \end{bmatrix}, \; \frac{1}{1+b+ab} \begin{bmatrix}1&0&b&ab \end{bmatrix}, \; \frac{1}{1+a+ab} \begin{bmatrix}1 &{} a &{} 0 &{} ab \end{bmatrix}, \\ &{} \begin{bmatrix}0 &{} 0 &{} 0 &{} 1 \end{bmatrix}\\ a< 0, b\in {\mathbb {R}}&{} \begin{bmatrix}0 &{} 0 &{} 0 &{} 1\end{bmatrix}\\ b < 0 \le a &{} \begin{bmatrix}0 &{} 0 &{} 0 &{} 1\end{bmatrix}\end{array} \end{aligned}$$

Proof

See (Calvo-Armengo 2006). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S. Monfared, M., Monabbati, S.E. & Mahdipour Azar, M. Bi-objective optimization problems with two decision makers: refining Pareto-optimal front for equilibrium solution. OR Spectrum 42, 567–584 (2020). https://doi.org/10.1007/s00291-020-00587-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-020-00587-9

Keywords

Navigation